An Integrated Specification and Verification Technique
for Highly Concurrent Data Structures *

Parosh Aziz Abdulla®, Frédéric Haziza®, Lukas Holik!2, Bengt Jonsson!, and Ahmed
Rezine3

! Uppsala University, Sweden
2 Brno University of Technology, Czech Republic
3 Linkoping University, Sweden.

Abstract. We present a technique for automatically verifying safety properties
of concurrent programs, in particular programs which rely on subtle dependen-
cies of local states of different threads, such as lock-free implementations of
stacks and queues in an environment without garbage collection. Our technique
addresses the joint challenges of infinite-state specifications, an unbounded num-
ber of threads, and an unbounded heap managed by explicit memory allocation.
Our technique builds on the automata-theoretic approach to model checking, in
which a specification is given by an automaton that observes the execution of a
program and accepts executions that violate the intended specification. We extend
this approach by allowing specifications to be given by a class of infinite-state au-
tomata. We show how such automata can be used to specify queues, stacks, and
other data structures, by extending a data-independence argument. For verifica-
tion, we develop a shape analysis, which tracks correlations between pairs of
threads, and a novel abstraction to make the analysis practical. We have imple-
mented our method and used it to verify programs, some of which have not been
verified by any other automatic method before.

1 Introduction

In this paper, we consider one of the most difficult current challenges in software ver-
ification, namely to automate its application to algorithms with an unbounded number
of threads that concurrently access a dynamically allocated shared state. Such algo-
rithms are of central importance in concurrent programs. They are widely used in li-
braries, such as the Intel Threading Building Blocks or the java.util.concurrent pack-
age, to provide efficient concurrent realizations of simple interface abstractions. They
are notoriously difficult to get correct and verify, since they often employ fine-grained
synchronization and avoid locking wherever possible. A number of bugs in published
algorithms have been reported [10, 19]. It is therefore important to develop efficient
techniques for verifying conformance to simple abstract specifications of overall func-
tionality, a concurrent implementation of a common data type abstraction, such as a

* supported in part by the Uppsala Programming for Multicore Architectures Research Center
(UPMARC), the Czech Science Foundation (project P103/10/0306), and the CENIIT research
organization (project 12.04).

queue, should be verified to conform to a simple abstract specification of a (sequential)
queue.

We present an integrated technique for specifying and automatically verifying that a
concurrent program conforms to an abstract specification of its functionality. Our start-
ing point is the automata-theoretic approach to model checking [30], in which programs
are specified by automata that accept precisely those executions that violate the intended
specification, and verified by showing that these automata never accept when they are
composed with the program. This approach is one of the most successful approaches to
automated verification of finite-state programs, but is still insufficiently developed for
infinite-state programs. In order to use this approach for our purposes, we must address
a number of challenges.

1. The abstract specification is infinite-state, because the implemented data structure
may contain an unbounded number of data values from an infinite domain.

2. The program is infinite-state in several dimensions: it (i) consists of an unbounded
number of concurrent threads, (ii) uses unbounded dynamically allocated memory,
and (iii) the domain of data values is unbounded.

3. The program does not rely on automatic garbage collection, but manages memory
explicitly. This requires additional mechanisms to avoid the ABA problem, i.e., that
a thread mistakenly confuses an outdated pointer with a valid one.

Each of these challenges requires a significant advancement over current specification
and verification techniques.

We cope with challenge 1 by combining two ideas. First, we present a novel tech-
nique for specifying programs by a class of automata, called observers. They extend
automata, as used by [30], by being parameterized on a finite set of variables that as-
sume values from an unbounded domain. This allows to specify properties that should
hold for an infinite number of data values. In order to use our observers to specify
queues, stacks, etc., where one must “count” the number of copies of a data value that
have been inserted but not removed, we must extend the power of observers by a second
idea. This is a data independence argument, adapted from Wolper [34], which implies
that it is sufficient to consider executions in which any data value is inserted at most
once. This allows us to succinctly specify data structures such as queues and stacks,
using observers with typically less than 3 variables.

To cope with challenge 2(i), we would like to adapt the successful thread-modular
approach [4], which verifies a concurrent program by generating an invariant that cor-
relates the global state with the local state of an arbitrary thread. However, to cope with
challenge 3, the generated invariant must be able to express that at most one thread
accesses some cell on the global heap. Since this cannot be expressed in the thread-
modular approach, we therefore extend it to generate invariants that correlate the global
state with the local states of an arbitrary pair of threads.

To cope with challenge 2(ii) we need to use shape analysis. We adapt a variant of
the transitive closure logic by Bingham and Rakamari¢ [5] for reasoning about heaps
with single selectors, to our framework. This formalism tracks reachability properties
between pairs of pointer variables, and we adapt it to our analysis, in which pairs of
threads are correlated. On top of this, we have developed a novel optimization, based
on the observation that it suffices to track the possible relations between each pair of

pointer variables separately, analogously to the use of DBMs used in reasoning about
timed automata [9]. Finally, we cope with challenge 2(iii) by first observing that data
values are compared only by equalities or inequalities, and then employing suitable
standard abstractions on the concerned data domains.

We have implemented our technique, and applied it to specify and automatically
verify that a number of concurrent programs are linearizable implementation of stacks
and queues [16]. This shows that our new contributions result in an integrated technique
that addresses the challenges 1 — 3, and can fully automatically verify a range of concur-
rent implementations of common data structures. In particular, our approach advances
the power of automated verification in the following ways.

