
Self-Triggered Controllers and Hard Real-Time Guarantees
Amir Aminifar1, Paulo Tabuada2, Petru Eles1, Zebo Peng1

1Department of Computer and Information Science, Linköping University, Sweden
2Department of Electrical Engineering, University of California at Los Angeles, USA

Abstract—It is well known that event-triggered and self-
triggered controllers implemented on dedicated platforms can
provide the same performance as the traditional periodic
controllers, while consuming considerably less bandwidth.
However, since the majority of controllers are implemented
by software tasks on shared platforms, on one hand, it might
no longer be possible to grant access to the event-triggered
controller upon request. On the other hand, due to the seem-
ingly irregular requests from self-triggered controllers, other
applications, while in reality schedulable, may be declared
unschedulable, if not carefully analyzed. The schedulability
and response-time analysis in the presence of self-triggered
controllers is still an open problem and the topic of this paper.

Keywords- schedulability analysis, response-time analysis,
self-triggered control, event-triggered control.

I. INTRODUCTION AND RELATED WORK

Self-triggered and event-triggered controllers are being
actively considered as substitutes of traditional periodic
controllers. As opposed to the traditional controllers where
sampling is periodic in the time domain, typically, the
event-triggered and self-triggered controllers execute when
the expected performance is about to be violated. This,
in turn, leads to less resource usage compared to the tradi-
tional periodic controllers since the controllers execute only
if it is necessary to guarantee the expected performance.

Today, many control applications are implemented on
shared platforms, alongside other hard real-time or safety-
critical applications. The control-scheduling co-design of
traditional periodic controllers has been investigated for
more than a decade [1]–[9]. There has also been con-
siderable amount of research on event-triggered and self-
triggered control mechanisms [10]–[17]. In the case of
self-triggered controllers, however, the lack of clear exe-
cution patterns has been the main obstacle in efficiently
implementing such applications alongside hard real-time
applications on shared platforms. Due to the seemingly
irregular requests from self-triggered controllers, current
practice often leads to under-utilized resources and over-
provisioned designs, which defeats the purpose of the self-
triggered control, i.e., less resource usage.

In this paper, we discuss the fact that self-triggered
controllers actually exhibit certain execution patterns when
carefully examined. Note that the next triggering instant
for the self-triggered controllers depends on the state of
the plant. The core idea here is to capture the dependency
between the states of the plant at each triggering point.
This means that, for each initial state, the following states
are not arbitrary, and exploiting this fact results in a less
pessimistic analysis. This, in particular, is important from
the schedulability point of view.

A naive approach to schedulability analysis is to consider
the least inter-execution time with respect to all initial

states the plant can be in. To perform schedulability anal-
ysis, then it is safe to consider the self-triggered controller
as a periodic task with the least inter-execution time.
However, this is an overly pessimistic analysis since in
every step it considers the worst-case possible state for the
plant (with respect to inter-execution time). In this case, the
calculated interference from the self-triggered controller
is considerably larger than what occurs in reality, since
always the worst-case scenario is considered, eliminating
the potential advantage of self-triggered controllers versus
the periodic controllers. And, essentially, this leads to a
pessimistic analysis method.

Over the last few years, schedulability analysis of self-
triggered controllers has gained attention. Velasco et. al.
[18] considered the problem under both fixed-priority
and earliest-deadline-first scheduling policies. However, the
problem of finding the worst-case triggering pattern was
left open. Lemmon et. al. [19] considered online scheduling
of self-triggered controllers using elastic scheduling, but
no stability guarantees are provided. Anta and Tabuada
[20] discussed the benefits of relaxing periodicity con-
straint over communication networks. However, to pro-
vide schedulability guarantees, the authors consider the
minimum inter-arrival time for all possible initial states,
which is extremely pessimistic and defeats the purpose
of the self-triggered controller. Antunes and Heemels [21]
found the optimal sampling instants and control inputs in
a given interval with respect to quadratic cost functions.
However, they do not attempt to address the schedulability
and response-time analysis problem. Finally, it has been
shown that in certain self-triggered schemes no positive
minimum inter-event time can be guaranteed [22].

