
Ordered Counter-Abstraction
(Refinable Subword Relations for Parameterized Verification)

Pierre Ganty and Ahmed Rezine?

1 IMDEA Software Institute, Spain
2 Linköping University, Sweden

Abstract. We present an original refinable subword based symbolic representa-
tion for the verification of linearly ordered parameterized systems. Such a system
consists of arbitrary many finite processes placed in an array. Processes commu-
nicate using global transitions constrained by their relative positions (i.e., priori-
ties). The model can include binary communication, broadcast, shared variables
or dynamic creation and deletion of processes. Configurations are finite words of
arbitrary lengths. The successful monotonic abstraction approach uses the sub-
word relation to define upward closed sets as symbolic representations for such
systems. Natural and automatic refinements remained missing for such symbolic
representations. For example, subword based relations (even in conjunction with
constraints on resulting Parikh images) are simply too coarse for automatic for-
ward verification of systems involving priorities. We remedy to this situation and
introduce a symbolic representation based on an original combination of counter
abstraction with subword based relations. This allows us to define an infinite fam-
ily of relaxation operators that guarantee termination by a new well quasi ordering
argument. The proposed automatic analysis is at least as precise and efficient as
monotonic abstraction when performed backwards. It can also be successfully
used in forward, something monotonic abstraction is incapable of. We imple-
mented a prototype to illustrate the approach.

1 Introduction

We introduce in this paper an original adaptation of counter abstraction and use it for
the verification of safety properties for linearly ordered parameterized systems. Typi-
cally, such a system consists of an arbitrary number of identical processes placed in a
linear array. Each process is assumed to have a finite number of states (for example ob-
tained by predicate abstraction). The arbitrary size of these systems results in an infinite
number of possible configurations. Examples of linearly ordered parameterized systems
include mutual exclusion algorithms, bus protocols, telecommunication protocols, and
cache coherence protocols. The goal is to check correctness (here safety) regardless of
the number of processes in the system.
Configurations of a parameterized system are finite words of arbitrary lengths over the
finite setQ of process states. Processes change state using transitions that might involve

? supported in part by the CENIIT research organization (project 12.04).

universal or existential conditions. Transition t below is constrained by a universal con-
dition. It states that a process (with array index) i may fire t only if all processes with
indices j > i (i.e., to the right, hence ∀R) are in states {q1, q2, q3} ⊆ Q.

t : q5 → q6 : ∀R {q1, q2, q3} (1)

An existential condition may require that some (instead of all) processes with indices
j > i are in certain states. Regular model checking [14, 9] is an important technique
that has been used for the uniform verification of infinite state systems in general, and
of linearly ordered parameterized systems in particular. This technique uses finite state
automata to represent sets of configurations, and transducers (i.e., finite state automata
over pairs of letters) to capture transitions of the system. Verification boils down to
the repeated calculation of several automata-based constructions among which is the
application of the transducers to (typically) heavier and heavier automata representing
more and more complex sets of reachable configurations. Acceleration [3], widening
[6, 18] and abstraction [7] methods are used to ease termination.
In order to combat this complexity, the framework of monotonic abstraction [2, 1] uses
upward closed sets (wrt. a predefined pre-order) as symbolic representations. This in-
troduces an over-approximation, as sets of states generated during the analysis are not
necessarily upward closed. The advantage is to use minimal constraints (instead of ar-
bitrary automata) to succinctly represent infinite sets of configurations. The approach
typically adopts the subword relation as the pre-order for the kind of systems we con-
sider in this work3. The analysis starts with upward closed sets representing the bad
configurations and repeatedly approximates sets of predecessors by closing them up-
wards. Termination is guaranteed by well quasi ordering [13]. The scheme proved quite
successful [2, 1] but did not propose refinements for eliminating false positives in or-
dered systems like the ones we consider here.
In this work, we describe an original integration of upward closed based symbolic rep-
resentation and of threshold based counter abstraction. The resulting symbolic repre-
sentation allows for the introduction of original relaxation operators that can be used
in classical over-approximate-check-refine reachability schemes. The idea of counter
abstraction [17, 11] is to keep track of the number of processes that satisfy a certain
property. A typical property for a process is to be in some state in Q. A simple ap-
proach to ensure termination is then to count up to a prefixed threshold. After the
threshold, any number of processes satisfying the property is assumed possible. This
results in a finite state system that can be exhaustively explored. If the approximation is
too coarse, the threshold can be augmented. For systems like those we consider in this
paper, automatically finding the right properties and thresholds can get very challeng-
ing. Consider for instance the transition t above (1). It is part of Burns mutual exclusion
algorithm, where q6 models access to the critical section [2]. Suppose we want to com-
pute the t-successors of configurations only containing processes in state q5. These are
in fact reachable in Burns algorithm. Plain counter abstraction would capture that all
processes are at state q5. After one step it would capture that there is one process at
state q6 and all other processes are at state q5 (loosing that q6 is at the right of all q5).