— We present a direct approach for verifying that a concurrent program is a lineariz-
able implementation of, e.g., a queue, which consists in checking a few small prop-
erties of the algorithm, and is thus suitable for automated verification. Previous
approaches typically verified linearizability separately from conformance to a sim-
ple abstraction, most often using simulation-based arguments, which are harder to
automate than simple property-checking.

— We can automatically verify concurrent programs that use explicit memory man-
agement. This was previously beyond the reach of automatic methods.

In addition, on examples that have been verified automatically by previous approaches,
our implementation is in many cases significantly faster.

Overview We give an overview of how our technique can be used to show that a con-
current program is a linearizable implementation of a data structure. As described in
Section 2, we consider concurrent programs consisting of an arbitrary number of se-
quential threads that access shared global variables and a shared heap using a finite
set of methods. Linearizability provides the illusion that each method invocation takes
effect instantaneously at some point (called the linearization point) between method
invocation and return [16]. In Section 3, we show how to specify this correctness condi-
tion by first instrumenting each method to generate a so-called abstract event whenever
a linearization point is passed. We also introduce observers, and show how to use them
for specifying properties of sequences of abstract events. In Section 4, we introduce the
data independence argument that allows observers to specify queues, stacks, and other
unbounded data structures. In Section 5, we describe our analysis for checking that the
cross-product of the program and the observer cannot reach an accepting location of
the observer. The analysis is based on a shape analysis, which generates an invariant
that correlates the global state with the local states of an arbitrary pair of threads. We
also introduce our optimization which tracks the possible relations between each pair
of pointer variables separately. We report on experimental results in Section 6. Section
7 contains conclusions and directions for future work.

Related work. Much previous work on verification of concurrent programs has con-
cerned the detection of generic concurrency problems, such as race conditions, atom-
icity violations, or deadlocks [14,22,23]. Verification of conformance to a simple ab-
stract specification has been performed using refinement techniques, which establish
simulation relations between the implementation and specification, using partly manual
techniques [11, 8, 12, 33].

Amit et al [3] verify linearizability by verifying conformance to an abstract specifi-
cation, which is the same as the implementation, but restricted to serialized executions.
They build a specialized abstract domain that correlates the state (including the heap
cells) of a concrete thread and the state of the serialized version, and a sequential refer-
ence data structure. The approach can handle a bounded number of threads. Berdine et
al [4] generalize the approach to an unbounded number of threads by making the shape
analysis thread-modular. In our approach, we need not keep track of heaps emanating
from sequential reference executions, and so we can use a simpler shape analysis. Plain
thread-modular analysis is also not powerful enough to analyze e.g. algorithms with ex-
plicit memory management. [4] thus improves the precision by correlating local states
of different threads. This causes however a severe state-space explosion which limits
the applicability of the method.

Vafeiadis [27] formulates the specification using an unbounded sequence of data
values that represent, e.g., a queue or a stack. He verifies conformance using a spe-
cialized abstraction to track values in the queue and correlate them with values in the
implementation. Like [25], our technique for handling values in queues need only con-
sider a small number of data values (not an unbounded one), for which it is sufficient to
track equalities. The approach is extended in [28] to automatically infer the position of
linearization points: these have to be supplied in our approach.

Our use of data variables in observers for specifying properties that hold for all
data values in some domain is related in spirit to the identification of arbitrary but fixed
objects or resources by Emmi et al. [13] and Kidd et al. [18]. In the framework of regular
model checking, universally quantified temporal logic properties can be compiled into
automata with data variables that are assigned arbitrary initial values [1].

Segalov et al. [24] continue the work of [4] by also considering an analysis that
keeps track of correlations between threads. They strive to counter the state-space ex-
plosion that [4] suffers from, and propose optimizations that are based on the assump-
tion that inter-process relationships that need to be recorded are relatively loose, al-
lowing a rather crude abstraction over the state of one of the correlated threads. These
optimizations do not work well when thread correlations are tight. Our experimental
evaluation in Section 6 shows that our optimizations of the thread correlation approach
achieve significantly better analysis times than [24].

There are several works that apply different verification techniques to programs
with a bounded number of threads, including the use of TVLA [35]. Several approaches
produce decidability results under limited conditions [7], or techniques based on non-
exhaustive testing [6] or state-space exploration [32] for a bounded number of threads.

2 Programs

We consider systems consisting of an arbitrary number of concurrently executing threads.
Each thread may at any time invoke one of a finite set of methods. Each method declares
local variables (including the input parameters of the method) and a method body. In
this paper, we assume that variables are either pointer variables (to heap cells), or data
variables (assuming values from an unbounded or infinite domain, which will be de-
noted by D). The body is built in the standard way from atomic commands using stan-

dard control flow constructs (sequential composition, selection, and loop constructs).
Method execution is terminated by executing a return command, which may return a
value. The global variables can be accessed by all threads, whereas local variables can
be accessed only by the thread which is invoking the corresponding method. We assume
that the global variables and the heap are initialized by an initialization method, which
is executed once at the beginning of program execution.

Atomic commands include assignments between data variables, pointer variables,
or fields of cells pointed to by a pointer variable. The command new node() allo-
cates a new structure of type node on the heap, and returns a reference to it. The cell
is deallocated by the command free. The compare-and-swap command CAS (&a,b,c)
atomically compares the values of a and b. If equal, it assigns the value of a to ¢ and
returns TRUE, otherwise, it leaves a unchanged and returns FALSE.

