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Abstract11

Due to the increasing test data volume needed to test core-
based System-on-Chip, several test scheduling techniques 
minimizing the test application time have been proposed. In 
contrast to approaches where a fixed test set for each core is 
assumed, we explore the possibility to use overlapping test 
patterns from the tests in the system. The overlapping tests 
serves as alternatives to the original dedicated test for the 
cores and, if selected, they are transported to the cores in a 
broadcasted manner so that several cores are tested 
concurrently. We have made use of a Constraint Logic 
Programming technique to select suitable tests for each core 
in the system and schedule the selected tests such that the test 
application time is minimized while designer-specified 
hardware constraints are satisfied. The experimental results 
indicate that we can on average reduce the test application 
time with 23%.

1. Introduction
The increasing test application time for SOC (system-on-

chip) designs is due to the high amount of test data required 
for testing. The test application time can be decreased by an 
efficient organization of the test data transportation and 
concurrent test application. 

It has been shown that the percentage of unspecified bits, 
so called don’t cares, in test sets is high even for compacted 
tests [7], [8]. This high percentage of don't cares can be used 
to find overlapping test vectors from different tests, which 
can be merged [9] and broadcasted to multiple cores [6].

Several approaches assuming a dedicated test access 
mechanism (TAM) for test data transportation have been 
proposed [1, 3, 13]. Aerts and Marinissen proposed three 
TAM structures for scan tested systems [1]. Iyengar et al. 
defined a framework for TAM design and test scheduling on 
dedicated TAMs [3]. In [13] an addressable system bus for 
SOC testing is proposed.

The major contributions of this paper are twofold. First, 
we demonstrate the use of test sharing and broadcasting of 
test vectors for core-based SOCs, which means that the test 
set is not longer fixed for one core. One advantage with the 
proposed test architecture is that it offers a possibility to 
reuse on-chip functional connections, such as the system 
bus, for test transportation. Second, we solve the scheduling 

and test bus design problem while minimizing the overall 
test time. We have formulated the problem, solved it, and 
demonstrated its usefulness by experiments using 
Constraint Logic Programming (CLP) [5].

The rest of the paper is organized as follows. Section 
contains a description of the test set sharing. The SOC test 
architecture is described in Section 3, and is followed by a 
motivational example in Section 4. The problem is 
formulated in Section 5, and the CLP modelling is presented 
in Section 6. The experimental results are presented in 
Section 7, and conclusions are in Section 8. 

2. Test set sharing
In this section, we describe how test set sharing and 

broadcasting of tests reduces the test application time, and 
how two different tests can be merged by using a pattern 
matching algorithm.

By sharing a test set among several cores it is possible to 
shorten the test application time significantly [6], since 
cores that share tests are tested concurrently. The efficiency 
of this test set sharing method depends on how large the 
merged test set is in comparison with the unmerged sets. It 
has been shown that the percentage of don’t cares in the test 
sets is high, 78% for un-compacted or approximately 47% 
even for compacted tests [7], [8]. This high number of don’t 
care bits provides the possibility of finding vectors from 
different sets that can be efficiently merged.

The possibility of merging two tests is dependent on the 
density of don't cares present in the tests. If the tests are 
compressed so that only a small percent of don't cares 
remains, the merging capability will significantly decrease. 
How the compression ratio is affected by the density of don't 
cares has been studied in [14]. To cope with a situation 
where the compression reduces the number of don’t cares so 
that it is not possible to merge tests, the test designer can set 
a limit on the amount of compression of a test so that it is 
still possible to use it for merging.

One important requirement that has to be fulfilled, in 
order for the test set sharing to be efficient and to reduce the 
test time, is that the size of the new merged test set is smaller 
than the sum of the original test sets used [10]. 

We have performed experiments to investigate the 
relationship between the number of don’t care bits and the 
size of the merged test set. For this purpose we use a 
straightforward pattern matching algorithm that takes two 
test sets, T1 and T2, as input and generates a new test set T’.
This is illustrated in Figure 1 where two cores, c1 and c2, are 
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tested by two tests, T1 and T2, respectively. Test T1 consists 
of N test vectors, {v1, v2,..., vN}, and test T2 of M test 
vectors, {v1, v2,..., vM}. In this example, both cores have two 
scan chains, sc1 and sc2, with equal length, l, which are 
connected to a bus with the bandwidth, w. 

c) Application of broadcasted test.

