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Abstract

practical problem configurations, traditionally tackledrbeans of
approximate methods and over-symplifying assumptionsoine

Most problems addressed by the software optimization flow fd)0W tractable by complete approaches providing the optsukai-

multi-processor systems-on-chip (MPSoCs) are NP-coepéetd
have been traditionally tackled by means of heuristics aigth-h
level approximations. Complete approaches have beentigébc
deployed only under unrealistic simplifying assumptiowe pro-
pose a novel methodology to formulate and solve to optiyntde
allocation, scheduling and discrete voltage selectionbfgm for
variable voltage/frequency MPSoCs, minimizing the systeengy
dissipation and the overhead for frequency switching. Wegiate
the optimization and validation steps to increase the aacyrof

tion in reasonable time. On the other hand, the criticaldssthow
to make the different algorithms interact in a cooperatiokiag
framework arises.

The objective of this paper is to extend this trend to one ef th
most important optimization problems in system level dedigy
variable voltage/frequency MPSoCs: power consumption.

The major challenge that we face in this paper is to devise a
cooperative solving framework where the allocation, theeslcl-
ing and the discrete voltage/frequency selection probleodeats

cost models and the confidence in quality of results. Two democan be suitably accommodated and solving algorithms iatedr

strators are used to show the viability of the proposed nutomy.

1. Introduction

Multi-Processor Systems-on-Chip (MPSoCs) representytode?

the main trend for future architectural designs, since treyable
to provide scalable computation horsepower while stilairghg
the flexibility to support different job mixes. Unfortunteas the
complexity of MPSoCs evolves toward ultra-large scalegragon,

design technology for MPSoCs is hampered by limited schlabi

ity and composability. Task mapping problem or compilatsoi-
problems are combinatorial optimisation problems [18] &asle
been shown to be NP-complete.

Traditionally, the three main approaches followed by the- sy
tem design community when facing a combinatorial optimarat
problem are: (i) Modelling and solving the problem with lgee
Linear Programming (ILP). Unfortunately, scheduling pgeshs are
not well tackled by ILP approaches. In addition, pure ILPiar
lations are suitable only for very small problem instandé@$ De-
ployment of heuristic methods [20] to provide good (evenaf n
optimal) solutions. However, heuristic algorithms stifipose sig-
nificant computational requirements without guaranteetherop-
timality of final solutions. (iii) Moving from highly simpfied, ab-
stract modelling assumptions and problem instances to Itieke
more tractable. As the complexity of MPSoCs raises, secouero
effects are going to impair the quality of derived solutidog/ering
the confidence level on constraint satisfaction and on theevaf
the objective function.

By leveraging the principle of logic-based Benders Decositpo
tion [23], we come up with an iterative two-step mapping feam
work that is proved to converge to the optimal solution. Wiklg
problem complexity without paying the price of a lack of aay
in modelling assumptions. In fact, an MPSoC virtual platiovas
deployed to refine the theoretical framework and prove tharacy

f the solutions provided by the optimizer.

Our methodology derives static allocation, scheduling fed
guency settings, therefore targets applications withggheBime pre-
dictable behaviour. Signal processing and multimediaiegipbns
employing pipelining as workload allocation policy are timest
common example of such applications, therefore our opémias
tuned for energy-efficient mapping of pipelined task gramh$/1P-
SoCs. Finally, we used two demonstrators to prove the adplity
of the developed methodology to real-life scenarios.

This paper is structured as follows: we first describe previo
work in the field. The target architecture and the virtuatfplan
environment are presented in section 3 while the model obthe
namic Voltage Scaling Problem is defined in section 4. Discus
sions on computational efficiency, validation and expenitakre-
sults follow.

2. Related Work

In the following, we restrict ourselves to off-line volt-
age/frequency selection techniques, since the presepmdach
falls into this category.