As an example, Figure 1 shows a version of the concurrent queue by Michael and
Scott [20]. The program represents a queue as a linked list from the node pointed to by
Head to a node that is either pointed by Tail or by Tail’s successor. The global vari-
able Head always points to a dummy cell whose successor, if any, stores the head of the
queue. In the absence of garbage collection, the program must handle the ABA prob-
lem where a thread mistakenly assumes that a globally accessible pointer has not been
changed since it previously accessed that pointer. Each pointer is therefore equipped
with an additional age field, which is incremented whenever the pointer is assigned a
new value.

The queue can be accessed by an arbitrary number of threads, either by an enqueue
method enq(d), which inserts a cell containing the data value d at the tail, or by a
dequeue method deq(d) which returns empty if the queue is empty, and otherwise ad-
vances Head, deallocates the previous dummy cell and returns the data value stored in
the new dummy cell. The algorithm uses the atomic compare-and-swap (CAS) opera-
tion. For example, the command CAS(&Head, head, (next.ptr,head.age+1)) at
line 29 of the deq method checks whether the extended pointer Head equals the ex-
tended pointer head (meaning that both fields must agree). If not, it returns FALSE.
Otherwise it returns TRUE after assigning (next.ptr,head.age+1) to Head.

3 Specification by Observers

To specify a correctness property, we instrument each method to generate abstract
events. An abstract event is a term of the form I(dy, ..., d,) where [is an event type,
taken from a finite set of event types, and dy, ..., d,, are data values in D. To specify
linearizability, the abstract event [(dy, ..., d,) generated by a method should be such
that [is the name of the method, and d, ..., d, is the sequence of actual parameters
and return values in the current invocation of the method. This can be established using
standard sequential verification techniques.

We illustrate how to instrument the program of Figure 1 in order to specify that it is
a linearizable implementation of a queue. The linearization points e are at line 9, 21 and
29. For instance, line 9 of the enq method called with data value d is instrumented to
generate the abstract event enq(d) when the CAS command succeeds; no abstract event
is generated when the CAS fails. Generation of abstract events can be conditional. For

void initialize() { struct node {data val, pointer_t next}

node* n := new node(); struct pointer_t {node* ptr, int age}

n—next.ptr := NULL;

Head.ptr := n; pointer_t Head, Tail;

Tail.ptr := n;

} 17 data deq(){
= 18 while(TRUEX

o void enq(data d){ [ENQ) 19 pointer_t head := Head;
1 node* n := new node(); 20 pointer_t tail := Tail;
2 n—val :=d; 21 pointer_t next := head.ptr—next; e
3 n—next.ptr := NULL; 22 if(head = Head)
4 while(TRUE){ 23 if(head.ptr = tail.ptr)
5 pointer_t tail := Tail; 24 if(next.ptr = NULL)
6 pointer_t next := tail.ptr—next; 25 return empty;
7 if(tail = Tail) 26 CAS(&Tail, tail, (next.ptr, tail.age+1));
8 if(next.ptr = NULL) 27 else
9 if(CAS(&tail.ptr—next, next, @ 28 data result := next.ptr—val;
10 (n,next.age+1))) 29 if(CAS(&Head, head, e
1 break; 30 (next.ptr,head.age+1)))
12 else 31 break;
13 CAS(&Tail,tail,(next.ptr, tail.age+1)); 32
14} 33 free(head.ptr);
15 CAS(&Talil, tail, (n, tail.age+1)); 34 return result;

Fig. 1. Michael & Scott’s non-blocking queue [20].

instance, line 21 of the deq method is instrumented to generate deq(empty) when the
value assigned to next satisfies next.ptr = NULL (i.e., it will cause the method to
return empty at line 25).

Each execution of the instrumented program will generate a sequence of abstract
events called a frace. A correctness property (or simply a property) is a set of traces. We
say that an instrumented program satisfies a property if each trace of the program is in
the property. In contrast to the classical (finite-state) automata-theoretic approach [30],
we specify properties by infinite-state automata, called observers. An observer has a
finite set of control locations, and a finite set of data variables that range over potentially
infinite domains. It observes the trace and can reach an accepting control location if the
trace is not in the property.

Formally, let a parameterized event be a term of the form I(p1,...,p,), where
P1,-. .., pn are formal parameters. We will write 7 for p1, ..., p,, and d for dy, ..., d,.
An observer consists of a finite set of observer locations, one of which is initial and
some of which are accepting, a finite set of observer variables, and a finite set of tran-
sitions. Each transition is of form s 2% & where s, s' are observer locations, [(p)
is a parameterized event, and the guard g is a Boolean combination of equalities over
formal parameters P, and observer variables. Intuitively, it denotes that the observer can

move from location s to location s’ when an abstract event of form [(d) is generated
such that g[d/p] is true. Note that the values of observer variables are not updated in a
transition. An observer configuration is a pair (s, V), where s is an observer location,
and ¢ maps each observer variable to a value in the data domain . The configuration
is initial if s is initial; thus the variables can assume any initial values. An observer step
is a triple (s,) UG (s',19) such that there is a transition s D39 o for which gld/p]
is true. A run of the observer on a trace ¢ = l1(d;)l2(dz) - - - 1,,(d,,) is a sequence of

11(dy) 1n(dn)

observer steps (sp,) — -+ —— (sp, V) where sq is the initial observer location.
The run is accepting if s, is accepting. A trace o is accepted by an observer A if A

has an accepting run on o. The property specified by A is the set of traces that are not
accepted by A.