Figure 1. Merging and application of test.
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a) Merging of two test.

b) Sequential application of test.

Merging one test vector vi from Test T1 with a test vector 
vj from T2, where i 1 N,( )∈  and j 1 M,( )∈ , is done by 
comparing each position in the two test vectors. As long as 
both have the same value or one is marked as a don´t care 
(x), the vectors can be merged as illustrated in Figure 1(a). 
If it is not possible to merge vi with vj the next test vector, 
vj+1, is tried until all test vectors have been investigated, i.e. 
when j=M. The test vectors, which are not possible to merge 
are kept intact and the size of the new test set T’ is increased. 
If the cores have scan chains with different length, the one 

with shorter length will be filled with don’t cares. Figure 
1(b) shows how the cores are connected to a test bus. In this 
example the tests T1 and T2 are transported and applied 
sequentially. How the merged test, T’ is transported and 
applied is illustrated in Figure 1(c) and since it consists of 
vectors from test T1 and T2, both core c1 and c2 will be tested 
concurrently.

This pattern matching algorithm has been applied to the 
benchmark design d695 [4]. The test vectors (with don’t 
cares marked) have been extracted by Kajihara and Miyase 
in [7]. The results from this experiment are presented in 
Figure 2(a), 
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Figure 2.  Merging of test sets. 
b) Random sets with increasing number of don’t caresa) Different combinations from design d695

which shows 10 different combinations of the 
tests and the sizes of the merged tests. The sizes of the 
merged tests are compared with the size of the largest test 
used and the result shows an increase in size with on average 
only 10.94%. To illustrate the relationship between the 
number of don´t cares and the size of the merged test set, a 
number of randomly generated tests where created and 
merged. The results depicted in Figure 2 (b) show that when 
the number of care bits is in the range of 0 to 45 % the size 
of the merged set is still reasonable small, within an increase 
of 50%. 

In order to apply the to merged tests, it is required that the 
cores, which shares the tests, are connected in such a way 
that the tests can be broadcasted to the cores. How this 
broadcast of test patterns can be done has been shown in [6] 
and [11]. In [11], a method for generating common tests for 
multiple cores directly is proposed. A fault simulator is used 
for evaluating the fault coverage. The tests generated by the 
method in [11] can also be utilized by the technique 
described in this paper.

One additional problem that occurs when using a 
broadcast method is how to transport the test responses. The 
responses from different cores cannot be merged in the same 
way as the input stimuli since the opportunity to detect a 
fault may be lost. In [6] and [11] this problem has been 
solved by compressing the test response by using a multiple 
input signature register (MISR). This leads to increased 
hardware overhead. In this work the test responses from 
each core will be transported on separate wires (described in 
the following section).



3. SOC test architecture
In this section we discuss the architecture that is used for 

the test data transportation. First we introduce the general 
architecture consisting of cores (e.g. c1, c2, c3, and c4 in 
Figure 3) which are connected to buses (bf1 and bt1 in 
Figure 3.) The bus wires are connected to an ATE, which is 
used to apply test vectors and analyze the responses of the 
tests. A connector consisting of logic needed for the 
communication and application of test data is introduced 
between each core and the bus. For example, o4,1 is the 
connector connecting core c4 with bus bf1, as shown in 
Figure 3. In this work it is assumed that the buses are 
connected to the input and output pins of the chip, and 
hence, directly accessible and controlled from the ATE.

The functional bus, bf1 in Figure 3, is used to transport 
test data from the ATE to the cores. However, if the 
bandwidth of the functional bus is not enough for 
transporting the test data in reasonable time, one or several 
dedicated test buses may be added to the design. A 
dedicated test bus for the transportation of test data will 
increase the transportation capacity and shorten the test 
time. It also offers the possibility of a trade-off between the 
test time and the number of wires used. A high number of 
wires require however a large silicon area to implement.

The transportation and application of tests to the cores 
are illustrated in Figure 4 by considering cores c2 and c3
from Figure 3. The cores are scan tested and to facilitate 
interfacing with the bus, each core has a wrapper. The 
scanned elements at a core (scan chains and wrapper cells) 
are connected into wrapper chains, which are connected to 
bus wires. It is assumed that both cores have three wrapper 
chains each, which are connected to the bus as illustrated in 
Figure 4(a). The test stimuli are transported from the ATE 
on the bus to the core through the input test pins, tin. 

c4

Figure 3. Bus-based architecture. 
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Short application time of scan patterns entails a 
concurrent scan-in and scan-out phase, that is, when one 
scan pattern is shifted out, a new pattern is shifted in. 
Therefore it is not possible to share the same bus wires for 
the test stimuli and test responses of one core; the total 
number of bus wires used to test one core is twice the 
number of scan chains of the core as illustrated in 
Figure 4(a). 