A number of techniques have been developed for single proces
sor systems. Yao et al. proposed in [12] the first DVS approach

Many optimisation problems can be decomposed into wellvhich can dynamically change the supply voltage over a nanti

known, structured and widely studied sub-problems. It idelji
acknowledged that exploiting the structure of these problém-
proves the performances of the corresponding algorithmsgeh-
eral, merging different algorithmic aspects leads to arciefiit
solving process and may determine significant performapeeds

ous range. Ishihara and Yasuura [6] modeled the discretagel
selection problem using an integer linear programming ) dp-
mulation. Xie et al. [11] present an algorithm for calcutgtithe
bounds on the power savings achievable through voltagetggie
Jejurikar and Gupta [8] propose an algorithm that combinésge

ups in finding an optimal solution (see [22]). As a result, ynan scaling and shutdown in order to minimize dynamic and leekag

energy in single.
Andrei et al. [2] proposed an approach that solves optintb#y
voltage scaling problem for multi-processor systems witpased
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We consider a task grapi whose nodes represent a setiof
tasks, that are annotated with their deadhieand with the worst
. . . case number of clock cycld® C'N,. Arcs represent dependencies
Figure 1. Distributed MPSoC architecture. among tasks. Each arc is annotated with the amount of datdewo
pendent tasks should exchange, and therefore the numbkercéf ¢
cycles for exchanging (reading and writing) these d&t@ Nr and
W C Nw . Tasks are running on a set of processBr&ach proces-
sor can run withM energy/speed modes and has a maximum load
constraintdl,,. Each task spends energy both in computing and in
communicating. In addition, when the processor switchésdsen
two modes it spends time and energy. We have energy ovetfiead
for switching from frequency to any other, and time overhedd
for switching from frequency to any other.

The Dynamic Voltage Scaling Problem (DVSP) is the problem
allocating tasks to processors, define the running sptedah
task and schedule each of them minimizing the total energy co
sumed. In order to solve the DVSP to optimality without iraugy
accuracy limitations, we applied the concept behind thietbgsed
Benders decomposition technique [23] to this new appbecgtirob-
lem.

We therefore decompose the problem in two parts: the first,
called Master Problem, is the allocation of processors esglen-
cies to tasks and the second, called Subproblem, is the Wehed
ing of tasks given the static allocation and frequency assents
ﬁ'rovided by the master. The master problem is tackled by & In

er Programming solver while the subproblem through a Caimst

time constraints. The continuous voltage scaling is solvsidg
convex nonlinear programming with polynomial time comjitigx
while the discrete problem is proved strongly NP hard anaiis f
mulated as mixed integer linear programming (MILP).

The previously mentioned approaches, assume that the ngapp
and scheduling are given. However, the achievable energygsa
of dynamic voltage scaling are greatly influenced by the rivapp
and the scheduling of the tasks on the target processors.

Task mapping and scheduling are known NP complete prol%)-f
lems [3] that have been previously addessed, without arfu thvé
objective of minimizing the energy. Both heuristic [9], fxjd exact
solutions [1] have been proposed.

Assuming the mapping of the tasks on the processors is gizen
input, the authors from [4] present a scheduling technibaerhax-
imizes the available slack, which is then used to reducerikegy
via voltage scaling. Schmitz et al. [9] present a heurigtigraach
for mapping, scheduling and voltage scaling on multiprecesr-
chitectures.

A leakage-aware approach for combined dynamic voltage s
lection and adaptive body-biasing has been proposed in 4]2, 2
Although we concentrate in this paper on the dynamic powdr a rogramming solver. The two solvers interact via no-goati@r-
supply voltage selection, our methodology can handle withom ting planes generatibn The solution of the master is passtt
changes the combined supply and body bias scaling problem Wisubproblem in an iteraﬁve procedure that is proved to agevéo
only marginal implications on computational complexity. the optimal solution [23]

