
Designing Bandwidth-Efficient Stabilizing Control Servers

Amir Aminifar∗, Enrico Bini†, Petru Eles∗, Zebo Peng∗

∗Linköping University, Sweden
†Lund University, Sweden

Abstract—Guaranteeing stability of control applications in
embedded systems, or cyber-physical systems, is perhaps the
alpha and omega of implementing such applications. However,
as opposed to the classical real-time systems where often the
acceptance criterion is meeting the deadline, control applica-
tions do not primarily enforce hard deadlines. In the case
of control applications, stability is considered to be the main
design criterion and can be expressed in terms of the amount
of delay and jitter a control application can tolerate before
instability. Therefore, new design and analysis techniques are
required for embedded control systems.

In this paper, the analysis and design of such systems
considering server-based resource reservation mechanism are
addressed. The benefits of employing servers are manifold: (1)
providing a compositional framework, (2) protection against
other tasks misbehaviors, and (3) systematic bandwidth as-
signment. We propose a methodology for designing bandwidth-
efficient servers to stabilize control tasks.

I. INTRODUCTION

In embedded systems, controllers are usually implemented

by software tasks, which read some input data, perform some

computation, and then apply the computed signal to the plant

to be controlled. When other tasks execute on the same

computing unit, then the schedule of the control task is also

affected by the other tasks sharing the same processing unit.
Today, the literature does provide some results that ac-

count for the effect of the controller schedule on the system

dynamics. For example, the effect on the control perfor-

mance of the delay from the sensing to the actuation [1]

or the effect of the jitter in the task completion are well

understood [2].
Once the effect of the scheduling on the control perfor-

mance is established, it is then possible to perform the, so

called, real-time control co-design: designing a controller

so that the control performance is guaranteed (stability, LQR

cost minimization, etc.) and the control tasks are schedulable

over the available processing unit.
In typical approaches [3], [4], [5], the control tasks are all

designed together in a way that some global cost (function

of the control cost of the individual tasks) is minimized. By

following this approach, however, the design of each control

task is affected by the other control tasks, hence breaking the

key engineering design principle of separation of concerns.

As illustrated in Figure 1, in this paper we propose instead to

run each controller within its own server, which then isolates

each control task in the execution environment. The usage

The research leading to these results was supported by the ELLIIT
Excellence Center, the Linneaus Center LCCC, the Marie Curie Intra
European Fellowship within the 7th European Community Framework
Programme, and the Swedish Research Council.

server serverserver

processing unit

plantplant

applications
other

task
control

task
control

Figure 1. Overview of the proposed approach.

of servers to protect control tasks presents the following

advantages:

• it provides compositionality that is important for sys-

tematic design methodologies;

• it protects each controller from possible misbehaviors,

which may occur within other tasks and then possibly

jeopardize the entire system;

• the bandwidth assignment, rather that the priority as-

signment, may constitute a more accurate instrument to

allocate the available computing resources;

• running the controller over a dedicated server, may re-

duce significantly the jitter of the controller, especially

if the server period is smaller than the period of the

controller.

A. Related work

Over the past decade, the analysis and design of real-time

servers have widely developed. Feng and Mok [6] introduced

the bounded delay resource model to facilitate hierarchical

resource sharing. The schedulability analysis and server

design problems for real-time applications under the periodic

resource model have been addressed by [7], [8], [9], [10].

Easwaran et. al. [11] extended the periodic resource model to

the explicit deadline periodic model (EDP) and developed an

algorithm to compute a bandwidth optimal EDP model based

abstraction. Similarly as we do in this paper, Fisher and

Dewan [12] described a method to minimize the bandwidth

of a server. They developed a FPTAS to solve the problem.

However, as the majority of the works in this area, they

considered the task deadline as constraint rather than the

stability of the controllers.

More relevant to this work, Cervin and Eker [13] pro-

posed the control server approach which provides a simple

interface used for control-scheduling co-design of real-time

systems. More recently, Fontanelli et. al. [14] addressed

the problem of optimal bandwidth allocation for a set of

control tasks under the time-triggered model. While ex-

ploiting this model can simplify the analysis and design

problems to a great extent by removing the element of jitter,

such approaches are restricted solely to the very particular

time-triggered design and implementation approach which

can potentially lead to under-utilization or poor control

performance [15].

B. Contributions of the paper

While the analysis and design problems of real-time

servers have been discussed to a considerable degree, the

server-based approach has gained less attention in the case of

control applications which are fundamentally different from

real-time applications with hard deadlines. In particular,

as opposed to hard real-time applications, the notion of

deadline is considered to be artificial for control applications.

In contrast to hard real-time systems, control stability is

the main criterion to be guaranteed for control applications.

Therefore, in the case of control applications, worst-case

control performance and stability should be considered in-

stead of worst-case response time and deadline.

To approach the problem of designing stabilizing servers,

the first step is to capture the stability of the controllers

in terms of real-time parameters which is facilitated by the

Jitter Margin toolbox [16], [17], [2]. The stability of control

applications depends on not only the amount of delay, but

also on the amount of jitter a control application experiences

[18]. The second step is to derive analysis methods for the

servers to compute the discussed real-time metrics, i.e., delay

and jitter. To this end, we consider the explicit deadline

periodic model and develop the exact worst-case and best-

case response times for tasks with arbitrary deadlines within

explicit deadline periodic servers with arbitrary deadlines.

Having the worst-case and best-case response times, it is

then possible to compute the delay and jitter and investigate

if a control application within a given server is guaranteed

to be stable.