In this paper, we focus on the self-triggered approach
proposed by Donkers et. al. [23], adapted for real-time
analysis. We address the response-time and schedulability
analysis for a mixed set of periodic hard real-time tasks and
self-triggered control tasks. The basic idea is to make use
of the fact that there actually exist certain patterns in the
execution of self-triggered controllers. To our knowledge,
this is the first attempt to perform offline schedulability
analysis in the presence of self-triggered control tasks that
allows to leverage the potential advantages of self-triggered
control compared to periodic control.

II. SYSTEM MODEL

A. Task Model
Given is an independent taskset, where each task is

denoted by τi. The computation time (execution time) and
priority of task τi are denoted by ci and ρi, respectively.
Task τi has higher priority than task τj iff ρi > ρj . The set
of higher priority tasks for task τi is denoted by hp (τi).

The jth instance (job) of task τi is denoted by τi,j .
The inter-arrival time (or inter-execution) between the two

instances τi,j and τi,j+1 is denoted by hi,j . It is clear that
for a periodic task τi, hi,j = hi,k, ∀j, k, which means
that the inter-arrival time is constant for the periodic tasks.
Therefore, for the periodic task τi, we drop the index j for
the period hi,j when convenient and denote the period by
hi.

The worst-case interference (in terms of the number of
instances) of task τi in an interval of length t is denoted
by Ii(t).

B. Plant Model

The plant associated with a self-triggered control task
τi is modeled by a continuous-time system of differential
equations [24],

ẋi = Aixi +Biui, (1)

where xi and ui are the plant state and the control signal,
respectively.

C. Self-Triggered Controller

In event-based control, the plant is constantly monitored
and a new control input is applied only if the performance
requirements of the plant are about to be violated. This
is as opposed to the periodic scheme, where the plant
is controlled uniformly in the time domain. The self-
triggered control was first introduced in [12]. In self-
triggered control, as opposed to constant monitoring of the
plant, at each execution instant, in addition to computing
the control input, the controller also computes the latest
instant at which a new control input should be applied
in order to guarantee the required control performance.
And, this is the next execution instant for the self-triggered
controller.

The inter-execution time for a self-triggered controller
depends on the current state of the plant, the dynamics of
the plant, and the performance metrics used.

III. PROBLEM FORMULATION

Given a mixed set of self-triggered control tasks and
periodic hard real-time tasks, we would like to find out if
all hard real-time tasks meet their deadlines and all plants
associated with the self-triggered controllers are guaranteed
to be stable, under the fixed-priority scheduling policy.

The main step towards schedulability analysis is to
find the worst-case scenario of triggering of a single
self-triggered controller. The worst-case scenario, in this
context, refers to the triggering scenario of the controller
that produces the maximum interference on other tasks.

IV. THE SELF-TRIGGERED CONTROLLER

In this section, we shall briefly discuss how our self-
triggered scheme works. The approach comprises of an of-
fline design time step which is prior to the actual execution
of self-triggered control task, and an online step, where the
next execution instant and the control input are determined
at runtime.

A. Offline Step

At design time, the state space of the plant is partitioned
into several convex polytopes. For each polytope, we shall
calculate the maximum time that the plant could run in
open-loop before instability (i.e., violating the expected
performance), considering that the initial state could be
anywhere in the polytope. Moreover, we shall find the
polytopes in which the plant state could end up after it
runs in open-loop for this amount of time. This information
will be encoded in the form of a transition graph, where
each node corresponds to one polytope. The transitions
among the polytopes are captured by edges and the weight
associated with each edge is the maximum time the plant
could run in open-loop. For instance, an edge from node p
to node q with weight h indicates that: if the initial state of
the plant is in polytope p, the plant can run in open-loop
for h time units and the final state of the plant after h time
units could be in polytope q. We discuss these techniques
further in Sections V and VI.

B. Online Step

At runtime, the initial state x(0) is known. Every time
the self-triggered controller is executed, there are two
procedures to be performed: (1) to compute the next time
the self-triggered controller needs to execute, and (2) to
compute the constant control input until the next execution.

