
Abstract

The increasing amount of test data needed to test SOC
(System-on-Chip) entails efficient design of the TAM (test
access mechanism), which is used to transport test data
inside the chip. Having a powerful TAM will shorten the test
time, but it costs large silicon area to implement it. Hence,
it is important to have an efficient TAM with minimal
required hardware overhead. We propose a technique that
makes use of the existing bus structure with additional
buffers inserted at each core to allow test application to the
cores and test data transportation over the bus to be
performed asynchronously. The non-synchronization of test
data transportation and test application makes it possible to
perform concurrent testing of cores while test data is
transported in a sequence. We have implemented a Tabu
search based technique to optimize our test architecture,
and the experimental results indicate that it produces high
quality results at low computational cost.

1. Introduction

The increasing test application time for SOC (system-on-
chip) is mainly due to the high amount of test data required
for testing. The time the chip spends in testing is an
important factor for the cost of the production and hence, a
maximum allowed test time is often set early in the design
phase.  However, the test application time can be
maintained at a reasonable level by adopting an efficient
organization of the test data transportation. In general, the
test data is transported on a TAM (test access mechanism)
which can be an added dedicated infrastructure for testing
purpose only, or an existing functional structure, such as the
system bus, for example.

Several approaches assuming a dedicated TAM for test
data transportation have been proposed [1, 6, 9, 13]. Aerts
and Marinissen proposed three TAM structures for scan-
tested systems [1], and Varma and Bhatia [13], as well as
Marinissen et al. [9] suggested dedicated TAM structures.
Iyengar et al. defined a framework for TAM design and test
scheduling on dedicated TAMs [6]. Cota et al. proposed a

scheme for network-on-chip designs [3], and Nahvi and
Ivanov proposed a packet based TAM scheme [11]. Harrod
demonstrated the use of the AMBA-bus dedicated for test
purpose [4]. 

The main disadvantage with a dedicated TAM is the
additional routing it requires. Despite efficient scheduling
techniques, usually a wide TAM is required to reach a low
test time. On the other hand, the general disadvantage with
using the existing bus for test data transportation is that the
bus operates sequentially. It means the tests are executed
one after the other and only one test is active at a time,
which leads to long testing times. 

We propose a buffer-based architecture that makes use of
the existing bus structure for test data transportation. The
buffers are placed between each core and the functional bus
and they are used to temporarily store the test vectors while
they are applied to the core. The advantage of using the
existing bus structure is that additional wire routing is not
needed, and the introduction of buffers make it possible to
separate test data transportation from the application of test
data. The application of test data usually takes longer time
than the transportation on the bus since the scan-chains at
the cores have to be loaded. In our scheme, we divide the
test sets into smaller packages, which are sent on the bus. As
soon as a package arrives at a core, testing can start. In our
scheme, even if the bus is organized sequentially, the
application of tests at cores is performed concurrently,
leading to shorter testing times. 

By adding buffers, we can send test data to a core and
store it until the core can apply the test data. The scheme
adds buffers at each core and an additional controller. Both
the buffers and the controller contribute to an increased
silicon area, however there is a trade-off between the size of
the buffers and the complexity of the controller. Small
buffers entail a larger set of packages and a complex
controller with many control states. On the contrary, a small
controller, with few control states, would require large
buffers. The size of the packages also affects the overall test
time for the system where small packages gives high
flexibility to the schedule and a shorter test time as opposed
to large packages. In the extreme case, each test is
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transported in one package, which leads to a sequential
application of the test and long test time. In order to explore
this trade-off between the buffer size and controller
complexity, an optimization algorithm is required. 

We, therefore, propose a Tabu search based algorithm to
minimize the size of the buffers at each core, as well as the
controller and, at the same time not violating the test time
constraint given by the designer. Experiments show that our
approach produces results with high quality at low
computational cost. 

The rest of the paper is organized as follows. Section 2
gives an overview of SOC test architecture. The problem is
formulated in Section 3, and the architecture is presented in
Section 4. The proposed algorithm is discussed in Section 5.
The experimental results are presented in Section 6, and
conclusions are drawn in Section 7. 