In addition to the analysis, we also provide analytic results

that can drive the design of a server which can guarantee

the stability of the controller. The aim of such a design

procedure is bandwidth minimization. Since such a solution

is derived using a linear upper and lower bound of the server

supply function, we also bound the amount of pessimism

introduced by our technique.

The main contribution of this paper is in providing a

methodology for designing servers to stabilize control tasks,

which consume the minimal bandwidth.

II. SYSTEMS MODEL

The system is composed of n plants. Each plant is

controlled by a control task which is executing within a

server, as shown in Figure 1. Below we describe the model

of the plant, the control task, and the server.

R
wb

Rk
1
h k

2
h

JL

t

Figure 2. Graphical interpretation of the nominal delay and worst-case
response-time jitter.

A. Plant model

A plant is modeled by a continuous-time system of

differential equations [1],

ẋ = Ax+Bu,

y = Cx,
(1)

where x, u, and y are the plant state, the control signal, and

the plant output, respectively. Since each plant is considered

in isolation, we do not report the index i of the plant among

all the controlled plants.

B. Control task model

The control signal u is computed by a control task τ ,

which samples the output y every period h. Such a control

signal is updated any time the control task completes and is

held constant between two consecutive updates.

The instants when the input u is applied to the plant do

then depend on the way the task τ is scheduled. The task

parameters, which describe the timing behavior of the task

are:

• the best-case execution time, denoted by cb;

• the worst-case execution time, denoted by cw; and

• the sampling period, denoted by h.

In addition, the way the task is scheduled determines also

the following task characteristics, which depend in turn on

the above mentioned parameters:

• the best-case response time Rb,

• the worst-case response time Rw,

• the nominal delay (or latency), denoted by L, and

• the worst-case response-time jitter (jitter), denoted by

J = Rw −Rb.

The terminology and the notation are illustrated in Figure 2.

Note that we do not consider any deadline for control tasks.

C. Server model

As introduced above, to isolate controllers from one an-

other, each control task is bound to execute over a dedicated

server. The periodic server S is described by:

• the server budget Q;

• the server period P , and

• the server deadline D.

This model was also called EDP (Explicit Deadline Periodic)

model by some authors [11]. Every period P the server is

activated. Then, it allocates Q amount of time to the task,

before the server deadline expires.

The delay and jitter experienced by a task are tightly

connected to the best-case and worst-case response times.

−Q 0

Q

2Q

t

∆

3P−QP−Q

slbf

lslbf

P−Q+D

(a) Worst-case resource allocation scenario.

0 Q P+Q−D 2P+Q−D 3P+Q−D

2Q

Q

t

−∆

subf

lsubf

(b) Best-case resource allocation scenario.

Figure 3. Worst-case and best-case resource allocation scenarios.

To compute these two quantities, it is then necessary to

determine the worst and best case scenarios with regard to

the computational resource supplied by the server.

To perform worst-case analysis for the tasks running

within a server, a classic approach [6], [8], [9], [10], [11] is

to define the supply lower bound function slbf(t), which is

formally defined as follows.

Definition 1: The supply lower bound function slbf(t) of

a server S is the minimum amount of resource provided in

any interval of length t.

The exact expression of slbf(t) of a periodic server, is

slbf(t) = max{0, kQ, t− P −D + 2Q− k(P −Q)} (2)

with k =
⌊

t−(D−Q)
P

⌋

, and it is depicted in Figure 3(a) by a

solid line (please refer to the related literature [11] for details

on its computation). As the expression of (2) may be difficult

to be managed, especially when the server parameters are

the variables subject to optimization (as we do in this paper),

it is often convenient to linearly lower bound the slbf(t) by

the linear supply lower bound function lslbf(t), defined as

lslbf(t) = max {0, α(t−∆)} , (3)

with, using Feng–Mok’s notation [6], the server bandwidth

α and delay ∆, defined as

α =
Q

P
(4)

∆ = P +D − 2Q. (5)

The lslbf is also depicted in Figure 3(a) by a dashed line.

Analogously, the best-case analysis of the control task

within the server can be performed by computing the supply

upper bound function subf(t), defined as follows.

Definition 2: The supply upper bound function subf(t) of

a server S is the maximum amount of resource provided in

any interval of length t.

In strict analogy to the worst case examined earlier, the

expression of the subf of a periodic server is

subf(t) = min{t, kQ, t+ P +D − 2Q− k(P −Q)} (6)

with k =
⌈

t+D−Q
P

⌉

, while the linear supply upper bound

function is

lsubf(t) = min {t, α(t+∆)} (7)

with α and ∆ as in (4) and (5), respectively.

Figure 3(b) shows the subf (by a solid line) as well as the

lsubf (by a dashed line).

III. SERVER-BASED ANALYSIS OF CONTROL TASKS

In this section, we determine the best-case and worst-case

response times of the control task running within a server, as

functions of the server parameters P , Q, and D. The analysis

is performed with the exact slbf/subf functions of (2) and (6)

(Section III-A) as well as with the linear bounds lslbf/lsubf

of (3) and (7) (Section III-B).

A. Exact characterization

In this section, the exact real-time analysis for a control

task is derived. To derive the worst-case response time of

a task τ , we must consider the minimum amount of time

available to the task, which is described by slbf(t).
The worst-case response time Rw of the first job of the

control task (released at 0) is equal to the first instant when

the server has necessarily provided at least cw amount of

time, that is

Rw = min {t : slbf(t) ≥ cw} . (8)

By computing the pseudo-inverse of slbf(t), such a value

can be computed explicitly and it is equal to

Rw = D −Q+

⌈

cw

Q

⌉

(P −Q) + cw. (9)

The proof is similar to [19].