Since the data variables can assume arbitrary initial values, observers can specify
properties that are universally quantified over all data values. If a trace violates such
a property for some data values, the observer can non-deterministically choose these
as initial values of its variables, and thereafter detect the violation when observing the
trace. Several data structures can be
specified by a collection of proper- (insert(p),p # z)) —)
ties, each of which is represented <{‘iesl§pi§’())’ﬁz S)C So /&L
by an observer. For instance, a set
can be specified by a collection of
properties, one of which is that a
data value can be deleted, only if
it has been previously inserted. The
observer in Figure 2 specifies this property: it accepts executions in which for some
data value d, a delete(d)-event is observed even though no earlier insert(d)-event
has been observed.

Fig.2. An observer for checking that no data
value can be deleted if it has not been first in-
serted. The variable z is an observer variable.

4 Data Independence

In the previous section, we showed how observers can specify some data structures,
such as sets, in a straight-forward way. However, in order to specify some other data
structures, including queues and stacks, for which one must be able to “count” the
number of copies of a data value that have been inserted but not removed, we must
additionally employ an extension of a data independence argument, originating from
Wolper [34], as follows.

The argument assumes that for each trace, there is a fixed subset of all occurrences
of data values in the trace, called the set of input occurrences. Formally, this subset
can be arbitrary, but to make the argument work, input occurrences should typically be
the data values that are provided as actual parameters of method invocations. Thus, in
the program of Figure 1, the input occurrences are the parameters of eng(d) events,
whereas parameters of deq(d) events are not input occurrences, since they are provided
as return values.

Let us introduce some definitions. A trace is differentiated if all its input occurrences
are pairwise different. A renaming is any function f : D — D on the domain of data
values. A renaming f can be applied to trace o, resulting in the trace f (o), where each
data value d in o has been replaced by f(d). A set X of traces is data independent if
for any trace o € X' the following two conditions hold:

- f(o) € X for any renaming f, and
— there exists a differentiated trace oy € X with f(o4) = o for some renaming f.

We say that a program is data independent if the set of its traces is data independent.
A program, like the one in Figure 1, can typically be shown to be data independent by
a simple syntactic analysis that checks that data values are not manipulated or tested,
but only copied. In a similar manner, a correctness property is data independent if the

set of traces that it specifies is data independent. From these definitions, the following
theorem follows directly.

Theorem 1. A data independent program satisfies a data independent property iff its
differentiated traces satisfy the property. a

Thus, when checking that a data independent program satisfies a data independent prop-
erty, it suffices to check that all differentiated traces of the program belong to the prop-
erty. Hence, an observer for a data independent property need only accept the differen-
tiated traces that violate the property. It should not accept any (differentiated or non-
differentiated) trace that satisfies it.

Note that the set of traces of a set is not data independent, e.g., since it contains a
trace where two different data values are inserted, but not its renaming which inserts
the same data value twice. This is not a problem, since the set of all traces of a set can
be specified by observers, without using a data independence argument.

. The key observa- (enq(p), guard)
tion is now that the (deq(p), guard”)
differentiated traces of
queues and stacks can
be specified succinctly
by observers with a guard = (p # z1 Ap # z2 \ p # empty)
small number of vari- guard’ = (p # 21 Ap # 22)
ables. In the case of a
FIFO queue, its differ-
entiated traces are pre-
cisely those that sat-
isfy the following four properties for all data values d; and ds.

—
/
’J’

(L2
enq(p), guard) (enq(p), guard)

deq(p), guard) (deq(p), guard)

Q

S S S
0 ena®).p = 1) (a0 2522 2 aea(p).p = 2)

2O

21

Fig.3. An observer to check that FIFO ordering is respected.
All unmatched abstract events, for example (deq(p),p = z1)
at location s7, send the observer to a sink state.

NO CREATION: d; must not be dequeued before it is enqueued

NO DUPLICATION: d; must not be dequeued twice,

No LosS: empty must not be returned if d; has been enqueued but not dequeued,
FIFO: dy must not be dequeued before d; if it is enqueued after d; is enqueued.

Each such property can be specified by an observer with one or two variables. If the
property is violated by some specific data values d; and do, then there is some run of
the observer, in which the initial values of the variables are d; and ds, which leads to
an accepting state. Figure 3 shows an observer for the FIFO property.

We can also provide an analogous characterization of the differentiated traces of a
stack.

5 Verification by Shape Analysis

To verify that no trace of the program is accepted by an observer, we form, as in the
automata-theoretic approach [30], the cross-product of the program and the observer,
synchronizing on abstract events, and check that this cross-product cannot reach a con-
figuration where the observer is in an accepting state.

The analysis needs to deal with the challenges of an unbounded data domain, an un-
bounded number of concurrently executing threads, an unbounded heap, and an explicit

memory management. As indicated in Section 1, the explicit memory management im-
plies that the assertions generated by our analysis must be able to track correlations
between pairs of threads. We present our shape analysis in two steps. We first describe
a symbolic encoding of the configurations of the program and then present the verifica-
tion procedure.

5.1 Representation of Symbolic Encodings

A symbolic encoding characterizes all the reachable configurations of the program from
the point of view of two distinct executing threads. This is done by recording the rela-
tionships of the local configurations of the two threads with each other, the relationships
of the local variables of a thread with global variables, the observer configuration, and
the assertions about the heap. It is a combination of several layers of conjunctions and
disjunctions. In this section, let us fix two thread identifiers 7; and 72 and let us first
introduce some necessary definitions in a bottom-up manner.