2. SOC Test Architectures

In this section we discuss different types of architectures
for test data transportation. We make use of an example to
illustrate the architectures for (1) dedicated TAM
(Figure 1), (2) existing bus structure as TAM (Figure 2),
and (3) our proposed buffer-based TAM scheme using the
existing bus. Note, that in all cases, buses are required in
normal operation. 

A test architecture with a dedicated TAM is illustrated in
Figure 1. The cores, Core1 and Core2 are scan-tested and to
ease interfacing with the TAM, each core has a wrapper. In
the example, Core1 have longer scan chains than Core2,
thus Core1 requires longer test-time time than Core2
(Figure 1(b)). The scanned elements at a core (scan-chains
and wrapper-cells) are connected into wrapper chains,
which are connected to TAM wires. In normal operation the
inputs and outputs of each core is connected to the bus,
while in testing mode the test data is transported on the
dedicated TAM. A dedicated TAM for the transportation of
test data has the advantage of high flexibility and offers the
possibility of a trade-off between the test time and the
number of wires used in the TAM. A high number of wires
requires extra silicon area to the design, but it enables
parallel transportation of test vectors, which will shorten the
test time. 

A test schedule for the example design in Figure 1(a) is
depicted in Figure 1(b). Note, that the bus in the system is
not used at all during testing mode. 

Figure 2(a) shows an architecture with no dedicated
TAM. The existing bus in the system is used in normal mode
as well as for test data transportation in testing mode. The
test schedule for the example is shown in Figure 2(b). The
testing time is higher due to the bus architecture, which
imposes sequential scheduling, and, hence, only one core is
tested at a time. The example shows that the bus is the
critical resource; it is fully occupied, but, the cores are only
activated one after the other.

Figure 3(a), shows an architecture where buffers are
introduced between the existing bus and the cores. The
advantage with such a scheme is that by inserting buffers,
the transportation of test data is separated from the
application of test data. The application of a test vector at a
core, which is shifted-in and captured, takes longer time
than sending the test vector from the ATE to the core over
the bus. It means that as soon as a package of test data has
arrived to a core, testing at the core can start. Since the test
application at a core takes longer than sending test data, the
bus can be used to fed test data to other cores. In this way,
the cores are tested concurrently (Figure 3(b)), leading to a
reduced test application time.

The assumption that the application takes longer time
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than the transportation is derived from the fact that the
number of scan chains in the cores, usually is smaller than
the bandwidth w of the functional bus, thus making it
possible to transfer more test data per clock cycle on the bus
than what can be applied to the core. We further illustrate
this difference with a small example (Figure 4). Here a 128
bit wide functional bus is connected to a core i, with four
scan chains through a buffer. In only one clock cycle of the
bus, the buffer is fed with 128 bits of test data. This is
partitioned through a parallel to serial converter, to four
scan chains, each with the length of 32 bits. During the next
cycle, the bus can transport data to another core j while core
i is occupied for another 32 clock cycles with the shift-in of
the scan chains.

One possible alternative to the buffers could be for
example to dedicate a subset of the bus wires for testing core
i and another subset for core j. However, this technique
would require additional logic to partition the wires and

extensive test controller to manage the application of the
tests, why this method should only be used together with a
dedicated TAM.

The idea with buffers at cores is combined with the
division of the test set for each core into small packages of
test vectors as illustrated in Figure 5. Here the test to Core1
has been divided into two separate packages, p11 and p12,
which then are scheduled in order but without a fixed
interval between each package. This leads to a more flexible
schedule, which also contributes to a possible decrease of
the test application time.

3. Problem Formulation

We now formulate our problem precisely as follows.
Given is a system consisting of a set of cores C = {c1, c2, ...,
cN}, where N is the number of cores, and each core ci, has a
buffer bfi where bsi is the buffer size (initially bsi is not
determined). The maximal allowed test time for the system
tmax is given as a constraint. Also given is the set of tests
T={T1, T2, ...,TN}, where Ti is a set of test vectors, which is
to be applied to the core ci. For each test Ti, the following
information is given:
 • the application-time ti

appl is the time needed to apply the
test to core ci,

 • the transportation-time ti
send is the time needed to trans-

port Ti from the test source SRCT via the bus to core ci,
 • the size sTi is the number of test vectors of the test Ti.