Unfortunately, the longest response time may occur even

at the later jobs, and not necessarily at the first job. This is

the case since, as mentioned before, we do not enforce any

task deadline, thus, response times are allowed to be longer

than the sampling periods h. Therefore, we must evaluate

the response times of all jobs within the busy period, as

indicated by Lehoczky [20] for the arbitrary deadline case.

An example is provided to illustrate that the worst-case

response time does not necessarily occur for the instance

of a task which starts the busy period. Let us consider a

control task with cw = cb = 62 and period h = 100 running

within a server with Q = 44 and P = D = 70. In this case,

the longest response time occurs at the fifth job in the busy

period. In fact, the response time of the jobs in the busy

period are: 140, 128, 142, 130, 144, 132, 120, 134, 122,

136, 124, 112, 126, 114, 128, 116, 104, 118, 106, 120, 108,

and finally 96 which is smaller than the controller period.

Similar to Lehoczky’s analysis for tasks with arbitrary

deadlines [20], the worst-case response time of the control

task within a server S = (Q,P,D) is obtained as follows,

Rw= max
q=1...qmax

{

D−Q+

⌈

qcw

Q

⌉

(P−Q)+qcw−(q−1)h
}

, (10)

where qmax is the smallest natural number q for which we

have,

D −Q+

⌈

qcw

Q

⌉

(P −Q) + qcw ≤ qh. (11)

The inequality above identifies the first instance (smallest

q) of the task under analysis in the busy period where its

execution finishes before the next instance is released. We

remind that inequality (11) has solution for a finite q only

when

α =
Q

P
>

cw

h
.

In analogy with (8), the best-case response time Rb is

defined through the subf function as follow

Rb = min{t : subf(t) ≥ cb}, (12)

which can also be computed explicitly, and it is equal to

Rb = max

{

0, 2Q−D − P +

⌈

cb

Q

⌉

(P −Q)

}

+cb. (13)

The proof is similar to the proof of Theorem 1 in [8].

B. Characterization with linear bounds

The main obstacle in using the exact response time for

finding the optimal server parameters (see Section V) is that

equations (10) and (13) involve ceiling functions. Hence,

we propose to compute an upper bound R
w

to the Rw and

a lower bound Rb of Rb using, respectively, the lslbf and

lsubf functions, rather than the exact ones, i.e., slbf and subf.

Observe that while this approximation involves pessimism,

it is safe from the stability point of view.

By replacing the slbf in (8) with the lslbf of (3), we can

readily compute the response time upper bound, which is

R
w
=

cw

α
+∆. (14)

As shown in [21], such an upper bound to the response time

is valid only if the server bandwidth is not smaller than the

worst-case utilization of the control task, that is

α =
Q

P
≥

cw

h
. (15)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

Nominal delay L

R
e
s
p
o
n
s
e
−

ti
m

e
 j
it
te

r
J

Stability curves

Linear lower bounds

Figure 4. The stability curves generated by the Jitter Margin toolbox and
their linear lower bounds (the area below the curves is the stable area).

Similarly, by replacing subf in (12) by lsubf of (7), the

lower bound to the best-case response time is given by,

Rb = max

{

cb,
cb

α
−∆

}

. (16)

IV. STABILITY CONSTRAINT

To quantify the amount of delay and jitter tolerable by a

control application before the instability of the plant, we use

the Jitter Margin toolbox [16], [17], [2]. It provides sufficient

stability conditions for a closed-loop system with a linear

continuous-time plant and a linear discrete-time controller.

The Jitter Margin toolbox provides the stability curve

that determines the maximum tolerable response-time jitter

J based on the nominal delay L. The solid curves in

Figure 4 are examples of the stability curves generated by

the Jitter Margin toolbox. Observe that the area below the

solid curve is the stable area. The graph is generated for

the plant with transfer function 1000
s2+s

and a discrete-time

Linear-Quadratic-Gaussian (LQG) controller. The upper and

lower solid curves correspond to sampling periods 6 ms and

12 ms, respectively.

For a given sampling period, the stability curve can

safely be approximated by a linear function of the nominal

delay and worst-case response-time jitter. The linear stability

condition for a control application is of the form L+aJ ≤ b,

where a ≥ 1, b ≥ 0. The nominal delay L identifies

the constant part of the delay that the control application

experiences, whereas the worst-case response-time jitter J

captures the varying part of the delay (see Figure 2, where

Rb and Rw represent the best-case and worst-case response

times, respectively). The linear lower bounds, depicted by

the dashed lines, on the original curves generated by the

Jitter Margin toolbox are also shown in Figure 4. Observe

that the linear lower bounds can efficiently capture the stable

area identified by Jitter Margin.

In order to apply the stability analysis discussed, the

values of the nominal delay (L) and worst-case response-

time jitter (J) of the control task should be computed. The

two metrics are defined based on the worst-case and best-

case response times as follows,

L = Rb,

J = Rw −Rb,
(17)

where Rw and Rb denote the worst-case and best-case

response times, respectively. The stability constraint, hence,

can be formulated as,

L+ aJ ≤ b,

Rb + a(Rw −Rb) ≤ b.
(18)

For a given server, the stability condition (18), which is

based on the exact best-case and worst-case response times,

determines if the server, in the worst-case, can guarantee

the stability of the control task associated with it (analysis

problem).