The application of tests in Figure 4(a) can only be done 
sequentially, as long as the cores are connected to the same 
bus wires. To give exclusive access to the bus for both cores 
at the same time, and hence make it possible to apply the test 
to the cores concurrently, would significantly decrease the 
test time. However, in the example in Figure 4(b), the 
bandwidth of the bus is not enough and the two cores are 
forced to use the same wires for several connections. If the 
tests are applied in parallel under this situation they will 
overlap and hence give an impossible schedule as illustrated 
in Figure 4(b). If we consider that the two cores, c2 and c3, 



use a shared test set, as described in Section 2, which is 
broadcasted. In this case the input wires will be shared by 
the cores and only the output responses require dedicated 
wires for each core as shown in Figure 4(c). 

This example illustrates that by using shared test sets, 
which are broadcasted, it is possible to get a shorter test time 
compared to a sequential application and still use a smaller 
amount of wires compared with a parallel application.

4. Motivational example
Let us consider an example design consisting of four 

cores, c1, c2, c3, and c4, connected to one functional bus bf1
and added test connectors (o1,1, o1,2, o1,3, o1,4,) between the 
bus and the cores as shown in Figure 5. Each core has one 
test, c1 is tested by T1, c2 is tested by T2, c3 is tested by T3, 
and c4 is tested by T4. The dedicated test set to these cores 
has been extended with one additional test T’5, which is a 
combination of the tests T3 and T4 for core c3 and c4. If T’5
is selected, it is broadcasted to c3 and c4. 

For the sake of readability it is assumed that each test will 
occupy the whole bandwidth of the bus, which means that a 
single bus configuration will lead to a sequential application 
of the tests. In the first schedule shown in Figure 5(a) the 
shared test (T’5) is not used, while in the second schedule, 
Figure 5(b), T’5 is introduced and since it can be applied to 
the two cores c3 and c4 concurrently, the test time is 
decreased.

The test time may be further decreased if a dedicated test 
bus, bt1 is introduced as illustrated in Figure 5(c and d). It 
will enable concurrent application of tests. Figure 5(c) 
shows an example of a mapping of cores to buses. In this 
example only one core is tested through the test bus but the 
test time has decreased compared with the example where 
only one bus was used. Since core c4 is tested through the 
test bus it is not possible to make use of the broadcast 
capability between c3 and c4. However, by connecting c3 
and c4 to the same bus as shown in Figure 5(d) the test time 
can be further reduced.

Figure 5. Test scheduling for different bus architecture.
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5. Problem formulation
For the modelling we assume the following. Given is a 

system consisting of: 
 • a set of N cores C = {c1, c2, ..., cN}, 
 • a set of M functional buses BF b f 1 b f 2 … b f M,,,{ } ,=

where each bus b f i has the bandwidth, w
b f i,

and the following constraints:

 • wATE the bandwidth of the ATE and
 • Kmax the designer-specified hardware-overhead.

Given for each core ci is:
 • ui the number of wrapper-chains,
 • li the length of the longest wrapper chain,
 • a set of test sets Ψi Γ1

i Γ2
i … Γ X

i, , ,{ },=  where each 
test set Γ i

j={T1, T2, ...,TH}.
Given for a test Tk is the number of patterns sTk.

Consider the following example where core c1 and c2 
have two associated test sets each, Ψ1 T 1 T 2,{ } T 3{ },{ }= , 
and Ψ2 T 4 T 5,{ } T 3 T 5,{ },{ }= . Core c1 is fully tested by 
either applying both T1 and T2 or only T3. T3 is used to test 
both c1 and c2, which means that it is shared and should be 
broadcasted. 