Cell terms. Let a cell term be one of the following: (i) a global pointer variable y, which
denotes the cell pointed to by the global variable y, (ii) a term of the form x[i;] (where
J = lorj = 2)foralocal pointer variable x of thread 7;, which denotes the cell pointed
to by the thread-i;-local-copy of =, (iii) a special term NULL, UNDEF, or FREE, or (iv) a
cell variable, which denotes a cell whose data value is equal to the current value of an
observer variable. (Note that the value of an observer variable is fixed during a run of
the observer). The latter allows us to keep track of the data in the heap cells, even in the
case where a heap cell is not denoted by any pointer variable (in order to verify, e.g.,
the FIFO property of a queue). We use CT (i1, 42) to denote the set of all cell terms (of
thread i1 and i5).

Atomic heap constraint. In order to obtain an efficient and practical analysis, which
does not lead to a severe explosion of formulas, we have developed a novel represen-
tation, adapted from the transitive closure logic of [5]. The representation is motivated
by the observation that relationships between pairs of pointer variables are typically in-
dependent. The key aspect of the representation is that it is sufficient to consider only
pairs of variables rather than correlating all variables. An atomic heap constraint is of
one of the following forms (where ¢; and to are two cell terms):

— t1 = to means that the cell terms ¢; and t> denote the same cell,

— t; — to means that the next field of the cell denoted by ¢; denotes the cell denoted
by Ifg,

— t1 --» to means that the cell denoted by 2 can be reached by following a chain of
two or more next fields from the cell denoted by ¢4,

— t1 X t5 means that none of t; = to, t1 > to, to +> t1, t; —-> tg, Or to —-» t1 s
true.

We use Pred to denote the set {=, >, <+, --+, «-- X} of all shape relational symbols.

We let ¢ = NULL denote that ¢ is null, ¢ — UNDEF denote that ¢ is undefined, and
t — FREE denote that ¢ is unallocated.

Joined shape constraint. A joined shape constraint, for thread ¢; and 7o, denoted as
M (i1, i2), is a (typically large) conjunction A, ;. c o7, in) Tlt1, t2] Where 7[t1, 5] is
a non-empty disjunction of atomic heap constraints. Intuitively, it is a matrix repre-
senting the heap parts accessible by the two threads (along with the cell data). Such
a representation can be (exponentially) more concise than using a large disjunction of
conjunctions of atomic heap constraints, at the cost of some loss of precision.

We say that a joined shape constraint M (i1,142) is saturated if for all terms z, y,
and z in CT(iy,1i2), every atomic heap constraint from the disjunction 7|z, z] implies
the heap constraints that one can derive from those found in [z, x|, [z, y], 7[y, y],
7y, 2], and [z, z]. Any joined shape constraint can be saturated by a straightforward
fixpoint procedure, analogous to [5] or the one for DBMs [9]. For instance, let 7|z, 2]
be z — zand w[y, z] be y — 2V y --+ z and let w[x,] and 7]y, y] admit only equality
(there is no loop involving z or y). Then 7|, y] can contain the disjuncts z = y, X y,
which are consistent with — z and y — z. It can also contain x <+ y, x «-- y, and
x X y, that are consistent with x — z and y --» z. In short, cannot reach y, thus
when saturating, we remove 2 — y and « --» y from 7z, y).

Symbolic Encoding. We can now define formally a symbolic encoding over two threads.
A symbolic encoding is a disjunction ©Jiy,is] of formulas of the form (o[iy, 2] A
¢[i1,12]) where o[iq, i2] is a control formula and ¢[i1, i2] is a shape formula.

A control formula oliq,is] contains (i) the current control location of threads i,
and 7o, and the observer, and (ii) a conjunction encompassing the relations between the
age fields of any pair of terms. For instance, when analyzing the program in Figure 1,
this conjunction includes among others, for a thread i, head[i].age~Head.age and
tail[i].ptr—next.age~next[i].age, where ~ € {<,=,>}.

A shape formula ¢[i1,i2] is a joined shape constraint conjoined with a formula
Y[v1, ..., Um, 21, - . ., 2] which links the cell variables vy, ..., v, with the observer
variables z1, ..., z, that are used to keep track of heap cells with values equal to the
observer variables. Formally, ¢[i1, i) is a formula of the form

g, O W01, Umy 21, ey 20] A M (41, 12)]

5.2 Verification Procedure

We compute an invariant of the program of the form Viq,is. (i1 # i2 = Oli1,i2])
which characterizes the configurations of the program from the point of view of two
distinct executing threads 7; and i5. We obtain the invariant by a standard fixpoint pro-
cedure, starting from a formula that characterizes the set of initial configurations of the
program. For two distinct threads 4, and i3, and for each control formula o[iy, i3], our
analysis will generate one shape formula ¢[i1, is).

The fixpoint analysis performs a postcondition computation that results in a set of
possible successor combinations of control and shape formulas. The new shape formu-
las of which the control formula already appears in the original ©[i, 2] will be used
to weaken the corresponding old shape formula. Otherwise, if the control state is new,
anew disjunct is added to O[iy, is].

For two threads 71 and i5, we must consider two scenarios: either thread 71 or iy
performs a step, or some other (interfering) thread i3, (distinct from ¢; and i), performs
a step.