In the context of the optimization problem as will be

discussed in Section V, however, the presence of discon-

tinuous operators (ceiling) in the exact expressions (10) and

(13) of the worst-case and best-case response times makes

them unsuited. Hence, we use the upper/lower bound of

the worst/best-case response times and redefine the nominal

delay and the worst-case response-time jitter as follows,

L = Rb,

J = R
w
−Rb.

(19)

While using the linear supply bounds involves some pes-

simism compared to the original supply bounds, it is safe

from the stability point of view [17]. Nonetheless, the

amount of introduced pessimism is discussed at the end of

this section in Theorem 1.

The stability constraint based on the linear bounds is given

in the following,

b ≥ L+ aJ,

b ≥ Rb + a(R
w
−Rb),

b ≥ a(
cw

α
+∆)− (a− 1)max

{

cb,
cb

α
−∆

}

,

= a(
cw

α
+∆) + (a− 1)min

{

−cb,−

(

cb

α
−∆

)}

,

which we rewrite as

min

{

a(cw − cb) + cb

α
+ (2a− 1)∆− b,

acw

α
+ a∆− (a− 1)cb − b

}

≤ 0. (20)

Hence equation (20) describes the constraint on the server

parameters (the bandwidth α and the delay ∆, see Section

II-C), which guarantees the stability of the controller running

within such a server.

We shall now discuss the degree of pessimism introduced

in the analysis by using the linear bounds instead of the exact

response times. The next theorem establishes one interesting

consequence of the violation of (20), which is derived with

the linear bounds.

Theorem 1: If the stability constraint (20) of a control

task is satisfied within an implicit deadline server S1 =
(Q,P) with the exact supply functions, it is also satisfied

within an implicit deadline server S2 = (Q2 ,
P
2) with the

linear supply functions.

Proof: Let us first prove the following inequalities,

∀t, subf1(t) ≥ lsubf2(t),

∀t, slbf1(t) ≤ lslbf2(t),
(21)

where the indices 1 and 2 correspond to servers S1 and S2,

respectively. To prove subf1(t) ≥ lsubf2(t), we derive the

linear lower bound on the exact supply upper bound function

subf1(t). If we can prove that this linear lower bound is

always greater than or equal to lsubf2(t), considering that it

is a lower bound of subf1(t), we have subf1(t) ≥ lsubf2(t).
The linear lower bound on subf1(t) is given by,

min

{

t,
Q

P
(t+ (P −Q))

}

. (22)

Let us also derive the lsubf2(t) for the implicit deadline

server S2 = (Q2 ,
P
2),

min

{

t,

Q
2
P
2

(t+ 2(
P

2
−

Q

2
))

}

,

which is exactly the same as the linear lower bound on the

exact supply upper bound function subf1(t) in equation (22)

(see Figure 5(b)).

Analogously, to prove slbf1(t) ≤ lslbf2(t), we show that

the linear upper bound on slbf1(t) is the same as lslbf2(t)
and is given by (see Figure 5(a)),

max

{

0,
Q

P
(t− (P −Q))

}

.

As a result of the inequalities in (21), the following

relations hold for the response times,

Rb
1 = min{t :subf1(t)≥cb} ≤ min{t : lsubf2(t)≥cb} = Rb

2,

Rw
1 = min{t :slbf1(t)≥cw} ≥ min{t : lslbf2(t)≥cw} = R

w

2 .

Since a ≥ 1, we have the following inequalities,

aRw
1 + (1− a)Rb

1 ≥ aR
w

2 + (1− a)Rb
2,

L1 + aJ1 ≥ L2 + aJ2,

from which the theorem follows,

L1 + aJ1 ≤ b
L1+aJ1≥L

2
+aJ2

=⇒ L2 + aJ2 ≤ b. (23)

Note that the bound is tight since the linear lower bound

on subf1(t) is the same as lsubf2(t) and the linear upper

bound on slbf1(t) is the same as lslbf2(t). The tightness is

in the sense that, for server S2 = (Q2 ,
P
2), increasing the

server period P
2 or decreasing the server budget Q

2 by any

small positive value, violates the inequalities in (21).

2Q

Q

t

0 P−Q 2P−Q−Q 3P−Q

slbf 1

lslbf2

slbf 2

(a) Worst-case resource allocation scenario (implicit deadline).

2Q

Q

t

Q0 P+Q

lsubf

2

subf 1

subf

2

(b) Best-case resource allocation scenario (implicit deadline).

Figure 5. Worst-case and best-case resource allocation scenarios for implicit deadline server.

The important message of Theorem 1 is that, if a server

S1 = (Q,P) (with the exact supply functions) with band-

width α1 = Q
P

is identified that guarantees the stability of

the control task associated with it, then there exists a server

S2 = (Q2 ,
P
2) (with the linear supply functions) that can

guarantee the stability of the control task and the required

bandwidth is the same, i.e., α2 =
Q

2

P
2

= Q
P

.

The theorem also states that, in the worst-case, the server

S2 has to be run at double frequency compared to S1. In

practice, of course, this might be a disadvantage, if the

context-switch overhead is significant.