A test Ti, is divided into mTi
 packages, each of the same

size sTi- p. The package size sTi- p for a test Ti is determined
as follows1:
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The time ti
appl-p to apply a package belonging to test Ti is

calculated as: 

Associated to each package pij of test Ti where
, are three time points, τstartij

, τsendij
, and τfinishij

. The time to send,τsendij
, represents the start of the

transmission of package, pij, on the bus. The time, τstartij
, is

the start time of the test at the core ci. Finally, τfinishij
 is the

time when the whole package has been applied. The finish
time, τfinishij

, is given by the following formula:

The objective of our technique is to find τstartij
and τsendij

for each package in such way that the total cost is minimized
while satisfying the test time constraint, tmax. The total cost
for the test is computed by a cost function, that consists of
the system’s total buffer size and the complexity of the
controller given as follows:

where α and β are two coefficients used to set the weight of
the controller and the buffer cost. The cost of the buffers are
given as:  

and the controller: 

where the constants k1
C and k1

B are constants reflecting the
base cost, which is the basic cost for having a controller and
buffers, respectively, and k2

C  and k2
B are design-specific

constants that represent the implementation cost parameters
for the number of states and the buffer size. The buffer size
is translated into estimated silicon area expressed by the
number of NAND gates used. 

The total buffer size in the system is given by:

The complexity of the test-controller CTRLT is given by
the following formula described in[10]: 

where Ni is the number of inputs, No the number of outputs,
Ns the number of states and Nt the number of transitions.
The formula estimates the complexity of a finite state
machine in equivalent two-input NAND gates. In this work
the number of inputs Ni and outputs No is equivalent to the
number of cores and the number of states Ns is equal to the
number of transitions Nt. Our problem is similar to the NP-
complete multiprocessor resource constrained scheduling
problem [14].

4. The Buffer-based Architecture

In Section 2, we described test data transportation using
the existing functional bus. By inserting buffers at each core
and dividing the test set into smaller packages, we showed
that the testing can be performed concurrently even with a
bus based on sequential ordering. In Section 3, we
introduced the problem formulation and the notations. In
this section, we further illustrate the problem. 

The example in Figure 6 shows a system consisting of
three cores, c1, c2, and c3, all connected to the bus b. Each
core ci is associated with a buffer bfi placed between the
core and the bus. Also connected to the bus are two test
components, SRCT and CTRLT. We assume that the tests are
all produced in the test-source SRCT and the test-controller
CTRLT is responsible for the invocation of transmissions of
the tests on the bus. The test-controller consists of a finite
state machine sending a signal si to each core indicating
when it will receive a package of test data. When the core
has received the package, it sends a signal ri to the
controller, indicating that the controller can continue to
transmit packages to another core. We assume that the core
itself handles the evaluation of the test results, by, for
example, a signature analyser. Information needed for the
final test result evaluation is also sent via the bus. 

Each test Ti can be divided into mTi
 packages (a set of test

vectors). There are two reasons for dividing tests into
packages. As mentioned earlier, the transportation-time
ti

send-p for a package on the bus is shorter than the
application-time ti

appl-p. The size of the buffer, however,
does not have to be equal to the size of the packages. This is
explained by the fact that the test data in a package can be
applied immediately when it arrives at the core. The buffer
size bsi, associated to a core ci, is calculated with the
following formula:

where the constant ki represents the rate at which the core
can apply the test, the time τstartij

 is the scheduled start time
of the application of the package j from test Ti at the core,
and τsendij 

is the start time for sending the package on the
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bus. The constant ∆i represents the leftover package size,
which is the size of the test vectors that remain in the buffer
after the transportation of the package terminates. This
constant ∆i is determined by the difference between ti

appl-

p
and ti

send-p
, which is multiplied by the constant ki.