Postcondition computation. In the first scenario, where one of the threads ;1 or i per-
forms a step, we can compute the postcondition of (o[iy, 2] A P[i1,i2]) as follows.
oli1, 2] is first updated to a new control state o”[i1, i2] in the standard way (by updat-
ing the possible values of control locations and observer state). ¢[i1, io] is then updated
to ¢'[i1,42] by updating each conjunct w[t, t3] according to the particular program
statement that the thread is performing. In general, we (i) remove all disjuncts that must
be falsified by the step (this may require splitting the formula into several stronger for-
mulas whenever the falsification might be ambiguous), (ii) add all disjuncts that may
become true by the step, (iii) saturate the result.

Consider for instance the program statement x:=y.next. Since only the value
of = is changing, the transformer updates only conjuncts 7[t, x| and 7[z,¢] where
t € CT(i1,i2). All assertions about x are reset by setting every conjunct [z, t] and
w[t, x] to Pred, for all t € CT (i1, 42). (The disjunction over all elements of Pred is the
assertion true). We then set 7|z, y| to « <= y, w[y,] to y — x and derive all predicates
that may follow by transitivity. Finally, we saturate the formula. It prunes the (newly
added) predicates that are inconsistent with the rest of the shape formula.

For x.next : =y, it is important to know the reachabilities that depend on the pointer
z.next. The representation might potentially contain imprecision (it might for instance
state that, for a term ¢, 7[t, z] contains ¢ «-- x and ¢t --+ x, even if we know, via a
simpler analysis, that no cycles are generated). Hence, we first split the formula into
stronger formulas in such a way that we disambiguate the part of the reachability re-
lation involving x. On each resulting formula, we then remove reachability predicates
between cell terms that depend on z.next (e.g., we replace u --+ v in 7[u, v] by u X v
ifu --» z and © --» v). We then set [z, y] to « — y and derive all predicates that may
follow by transitivity (e.g., if w --» x and y --» v, we add u --» v), and we saturate
the result.

Interference. In the case where we need to account for possible interference on the
formula (oi1, i2] A @iz, i2]) by another thread, (distinct from 41 or i2), we proceed as
follows. We (i) extend the formula with the interfering thread, (ii) compute a postcon-
dition as described in the first scenario and (iii) project away the interfering thread.
Step (i) combines a given formula (o[i1,i2] A ¢[i1,i2]) with the information of
an extra thread 3. In a similar manner to [2], the resulting formula is of the form
(oli1, i2,93] A Pli1, i2,43]) such that any projection to two threads is a formula com-
patible with some disjunct of O[i1,is]. To generate all such formulas involving three
threads, we must, besides (o[i1, 2] A Pli1,i2]) itself, consider all pairs of disjuncts
(O’.[ig,ig,] A\ (b.[ig,ig]) and (Uo[il,ig] A ¢o[i1,i3]), such that 0'[7;1,1.2} AN O'.[’ig,ig,] N
0oli1, i3] is consistent. In this case, we generate the formula o[i1, iz, i3] A ¢[i1, 42, 3)

where L L . .
oli1,ia, i3] = oli1,i2] A deliz, i3] A 06li1, i3]

Pli1, ia, i3] = Pli1, ia] A Peliz, i3] A ¢oliy, i3]
We then saturate ¢[i1, iz, %3] (in the same way as for joined shape formulas over two
threads). For each statement .S of thread i3 that can be executed when o (i1, i3, i3] holds,

we compute (step ii) its postcondition ¢'[i1,ig,43] A ¢'[i1,i2,43]. Finally (step iii),
o'[i1,12,13] A ¢'[i1,12,13] is projected back onto ¢'[i1,i2] A ¢'[i1,i2] by removing all
information about the variables of thread i5.

Since the domain of control formulas and the domain of shape formulas over a
fixed number of cell terms are finite, the abstract domain of formulas Vi, is. (i; #
io = Oliy,is]) is finite as well. The iteration of postcondition computation is thus
guaranteed to terminate.

6 Experimental results

We have implemented a prototype in OCaml and used it to automatically establish the
conformance of concurrent data-structures (including lock-free and lock-based stacks,
queues and priority queues) to their operational specification (implying their lineariz-
ability). Our analysis also implicitly checks for standard shape-related errors such as
null/undefined pointer dereferencing (taking into account the known dangling pointers’
dereferences [21]), double-free, or presence of cycles.

Some of the examples are verified in the absence of garbage collection, in particular,
the lock-free versions of Treiber’s [26] stack and Michael&Scott’s queue (see Figure 1).
We hereafter refer to them as Treiber’s stack and M&S’s queue, and garbage collection
as GC. The verification of these examples is extensively demanding as it requires to
correlate the possible states of the threads with high precision. We are not aware of any
other method capable of verifying high level functionality of these benchmarks.

In addition to establishing correctness of the original versions of the benchmark pro-
grams, we also stressed our tool with few examples in which we intentionally inserted
bugs (cf. Table 2). As expected, the tool did not establish correctness of these erroneous
programs since the approach is sound. For example, we tested whether stacks (resp.
queues) implementations can exhibit fifo (resp. lifo) traces, we tested whether values
can be lost (loss observer), or memory errors can be triggered (memo observer accepts
on memory errors made visible), we moved linearization points to wrong positions,
and we tested a program which stores wrong values of inserted data. In all these cases,
the analysis correctly reported traces that violated the concerned safety property. Fi-
nally, we ran the data structure implementations without garbage collection discarding
the age counters and our (precise) analysis produced as expected a trace involving the
ABA problem [17].