V. OPTIMAL DESIGN OF STABILIZING SERVERS

In this section, we describe the procedure to design

optimal stabilizing servers. The objective of the optimization

is to minimize the utilization required in order to guarantee

the stability of all control applications, that is

U =
n
∑

i=1

(

αi +
ǫ

Pi

)

, (24)

where ǫ denotes the switching overhead for the server

and is considered to be strictly positive. If no overhead is

considered, then the solution would be with P → 0, making

this an impractical server period.

We propose two methods for server design:

• the implicit deadline servers, in which all server dead-

lines are set equal to the periods (Section V-A), and

• the harmonic servers, in which all server periods are

equal to each other (Section V-B).

A. Design of implicit deadline servers

Thanks to the isolation provided by the resource allocation

mechanism, the stability of each control task is guaranteed

through the parameters (α and ∆) of the server running

the task only (equation (20)). Hence, the minimization of

the total server utilization of (24) can be broken down into

one bandwidth minimization problem for each server, rather

than a more complex minimization which involves all task

parameters all together.

If we assume D = P for all servers, we can perform

the following optimization for each control application and

conclude based on the obtained results,

min
α,∆

α+
2ǫ(1− α)

∆

s.t. min

{

a(cw − cb) + cb

α
+ (2a− 1)∆− b,

acw

α
+ a∆− (a− 1)cb − b

}

≤ 0.

(25)

Notice that in the above cost, the period P is replaced by
∆

2(1−α) , as it follows from (4)–(5) in the case with D = P .

The solution to the above problem is the minimum band-

width (included the overhead) required to guarantee stability

of control task τ .

Let us proceed with finding the global optimum of the

problem (25), which is concerned with a single control task

in isolation. Since the stability constraint in (25) can be

written as

min{gI(α,∆), gII(α,∆)} ≤ 0,

which is equivalent to

(gI(α,∆) ≤ 0) ∨ (gII(α,∆) ≤ 0),

with ∨ denoting the logical or between two propositions,

then the problem (25) can be solved by solving individually

the following two problems

min
α,∆

α+
2ǫ(1− α)

∆

s.t.
a(cw − cb) + cb

α
+ (2a− 1)∆− b ≤ 0,

(26)

and,

min
α,∆

α+
2ǫ(1− α)

∆

s.t.
acw

α
+ a∆− (a− 1)cb − b ≤ 0.

(27)

and then select the best solution between the two solutions

produced by (26) and (27).

To solve problems (26) and (27), we use the KKT

(Karush-Kuhn-Tucker) necessary conditions for optimal-

ity [22]. According to the KKT conditions, the optimum

x∗ of the problem

min
x

f(x)

s.t. g(x) ≤ 0,
(28)

must necessarily satisfy the following condition

∇f(x∗) + µ∗∇g(x∗) =0,

µ∗g(x∗) =0,

µ∗ ≥0.

(29)

Let us first solve problem (26). From the KKT condition

of the gradient, if we differentiate w.r.t. α and then ∆, we

find

1−
2ǫ

∆
− µ

a(cw − cb) + cb

α2
= 0 (30)

−
2ǫ(1− α)

∆2
+ µ(2a− 1) = 0 (31)

Since a ≥ 1 and α < 1, from (31), we immediately find

the multiplier µ, that is:

µ =
2ǫ(1− α)

∆2(2a− 1)
> 0,

hence the constraint of (26) is active and must hold with the

equal sign.

If we set, to have a more compact notation

xI = a(cw − cb) + cb, yI = ǫ(2a− 1), zI = b, (32)

then the equality constraint of (26) can be rewritten as

xI

α
+ yI

∆

ǫ
= zI, (33)

from which we find

∆

ǫ
=

αzI − xI

αyI

, (34)

and then the multiplier µ is

µ =
2(1− α)

yI

(

αyI

αzI − xI

)2

. (35)

By replacing (34) and (35) in the condition (30), we find:

1− 2
αyI

αzI − xI

−
2(1− α)

yI

α2y2I
(αzI − xI)2

xI

α2
= 0

αzI − xI − 2αyI − 2(1− α)
yI

αzI − xI

xI = 0

α(zI − 2yI)− xI − (2xIyI − α2xIyI)
1

αzI − xI

= 0

zI(zI − 2yI)α
2 − 2xI(zI − 2yI)α+ xI(xI − 2yI) = 0

α2 − 2
xI

zI

α+
xI(xI − 2yI)

zI(zI − 2yI)
= 0

α = αI (1± δI)

where we set

αℓ =
xℓ

zℓ
, δℓ =

√

1−
zℓ(xℓ − 2yℓ)

xℓ(zℓ − 2yℓ)
(36)

with ℓ = I. The values αI and δI represent, respectively,

the consumed bandwidth in absence of overhead and the

increase of bandwidth needed due to overhead.

Among the two solutions, the smaller one makes the cor-

responding value of ∆ negative. Hence the only acceptable

solution for the server bandwidth is:

α∗

I = max

{

αI(1 + δI),
cw

h

}

, (37)

in which we also account for constraint (15) on the minimal

server bandwidth that guarantees the validity of the response

time upper bound. The corresponding optimal value of the

server delay ∆∗

I can be computed from (34).

To solve the second problem (27), we simply observe that

by setting

xII = acw, yII = aǫ, zII = b+ (a− 1)cb. (38)

the constraint can be rewritten as in (33) by replacing xI, yI,

and zI, with xII, yII, and zII of (38). Since the cost functions

of the two problems are the same, it follows that the solution

is exactly the same as (37), with the opportune replacements.