The closest approach to our work is the one of Leung et al., '
[7]. They propose a mixed integer programming formulation f
mapping, scheduling and voltage scaling of a given taskigra 4.1 The Master Problem model

target multiprocessor platform. They assume continuoltages, . L .
so the overall result is suboptimal. We model the allocation problem with binary variabl&s;,,

which take value 1 if task is mapped on the processoand runs
. in (energy-speed) mode:, O otherwise. Since we also take into
3. Target Architecture account communication, we assume that two tasks consumgyene
and time for communication only if they are allocated on tvile d
The target architecture for our mapping strategy is a génerferent processors. Both the read and write activities ar@eed
template for a parallel MPSoC architecture. The platformsists ~ at the same speed of the task and use the bus (which insteksl wor
of computation tiles, an AMBA AHB-compliant communication at the maximum speed). For modelling this aspect, we intredu
architecture (a shared bus) and of a shared memory for tiiter- the model two variableR,:, +,m andWiy:, +,m taking value 1 if the
communication(see Fig. 1). The computation tiles are ssgdo  task: running on processgrreads (resp. writes) data (at mode m)
be homogeneous and consist of ARM7 cores (including instmuc  from (resp. for) a task. not running orp.
and data caches) and of tightly coupled software-conttaltzatch- Any task can be mapped on only one processor and can run at
pad memories. only one speed, that is:
Messages can be exchanged by tasks through communicatigfnp ZM X — 1
queues, which can be allocated at design time either incbepd p=1Zum=1<pim
memory or in remote shared memory, depending on whethes tasgn
are mapped onto the same processor or not. Synchronizagion %0
tween a producer/consumer pair is implemented by meanssef di - » My
tributed hardware semaphores. The software support isqadby Zt2:1,t2¢t1 szl Dot Bptitam <1 Vi
a real-time operating system called RTEMS and by a set of-high_ - p M
level APIs to support message passing on the underlyingizaed ta=1,ta £ty Zp=1 Zmzl_WPtl_fz_m _S 1 vty )
architecture [13]. The objectlvg function is tainimize the energy consumption of
Our virtual platform environment provides power statistior ~the task execution, and of the task communication
ARM cores, caches, on-chip memories and AMBA AHB bus, levery, — — S SM ST XptmWC Nitciock,, Pom
aging technology-homogeneous power models for a 0.48tech- P
nology provided by STMicroelectronics. When all tasks M&Dp Eread = .,y Y om_y ot 11-1 BottymWC Nty tetock Pim

Also, if each task can read data from (resp. write data foly on
e task as for instance in a pipelined workload, we haveethes
nstraints:
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OF = Ecomp + ERead + EW’r‘ite

where P.,,, is the power consumed by tagkvhen running in
execution moden.

The objective function defined up to now depends only on mas-
ter problem variables. However, switching from one speedrto
other introduces transition costs, but their value can beptded
only at scheduling time. Therefore, we update the objedtine-
tion with frequency transition (or setup) costs:

Search time (min.)
N
|

N
L

OFaster = OF + 25:1 Setupy 1 Ni‘:nber o Taiis 100
but we force them to be 0 in the first iteration, while from the
second iteration cuts are produced by the subproblem, reamisig Figure 2. Search time for an increasing number of tasks.

variablesSetup,.

Finally, we impose that on each processor the sum of the time
spent for the the computation, plus the time spent for conicatin The objective function we want to minimize in the scheduling
tion (read and write) should be less than or equal to the deadf problem is the setup energize., the energy spent for frequency

the processor, in oder to prevent trivially infeasible solus: switchings. For this purpose we have energy overheadsor
TF i, = ZtTfl ZMﬂ Xpim TN switching from frequency to any other frequency.
v - Fm Once the subproblem has been solved, we generate Benders
UEED SEEND SN S Rpttlm% Cuts. The cuts are of two types: (i) if there is no feasibleeseh
WCN ule given an allocation, we have to compute a no-good onhblasa
T e = 2oim1 omet 2otmy Wttym — ot g()pt%n afvoid_ibr}g thedsam_e alllocati(()inlto be found again.
ii) if a feasible and optimal schedule exists, we cannopgjrstop
P P
Tcpolmp r‘:' Traa + Tirite kgddlpdl'vp b d which he iteration since the master objective function depensis an
n the same way task deadlines can be captured, which are i\‘?bproblem variables. Therefore, we have to produce cytaga

same formulas but the sums are computed for each task. that the one just computed is the optimal solution unlesstizibe

one exist with a different allocation. These cuts produceveet
4.2 The Sub-Problem model bound on the setup costs of single processors.
The procedure converges when the master problem produces a