We ran the experiments on a 3.5 GHz processor with 8§GB memory. We report, in
Table 1, the running times (in seconds) and the final number of joined shape constraints
generated (|C/|, reduced by symmetry).

We also include a succinct comparison with related work. Although it is often unfair
to compare approaches solely based on running times of different tools, we believe that
such a comparison can give an idea of the efficiency of the involved approaches. Our
running times on the versions of Treiber’s stack and M&S’s queue that assume GC
are comparable with the results of [29]. However, the verification of versions that do
not assume GC is, to the best of our knowledge, beyond the reach of [29] (since it
does not correlate states of different threads). [24] verifies linearizability of concurrent
implementations of sets, e.g., a lock-free CAS-based set [31] (verified in 2975s) of a
comparable complexity to M&S’s queue without GC (550s with our prototype). Basic

Table 1. Experimental Results.

Conformance Safety only

[Data-structure [Observers\ Time[|C| H Time[|C| ‘
Coarse Stack tack 0.02s| 436 || 0.01s 102
Coarse Stack, no GC stac 0.07s| 569 || 0.01s| 130
Coarse Queue 0.04s| 673 || 0.01s 196

queue+
Coarse Queue, no GC 0.48s| 1819 || 0.10s 440
Two-Locks Queue[20] 0.08s| 1830 || 0.02s 488

queue+

0.73s| 3460 || 0.13s 784
vs47sin[4] || vs 6162s/304s in [35]

Two-Locks Queue, no GC

Coarse Priority Queue (Buckets) . 0.24s| 1242 || 0.07s 526
Coarse Priority Queue (List-based)|| P™ | 0.04s| 499 || 0.01s| 211
Bucket locks Priority Queue 0.22s| 1116 || 0.05s] 372
Treiber’s lock-free stack[26] stack+ | 0.23s| 714 || 0.01s 78
vs 0.09s in [29]
Treiber’s lock-free stack, no GC stack+ ‘ 2.283‘ 1535 || 0.10s 190
vs 53s in [4]
M&S’s lock-free queue[20] queue+ | 3.31s[3476 || 0.44s| 594
vs 3.36s in [29]
M&S’s lock-free queue, no GC queue+ | 550s[53320 || 25s| 6410

vs 0.0.m. in [4] vs 727s/309s in [35]

stack+ (resp. queue+) is an observer encompassing
the loss, creation, duplication and lifo (resp. fifo) observers

memory safety of M&S’s queue and two-locks queue [20] without GC was also verified
in [35], but only for a scenario where all threads are either dequeuing or enqueuing.
The verification took 727s and 309s for M&S’s queue and 6162s and 304s for the two-
locks queue. Our verification analysis produced the same result significantly faster, even
allowing any thread to non deterministically decide to either enqueue or dequeue. In
[4], linearizability of the Treibers’s stack (resp. two-locks queue [20]) is verified in
53s (resp. 47s). We achieve the same result in less than 3 seconds. Finally, a variant
of M&S’s queue without GC could not be successfully verified in [4] due to lack of
memory.

Table 2. Introducing intentional bugs: The analysis is sound and the programs are not verified.

[Data-structure [Modification IObserver[Output [Time‘

Treiber’s stack none fifo bad trace 0.07s
Treiber’s stack, no GC none fifo bad trace 6.19s
M&S’s queue none lifo bad trace 1.26s
Two-locks queue bad commit point fifo bad trace 0.02s
M&S’s queue bad commit point loss bad trace 0.51s
Treiber’s stack omitting data lifo bad trace 0.02s
Treiber’s stack, no GC discard ages loss bad trace 0.42s
Treiber’s stack, no GC discard ages loss cycle creation [0.01s
M&S’s queue, no GC discard ages loss bad trace 272s
M&S’s queue, no GC discard ages loss ||dereferencing null|0.01s
M&S’s queue swapped assignments| memo ||dereferencing null{0.01s

7 Conclusions and Future Work

We have presented a technique for automated verification of temporal properties of
concurrent programs, which can handle the challenges of infinite-state specifications,
an unbounded number of threads, and an unbounded heap managed by explicit memory
allocation. We showed how such a technique can be based naturally on the automata-
theoretic approach to verification, by nontrivial combinations and extensions that han-
dle unbounded data domains, unbounded number of threads, and heaps of arbitrary
size. The result is a simple and direct method for verifying correctness of concurrent
programs. The power of our specification formalism is enhanced by showing how the
data-independence argument by Wolper [34] can be introduced into standard program
analysis. Our method can be parameterized by different shape analyses. Although we
concentrate on heaps with single selectors in the current paper, we expect that our
method can be adapted to deal with multiple selectors, by integrating recent approaches
such as [15]. Morever, our experminatation deals with the specification of stacks and
queues. Other data structures, such as deques, can be handled in an analogous way.

References

1. P. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M. Saksena. Regular model checking for
LTL(MSO). STTT, 14(2):223-241, 2012.

2. P. A. Abdulla, L. s Holik, and F. Haziza. All for the price of few (parameterized verification
through view abstraction), 2013. Accepted at VMCAI’2013.

3. D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Comparison under abstraction
for verifying linearizability. In Proc. of CAV’07, volume 4590 of LNCS, pages 477-490.
Springer, 2007.