3 As a concrete example, if q5 ∈ Q, then the word q5q5 would represent all configurations in
(Q∗q5Q

∗q5Q
∗) since q5q5 is subword of each one of them.

After the second step it would conclude that configurations with at least two q6 are
reachable (mutual exclusion violation). Observe that increasing the threshold will not
help as it will not preserve the relative positions of the processes. Upward closure based
representations will also result in a mutual exclusion violation if used in forward. Sup-
pose we use q5q5 as a minimal constraint. Upward closure wrt. to the subword relation
would result in the set (Q∗q5Q∗q5Q∗) which already allows two processes at state q6
to coexist. Even when using the refined ordering of [1], upward closure would result
in ({q5}∗ q5 {q5}∗ q5 {q5}∗). After one step, the obtained ({q5}∗ q5 {q5}∗ q6) will be
approximated with ({q5, q6}∗ q5 {q5, q6}∗ q6 {q5, q6}∗), again violating mutual exclu-
sion. Approximations are needed to ensure termination (the problem is undecidable
in general [4]). Indeed, without approximation, one would differentiate among infinite
numbers of sets, like in the following sequence:

({q5}∗ q6), ({q5}∗ q6 {q5}∗ q6), . . . ({q5}∗ q6 {q5}∗ . . . {q5}∗ q6) (2)

The idea of this work is to combine threshold-based counter abstraction with subword-
based upward closure techniques in order to propose an infinite number of infinite ab-
stract domains allowing increasing precision of the analysis while still ensuring termi-
nation. To achieve this, we introduce the notion of a counted word. A counted word
has a base and a number of formulae (called counters). Like in monotonic abstraction,
a base (a word in Q∗) is used as a minimal element and denotes all larger words wrt.
the subword relation. In addition, the counters are used to constrain the denotation of
the base. We associate two counters to each position in the base: a left and a right
counter. For each state q in Q, the left counter of a position constrains how many of the
processes to the left of the position can be in state q (i.e. constrains Parikh images of
allowed prefixes). Right counters constrain allowed suffixes to the right of the positions.
For example ({q5}∗ q6), which cannot be captured by usual upward closure or counter
abstraction techniques, is captured by the counted word ϕ1 defined below:

ϕ1 =
([

vq5 ≥ 0
∧vq6 = 0

]
, q6,

[
vq5 = 0
∧vq6 = 0

])
,

ϕ2 =
([

vq5 ≥ 0
∧vq6 = 0

]
, q6,

[
vq5 ≥ 0
∧vq6 = 1

])([
vq5 ≥ 0
∧vq6 = 1

]
, q6,

[
vq5 = 0
∧vq6 = 0

])
, . . .

ϕk =
([

vq5 ≥ 0
∧vq6 = 0

]
, q6,

[
vq5 ≥ 0

∧vq6 = (k − 1)

])
. . .
([

vq5 ≥ 0
∧vq6 = (k − 1)

]
, q6,

[
vq5 = 0
∧vq6 = 0

])
In ϕ1, the base q6 denotes the set (Q∗q6Q∗). This is constrained to ({q5}∗ q6Q∗) by the
right counter

[
vq5 ≥ 0
∧vq6 = 0

]
and to ({q5}∗ q6) by the left counter

[
vq5 = 0
∧vq6 = 0

]
. Sequence (2)

can then be captured by the counted words ϕ1, ϕ2, . . . ϕk. This gain in precision comes
at the cost of loosing termination. We therefore propose relaxation operators. Each
operator comes with a cut-off, i.e., thresholds associated to each state in Q. If a counter
requires (vq = k) with k larger than the threshold imposed by the cut-off, we weaken
(vq = k) into (vq ≥ k). Using a well quasi ordering argument, we show that this is
enough to ensure termination of the analysis that relaxes all generated representations.
If a spurious trace is generated, we increase the thresholds in order to obtain a more
precise relaxation that eliminates the spurious trace. We implemented a prototype that
allows, for the first time, to verify by forward exploration classical linearly ordered
parameterized systems using upward closure based representations.