To this end, we shall first find the polytope to which the
initial state x(0) belongs. Note that there exist efficient
algorithms to determine if a point is inside a convex
polytope.

The corresponding control input and the next time the
controller needs to execute for an initial state inside the
polytope are obtained based on a slightly modified version
of the self-triggered controller approach in [23]. From the
transition graph, we know that if the initial state is in a par-
ticular polytope, the trajectory can only end up in a subset
of polytopes. Then, we shall solve the minimum attention
control problem [23], but enforcing extra constraints such
that the final state of the plant after running in open-loop
is guaranteed to be within this subset of polytopes. The
problem remains a linear feasibility problem and, therefore,
is of the same complexity order.

It is of significant importance to observe that the max-
imum time h the plant can run in open-loop, which is
calculated at runtime, may be longer or equal to what
is indicated in the transition graph. That is, the actual
interference of the self-triggered controller at runtime may
not be larger than the interference found in the offline step,
and hence the safety of our offline real-time analysis is
preserved.

V. THE BIG PICTURE

Under fixed-priority preemptive scheduling, assuming
constrained deadlines (deadlines less than or equal to the
period) and an independent taskset with periodic tasks, the
exact worst-case response time of a task τi, denoted by Ri,
is computed by the following equation [25],

Ri = ci +
∑

τj∈hp(τi)

⌈
Ri
hj

⌉
cj , (2)

where hp (τi) denotes the set of higher priority tasks for
task τi. Since Equation 2 cannot be solved analytically,
it has to be solved by fixed-point iteration (starting with,
e.g., Ri = ci) and has pseudo-polynomial complexity. The
above can be extended to periodic tasks with arbitrary
deadlines [26].

In Equation (2), since only periodic tasks are considered,
we have Ij(Ri) =

⌈
Ri

hj

⌉
. To consider the self-triggered

tasks as well, Equation (2) can be rewritten as follows,

Ri = ci +
∑

τj∈hp(τi)

Ij(Ri) · cj , (3)

where Ij(t) is the maximum interference of the higher
priority task τj in an interval of length t.

It should now be clear that the schedulability problem
is reduced to finding the worst-case interference scenario
in an interval of length t for a single self-triggered task
τi, i.e., Ii(t). In other words, we would like to find the
request bound function for each self-triggered controller.
For the sake of presentation, in the next section, we shall
only consider one single self-triggered task and, therefore,
we can drop the index identifying the task.1

VI. FINDING REQUEST BOUND FUNCTION

In this section, we shall discuss the design time proce-
dure to find the request bound function for a single self-
triggered control task. Towards this, first we shall divide the
state space into several subregions. Then, it is determined
if at runtime a transition from one subregion to another
subregion is possible, and this information is modeled as
a graph (see Section VI-A). The second step is to use
dynamic programming in order to find the shortest interval
of time with at least k triggering events, from which we
compute the request bound function (see Section VI-B).

A. Extraction of the Transition Graph
To find the transition graph, we shall take three steps

described in the following subsections:

1) Partitioning the state space
In this step, we shall partition the state space of the plant

into m convex polytopes. The main idea is to partition the
state space such that each component of the state space has
the same sign in the entire polytope and the dominating
(maximum in terms of absolute value) component of the
state space remains the same. For example, for the two-
dimensional state space we have,

y =

[
y1

y2

]
=

[
P 11 P 12

P 21 P 22

] [
x1

x2

]
= Px.

The polytopes are identified by the following lines:

y1 = 0⇒ P 11x1 + P 12x2 = 0,

y2 = 0⇒ P 21x1 + P 22x2 = 0,

y1 = y2 ⇒ (P 11 − P 21)x1 + (P 12 − P 22)x2 = 0,

y1 = −y2 ⇒ (P 11 + P 21)x1 + (P 12 + P 22)x2 = 0.

1Note that there are no limiting assumptions on the number of self-
triggered controllers or the priorities assigned to them.

The first two lines make sure that the sign of each com-
ponent of vector y remains the same in each polytope,
whereas the next two lines partition the state space such
that in each polytope, the infinity norm of ||y||∞ always
depends on one component of vector y. The vertices of
the polytopes are the origin and where the lines cross
the boundary of the state space (see also Section VIII for
an example). The generalization of the above partitioning
technique to higher dimensions is trivial.