The test time, τk  for applying a test, Tk at core ci is:

τk 1 l
i

+( ) s
T k× l

i
+= (1)

The number of wires wk that a test makes use of when 
transported on a bus depends on the number of cores z that 
shares the test. If no sharing is used (z=1), wi wires are used 
to transport test stimuli to the core, and wi wires are used to 
transport test response from the core. In total 2 w× i  wires 
are needed when z=1. In the case of broadcasting, wi wires 
are used to transport test stimuli to the cores, but each core 
requires wi wires to transport test response from the core. In 
total w

i
w+

i
z× . This is given by the following formula: 

wk
2 w

i
, when z =1×

w
i

w
i

z× , when z + 2≥



= (2)

 In order to apply tests, the tests are transported from the 
ATE to the cores. For this purpose, the existing functional 
bus structure can be used or added test bus structure. If a test 
shall make use of the functional bus, a connector must be 
inserted between the bus and the core. If a dedicated test bus 
is used, the bus must have been inserted, and a connector is 
added between the test bus and the core. We introduce test 
bus connectors:
 • a set of G test buses BT bt1 bt2 … btG,,,{ }= where bus 

bti has  the bandwidth w
bti ,

 • test connectors oi,j between core ci and bus bfj (or btj).
The following hardware cost factors are considered:
 • kfi,j is the cost of inserting a connector oi,j between core 

ci and functional bus bfj,
 • kti,j is the cost of inserting a connector oi,j between core 



ci and test bus btj,
 • k

bti  is the base cost of inserting test bus bti.
The total hardware cost HWTot is given by:

HW Tot kf i j, kti j,
j 1=

G

∑
i 1=

N

∑ k
bt j

j 1=

G

∑+ +
j 1=

M

∑
i 1=

N

∑= (3)

 

The optimization objective is to:
 • select tests for each core,
 • insert test buses (if required),
 • insert connectors between cores and buses,
 • and schedule the selected tests on the buses 

in such a way that each core is fully tested and the test 
application time is minimized without:
 • inserting test buses such that the ATE bandwidth wATE

is violated, that is;

w
b f i w

bt j wATE≤
j 1=

G

∑+
i 1=

M

∑ (4)

where M is the number of functional buses and G the 
number of added test buses, and

 • exceeding the given total hardware cost constraint.

HW Tot Kmax≤ (5)

6. CLP modelling
Constraint Logic Programming (CLP) [5] is a 

combination of logic programming and constraint solving 
and is suitable for solving problems like scheduling, 
resource planning, and layout assignment. 

We have formulated our test scheduling problem as a 
CLP problem (Figure 6). The cores, their connections and 
information about the tests regarding the size and number of 
wrapper chains, are first given as input (line 2 and 3 in 
Figure 6). A number of variables used to describe a solution 
is then defined, (4..10). In order to find a feasible solution 
that minimizes the total test time (16) the program ensures 
that the following constraints are fulfilled (11..15):
 • Each core must be connected to at least one bus (11). 
 • Each core must be fully tested (12).
 • The hardware cost does not exceed the given maximum 

hardware cost (14), Eq.(5). 

(1) run:-
(2) Cores({1,2,3,... ,NrCores}),  % Get input data
(3) Tests({1,2,3,... ,NrTests}),
(4) NrBuses::1..MaxNrBuses,  % Define variables
(5) Cost::1..MaxCost,
(6) TestTime::1..MaxTestTime,
(7) ListOfTests::0..NrTests,
(8) ListOfCores::0..NrCores,
(9) Schedule::0..NrTests*NrBuses,
(10) Tam::1..MaxTam,
(11) connect_all(Cores),  % Set up constraints
(12) complete_cores(Cores,Tests),
(13) count_costs(Cores,Costs,Cost),
(14) Cost #< MaxCost,
(15) cumulative (Schedule, Duration, Resource, Tam, TestTime),
(16) min_max((labeling(Schedule)),TestTime).  % Find optimal solution

Figure 6. CLP formulation in CHIP for test time 
minimization.

 • The total number of wires does not exceed the given 
maximum limit Eq.(4) and tests do not make use of the 

same wires concurrently (15).
We have used the following built in predicates in the CLP 

tool CHIP [2, 12] to ensure that all constraints are satisfied 
and the optimal solution is found:
 • Cumulative (15), ensures that, at any given time, the 

total amount of resources does not exceed a given limit.
 • Min_max (16), implements a depth first branch and 

bound search for a solution with the minimal cost. 
 • Labeling (16), is used to assign values to variables.

Since a test Ti can be listed for several cores, a special 
constraint is implemented so that Ti is not scheduled more 
than one time as long as the cores shares the same bus.

7. Experimental results
In our experiments we have used the following eight 

designs; SOC_(1..7), which are randomly generated, and the 
benchmark design d695 [4]. The main characteristics of the 
eight designs can be found in Table 1. This table contains 
information about the number of cores, tests, and the 
minimum required hardware constraint needed. The 
minimum hardware constraint is the hardware cost needed 
in order to connect each core to a functional bus. If this 
constraint is not satisfied the core will not be fully accessed 
or tested.