For the scheduling part each taskas an associated variable solution with the same objective function value of the poegione.

representing its starting timetart,;. The duration is fixed since the

frequency is decided, i.eduration, = WCN;/ f;. In addition, if ; .

two communicating tasks andt; are allocated on two different 5. CompUtatlonal eff|C|ency

processors, we should introduce two additional activifeee for ) o )

writing data on the shared memory and one for reading data fro We tested the computation efficiency of our hybrid approach
the shared memory). We model the starting time of theseitietiv 0N & 2GHz Pentium 4 machine with 512 Mb RAM and leveraged
StartWrite;; andStart Read; ;. These activities are carried on at State-of-the-art professional solving tools, namely ILGBLEX

the same frequency of the Corresponding taSMi {frrites andtj 81, ILOG SO|VeI’ 5.3 and ILOG SChedu|er 53 We InCI‘e_ased the
reads data , the writing activity is performed at the samguieacy ~number of tasks and of processors, and noticed that theitaigor

of t; and its duration\Write;; depends on the frequency and onscales quite smoothly in both cases. In Fig.2 we plot theckear
the amount of data; writes, i.e.,W C Ny, /fi. Analogously, the time for_ an increasing number of tasks. The behavior is sinfidr
reading activity is performed at the same frequency; @fnd its du-  INcréasing number of processors (going from 4 to 10).

rationd Read;; depends on the frequency and on the amount of data Ve also noticed that the phase transition of the probleméragpp
t; reads, i.e.JWCNr,,/f; . Clearly the read and write activities when the deadline is not too tight to have few solutions (agnon

are linked to the corresponding task: which is easy to find the optimal one) and not too loose so as the
. < . . problem is trivially solvable assigning all tasks to the sgmnoces-
Start; + duration; < StartWritei; Vj sor and the lowest speed. In addition, varying the deadlare c

StartReadi; + dReads; = Start; Vi straints, the best and the worst search time remain withiorder
In the subproblem, we model precedence constraints in the foof magnitude, so our methodology efficiently faces instangih

lowing way: if taskst; should precede task and they run on the different density of feasible solutions.

same processor at the same frequency the precedence idristra

simply: :

Start: + Duration: < Start, 6. Experimental Results
If instead the two tasks run on the same processor at differen

speed, we should add the tirfié for switching between the two

frequencies.

We have deployed a cycle accurate MPSoC simulator [14] to
characterize task model parameters for the optimizer atid va
date the optimizer results. Two types wdlidation experiments

Start; + Duration; +Ti < Start; were performed, namely (i) comparison of simulated eneryy a
_ Ifthe two tasks run on different processors and should commyhroughput with optimizer-derived values, and (ii) prodeiability
nicate we should add the time for communicating. of the proposed approach for real-life demonstrators (GENEG).

Start; + Duration; + dWrite;; + dRead;; < Start;

Resources are modelled as follows. We have a unary resourge1l  Validation of optimizer solutions
constraint for each processor, modelled through a cumelatn-
straint having as parameters a list of all tasks sharing dheesre-

sourcep, their duratl_ons, their resource consumption (whichista i cations, schedules and frequency assignments generateel bp-
of 1) and the capacity of the processor which is 1 timizer for 200 problem instances. The results of the vaiita
cumulative(TaskListy, DurationListy, [1],1) Vp phase are reported in Fig.3, which shows the distributioenefrgy

We model the bus through an additive model we have alreadjeviations. The average difference between measured adittad
validated in [15]. We have an activity on the bus each timesk ta energy values is 2.9%, with 1.72 standard deviation. FigaeWs
writes or reads data to and from the shared memory. the cumulative probability of throughput differences: mstcase