Although it is possible to partition the state space even
further [27], [28], for the simplicity of presentation, we
shall only consider this partitioning throughout this paper.

2) Calculation of the maximum time h for each polytope
For each polytope, we shall calculate the maximum time

h that the plant could run in open-loop before instability
(i.e., violating the expected control performance), consider-
ing that the initial state could be anywhere in the polytope.
This is done based on a slightly modified version of the
proposed approach in [23].

The plant is guaranteed to be stable after running in
open-loop for h time units if,

V (x(h))− e−αhV (x(0)) ≤ 0, (4)

where V (·) denotes the Lyapunov function. Similar to [23],
here, we consider the Lyapunov function V (x) = ||Px||∞,

||Px(h)||∞ − e
−αh ||Px(0)||∞ ≤ 0. (5)

The plant state x at time h is as follows, assuming
constant control input u in the interval [0, h),

x(h) = eAhx(0) +

∫ h

0

eA(h−t)dtBu,

= Φ(h)x(0) + Γ(h)u.

(6)

where

Φ(h) = eAh,

Γ(h) =

∫ h

0

eA(h−t)dtB.

To find the maximum time h where the plant could run
in open-loop, for a given initial state x(0), h is increased
iteratively until there does not exist any control input to
satisfy inequality (5).

Let us assume for two vertices of the polytopes, namely
x(0) and x(0), constraint (5) is satisfied if the system runs
in open-loop for h time units,

||P (Φx(0) + Γu)||∞ − σ ||Px(0)||∞ ≤ 0,

||P (Φx(0) + Γu)||∞ − σ ||Px(0)||∞ ≤ 0,
(7)

with constant σ(h) = e−αh.
Now we should show that for x(0) = λx(0) + (1 −

λ)x(0), with 0 ≤ λ ≤ 1, constraint (5) is satisfied, i.e.,

||P (Φx(0) + Γu)||∞ − σ ||Px(0)||∞ ≤ 0. (8)

Note that, in general, the above inequality does not hold.
However, within each polytope, thanks to the careful par-
titioning in the first step, we have,

||Px(0)||∞= ||P (λx(0) + (1− λ)x(0))||∞
= λ ||Px(0)||∞+ (1− λ) ||Px(0)||∞ .

(9)

Algorithm 1 Worst-Case Response-Time Analysis Ri
1: Initialization: Ri = ci; t = 0;
2: Initialization: kj = 1; sj(1, p) = 0,∀p, j;
3: while t < Ri do
4: t = Ri;
5: Ri = ci;
6: for all τj ∈ hp (τi) do
7: if τj is periodic then
8: Ij =

⌈
t
hj

⌉
;

9: else
10: while sj(kj) ≤ t do
11: kj = kj + 1;
12: sj(kj , p)= min

q=1...mj

{sj(kj − 1, q)+Gj(q, p)};

13: sj(kj) = min
p=1...mj

{s(kj , p)};
14: end while
15: Ij = kj − 1;
16: end if
17: Ri = Ri + Ij · cj ;
18: end for
19: end while
20: return Ri

Let us assume that the control input is given by u =
λu+(1−λ)u. Using the triangular property of norms and
Equation (9), we can show that inequality (8) is satisfied,

||P (Φx(0) + Γu)||∞ − σ ||Px(0)||∞ ≤
λ (||P (Φx(0) + Γu)||∞ − σ ||Px(0)||∞)+

(1− λ) (||P (Φx(0) + Γu)||∞− σ ||Px(0)||∞)≤0.

This implies that if the system can run in open-loop
for h time units considering the initial state to be any of
the vertices of the convex polytope, then for any initial
state within the convex polytope also the system can run
in open-loop for h time units.

3) Construction of the transition graph
In this step, we shall construct the graph G correspond-

ing to the transitions between the polytopes. Since the
systems considered in this paper are linear, the convex
polytopes after the system runs in open-loop will be
mapped to convex polytopes.

