
SOC Test Scheduling with Test Set Sharing and Broadcasting
Anders Larsson, Erik Larsson, Petru Eles and Zebo Peng

Embedded Systems Laboratory
Linköpings Universitet

SE-582 83 Linköping, Sweden
{anlar, erila, petel, zpe}@ida.liu.se

Abstract11

Due to the increasing test data volume needed to test core-
based System-on-Chip, several test scheduling techniques
minimizing the test application time have been proposed. In
contrast to approaches where a fixed test set for each core is
assumed, we explore the possibility to use overlapping test
patterns from the tests in the system. The overlapping tests
serves as alternatives to the original dedicated test for the
cores and, if selected, they are transported to the cores in a
broadcasted manner so that several cores are tested
concurrently. We have made use of a Constraint Logic
Programming technique to select suitable tests for each core
in the system and schedule the selected tests such that the test
application time is minimized while designer-specified
hardware constraints are satisfied. The experimental results
indicate that we can on average reduce the test application
time with 23%.

1. Introduction
The increasing test application time for SOC (system-on-

chip) designs is due to the high amount of test data required
for testing. The test application time can be decreased by an
efficient organization of the test data transportation and
concurrent test application.

It has been shown that the percentage of unspecified bits,
so called don’t cares, in test sets is high even for compacted
tests [7], [8]. This high percentage of don't cares can be used
to find overlapping test vectors from different tests, which
can be merged [9] and broadcasted to multiple cores [6].

Several approaches assuming a dedicated test access
mechanism (TAM) for test data transportation have been
proposed [1, 3, 13]. Aerts and Marinissen proposed three
TAM structures for scan tested systems [1]. Iyengar et al.
defined a framework for TAM design and test scheduling on
dedicated TAMs [3]. In [13] an addressable system bus for
SOC testing is proposed.

The major contributions of this paper are twofold. First,
we demonstrate the use of test sharing and broadcasting of
test vectors for core-based SOCs, which means that the test
set is not longer fixed for one core. One advantage with the
proposed test architecture is that it offers a possibility to
reuse on-chip functional connections, such as the system
bus, for test transportation. Second, we solve the scheduling

and test bus design problem while minimizing the overall
test time. We have formulated the problem, solved it, and
demonstrated its usefulness by experiments using
Constraint Logic Programming (CLP) [5].

The rest of the paper is organized as follows. Section
contains a description of the test set sharing. The SOC test
architecture is described in Section 3, and is followed by a
motivational example in Section 4. The problem is
formulated in Section 5, and the CLP modelling is presented
in Section 6. The experimental results are presented in
Section 7, and conclusions are in Section 8.

2. Test set sharing
In this section, we describe how test set sharing and

broadcasting of tests reduces the test application time, and
how two different tests can be merged by using a pattern
matching algorithm.

By sharing a test set among several cores it is possible to
shorten the test application time significantly [6], since
cores that share tests are tested concurrently. The efficiency
of this test set sharing method depends on how large the
merged test set is in comparison with the unmerged sets. It
has been shown that the percentage of don’t cares in the test
sets is high, 78% for un-compacted or approximately 47%
even for compacted tests [7], [8]. This high number of don’t
care bits provides the possibility of finding vectors from
different sets that can be efficiently merged.

The possibility of merging two tests is dependent on the
density of don't cares present in the tests. If the tests are
compressed so that only a small percent of don't cares
remains, the merging capability will significantly decrease.
How the compression ratio is affected by the density of don't
cares has been studied in [14]. To cope with a situation
where the compression reduces the number of don’t cares so
that it is not possible to merge tests, the test designer can set
a limit on the amount of compression of a test so that it is
still possible to use it for merging.

One important requirement that has to be fulfilled, in
order for the test set sharing to be efficient and to reduce the
test time, is that the size of the new merged test set is smaller
than the sum of the original test sets used [10].