The hardware cost, such as wiring and control logic 
needed to connect a core to a bus or to add a test bus, is 
assumed to be given by the designer. In the experiments the 
cost of connecting a core to a functional bus is set to 10 
units, the cost to connect a core to a test bus to 20 units, and 
the cost of adding a test bus to the system is set to 100 units. 
This means that adding one test bus and connect one core to 
it will be associated with a hardware cost of 120 units. In 
these designs it is assumed that each system has a 64 bit 
wide functional bus and that each test bus, if added to the 
system, has a width of 32 bits.

We have used the CLP tool CHIP (V 5.2.1) [12] for the 
implementation and we have compared when broadcasting 
is not used and when broadcasting is used. 
The results are collected in Table 3. Column 1 lists the eight 
different designs. In Column 2 the hardware constraints are 
listed. These constraints have been set so that it is possible 
to add at least one test bus for each design. The following 
three columns, three to five, contain the results from the first 
approach where no broadcasting is used; the number of test 
patterns used, the minimized test time, and the optimization 
time. 

 Table 1. Design characteristics

Design No. of Cores No. of Tests Min. HW constraint

SOC_1 4 5 40
SOC_2 7 9 70
SOC_3 10 12 100
SOC_4 12 15 120
SOC_5 18 20 180
SOC_6 24 28 240
SOC_7 30 34 300
d695 10 12 100

The following columns, fiveo eight, contain the results 



when broadcasting is used. The last column shows the 
comparison in test time between the two approaches. The 
experiments show that broadcasting of tests between cores 
can shorten the test time. The test time could be decreased 
with 23.72% on average. 

Experiments have also been made to show the impact on 
the test time at different hardware constraints. The test time 
minimization has been made with different values of the 
hardware constraint for two examples, SOC_1 and the 
benchmark design d695. The results collected in Table 2
show how the test time for the different designs decreases as 
additional test buses are added. For SOC_1 a saturation 
point is met when all cores can be tested concurrently (HW
constraint = 400). 

8. Conclusions
Decreasing the test application time for SOCs entails an 

efficient test data transportation and concurrent test 
application. We propose a scheme to explore the high 
amount of don't cares present in the test sets in order to 
merge different tests, which can be used as alternative to the 
original dedicated test for the cores. The proposed method 
allows the existing functional bus structure to be reused for 
the test data transportation. However, in order to decrease 
the test time, dedicated test buses may be added to the 
design. The problem formulated, is to select appropriate 
tests for each core, insert test buses (if required), and 
schedule the selected tests on the buses in such way that the 
test application time is minimized without exceeding the 
given hardware cost constraints. 

 Table 2. Test time for different hardware constraints

Design HW constraint Nr. added test wires  Test time

SOC_1

40 0 7514
150 32 6421
200 32 6221
300 64 6155
400 96 4329
500 96 4329

d695 

100 0 26071
250 32 22718
300 64 20382
400 64 18522
500 96 13712
600 128 12633
700 160 11791

We have modelled the problem and implemented it using 
CLP and experiments show that the overall test time can be 
significantly reduced when broadcasting of tests is used. 
Since CLP uses an exhaustive search approach, execution 
times can become large for complex examples. A natural 
extension of the work is therefore to find a heuristic that 
would work for larger designs.
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 Table 3. Experimental results

Design
Hardware 
Constraint

Nr. Added 
Test buses

Without Broadcasting With Broadcasting
Test time 

ComparisonTot. Nr. 
Patterns Used

Test time
CPU time 

(s)
Tot. Nr. 

Patterns Used
Test time

CPU time 
(s)

SOC_1 250 1 275 8271 14 209 6755 76 -18.33%
SOC_2 350 1 440 22361 76 297 18421 132 -17.62%
SOC_3 400 2 539 37943 391 423 29364 572 -22.61%
SOC_4 450 2 753 51946 624 687 37526 1517 -27.76%
SOC_5 500 2 2316 86301 1028 1723 61730 39843 -28.47%
SOC_6 500 3 15017 1167250 2734 11483 869195 62087 -25.53%
SOC_7 600 3 18779 1602862 4893 14021 1187512 95274 -25.91%
d695 350 2 881 24219 235 802 18522 586 -23.52%