We have deployed the virtual platform to implement the allo-



35% # Task Task Energy

" n Deadline | Number of | Allocated Frequency | Consumption
L 30% (ns) |Processors| on Core Divider (nJ)
3 25% /\ 6000 1 1,1,1,1,1,1 3,3,3,333 5840
~ ° / \ 5500 2 2 1 3,3,3,3,3.3 5910
fal 20% 5000 2 T 2 3,3,3,3,3,3 5938
= ° I \ 4500 2 i 2 3,3,3,3, 3,3 5938
Qo 15% 4000 2 1, 2 3,3,3,333 5938
g ° / \/\ 3500 2 1 2 3,3,3,3,3,3 5938
O 10% 3000 3 1 , 3 3,3,3,3,3,3 6008
i / \ 2500 3 1,1,2,233 3,3,3,333 6039
5% 2000 4 1,2,3,3,44 3,3,3,333 6109
1500 6 1,2,3,4,56 3,3,3,3,3,3 6304
0% . . > : . . . 1000 6 1,2,3,4,56 3,2,2,2,3,2 6807
900 6 1,2,3,456 3,1,2,2,2,2 9834
0 2.5 5 7.5 10 12.5 15 17.5 20 750 6 1,2, 3,4,5 6 2,1,2 22,2 9934
. . o 730 6 1,2,3,4,56 2,1,1,2,2,2 12102
Energy consumptlon difference (A) 710 [ 1,23, 4,56 2,1,1,1,2,2 14193

Figure 3. Distribution of Energy Consumption differences.

Figure 5. Behaviour of the optimizer with varying real-time re-

quirements. Allocation is given as an array indicating thecpssor
ID on which each task is mapped. Similarly, the frequencyaathe

120%

100%

80%

/
/
Fal

01 2 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20
Throughput difference less than x%

60%

Probability (%)

40%

20%

0%

Figure 4. Cumulative probability of throughput deviations.

the average difference between measured and predictedsviiu
4.7%, with 0.08 standard deviation. This confirms the higielle
of accuracy achieved by the developed optimization frankewo
modelling real-life MPSoC systems with the assumed archital
template.

8.

[

6.2 Demonstrators

The methodology has been applied to a GSM codec parallelizedm
in 6 pipelined tasks. The validation process on the virtlgtform
showed an accuracy on processor energy by 2% When regjrictin
the real-time requirement, the behaviour of the optimizar be

deduced from Fig.5. When the deadline is loose, all taskslare “
located to one single processor at the minimum frequencythéds @
deadline gets tighter, the optimizer prefers to employ asé@ro-
cessor and to progressively balance the load, instead fasing 16l
task frequencies. Only under very tight deadlines, thenupgr m
leverages increased task frequencies to speed-up thensy&ighe
limit, the system works with 1 task on each processor, atthawot 8
all tasks run at the maximum frequency. In fact, the GSM el o
turns out to be unbalanced, therefore it would be energyidnefit
to run the shorter tasks at maximum speed, and would not egenp "**
1]

vide performance benefits. The problem becomes infea$ilere
stringent deadlines than 710 ns are required.

Our methodology was then applied to a JPEG decoder parti-i*?
tioned in 4 pipelined tasks, and the accuracy on energy astim 23]
was again very high (3.1%). In contrast to GSM, user require-
ments on a JPEG decoding usually consist of the minimizaifon
the execution time and not of a deadline to be met. However, a;;
performance-energy conflict arises, therefore we derivedPareto-

[14]

optimal frontier in Fig.6. The constraint on the executiong on eel
the x-axys has been translated into a constraint on the bolec&d- 7]
ing time. The curve is not linear since there is a discreteberof (18]
voltage-frequency pairs, which makes the problem for theroper o)
much more complex.
[20]
7. Conclusions ey
In this paper, we built a cooperative framework to solve flea |,
cation, scheduling and voltage/frequency selection eralio op-
timality for energy-efficient MPSoCs. The integration oétopti- =
[24]

mizer with a virtual platform allowed us to prove the accyrat
our methodology.

task is expressed in terms of the integer divider of the beséle-
quency. Only 3 dividers are used for this example.

2000 4

1800

18600

1400

1200

1000

Energy consumption (nJ)

-

200 300 400 :
Block Decoding Time {(ns)

500

Fig ure 6. Pareto-optimal frontier in the performance-energy de-
sign space
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