Since the two problems have to be considered in logical

or, the minimal bandwidth α∗ and delay ∆∗ which can guar-

antee the stability of the control task (within the assumption

of server deadline D equal to the server period P) is given

by the better solution of the two problems, i.e.,

min

{

α∗

I +
2ǫ(1− α∗

I)

∆∗

I

, α∗

II +
2ǫ(1− α∗

II)

∆∗

II

}

. (39)

Having found the minimum resource utilization required

for stability of all control applications, we should now check

if the resource demand is less than or equal to the resource

supply. In the case of the implicit deadline servers, the

solution found is valid if and only if the utilization is less

than or equal to one, i.e.,

n
∑

i=1

(

α∗

i +
2ǫ(1− α∗

i)

∆∗

i

)

≤ 1. (40)

B. Design of harmonic servers

If we design the servers following the rules of Sec-

tion V-A, the periods of the servers will certainly be unre-

lated to one another. In this section, instead, we investigate

the case in which we explicitly set all the server periods

equal to the same value P . This choice has the following

advantages:

• setting all periods equal to each other is certainly

simpler to be implemented;

• as shown in Figure 6, it is possible to ameliorate the

worst-case and the best-case scenarios for the resource

supply. Such a scenario is equivalent to assuming D =

Q
2

Q
3

Q
4

Q
3

Q
2

Q
1

Q
1

Q
4

P 2P 3P0

Figure 6. Server supply in the harmonic case.

Q for all servers and then allows setting (see equation

(5)):

∆ = P −Q = P (1− α) (41)

rather than 2(P −Q) as in the implicit deadline case.

However, there is also a drawback that is:

• binding all periods to be equal, it is not anymore

possible to find the server parameters independently of

each other as in Section V-A.

In the case of all server periods equal to P the total

utilization of the control servers is given by,

U =

n
∑

i=1

(

αi +
ǫ

P

)

=

n
∑

i=1

αi +
nǫ

P
, (42)

where all servers have the same period, denoted by P .

For each server with bandwidth α, we consider then the

following problem

min
α

α

s.t. min

{

a(cw − cb) + cb

α
+ (2a− 1)P (1− α)− b,

acw

α
+ aP (1− α)− (a− 1)cb − b

}

≤ 0,

(43)

which follows from the stability constraint (20) after replac-

ing the delay ∆ with the less pessimistic expression of (41),

possible thanks to the assumption of all periods equal to P .

As discussed in the previous section, solving the above

problem is equivalent to solving the following two problems,

min
α

α

s.t.
a(cw − cb) + cb

α
+ (2a− 1)P (1− α)− b ≤ 0,

(44)

and,

min
α

α

s.t.
acw

α
+ aP (1− α)− (a− 1)cb − b ≤ 0,

(45)

and choosing then the minimum among the two solutions.

As minimizing the server utilization α leads to an increase

in the left-hand side of the stability constraints, the minimum

server utilization α∗ is obtained when the constraint is active,

in both cases.

The stability constraints of problems (44) and (45) are

given by a quadratic equation each of which with only one

positive solution. The unique solution of the two problems,

can be written as

α∗

i = αi

2
√

(1− δi)2 + 4δiαi + (1− δi)
, (46)

with

αI =
a(cw − cb) + cb

b
, δI = γIP, γI =

(2a− 1)

b
(47)

determining the solution of problem (44), and

αII =
acw

b+ (a− 1)cb
, δII = γIIP, γII =

a

b+ (a− 1)cb
(48)

defining the solution of problem (45). Finally, since the

minimal bandwidth α∗ is the minimum among the two

problems, we have:

α∗ = min{α∗

I , α
∗

II}.

We now observe that both α∗

I and α∗

II are increasing

functions of P . This can be argued from the problem

formulations (44)–(45). In fact, the constraint must be active,

regardless of the value of P . If P increases and the left-

hand side of the constraint must remain equal to 0 (since

the constraint is active), then α must necessarily increase as

well. Therefore, the optimal server utilization α∗

I and α∗

II of

both cases are increasing functions of the server period P .

To study the minimal bandwidth α∗, it is necessary

to determine the value of the period which separates the

case when α∗

I ≤ α∗

II and vice versa. After some algebraic

manipulation we find that α∗

II ≤ α∗

I when

P ≤ P̂ =
(γI − γII)(αI − αII)

(γII(1− αI)− γI(1− αII))(γIαII − γIIαI)
(49)

with αI, αII, γI, and γII properly defined in (47)–(48).

Therefore, for the optimal server utilization α∗ we have,

α∗ =

{

α∗

II P ∈ [0, P̂)

α∗

I P ∈ [P̂ ,+∞)
(50)

The solution (50) provides the minimum bandwidth, as

a function of P , which guarantees the stability of one

controller only, when it is running within a server with

period P that can guarantee to supply the resource according

to the schedule of Figure 6.

Let us now address the minimization of the total utiliza-

tion (42). For this purpose we introduce again the indices of

the tasks, so that α∗

i denotes the solution of (50) for the i-th

controller and α∗

i,I and α∗

i,II
denote the two solutions of (46)

for the i-th task. Without loss of generality, suppose for any

two control tasks τi and τj , where i < j, we have P̂i ≤ P̂j .