We have performed experiments to investigate the
relationship between the number of don’t care bits and the
size of the merged test set. For this purpose we use a
straightforward pattern matching algorithm that takes two
test sets, T1 and T2, as input and generates a new test set T’.
This is illustrated in Figure 1 where two cores, c1 and c2, are

1. The research is partially supported by the Swedish National
Program STRINGENT.

tested by two tests, T1 and T2, respectively. Test T1 consists
of N test vectors, {v1, v2,..., vN}, and test T2 of M test
vectors, {v1, v2,..., vM}. In this example, both cores have two
scan chains, sc1 and sc2, with equal length, l, which are
connected to a bus with the bandwidth, w.

c) Application of broadcasted test.

Figure 1. Merging and application of test.

X ... X 1 0
1 ... X 0 1

X ... X 0 1

1 ... X 1 X
1 ... 1 X 0

1 ... 1 X X

v1
v2
...

vN

scan bit ... 123l... 123l

1 ... X 0 1

0 ... X 0 1

1 ... 1 1 0

1 ... 1 1 X

... 123l1

1 ... 0 1 X 0 ... 0 1 0

0 ... 0 1 0

1 ... 0 1 X

0 ... 0 1 0
1 ... 0 1 X

w

... 23l
v1
v2
...

vN

T’T1

... 123l

X ... X 1 0

1 ... X 1 X

X ... X 1 0
1 ... X 1 X

w

... 123l

c1 c2

0 ... 0 1 X
X ... 0 1 X

v1 to c1

v1 to c1 and c2

0 ... 0 1 X
1 ... X 0 1

0 ... X X 1

X ... 0 1 X
X ... 1 1 0

X ... 1 X 1

v1
v2
...

vM

... 123l... 123l

T2

0 ... 0 1 0

1 ... 0 1 X

... 123l

0 ... 0 1 X

X ... 0 1 X

... 123l

v1 to c2

sc1 sc2

sc1 sc2

sc’1 sc’2

c1 c2

sc2

sc1

sc2

sc1

sc2

sc1

sc2

sc1

T1 T2

T’

a) Merging of two test.

b) Sequential application of test.

Merging one test vector vi from Test T1 with a test vector
vj from T2, where i 1 N,()∈ and j 1 M,()∈ , is done by
comparing each position in the two test vectors. As long as
both have the same value or one is marked as a don´t care
(x), the vectors can be merged as illustrated in Figure 1(a).
If it is not possible to merge vi with vj the next test vector,
vj+1, is tried until all test vectors have been investigated, i.e.
when j=M. The test vectors, which are not possible to merge
are kept intact and the size of the new test set T’ is increased.
If the cores have scan chains with different length, the one

with shorter length will be filled with don’t cares. Figure
1(b) shows how the cores are connected to a test bus. In this
example the tests T1 and T2 are transported and applied
sequentially. How the merged test, T’ is transported and
applied is illustrated in Figure 1(c) and since it consists of
vectors from test T1 and T2, both core c1 and c2 will be tested
concurrently.

This pattern matching algorithm has been applied to the
benchmark design d695 [4]. The test vectors (with don’t
cares marked) have been extracted by Kajihara and Miyase
in [7]. The results from this experiment are presented in
Figure 2(a),

0 10 20 30 40 50 60 70 80 90 100
100

110

120

130

140

150

160

170

180

190

200

Number of care−bits (%)

S
iz

e
 o

f
co

m
b

in
e

d
 s

e
t(

%
)

1 2 3 4 5 6 7 8 9 10
100

110

120

130

140

150

160

170

180

190

200

Combined sets

S
iz

e
of

 c
om

bi
ne

d
se

t(
%

)

s13207, s15850
s9234, s5378
s13207, s9234
s38584, s13207
s15850, s5378
s38584, s15850
s13207, s5378
s15850, s838
s9234, s838
s35932, s838

Figure 2. Merging of test sets.
b) Random sets with increasing number of don’t caresa) Different combinations from design d695

which shows 10 different combinations of the
tests and the sizes of the merged tests. The sizes of the
merged tests are compared with the size of the largest test
used and the result shows an increase in size with on average
only 10.94%. To illustrate the relationship between the
number of don´t cares and the size of the merged test set, a
number of randomly generated tests where created and
merged. The results depicted in Figure 2 (b) show that when
the number of care bits is in the range of 0 to 45 % the size
of the merged set is still reasonable small, within an increase
of 50%.