The calculation of the buffer size is illustrated in
Figure 7, which shows the bus schedule and the application
of a test T1 to core c1, with t1

appl
=60, t1

send
=30, mT1

=3, and
k1=1. In this example the core has not finished the testing
using the package sent at time point τsend1,2

=10 before the
package sent at τsend1,3

=20  arrives at the core. This forces
the buffer size to be increased. For this example the buffer
size will be equal to 1×(40-20)+10=30, which is the
difference between the termination of applying the last test
package and the end point of transporting the corresponding
package.

The following example illustrates the minimization of
the buffer size and the test controller complexity. We make
use of the example system in Figure 6, which consists of
three cores c1, c2, and c3 which are tested with three tests,
T1, T2, and T3, respectively. We have divided the tests into a
total number of 8 packages, all with the same application-
time and minimum package size, but different
transportation-times (Table 1). We assume that the minimal
test time for the system is given by the designer. In this
example the time is 90 time units, which is the minimal time
for applying these tests. This is the sum of the transportation
times plus the smallest value of all ∆i.

Two different schedules for the 8 packages derived from
the three tests are illustrated in Figure 8(a) and Figure 8(b).

In Figure 8(a) the packages are sent in such a way that the
application of the previous package has finished before a
new one arrives. This leads to small buffers since every
package can be applied immediately as they arrive, that is
τstartij

-τsendij
=0 for all packages. The buffer sizes for this

schedule are, bs1 =10 ( ), bs2 =20, and
bs3 =10. In the second schedule, Figure 8(b), some
packages are grouped together in pairs, which will produce
larger buffers, bs1 =20 ( ), bs2 =40,
and bs3 =20. 

5. The Tabu Search Based Algorithm

We have implemented a Tabu search based optimization
heuristic for the problem described in Section 3. The
algorithm (Figure 9), consists of three steps: in step one an
initial schedule is built, which is further improved in step
two and step three. The algorithm takes as inputs the tests T,
a minimal test time possible for the tests, tmin, and the
maximum allowed test time, tmax. tmin is the theoretical
minimal time needed for transportation and application of
tests T, with unlimited buffer and controller cost. This value
can be computed by a CLP (Constraint Logic
Programming) model in very short time (none of the
experiments we have used needed more than 700 ms for
computing this value). 

In the initial step, the tests are sorted according to their
application time, ti

appl, and then the initial schedule is built.
The slack, which is the difference between the end time of
the schedule and tmax, is calculated. In step two, the initial
schedule is improved by distributing the slack between the
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Test Nr packages
Application-
time (ti

appl)
Transportation- 

time (ti
send)

∆i

T1 3 60 30 10

T2 2 60 20 10

T3 3 60 30 10

 Table 1. Test characteristics.
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packages, hence, decreasing the buffer size. After this step
the slack is zero. The schedule is then further improved in
step three, were a Tabu search based strategy is used to find
the best solution. Tabu search [12] is a form of local
neighborhood search, which at each step evaluates the
neighborhood of the current solution and the best solution is
selected as the new current solution. Unlike local search,
which stops if no improved new solution is found, tabu
search continues the search from the best solution in the
neighborhood even if that solution is worse than the current.
To prevent cycling the most recently visited solutions are
marked as tabus meaning that they are not allowed to be
repeated until the tabu has expired. 

In our algorithm the neighborhood is determined by the
possible points of improvements in the schedule. These can
be points which decrease the buffer size by splitting a
package, or decrease the controller cost by merging

packages. Each improvement point is defined as a move,
which, after it has been applied, is marked as a tabu. The
tabu tenure, that is the number of iterations when a move is
kept as tabu, is set to seven. This value has to be long
enough to prevent cycling without driving the solution away
from the global optimum. Extensive experiments where
carried out to find this value of the tenure. The tabu is
aspirated if the cost of the obtained schedule is the best
obtained so far.  In order to find a good solution an outer
loop iterates until no further improvement is made for 10
consecutive tries. Also this number as been set on the basis
of extensive experiments. When the Tabu search terminates,
the solution with the lowest cost is returned. 