Table I
EXAMPLE: TASK SET DATA

i cbi cwi hi ai bi F (s)

1 30 60 600 1.18 831 1000
s2+s

2 92 184 920 1.16 826 98.1
s2−98.1

3 427 854 2847 1.14 2697 9.81
s2−9.81

With this notation, the cost of (42), can be written as

U(P) =
nǫ

P
+



























∑n

i=1 α
∗

i,II
P ∈ [0, P̂1)

α∗

1,I +
∑n

i=2 α
∗

i,II
P ∈ [P̂1, P̂2)

. . .
∑n−1

i=1 α∗

i,I + α∗

n,II P ∈ [P̂n−1, P̂n)
∑n

i=1 α
∗

i,I P ∈ [P̂n,+∞).

(51)

The minimization of U over P , can then be made by

minimizing U in each of the intervals of the definition (51),

taking into consideration that the servers should not be

overloaded. Let then U∗

j be the minimum consumed band-

width over the interval [P̂j , P̂j+1), with the proper extension

to P̂0 = 0 and P̂n+1 = +∞. The minimum consumed

bandwidth using the scheme of harmonic periods is

U∗ = min
j=0...n

{U∗

j }, (52)

and if we set j∗ the index such that U∗

j∗ = U∗, then the

optimal period P ∗ is the one such that U(P) = U∗

j∗ .

If the minimum utilization found U∗ is less than or

equal to one, then the system is guaranteed to be stable

and schedulable, since this is the necessary and sufficient

condition,

n
∑

i=1

(Qi + ǫ) ≤ P ⇔ U =

n
∑

i=1

(

αi +
ǫ

P

)

≤ 1. (53)

VI. ILLUSTRATIVE EXAMPLE

In this section, the server design approaches discussed

in the previous section will be illustrated using a small

example. Let us consider a set of three controllers whose

data is reported in Table I. In the table we report best-case

and worst-case execution times (cbi and cwi), the period (hi),

the coefficients of the linear constraint between delay and

jitter (ai and bi of the constraint of (18)), and the transfer

function of the plant to be controlled. All time quantities are

given in 0.01 ms throughout this section.

If we assume a server switching overhead ǫ = 0.3, then

the obtained server parameters are the ones reported in

Table II.

In the table we report server budgets Qi and periods Pi

for both design strategies: the implicit deadline (ID) and

the harmonic periods (H) cases. The total utilization of the

servers designed with equal periods, UH = 0.74, is slightly

higher than the total utilization in the case of the implicit

deadline servers, i.e., UID = 0.72. The detailed calculation

Table II
EXAMPLE: SOLUTION TO THE SERVER DESIGN PROBLEM.

Implicit Deadline Harmonic
i Q∗

i P ∗
i α∗

i ∆∗
i Q∗

i P ∗
i α∗

i ∆∗
i

1 7.25 72.5 0.100 130 4.90 49.0 0.100 44.1
2 5.56 22.0 0.253 32.8 13.0 49.0 0.266 36.0
3 12.8 37.0 0.347 48.3 17.5 49.0 0.358 31.4

is given in the follow,

UH =
∑3

i=1

(

α∗
i +

ǫ(1−α∗

i)

∆∗

i

)

=
(

0.100 + 0.3(1−0.100)
44.1

)

+
(

0.266 + 0.3(1−0.266)
36.0

)

+
(

0.358 + 0.3(1−0.358)
31.4

)

=0.74,

UID =
∑3

i=1

(

α∗
i + 2

ǫ(1−α∗

i)

∆∗

i

)

=
(

0.100 + 2 0.3(1−0.100)
130

)

+
(

0.253 + 2 0.3(1−0.253)
32.8

)

+
(

0.347 + 2 0.3(1−0.347)
48.3

)

=0.72.

Notice that the server delays ∆1 and ∆3 are smaller in the

case of the harmonic server than the implicit deadline server.

VII. EXPERIMENTAL RESULTS

To further compare the implicit deadline server and the

harmonic server designed in the previous section, we have

generated 1000 benchmarks with a number of control ap-

plications from 2 to 10. The plants considered are chosen

from a database consisting of inverted pendulums, ball

and beam processes, DC servos, and harmonic oscillators

[1], [17]. Such plants are considered to be representatives

of realistic control problems and are extensively used for

experimental evaluation. To generate a set of random tasks

for a given utilization, the UScaling algorithm is used [23].

The switching overhead is given by ǫ = r×mini=1...n{c
b
i },

where r ∈ [0.01, 0.05].
The experiments are repeated for several values of to-

tal task utilization (
∑n

i=1
cwi
hi

) and the results are shown

in Figure 7. The metric used for this comparison is the

relative improvement, defined as
(

NID−NH

NID
× 100

)

, where

NID and NH are the number of benchmarks for which the

implicit deadline servers and harmonic servers, respectively,

could find a valid solution. Therefore, the metric states the

efficiency of the implicit deadline servers compared to the

harmonic servers. For each value of utilization, we evaluate

the percentage of benchmarks for which the stability could

not be guaranteed, and we call it “invalid solutions”. The

number of invalid solutions found for harmonic servers

increases with utilization compared to the implicit deadline

servers. Nevertheless, the harmonic servers perform 3.6%
better for low utilization (50% utilization), while for high

utilization (95% utilization) the implicit deadline servers

perform 27.6% better than the harmonic servers.

The results illustrate that for high loads the possibility to

assign individual server periods with the implicit deadline

servers approach outweighs the advantage of potentially

reduced jitters with the harmonic servers.