The new polytopes are easily found by considering
the dynamics of the system (6) for the vertices of the
initial convex polytopes [29]. Note that the transition graph
G(p, q) = h, if the pth polytope after h time unit, which
was found in the previous step, has overlap with the qth

polytope. And G(p, q) = +∞, if there can be no transition
from the pth polytope to the qth polytope.

B. Extraction of the Worst-Case Request Pattern
Having the transition graph, it is now possible to find

the worst-case request bound function. To this end, we
shall use dynamic programming. Note that the length of
the shortest interval of time with k triggers inside, denoted
by s(k), is obtained as follows:

s(k, p) = min
q=1...m

{s(k − 1, q) +G(q, p)} ,

s(k) = min
p=1...m

{s(k, p)} ,
(10)

where s(k, p) is the shortest path with k nodes, which ends
in the pth node of the graph. Equivalently, s(k, p) is the
shortest interval of time with k triggers, which ends in the

Table I
EXAMPLE: TASKSET DATA

i ρi ci hi di self-triggered/hard real-time
1 3 0.3 − 0.8 self-triggered
2 2 1.0 2.0 2.0 hard real-time
3 1 1.0 6.0 6.0 hard real-time

pth polytope. From the structure of Equation (10), it can be
observed that this problem could be solved using dynamic
programming.

The request bound function I(t) has to be calculated by
computing the pseudo-inverse of s(k),

I(t) = s−1(t), (11)

where I(t) is the maximum number of requests in any
interval of length t.

VII. SCHEDULABILITY ANALYSIS

In this section, we shall perform schedulability analysis
for the self-triggered controllers. Having found the request
bound function Ii(t) for each self-triggered task τi, we
shall now introduce Algorithm 1 to compute the worst-
case response-time of a task. If all tasks have worst-case
response-times less than their deadlines, the system is
schedulable.

For each hard real-time task τi, execution time ci, period
hi, deadline di, and the set of higher priority tasks hp(τi)
are known. However, for each self-triggered control task τi,
only execution time ci, deadline di, and the set of higher
priority tasks hp(τi) are known. The deadline di for a self-
triggered task τi can be obtained as follows,

di = min
∀p,q
{Gi(p, q)} . (12)

This is based on the fact that each self-triggered job should
complete its execution before the next triggering instant,
and in the worst-case scenario, we should consider the
minimum among all. Observe that there is no pessimism
introduced by our approach in computing this deadline.

The worst-case response-time of task τi is computed as
follows,

Ri = ci +
∑

τj∈hp(τi)

Ij(Ri) · cj , (13)

For a periodic hard real-time task τj , the worst-case in-
terference function is Ij(t) =

⌈
t
hj

⌉
. For a self-triggered

control task, Ij(t) is calculated based on Equation (10)
and Equation (11).

The difference between the proposed algorithm and the
traditional response-time analysis algorithm for periodic
tasks under fixed-priority analysis is in Lines 10–15, where
we compute the number of triggers of the self-triggered
controller (interference in terms of number of events) in
an interval of length t. Basically, we increase the number
of triggers, k, iteratively, until the length of the shortest
interval including k triggers is larger than t. Note that
Algorithm 1 has the dynamic programming problem in
Equation (10) embedded in Lines 12–13 of Algorithm 1.

The algorithm has pseudo-polynomial complexity, simi-
lar to response-time analysis for periodic tasks under fixed-
priority policy.

x1

x2
1 2x=[x x]

T

21
3

4

0.91.1

1.1

0.9

0.8

2 1

3

4

0.8

Figure 1. The state space partitioning (on the left) and the corresponding
transition graph (on the right).

VIII. ILLUSTRATIVE EXAMPLE

Let us consider a taskset consisting of three tasks T =
{τ1, τ2, τ3}. Task τ1 is a self-triggered control task, has the
highest priority and worst-case execution-time c1 = 0.3.
Task τ2 is a hard-real time task with period h2 = 2.0
and worst-case execution-time c2 = 1.0. Task τ3 is also
a hard real-time task with period h3 = 6.0 and worst-
case execution-time c3 = 1.0, and has the lowest priority.
This information is summarized in Table I. While we
consider only one self-triggered task for the simplicity of
presentation, the approach is by no means limited to a
single self-triggered task.