Related work. Other verification efforts with a termination guarantee typically consider
decidable subclasses [11, 10], or use approximations to obtain systems on which the
analysis is decidable [17, 8, 16]. For example, the authors in [10] propose a forward
framework with systematic refinement to decide safety properties for a decidable class.
The problem we consider here is undecidable. The authors in [16] use heuristics to
deduce cut-offs in order to check invariants on finite instances. In [17] the authors use
counter abstraction and truncate the counters in order to obtain a finite state system.
This might require manual insertion of auxiliary variables to capture the relative order
of processes in the array. Environment abstraction [8] combines predicate and counter
abstraction. It results in what is essentially a finite state approximated system. Hence,
it can require considerable interaction and human ingenuity to find the right predicates.
Our approach handles linearly ordered systems in a uniform manner. It automatically
adds precision based on the spurious traces it might generate.

Outline. Section (2) gives preliminaries and formalizes the notion of counters. Section
(3) uses these counters to define counted words and to state some of their properties
that will be useful to build a symbolic representation for the verification of parame-
terized systems. Section (4) formally describes the considered class of parameterized
systems, and reports on using counted words as a symbolic representation to solve their
rechability problem. We conclude in Section (5).

2 Preliminaries

Preliminaries. Fix a finite alphabet Σ and let Σ∗ be the set of finite words over Σ. Let
w · w′ be the concatenation of the words w and w′, ε be the empty word, and w � w′

be the shuffle set {w1 · w′1 · w2 · · ·w′m| w = w1 · · ·wn and w′ = w′1 · · ·w′m}. We use
N for the set of natural numbers and n, with n ∈ N, to mean {1, . . . , n}. Assume a word
w = σ1 · · ·σn where σi ∈ Σ for i ∈ n. We write |w| for the size n, w[i,j] to mean the
word σi · σi+1 · · ·σj , w[i] for the letter σi, hd(w) for the letter σ1, tl(w) for the suffix
w[2,n], and w• for the set {σ1, . . . , σn}. A multiset m is a mapping Σ → N. We write
m � m′ to mean that m(σ) ≤ m′(σ) for each σ ∈ Σ. We write m ⊕m′ to mean the
multiset satisfying (m⊕m′)(σ) = m(σ)+m′(σ) for each σ ∈ Σ. If m′ � m, then the
multiset m	m′ is defined and verifies (m	m′)(σ) = m(σ)−m′(σ) for each σ in Σ.
The Parikh image w# of a word w is the multiset that gives the number of occurrences
of each letter σ in w. Given a set S and a pre-order (i.e., a reflexive and transitive binary
relation) v on S, the pair (S,v) is said to be a well quasi ordering (wqo for short) if
there is no infinite sequence e1, e2, . . . of elements of S with ei 6v ej for all 1 ≤ i < j.

A counter over an alphabetΣ is a conjunction of simple constraints that denotes a set of
multisets. We fix a set of integer variables VΣ that is in a one to one correspondence with
Σ. Each variable v is associated to a letter σ in Σ. We write vσ to make the association
clear. Intuitively, vσ is used to count the number of occurrences of the associated letter σ
in a word in Σ∗. A counter basically captures multisets over Σ by separately imposing
a constraint on each letter in Σ. Indeed, we define a counter cr to be either [false] or a
conjunction [∧σ∈Σ(vσ ∼ k)] where ∼ is in {=,≥}, each vσ is a variable ranging over