In order to apply the to merged tests, it is required that the
cores, which shares the tests, are connected in such a way
that the tests can be broadcasted to the cores. How this
broadcast of test patterns can be done has been shown in [6]
and [11]. In [11], a method for generating common tests for
multiple cores directly is proposed. A fault simulator is used
for evaluating the fault coverage. The tests generated by the
method in [11] can also be utilized by the technique
described in this paper.

One additional problem that occurs when using a
broadcast method is how to transport the test responses. The
responses from different cores cannot be merged in the same
way as the input stimuli since the opportunity to detect a
fault may be lost. In [6] and [11] this problem has been
solved by compressing the test response by using a multiple
input signature register (MISR). This leads to increased
hardware overhead. In this work the test responses from
each core will be transported on separate wires (described in
the following section).

3. SOC test architecture
In this section we discuss the architecture that is used for

the test data transportation. First we introduce the general
architecture consisting of cores (e.g. c1, c2, c3, and c4 in
Figure 3) which are connected to buses (bf1 and bt1 in
Figure 3.) The bus wires are connected to an ATE, which is
used to apply test vectors and analyze the responses of the
tests. A connector consisting of logic needed for the
communication and application of test data is introduced
between each core and the bus. For example, o4,1 is the
connector connecting core c4 with bus bf1, as shown in
Figure 3. In this work it is assumed that the buses are
connected to the input and output pins of the chip, and
hence, directly accessible and controlled from the ATE.

The functional bus, bf1 in Figure 3, is used to transport
test data from the ATE to the cores. However, if the
bandwidth of the functional bus is not enough for
transporting the test data in reasonable time, one or several
dedicated test buses may be added to the design. A
dedicated test bus for the transportation of test data will
increase the transportation capacity and shorten the test
time. It also offers the possibility of a trade-off between the
test time and the number of wires used. A high number of
wires require however a large silicon area to implement.

The transportation and application of tests to the cores
are illustrated in Figure 4 by considering cores c2 and c3
from Figure 3. The cores are scan tested and to facilitate
interfacing with the bus, each core has a wrapper. The
scanned elements at a core (scan chains and wrapper cells)
are connected into wrapper chains, which are connected to
bus wires. It is assumed that both cores have three wrapper
chains each, which are connected to the bus as illustrated in
Figure 4(a). The test stimuli are transported from the ATE
on the bus to the core through the input test pins, tin.

c4

Figure 3. Bus-based architecture.
bf1

Core

o3,1

bt1

o4,1

o2,1o1,1 o4,1

Bus (Test bus)

A

T

E

A

T

E

Bus (Functional)

c1 c2 c3

o1,1

Connector

When
the test stimuli have been applied the test responses are
transported back to the ATE through the outputs, tout. When
the system is in functional mode, the functional inputs and
outputs at each core are connected to the functional bus.
When the system is in testing mode the connectors will
receive control signals, tctrl, indicating when a pattern
should be applied.

Input wrapper cell Output wrapper cell

sc
sc

bf1

sc
sc

tin tout

o2,1 o3,1

tctrl

Figure 4. Connection between core and bus
with different schedules.

sc
sc

Test time

a) Connections and sequential schedule.

c) Connections and broadcasted test.

b) Connections where parallel schedule is not possible.

sc
sc

Test time

sc
sc

Test time

sc
scsc

Functional

 connection

bf1

bf1

bf1

bf1

bf1

c2 c3

c2 c3

c2 c3

} Shared
wires

Wrapper

Short application time of scan patterns entails a
concurrent scan-in and scan-out phase, that is, when one
scan pattern is shifted out, a new pattern is shifted in.
Therefore it is not possible to share the same bus wires for
the test stimuli and test responses of one core; the total
number of bus wires used to test one core is twice the
number of scan chains of the core as illustrated in
Figure 4(a).