In this example, we would like to find the response-time
of task τ3, i.e., to check if it is schedulable.

Towards this, we need to find the request bound function
for the self-triggered task τ1. The plant associated with
the self-triggered controller is identified by the following
matrices (see Equation (1)),

A =

[
1 5
0 2

]
, B =

[
1
1

]
.

Note that the eigenvalues of this plant are not in the left half
of the complex plane and, therefore, the plant is unstable.
Finally, we assume that the state space is bounded, i.e.,
||x||∞ ≤ 1.

As discussed in Section VI-A, first we partition the space
into convex polytopes, as shown in Figure 1. Secondly, for
each polytope, we shall find the maximum time the plant
could run in open-loop before instability. Thirdly, from this
information, we can construct the transition graph. It turns
out that the transition graph is as follows,

G =

 +∞ 1.1 +∞ +∞
+∞ 1.1 +∞ +∞
0.8 0.8 +∞ +∞
0.9 0.9 +∞ +∞

 .
The graph corresponding to the above transition matrix is

shown in Figure 1. For example, for node 3 (corresponding
to polytope 3) of the graph, it can be observed that the
plant, in the worst-case, could only run in open-loop for 0.8
time units and after that the trajectory will end up in node
1 (corresponding to polytope 1) or node 2 (corresponding
to polytope 2).

Now, using the dynamic programming algorithm dis-
cussed in Section VI-B, we can find the worst-case request
pattern. The worst-case request bound function (or trigger
pattern) is shown in Figure 2. Already at this stage, it
is obvious that considering the worst-case scenario with
respect to all initial states is in fact very conservative.
To clarify this, note that in the worst-case scenario, the
minimum inter-arrival time is 0.8 time units. However,

0.8 1.1 1.1 1.1 1.1

Figure 2. The worst-case triggering (arrival) pattern of the self-triggered
controller.

from the transition graph, it is clear that this worst-case
scenario can only occur once.

Let us now compute the worst-case response time of task
τ3:

R0
3 = c3 = 1;

R1
3 = c3 +

∑
τj∈hp(τi)

Ij(R
0
3) · cj = 1 + 2 · 0.3 + 1 · 1 = 2.6,

R2
3 = c3 +

∑
τj∈hp(τi)

Ij(R
1
3) · cj = 1 + 3 · 0.3 + 2 · 1 = 3.9,

R3
3 = c3 +

∑
τj∈hp(τi)

Ij(R
2
3) · cj = 1 + 4 · 0.3 + 2 · 1 = 4.2,

R4
3 = c3 +

∑
τj∈hp(τi)

Ij(R
3
3) · cj = 1 + 5 · 0.3 + 3 · 1 = 5.5,

R5
3 = c3 +

∑
τj∈hp(τi)

Ij(R
4
3) · cj = 1 + 6 · 0.3 + 3 · 1 = 5.8,

R6
3 = c3 +

∑
τj∈hp(τi)

Ij(R
5
3) · cj = 1 + 6 · 0.3 + 3 · 1 = 5.8.

The worst-case response-time of task τ3 is R3 = 5.8
and, therefore, the task meets its deadline d3 = 6.0. This
scenario is shown in Figure 3. The green task is the self-
triggered task τ1, the red task is periodic hard real-time
task τ2, and the blue task is τ3 for which we would like
to find the worst-case response-time.

Lastly, let us also consider the state of the art ap-
proach which considers the worst-case inter-arrival time
with respect to all initial states in every step, i.e., to
ignore the dependency between states. In this approach,
the self-triggered task is modeled as a periodic task with
period h1 = min∀p,q {G(p, q)} = 0.8. Based on the
real-time schedulability analysis for periodic tasks, in this
case, the worst-case response-time of task τ3 is not finite,
i.e., it misses its deadline d3 = 6.0 and the system is
deemed unschedulable, since the total taskset utilization∑3
i=1

ci
hi

is above 1. The system designer in such situations
either needs to, unnecessarily, remove some of the tasks to
guarantee schedulability or, again unnecessarily, to use a
processor which is faster. Either way, this leads to an over-
provisioned design and under-utilized resource.