N and each k is a constant in N. Assume in the following a counter cr. For a letter σ in
Σ, we write cr(σ) to mean the strongest predicate of the form (vσ ∼ k) implied by the
counter cr. We write 1σ (resp. 0) to mean the counter [∧σi∈Σ(vσi = bσi)] with bσi = 1
for σi = σ and bσi = 0 otherwise (resp. bσi = 0 for all σi ∈ Σ). A substitution is a set
{v1 ← u1, . . .} of pairs (s.t. vi 6= vj if i 6= j) where v1, . . . are variables, and u1, . . .
are either all variables or all natural numbers. Given a substitution S, we write cr[S] to
mean the formula obtained by replacing, for each pair vi ← ui, each occurrence of vi in
cr by ui. We sometimes regard a multiset m as the substitution {vσ ← m(σ)| σ in Σ}.
For a multisetm, the formula cr[m] takes a Boolean value. In the case where it evaluates
to true (resp. false), we say that m satisfies (resp. doesn’t satisfy) the counter cr and
that the counter cr accepts (resp. does not accept) the multiset m. Given a word w in
Σ∗, we abuse notation and write cr[w] to mean that (w#) satisfies cr. We write [[cr]]
to mean the set {m| cr[m] and m is a multiset over Σ}. We define the cut-off of cr,
written κ(cr), to be the multiset that associates to each letter σ in Σ the value k + 1
if cr(σ) = (vσ = k) and 0 otherwise. Observe that if κ(cr)(σ) 6= 0 for all σ ∈ Σ,
then cr accepts a single multiset, while if κ(cr)(σ) = 0 for all σ ∈ Σ, then cr accepts
an upward closed set of multisets wrt. �4. We write C for the set of counters over Σ.
Given a natural k, we write Ck to mean {cr| κ(cr)(σ) ≤ k for each σ ∈ Σ}. Observe
that for any counter cr ∈ Ck, ((cr(σ) = (vσ = k′)) =⇒ k′ < k).

Example 1. For the counter cr = [va = 0∧ vb = 2∧ vc ≥ 1] over Σ = {a, b, c}, we have
that: κ(cr)(a) = 1, κ(cr)(b) = 3, and κ(cr)(c) = 0. In addition, cr is in C3.

Operations on counters. Assume two counters cr and cr′. The predicate (cr vC cr′)
is defined as the conjunction ∧σ∈Σ(cr vC cr′)(σ), where (cr vC cr′)(σ) is defined
in Table (1). In addition, let cr′′ be any of the counters (cr uC cr′), (cr 	C cr

′), or
(cr ⊕C cr

′). The counter cr′′ is defined as the conjunction ∧σ∈Σcr′′(σ), where cr′′(σ)
is stated in Table (1). Observe that (cr vC cr′) =⇒ [[cr′]] ⊆ [[cr]], that [[cr uC
cr′]] = [[cr]] ∩ [[cr′]], that [[cr ⊕C cr

′]] = {m1 ⊕C m2| cr[m1] and cr′[m2]}, and that
[[cr 	C cr

′]] = {m1 	C m2| cr[m1] and cr′[m2]}.

Table 1. Contribution of each σ ∈ Σ to the predicate cr vC cr
′ and to the counters cruC cr

′, cr⊕C cr
′ and cr	C cr

′.
cr(σ) cr′(σ) (cr vC cr

′)(σ) (cr uC cr
′)(σ) (cr ⊕C cr

′)(σ) (cr 	C cr
′)(σ)

vσ = b
vσ = b′ b = b′ (b = b′)?vσ = b : false

vσ = b+ b′
(b ≥ b′)?vσ = b− b′ : false

vσ ≥ b′ false (b ≥ b′)?vσ = b : false

vσ ≥ b
vσ = b′

b′ ≥ b (b′ ≥ b)?vσ = b′ : false
vσ ≥ max(0, b− b′)vσ ≥ b′ vσ ≥ max(b, b′)

Lemma 1. For each k ∈ N, (Ck,vC) is a well quasi ordering. In fact, from every
infinite sequence cr1, cr2, . . . we can extract an infinite sequence cri1 vC cri2 vC . . .

Proof. Let cr1, cr2, . . . be an infinite sequence. Fix a letter σ. If the number of counters
for which crm(σ) is not an equality is infinite, then remove all the counters for which
crm(σ) is an equality. Otherwise, by definition of Ck, there is a b0 < k such that the
number of counters for which crm(σ) = (vσ = b0) is infinite. Keep those counters
and remove all others from the resulting sequence. By repeating this procedure for each

4 A set M of multisets is upward closed wrt � if m � m′ and m ∈M imlpy m′ ∈M

letter σ in Σ, we obtain a new infinite sequence of counters crm1
, crm2

, . . . for which,
for each mi,mj , crmi(σ) = (vσ = b) iff crmj (σ) = (vσ = b). Fix a letter σ for which
crm1(σ) = (vσ ≥ b). It is possible to extract from the resulting sequence another
infinite sequence crn1 , crn2 , . . . such that if crni(σ) = (vσ ≥ bni) and crnj (σ) =
(vσ ≥ bnj) with ni < nj , then bni ≤ bnj . By repeating this for each letter σ, we obtain
an infinite sequence in which cri1 vC cri2 vC ut