The application of tests in Figure 4(a) can only be done
sequentially, as long as the cores are connected to the same
bus wires. To give exclusive access to the bus for both cores
at the same time, and hence make it possible to apply the test
to the cores concurrently, would significantly decrease the
test time. However, in the example in Figure 4(b), the
bandwidth of the bus is not enough and the two cores are
forced to use the same wires for several connections. If the
tests are applied in parallel under this situation they will
overlap and hence give an impossible schedule as illustrated
in Figure 4(b). If we consider that the two cores, c2 and c3,

use a shared test set, as described in Section 2, which is
broadcasted. In this case the input wires will be shared by
the cores and only the output responses require dedicated
wires for each core as shown in Figure 4(c).

This example illustrates that by using shared test sets,
which are broadcasted, it is possible to get a shorter test time
compared to a sequential application and still use a smaller
amount of wires compared with a parallel application.

4. Motivational example
Let us consider an example design consisting of four

cores, c1, c2, c3, and c4, connected to one functional bus bf1
and added test connectors (o1,1, o1,2, o1,3, o1,4,) between the
bus and the cores as shown in Figure 5. Each core has one
test, c1 is tested by T1, c2 is tested by T2, c3 is tested by T3,
and c4 is tested by T4. The dedicated test set to these cores
has been extended with one additional test T’5, which is a
combination of the tests T3 and T4 for core c3 and c4. If T’5
is selected, it is broadcasted to c3 and c4.

For the sake of readability it is assumed that each test will
occupy the whole bandwidth of the bus, which means that a
single bus configuration will lead to a sequential application
of the tests. In the first schedule shown in Figure 5(a) the
shared test (T’5) is not used, while in the second schedule,
Figure 5(b), T’5 is introduced and since it can be applied to
the two cores c3 and c4 concurrently, the test time is
decreased.

The test time may be further decreased if a dedicated test
bus, bt1 is introduced as illustrated in Figure 5(c and d). It
will enable concurrent application of tests. Figure 5(c)
shows an example of a mapping of cores to buses. In this
example only one core is tested through the test bus but the
test time has decreased compared with the example where
only one bus was used. Since core c4 is tested through the
test bus it is not possible to make use of the broadcast
capability between c3 and c4. However, by connecting c3
and c4 to the same bus as shown in Figure 5(d) the test time
can be further reduced.

Figure 5. Test scheduling for different bus architecture.

o1,1 bf1
o3,1o2,1

o4,1

bt1

o1,1 bf1
o2,1

o4,1

bt1

o3,1

bf1
Test time

bt1

bf1
Test time

bt1

c) Architecture and test schedule, alt.1. d) Architecture and test schedule, alt.2.

c4c3c2c1 c4c3c2c1

o1,1
bf1

o3,1
o4,1o2,1

Test time

bf1

T1
T2

T3

T4
T’5

bf1

b) Test scheduling on one bus with broadcasting.

Test time
a) Test scheduling on one bus without broadcasting.

c4c3c2c1

5. Problem formulation
For the modelling we assume the following. Given is a

system consisting of:
 • a set of N cores C = {c1, c2, ..., cN},
 • a set of M functional buses BF b f 1 b f 2 … b f M,,,{ } ,=

where each bus b f i has the bandwidth, w
b f i,

and the following constraints:

 • wATE the bandwidth of the ATE and
 • Kmax the designer-specified hardware-overhead.

Given for each core ci is:
 • ui the number of wrapper-chains,
 • li the length of the longest wrapper chain,
 • a set of test sets Ψi Γ1

i Γ2
i … Γ X

i, , ,{ },= where each
test set Γ i

j={T1, T2, ...,TH}.
Given for a test Tk is the number of patterns sTk.

Consider the following example where core c1 and c2
have two associated test sets each, Ψ1 T 1 T 2,{ } T 3{ },{ }= ,
and Ψ2 T 4 T 5,{ } T 3 T 5,{ },{ }= . Core c1 is fully tested by
either applying both T1 and T2 or only T3. T3 is used to test
both c1 and c2, which means that it is shared and should be
broadcasted.