VIII. CONCLUSIONS

Providing guarantees for stability of control applications

is perhaps the most important requirement while implement-

ing embedded control systems. The fundamental difference

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 50 60 70 80 90 100

In
v
a
lid

 S
o
lu

ti
o
n
s
 [

%
]

Utilization [%]

Implicit Deadline vs Harmonic

Figure 7. The percentage of the benchmarks for which stability of the
control task associated with the harmonic server could not be guaranteed
compared to the implicit deadline server.

between the control systems and what we classically un-

derstand by hard real-time systems advocates the need for

new analysis and design techniques. In this paper, we have

proposed the use of resource reservation mechanisms for

designing embedded control systems. Exploiting the server

mechanism provides not only compositionality and isolation,

but also a simple interface between the control stability

and real-time scheduling aspects which facilitates the design

process. Finally, we have addressed the analysis and design

of stabilizing servers and demonstrated the efficiency of our

proposed approaches both theoretically and experimentally.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Prof. Anton

Cervin and Dr. Bo Lincoln for helpful discussions and

providing the Jitter Margin toolbox.

REFERENCES

[1] K. J. Åström and B. Wittenmark, Computer-Controlled Sys-
tems, 3rd ed. Prentice Hall, 1997.

[2] A. Cervin, “Stability and worst-case performance analysis of
sampled-data control systems with input and output jitter,”
in Proceedings of the 2012 American Control Conference
(ACC), 2012.

[3] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task
schedulability in real-time control systems,” in Proceedings
of the 17th IEEE Real-Time Systems Symposium, 1996, pp.
13–21.

[4] E. Bini and A. Cervin, “Delay-aware period assignment in
control systems,” in Proceedings of the 29th IEEE Real-Time
Systems Symposium, 2008, pp. 291–300.

[5] A. Aminifar, S. Samii, P. Eles, Z. Peng, and A. Cervin,
“Desiging high-quality embedded control systems with guar-
anteed stability,” in Proceedings of the 33th IEEE Real-Time
Systems Symposium, 2012, pp. 283–292.

[6] X. Feng and A. Mok, “A model of hierarchical real-time
virtual resources,” in Proceedings of the 23th IEEE Real-Time
Systems Symposium, 2002, pp. 26–35.

[7] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein, “Analy-
sis of hierar hical fixed-priority scheduling,” in Proceedings of
the 14th Euromicro Conference on Real-Time Systems, 2002,
pp. 152–160.

[8] G. Lipari and E. Bini, “Resource partitioning among real-
time applications,” in Proceedings of the 15th Euromicro
Conference on Real-Time Systems, 2003, pp. 151–158.

[9] I. Shin and I. Lee, “Periodic resource model for compositional
real-time guarantees,” in Proceedings of the 24th IEEE Real-
Time Systems Symposium, 2003, pp. 2–13.

[10] L. Almeida and P. Pedreiras, “Scheduling within tempo-
ral partitions: response-time analysis and server design,” in
Proceedings of the 4th ACM international conference on
Embedded software, 2004, pp. 95–103.

[11] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis
framework using edp resource models,” in Proceedings of the
28th IEEE Real-Time Systems Symposium, 2007, pp. 129–138.

[12] N. Fisher and F. Dewan, “A bandwidth allocation scheme
for compositional real-time systems with periodic resources,”
Real-Time Systems, vol. 48, no. 3, pp. 223–263, 2012.

[13] A. Cervin and J. Eker, “Control-scheduling codesign of
real-time systems: The control server approach,” Journal of
Embedded Computing, vol. 1, no. 2, pp. 209–224, 2005.

[14] D. Fontantelli, L. Palopoli, and L. Greco, “Optimal cpu allo-
cation to a set of control tasks with soft real–time execution
constraints,” in Proceedings of the 16th international confer-
ence on Hybrid systems: computation and control, 2013, pp.
233–242.

[15] K. E. Årzén and A. Cervin, “Control and embedded comput-
ing: Survey of research directions,” in Proceedings of the 16th

IFAC World Congress, 2005.

[16] C.-Y. Kao and B. Lincoln, “Simple stability criteria for
systems with time-varying delays,” Automatica, vol. 40, pp.
1429–1434, 2004.

[17] A. Cervin, B. Lincoln, J. Eker, K. E. Årzén, and G. Buttazzo,
“The jitter margin and its application in the design of real-
time control systems,” in Proceedings of the 10th International
Conference on Real-Time and Embedded Computing Systems
and Applications, 2004.

[18] B. Wittenmark, J. Nilsson, and M. Törngren, “Timing prob-
lems in real-time control systems,” in Proceedings of the
American Control Conference, 1995, pp. 2000–2004.

[19] G. Buttazzo and E. Bini, “Optimal dimensioning of a constant
bandwidth server,” in Proceedings of the 27th IEEE Real-Time
Systems Symposium, 2006, pp. 169–177.

[20] J. Lehoczky, “Fixed priority scheduling of periodic task sets
with arbitrary deadlines,” in Proceedings of the 11th IEEE
Real-Time Systems Symposium, 1990, pp. 201–209.

[21] E. Bini, T. Huyen Châu Nguyen, P. Richard, and S. K.
Baruah, “A response-time bound in fixed-priority scheduling
with arbitrary deadlines,” IEEE Transactions on Computer,
vol. 58, no. 2, pp. 279–286, 2009.

[22] M. Bazaraa, H. Sherali, and C. Shetty, Nonlinear Program-
ming: Theory and Algorithms. Wiley, 2006.

[23] E. Bini and G. C. Buttazzo, “Measuring the performance of
schedulability tests,” Real-Time Systems, vol. 30, no. 1-2, pp.
129–154, 2005.