3 Counted Words

A counted word ϕ is a finite sequence (l1, σ1, r1) · · · (ln, σn, rn) in (C×Σ × C)∗.
The base of ϕ (written ϕ) is the word σ1 · · ·σn in Σ∗. We write←−ϕ (resp. −→ϕ) to mean
the counter [∧σ∈Σ(vσ ≥ 0)] if ϕ = ε, and l1 (resp. rn) otherwise. We refer to l1, . . . ln
(resp. r1, . . . rn) as the left (resp. right) counters of ϕ. The counted word ϕ is well
formed if li[(ϕ)[1,i−1]] and ri[(ϕ)[i+1,n]] evaluate to true for each i ∈ n. We assume ε
is well formed. The following lemma constrains the possible predicates in a well formed
counted word.

Lemma 2 (Well formedness). Let ϕ = (l1, σ1, r1) · · · (ln, σn, rn) be well formed. For
each i ∈ n, li(σ) (resp. ri(σ)) either equals:

– (vσ = (ϕ[1,i−1])
#
(σ)) (resp. (vq = (ϕ[i+1,n])

#
(σ))), or

– (vσ ≥ k) for some k in {0, . . . (ϕ[1,i−1])
#
(σ)} (resp. in {0, . . . (ϕ[i+1,n])

#
(σ)}).

Denotation. If w = σ1 · · ·σm, ϕ = (l1, σ1, r1) · · · (ln, σn, rn), and h : n → m is
an increasing injection, we write w |=h ϕ to mean that all following three conditions
hold for each i ∈ n i) ϕ[i] = w[h(i)], and ii) li(w[1,h(i)−1]), and iii) ri(w[h(i)+1,n]).
Intuitively, there is an injection h that ensures ϕ is subword of w, and s.t. words to
the left and right of each image of h respectively respect corresponding left and right
counters in ϕ. We write w |= ϕ if w |=h ϕ for some injection h, and [[ϕ]] to mean
{w| w |= ϕ}. We let [[ε]] = Σ∗. Observe that every well formed word has a non-empty
denotation since ϕ |= ϕ. We use CW to mean the set of well formed counted words.

Example 2. ϕ =
([

va = 0
∧vb ≥ 0

]
, a,
[
va ≥ 0
∧vb ≥ 0

])([
va = 1
∧vb = 0

]
, a,
[
va = 0
∧vb ≥ 0

])
and [[ϕ]] = aab∗.

Normalization of well formed words. Counters in a counted word are not independent.
Consider for instance ϕ = (l1, a, r1)(l2, a, r2) in Example (2). We can change l1(b) to
(vb = 0) without affecting the denotation of ϕ. The reason is that any prefix accepted by
l1 will have to be allowed by l2. It is therefore vacuous for l1 to accept words containing
b, and more generally to accept more than l2	C 1a (defined by well formedness). Also,
observe that l2 and r2 imply we can change r1(a) from (va ≥ 0) to (va = 1). We
strengthen a well formed word using the normalization rules depicted in Table (2).

Lemma 3 (Normalization rules). Applying any of the rules of Table (2) on a well
formed word ϕ does preserve its denotation, and hence its well formedness.

ϕp · (li, σi, ri) · ϕm · (lj , σj , rj) · ϕs
ϕp · (li uC li,j , σi, ri) · ϕm · (lj , σj , rj) · ϕs

lefti<j

ϕp · (li, σi, ri) · ϕm · (lj , σj , rj) · ϕs
ϕp · (li, σi, ri) · ϕm · (lj , σj , rj uC rj,i) · ϕs

righti<j

ϕp · (li, σi, ri) · ϕm · (lj , σj , rj) · ϕs
ϕp · (li, σi, ri) · ϕm · ((lj uC l

′
j,i), σj , rj) · ϕs

left′i6=j

ϕp · (li, σi, ri) · ϕm · (lj , σj , rj) · ϕs
ϕp · (li, σi, ri uC r

′
i,j) · ϕm · (lj , σj , rj) · ϕs

right′i6=j

Table 2. Normalization rules. For example, the rule left states we can replace counter li in word
(ϕp · (li, σi, ri) · ϕm · (lj , σj , rj) · ϕs) by (li uC li,j). The introduced counters are li,j =
(lj 	C (1σi ⊕C . . . ⊕C 1σj−1)), rj,i = (ri 	C (1σi+1 ⊕C . . . ⊕C 1σj)), l

′
j,i = (li ⊕C 1σi ⊕C

ri)	C (rj ⊕C 1σj), and r′i,j = (rj ⊕C 1σj ⊕C lj)	C (li ⊕C 1σi).