This example demonstrates the importance of perform-
ing tight schedulability analysis in the presence of self-
triggered controllers and the efficiency of our proposed
approach. Note that even though we considered a single
self-triggered control task at the highest priority level, our
approach is by no means limited to this case and there
is absolutely no restricting assumption on the number of
self-triggered controllers or the priorities assigned to these
controllers.

In the original self-triggered schemes, it is often assumed
that the computation of the control input and the next ac-
tivation instant is instantaneous. However, this is different
from what occurs in practice. To account for the delay
experienced by each self-triggered task, at each execution,
the self-triggered task computes the plant state at the next

τ2

τ3

τ1

Figure 3. The worst-case response time of task τ3.

triggering instant based on the dynamics of the systems
and current control input. Then, based on the plant state
at the next triggering instant, the control input after the
next triggering instant and the amount of time the plant
could run in open-loop after the next triggering instant are
calculated.

IX. CONCLUSIONS

The lack of efficient schedulability analysis of real-time
systems in the presence of self-triggered controllers has
been the main obstacle in implementing such applications
alongside hard real-time applications on shared platforms.
In this paper, we have proposed an approach for response-
time analysis in the presence of self-triggered control
tasks, under fixed-priority scheduling policy. The proposed
approach can be extended to other scheduling policies (e.g.,
earliest-deadline-first) and task models (e.g., digraph or
arbitrary deadlines) [26], [30].

ACKNOWLEDGEMENTS

The authors would like to acknowledge Prof. M.C.F.
Donkers for providing us with the MATLAB implemen-
tation of their proposed approach in [23]. The authors also
would like to acknowledge the Swedish national computer
science graduate school (CUGS) for supporting the visit to
the University of California at Los Angeles, USA, which
led to these research results.

REFERENCES

[1] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task
schedulability in real-time control systems,” in Proceedings
of the 17th IEEE Real-Time Systems Symposium, 1996, pp.
13–21.

[2] H. Rehbinder and M. Sanfridson, “Integration of off-line
scheduling and optimal control,” in Proceedings of the 12th

Euromicro Conference on Real-Time Systems, 2000, pp.
137–143.

[3] A. Cervin, B. Lincoln, J. Eker, K. E. Årzén, and G. Buttazzo,
“The jitter margin and its application in the design of real-
time control systems,” in Proceedings of the 10th Interna-
tional Conference on Real-Time and Embedded Computing
Systems and Applications, 2004, pp. 1–10.

[4] T. Nghiem, G. J. Pappas, R. Alur, and A. Girard, “Time-
triggered implementations of dynamic controllers,” in Pro-
ceedings of the 6th ACM & IEEE International conference
on Embedded software, 2006, pp. 2–11.

[5] E. Bini and A. Cervin, “Delay-aware period assignment in
control systems,” in Proceedings of the 29th IEEE Real-Time
Systems Symposium, 2008, pp. 291–300.

[6] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney, “Task
scheduling for control oriented requirements for cyber-
physical systems,” in Proceedings of the 29th IEEE Real-
Time Systems Symposium, 2008, pp. 47–56.

[7] P. Naghshtabrizi and J. P. Hespanha, “Analysis of distributed
control systems with shared communication and compu-
tation resources,” in Proceedings of the 2009 American
Control Conferance (ACC), 2009.

[8] A. Aminifar, S. Samii, P. Eles, Z. Peng, and A. Cervin,
“Designing high-quality embedded control systems with
guaranteed stability,” in Proceedings of the 33th IEEE Real-
Time Systems Symposium, 2012, pp. 283–292.

[9] A. Aminifar, E. Bini, P. Eles, and Z. Peng, “Designing
bandwidth-efficient stabilizing control servers,” in Proceed-
ings of the 34th IEEE Real-Time Systems Symposium, 2013,
pp. 298–307.

[10] K. J. Åström and B. Bernhardsson, “Comparison of periodic
and event-based sampling for first-order stochastic systems,”
in Preprints of the 14th World Congress of IFAC, 1999.