The test time, τk for applying a test, Tk at core ci is:

τk 1 l
i

+() s
T k× l

i
+= (1)

The number of wires wk that a test makes use of when
transported on a bus depends on the number of cores z that
shares the test. If no sharing is used (z=1), wi wires are used
to transport test stimuli to the core, and wi wires are used to
transport test response from the core. In total 2 w× i wires
are needed when z=1. In the case of broadcasting, wi wires
are used to transport test stimuli to the cores, but each core
requires wi wires to transport test response from the core. In
total w

i
w+

i
z× . This is given by the following formula:

wk
2 w

i
, when z =1×

w
i

w
i

z× , when z + 2≥



= (2)

 In order to apply tests, the tests are transported from the
ATE to the cores. For this purpose, the existing functional
bus structure can be used or added test bus structure. If a test
shall make use of the functional bus, a connector must be
inserted between the bus and the core. If a dedicated test bus
is used, the bus must have been inserted, and a connector is
added between the test bus and the core. We introduce test
bus connectors:
 • a set of G test buses BT bt1 bt2 … btG,,,{ }= where bus

bti has the bandwidth w
bti ,

 • test connectors oi,j between core ci and bus bfj (or btj).
The following hardware cost factors are considered:
 • kfi,j is the cost of inserting a connector oi,j between core

ci and functional bus bfj,
 • kti,j is the cost of inserting a connector oi,j between core

ci and test bus btj,
 • k

bti is the base cost of inserting test bus bti.
The total hardware cost HWTot is given by:

HW Tot kf i j, kti j,
j 1=

G

∑
i 1=

N

∑ k
bt j

j 1=

G

∑+ +
j 1=

M

∑
i 1=

N

∑= (3)

The optimization objective is to:
 • select tests for each core,
 • insert test buses (if required),
 • insert connectors between cores and buses,
 • and schedule the selected tests on the buses

in such a way that each core is fully tested and the test
application time is minimized without:
 • inserting test buses such that the ATE bandwidth wATE

is violated, that is;

w
b f i w

bt j wATE≤
j 1=

G

∑+
i 1=

M

∑ (4)

where M is the number of functional buses and G the
number of added test buses, and

 • exceeding the given total hardware cost constraint.

HW Tot Kmax≤ (5)

6. CLP modelling
Constraint Logic Programming (CLP) [5] is a

combination of logic programming and constraint solving
and is suitable for solving problems like scheduling,
resource planning, and layout assignment.

We have formulated our test scheduling problem as a
CLP problem (Figure 6). The cores, their connections and
information about the tests regarding the size and number of
wrapper chains, are first given as input (line 2 and 3 in
Figure 6). A number of variables used to describe a solution
is then defined, (4..10). In order to find a feasible solution
that minimizes the total test time (16) the program ensures
that the following constraints are fulfilled (11..15):
 • Each core must be connected to at least one bus (11).
 • Each core must be fully tested (12).
 • The hardware cost does not exceed the given maximum

hardware cost (14), Eq.(5).

(1) run:-
(2) Cores({1,2,3,... ,NrCores}), % Get input data
(3) Tests({1,2,3,... ,NrTests}),
(4) NrBuses::1..MaxNrBuses, % Define variables
(5) Cost::1..MaxCost,
(6) TestTime::1..MaxTestTime,
(7) ListOfTests::0..NrTests,
(8) ListOfCores::0..NrCores,
(9) Schedule::0..NrTests*NrBuses,
(10) Tam::1..MaxTam,
(11) connect_all(Cores), % Set up constraints
(12) complete_cores(Cores,Tests),
(13) count_costs(Cores,Costs,Cost),
(14) Cost #< MaxCost,
(15) cumulative (Schedule, Duration, Resource, Tam, TestTime),
(16) min_max((labeling(Schedule)),TestTime). % Find optimal solution

Figure 6. CLP formulation in CHIP for test time
minimization.