6. Experimental Results

In our experiments we have used the following four
designs; Ex1, Asic Z, Kime, and System L. The main
characteristics of the four designs are presented in Table 2,
and detailed information for these benchmarks can be found
in [8]. 

In order to estimate the quality of the results produced by
our heuristic we have compared them with those generated
by solving the same optimization problem using a
Constraint Logic Programming formulation. Such a
formulation has been given by us in [7]. Using a CLP solver
[5] we were able to obtain the theoretical optimum for the
majority of our examples (Ex1, Kime, and Asic Z). For the
last, and largest example (System L) the optimization was
not able to find the optimal solution within reasonable time.

The experimental results are collected in Table 3.
Column 1 lists the four designs. The results obtained from
the CLP solver are shown in column 4 and 5, while the
results produced by our heuristic can be found in column 6
and 7. As can be seen from the last column, our heuristic
produced results which were only less then 6.1% worse then
those produced by the CLP-based approach. However, the
heuristic proposed in this paper take 3s for the largest
example, while the CLP-based solver was running up to 18
hours and produced results that, on average, were only 3.8%
better.

We have also compared our results with the results
produced by the CLP solver after the same time as our
proposed algorithm needed, i.e. 1s for design Ex1, 2s for

Figure 9. Algorithm for test cost minimization.

Step1: if tmax < tmin return Not schedulable
sort the tests T in increasing order of ti

appl

until all packages are applied do
apply package from Ti
until time < ti

appl-p do
apply package from Ti+1
time = time +ti+1

send-p 
repeat

repeat
Step2:doMark()
do until Slack is 0

Delay package from MarkList
repeat
best_cost = compCost(Sched0)
Step3:start:
doMark()
for each pos in MarkList

build new schedule Schedi
delta_costi = best_cost - compCost(Schedi)

repeat
for each delta_costi< 0, in increasing order
of delta_costi do

if not tabu(pos) or tabu_aspirated(pos)
Sched0 = Schedi
goto accept

end if
repeat
for each pos in MarkList

delta_costi’ = delta_costi + penalty(pos)
repeat
for each delta_costi’ in increasing order of delta_costi’ 
do

if not tabu(pos) goto accept
repeat
accept:
if iterations since previous best solution < 10 goto start
return Sched0

Design
Nr 

Tests
Nr 

Packages
 Min Buffer 

size
Max Buffer 

size

Ex1 3 8 80 200

Kime 6 20 186 680

Asic Z 9 38 222 838

System L 13 39 560 1976

 Table 2. Design characteristics.



design Kime and Asic Z, and finally 3s for System L. This
comparison showed that our Tabu search based algorithm
on average produced solutions that were 10.2% better.

7. Conclusions

Efficient test data transportation for SOC is becoming an
important issue due to the increasing amount of test data
that cause long test times. The test application time is an
important factor for the cost of the production and hence, a
maximum allowed test time is often set early in the design
phase. We propose a technique to make use of the existing
bus structure in the system for test data transportation. The
advantage is that a dedicated bus for test purpose is not
needed, hence we reduce the routing costs. We insert buffers
and divide the tests into packages, which means that tests
can be scheduled concurrently even if the bus only allows
sequential transportation.

We have proposed a Tabu search based algorithm where
the test cost, given by the controller and buffer cost, is
minimized without exceeding the given maximum test time.
We have implemented and compared our technique with the
results from an CLP approach. The results indicate that our
technique produces high quality solutions at low
computational cost.
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Design
Nr 

Cores
tmax

 Constraint Logic Programming Proposed Algorithm
Cost 

Comparison
CPU time (s)

Total cost
(No. of NAND gates)

CPU time (s)
Total cost

(No. of NAND gates)

Ex1 3 111 160 92 <1 92 0%

Kime 6 257 27375 460 2 486 +5,7%

Asic Z 9 294 47088 319 2 330 +3,4%

System L 14 623 64841 1182 3 1254 +6.1%

 Table 3. Experimental results. 