4. J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, and S. Sagiv. Thread quantification
for concurrent shape analysis. In Proc. of CAV’08, volume 5123 of LNCS, pages 399—413.
Springer Verlag, 2008.

5. J. Bingham and Z. Rakamaric. A logic and decision procedure for predicate abstraction of
heap-manipulating programs. In Proc. of VMCAI’06, volume 3855 of LNCS, pages 207-221.
Springer, 2006.

6. S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up: a complete and automatic
linearizability checker. In Proc. of PLDI’10, pages 330-340. ACM, 2010.

7. P. Cerny, A. Radhakrishna, D. Zufferey, S. Chaudhuri, and R. Alur. Model checking of
linearizability of concurrent list implementations. In Proc. of CAV’10, volume 6174 of LNCS,
pages 465-479. Springer, 2010.

8. R. Colvin, L. Groves, V. Luchangco, and M. Moir. Formal verification of a lazy concur-
rent list-based set algorithm. In Proc. of CAV’06, volume 4144 of LNCS, pages 475-488.
Springer, 2006.

9. D. Dill. Timing assumptions and verification of finite-state concurrent systems. In J. Sifakis,
editor, Automatic Verification Methods for Finite-State Systems, volume 407 of LNCS.
Springer Verlag, 1989.

10. S. Doherty, D. Detlefs, L. Groves, C. Flood, V. Luchangco, P. Martin, M. Moir, N. Shavit, and
G. S. Jr. Dcas is not a silver bullet for nonblocking algorithm design. In Proc. of SPAA’04,
pages 216-224. ACM, 2004.

11. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of a practical lock-
free queue algorithm. In Proc. FORTE’04, volume 3235 of LNCS, pages 97-114. Springer,
2004.

12.

13.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying linearizability proofs
with reduction and abstraction. In Proc. of TACAS 10, volume 6015 of LNCS, pages 296—
311. Springer Verlag, 2010.

M. Emmi, R. Jhala, E. Kohler, and R. Majumdar. Verifying reference counting implemen-
tations. In Proc. of TACAS 09, volume 5505 of LNCS, pages 352-367. Springer Verlag,
2009.

. C. Flanagan and S. Freund. Atomizer: A dynamic atomicity checker for multithreaded pro-

grams. Science of Computer Programming, 71(2):39-109, 2008.

. P. Habermehl, L. Holik, A. Rogalewicz, J. Sim4cek, and T. Vojnar. Forest automata for

verification of heap manipulation. Formal Methods in System Design, pages 1-24, 2012.

M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463-492, 1990.

IBM. System/370 principles of operation, 1983.

N. Kidd, T. Reps, J. Dolby, and M. Vaziri. Finding concurrency-related bugs using random
isolation. STTT, 13(6):495-518, 2011.

M. Michael and M. Scott. Correction of a memory management method for lock-free data
structures. Technical Report TR599, University of Rochester, Rochester, NY, USA, 1995.
M. Michael and M. Scott. Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. In Proc. 15th ACM Symp. on Principles of Distributed Computing, pages
267-275, 1996.

M. M. Michael. Safe memory reclamation for dynamic lock-free objects using atomic reads
and writes. In Proceedings of the twenty-first annual symposium on Principles of distributed
computing, PODC ’02, pages 21-30, New York, NY, USA, 2002. ACM.

M. Naik, A. Aiken, and J. Whaley. Effective static race detection for java. In Proc. of
PLDI’06, pages 308-319. ACM, 2006.

M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock detection. In Proc. of
ICSE, pages 386-396. IEEE, 2009.

M. Segalov, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv. Abstract transformers
for thread correlation analysis. In APLAS, LNCS, pages 30-46. Springer, 2009.

O. Shacham. Verifying Atomicity of Composed Concurrent Operations. PhD thesis, Depart-
ment of Computer Science, Tel Aviv University, 2012.

R. Treiber. Systems programming: Coping with parallelism. Technical Report RJ5118, IBM
Almaden Res. Ctr., 1986.

V. Vafeiadis. Shape-value abstraction for verifying linearizability. In Proc. of VM CAI, vol-
ume 5403 of LNCS, pages 335-348. Springer, 2009.

V. Vafeiadis. Automatically proving linearizability. In CAV, volume 6174 of Lecture Notes
in Computer Science, pages 450-464. Springer, 2010.

V. Vafeiadis. Rgsep action inference. In Proc. of VMCAI’ 10, volume 5944 of LNCS, pages
345-361. Springer, 2010.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-
tion. In Proc. of LICS’86, pages 332-344, June 1986.

M. Vechev and E. Yahav. Deriving linearizable fine-grained concurrent objects. In Proc. of
PLDI’08, pages 125-135. ACM, 2008.

M. Vecheyv, E. Yahav, and G. Yorsh. Experience with model checking linearizability. In Proc.
of SPIN’09, volume 5578 of LNCS, pages 261-278. Springer, 2009.

L. Wang and S. Stoller. Static analysis of atomicity for programs with non-blocking syn-
chronization. In Proc. of PPOPP’05, pages 61-71. ACM, 2005.

P. Wolper. Expressing interesting properties of programs in propositional temporal logic
(extended abstract). In Proc. of POPL’86, pages 184—193, 1986.

E. Yahav and S. Sagiv. Automatically verifying concurrent queue algorithms. Electr. Notes
Theor. Comput. Sci., 89(3), 2003.