[11] K. E. Årzén, “A simple event-based pid controller,” in
Preprints of the 14th World Congress of IFAC, 1999.

[12] M. Velasco, J. M. Fuertes, and P. Marti, “The self-triggered
task model for real-time control systems,” in the 24th IEEE
Real-Time Systems Symposium, 2003, pp. 67–70.

[13] T. Henningsson, E. Johannesson, and A. Cervin, “Sporadic
event-based control of first-order linear stochastic systems,”
Automatica, vol. 44, no. 11, pp. 2890–2895, 2008.

[14] W. P. M. H. Heemels, J. H. Sandee, and P. P. J. V. D. Bosch,
“Analysis of event-driven controllers for linear systems,”
International Journal of Control, vol. 81, no. 4, pp. 571–
590, 2008.

[15] M. Mazo, A. Anta, and P. Tabuada, “On self-triggered
control for linear systems: Guarantees and complexity,” in
2009 European Control Conference (ECC), 2009, pp. 3767–
3772.

[16] X. Wang and M. Lemmon, “Self-triggered feedback control
systems with finite-gain stability,” IEEE Transactions on
Automatic Control, vol. 54, no. 3, pp. 452–467, 2009.

[17] M. Velasco, P. Marti, and E. Bini, “Optimal-sampling-
inspired self-triggered control,” in the IEEE International
Conference on Event-based Control, Communications &
Signal Processing, 2015.

[18] ——, “Control-driven tasks: Modeling and analysis,” in
Real-Time Systems Symposium, 2008, 2008, pp. 280–290.

[19] M. Lemmon, T. Chantem, X. S. Hu, and M. Zyskowski,
“On self-triggered full-information h-infinity controllers,” in
Proceedings of the 10th International Conference on Hybrid
Systems: Computation and Control, 2007, pp. 371–384.

[20] A. Anta and P. Tabuada, “On the benefits of relaxing the
periodicity assumption for networked control systems over
CAN,” in Proceedings of the 30th IEEE Real-Time Systems
Symposium, 2009, pp. 3–12.

[21] D. Antunes and W. Heemels, “Rollout event-triggered con-
trol: Beyond periodic control performance,” IEEE Transac-
tions on Automatic Control, vol. 59, no. 12, pp. 3296–3311,
Dec 2014.

[22] D. Borgers and W. Heemels, “Event-separation properties
of event-triggered control systems,” IEEE Transactions on
Automatic Control, vol. 59, no. 10, pp. 2644–2656, 2014.

[23] M. Donkers, P. Tabuada, and W. Heemels, “Minimum at-
tention control for linear systems,” Discrete Event Dynamic
Systems, vol. 24, no. 2, pp. 199–218, 2014.

[24] K. J. Åström and B. Wittenmark, Computer-Controlled
Systems, 3rd ed. Prentice Hall, 1997.

[25] M. Joseph and P. Pandya, “Finding response times in a real-
time system,” The Computer Journal, vol. 29, no. 5, pp.
390–395, 1986.

[26] J. Lehoczky, “Fixed priority scheduling of periodic task sets
with arbitrary deadlines,” in Proceedings of the 11th IEEE
Real-Time Systems Symposium, 1990, pp. 201–209.

[27] C. Sloth and R. Wisniewski, “Complete abstractions of
dynamical systems by timed automata,” Nonlinear Analysis:
Hybrid Systems, vol. 7, no. 1, pp. 80–100, 2013.

[28] E. Aydin Gol, X. Ding, M. Lazar, and C. Belta, “Finite
bisimulations for switched linear systems,” IEEE Transac-
tions on Automatic Control, vol. 59, no. 12, pp. 3122–3134,
2014.

[29] S. Boyd and L. Vandenberghe, Convex Optimization. New
York, NY, USA: Cambridge University Press, 2004.

[30] M. Stigge, N. Guan, and W. Yi, “Refinement-based exact
response-time analysis,” in the 26th Euromicro Conference
on Real-Time Systems (ECRTS), 2014, pp. 143–152.