 • The total number of wires does not exceed the given
maximum limit Eq.(4) and tests do not make use of the

same wires concurrently (15).
We have used the following built in predicates in the CLP

tool CHIP [2, 12] to ensure that all constraints are satisfied
and the optimal solution is found:
 • Cumulative (15), ensures that, at any given time, the

total amount of resources does not exceed a given limit.
 • Min_max (16), implements a depth first branch and

bound search for a solution with the minimal cost.
 • Labeling (16), is used to assign values to variables.

Since a test Ti can be listed for several cores, a special
constraint is implemented so that Ti is not scheduled more
than one time as long as the cores shares the same bus.

7. Experimental results
In our experiments we have used the following eight

designs; SOC_(1..7), which are randomly generated, and the
benchmark design d695 [4]. The main characteristics of the
eight designs can be found in Table 1. This table contains
information about the number of cores, tests, and the
minimum required hardware constraint needed. The
minimum hardware constraint is the hardware cost needed
in order to connect each core to a functional bus. If this
constraint is not satisfied the core will not be fully accessed
or tested.

The hardware cost, such as wiring and control logic
needed to connect a core to a bus or to add a test bus, is
assumed to be given by the designer. In the experiments the
cost of connecting a core to a functional bus is set to 10
units, the cost to connect a core to a test bus to 20 units, and
the cost of adding a test bus to the system is set to 100 units.
This means that adding one test bus and connect one core to
it will be associated with a hardware cost of 120 units. In
these designs it is assumed that each system has a 64 bit
wide functional bus and that each test bus, if added to the
system, has a width of 32 bits.

We have used the CLP tool CHIP (V 5.2.1) [12] for the
implementation and we have compared when broadcasting
is not used and when broadcasting is used.
The results are collected in Table 3. Column 1 lists the eight
different designs. In Column 2 the hardware constraints are
listed. These constraints have been set so that it is possible
to add at least one test bus for each design. The following
three columns, three to five, contain the results from the first
approach where no broadcasting is used; the number of test
patterns used, the minimized test time, and the optimization
time.

 Table 1. Design characteristics

Design No. of Cores No. of Tests Min. HW constraint

SOC_1 4 5 40
SOC_2 7 9 70
SOC_3 10 12 100
SOC_4 12 15 120
SOC_5 18 20 180
SOC_6 24 28 240
SOC_7 30 34 300
d695 10 12 100

The following columns, fiveo eight, contain the results

when broadcasting is used. The last column shows the
comparison in test time between the two approaches. The
experiments show that broadcasting of tests between cores
can shorten the test time. The test time could be decreased
with 23.72% on average.

Experiments have also been made to show the impact on
the test time at different hardware constraints. The test time
minimization has been made with different values of the
hardware constraint for two examples, SOC_1 and the
benchmark design d695. The results collected in Table 2
show how the test time for the different designs decreases as
additional test buses are added. For SOC_1 a saturation
point is met when all cores can be tested concurrently (HW
constraint = 400).

8. Conclusions
Decreasing the test application time for SOCs entails an

efficient test data transportation and concurrent test
application. We propose a scheme to explore the high
amount of don't cares present in the test sets in order to
merge different tests, which can be used as alternative to the
original dedicated test for the cores. The proposed method
allows the existing functional bus structure to be reused for
the test data transportation. However, in order to decrease
the test time, dedicated test buses may be added to the
design. The problem formulated, is to select appropriate
tests for each core, insert test buses (if required), and
schedule the selected tests on the buses in such way that the
test application time is minimized without exceeding the
given hardware cost constraints.

 Table 2. Test time for different hardware constraints

Design HW constraint Nr. added test wires Test time

SOC_1

40 0 7514
150 32 6421
200 32 6221
300 64 6155
400 96 4329
500 96 4329

d695

100 0 26071
250 32 22718
300 64 20382
400 64 18522
500 96 13712
600 128 12633
700 160 11791

We have modelled the problem and implemented it using
CLP and experiments show that the overall test time can be
significantly reduced when broadcasting of tests is used.
Since CLP uses an exhaustive search approach, execution
times can become large for complex examples. A natural
extension of the work is therefore to find a heuristic that
would work for larger designs.

References
[1] J. Aerts and E. J. Marinissen, "Scan Chain Design for Test Time

Reduction in Core-Based ICs," Proceedings of the International
Test Conference (ITC), pp. 448-457, 1998.

[2] P. Van Hentenryck, "The CLP language CHIP: constraint
solving and applications," Compcon Spring '91. Digest of Papers
, 25 Feb-1 Mar 1991 , pp. 382 -387, 1991.

[3] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test Access
Mechanism Optimization, Test Scheduling, and Test Data
Volume Reduction for System-on-Chip”, Transactions on
Computer, Vol. 52, No. 12, Dec. 2003.

[4] K. Chakrabarty, “Optimal Test Access Architectures for System-
on-a-Chip,“ ACM Transactions on Design automation of
Electronic Systems, vol. 6, pp. 26-49, 2001.

[5] J. Jaffar and J.-L. Lassez, "Constraint Logic Programming,"
Proceedings of the 14th. ACM Symposium on Principles of
Programming Languages (POPL), pp. 111-119, 1987.

[6] K-J. Lee, J-J. Chen, C-H. Huang, “Broadcasting Test Patterns to
Multiple Circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol.18, No.12,
pp.1793-1802, 1999.

[7] S. Kajihara and K. Miyase, “On Identifying Don't Care Inputs of
Test Patterns for Combinational Circuits,” IEEE/ACM
International Conference on Computer Aided Design (ICCAD),
pp.364 - 369, 2001.

[8] A. Chandra, and K. Chakrabarty, “A unified approach to reduce
SOC test data volume, scan power and testing time,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 22 , Issue 3, pp352-363, 2003.

[9] T. Shinogi, Y. Yamada, T. Hayashi, T. Yoshikawa, and S.
Tsuruoka, “Test Vector Overlapping for Test Cost Reduction in
Parallel Testing of Cores with Multiple Scan Chains,“ Digest of
Papers of Workshop on RTL and High Level Testing (WRTLT),
pp. 117-122, 2004.

[10] K-J. Lee, J-J. Chen, C-H. Huang, “Using a Single Input to
Support Multiple Scan Chains,“ IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 74 - 78,
1998.

[11] J.H. Jiang, W-B. Jone, S-C. Chang, and S. Ghosh, “Embedded
core test generation using broadcast test architecture and netlist
scrambling,” IEEE Transactions on Reliability, Vol. 52, Issue 4,
pp.435 - 443, 2003.

[12] CHIP, System Documentation, COSYTEC, 1996.
[13] S. Hwang, J.A. Abraham, “Reuse of addressable system bus for

SOC testing,” IEEE International ASIC/SOC Conference, pp.
215 - 219, 2001.

[14] A. B. Kinsman, and N. Nicolici, “Time-Multiplexed Test Data
Decompression Architecture for Core-Based SOCs with
Improved Utilization of Tester Channels,” Proceedings of the
10th IEEE European Test Symposium (ETS), pp. 196 - 201,
2005.

 Table 3. Experimental results

Design
Hardware
Constraint

Nr. Added
Test buses

Without Broadcasting With Broadcasting
Test time

ComparisonTot. Nr.
Patterns Used

Test time
CPU time

(s)
Tot. Nr.

Patterns Used
Test time

CPU time
(s)

SOC_1 250 1 275 8271 14 209 6755 76 -18.33%
SOC_2 350 1 440 22361 76 297 18421 132 -17.62%
SOC_3 400 2 539 37943 391 423 29364 572 -22.61%
SOC_4 450 2 753 51946 624 687 37526 1517 -27.76%
SOC_5 500 2 2316 86301 1028 1723 61730 39843 -28.47%
SOC_6 500 3 15017 1167250 2734 11483 869195 62087 -25.53%
SOC_7 600 3 18779 1602862 4893 14021 1187512 95274 -25.91%
d695 350 2 881 24219 235 802 18522 586 -23.52%