Proof. Sketch. Let ϕ′ be the word obtained from ϕ by applying one of the above rules.
Such a rule only strengthens the counters. Hence, [[ϕ]] ⊇ [[ϕ′]]. Assume w in Σ∗ with
w |=h ϕ. We show w |=h ϕ′ holds. We describe the cases lefti<j and right′i 6=j. We start
with lefti<j and show that li,j(w[1,h(i)−1]). We know lj(w[1,h(j)−1]) from w |=h ϕ.
We also know lj(w[h(1)] · w[h(2)] · · ·w[h(j−1)]) by well formedness of ϕ and w |=h ϕ.
Observe that due to the allowed predicates in the counters, if cr[m] and cr[m′′] for some
multisets m � m′′, then cr[m′] for any multiset m � m′ � m′′. Also, observe that:
(w[h(1)] · w[h(2)] · · ·w[h(j−1)])

� (w[1,h(i)−1] · w[h(i)] · w[h(i+1)] · · ·w[h(j−1)])
�

(w[1,h(j)−1])
#. We get that (lj 	C (1σi ⊕C . . . ⊕C 1σj−1))(w[1,h(i)−1]) and hence the

result. For right′i 6=j, we need to show that r′i,j(w[h(i)+1,|w|]). Observe that w |=h ϕ
ensures li(w[1,h(i)−1]), 1σi(w[h(i)]), lj(w[1,h(j)−1]), 1σj (w[h(j)]) and rj(w[h(j)+1,|w|]).
Hence, (lj ⊕C 1σj ⊕C rj)[w] and (li ⊕C 1σi)[w[1,h(i)]]. The result follows from that
w# = (w[1,h(i)])

⊕C (w[h(i)+1,|w|])
#. ut

Procedure Normalize((l1, σ1, r1) · · · (ln, σn, rn))
1 repeat
2

(
l′1, σ

′
1, r
′
1

)
· · ·

(
l′n, σ

′
n, r
′
n

)
← (l1, σ1, r1) · · · (ln, σn, rn);

3 for i← 1 to n do
4 for j ← 1 to i− 1 do
5 ri ← ri uC

(
rj 	C (1σj+1

⊕C . . . 1σi)
)

;

6 li ← li uC

(
(lj ⊕C 1σj ⊕C rj)	C (ri ⊕C 1σi)

)
;

7 ri ← ri uC

(
(lj ⊕C 1σj ⊕C rj)	C (li ⊕C 1σi)

)
;

8 for j ← i+ 1 to n do
9 li ← li uC

(
lj 	C (1σj+1

⊕C . . . 1σi)
)

;

10 li ← li uC

(
(lj ⊕C 1σj ⊕C rj)	C (ri ⊕C 1σi)

)
;

11 ri ← ri uC

(
(lj ⊕C 1σj ⊕C rj)	C (li ⊕C 1σi)

)
;

12 until (l1, σ1, r1) · · · (ln, σn, rn) vNCW
(
l′1, σ

′
1, r
′
1

)
· · ·

(
l′n, σ

′
n, r
′
n

)
;

13 return (l1, σ1, r1) · · · (ln, σn, rn);

Lemma 4 (Normalization). Procedure Normalize repeatedly applies the rules of Ta-
ble (2). It results in a counted word that is independent of the application order.

Proof. Termination can be obtained as follows. At each rule, manipulated and obtained
counted words are well formed. Using Lemma (2), we deduce that all counters belong
to a finite lattice in which rules are monotonic functions that strengthen a counter and
keep the other counters unchanged. Unicity can be obtained by contradiction. Suppose

two different counted words are obtained as normalizations of the same well formed
counted word. The words can only differ in their counters. Pick different corresponding
counters. Given the allowed forms for the predicates (Lemmata (2) and (3)), we deduce
that at least one predicate associated to some letter is strictly stronger in one of the coun-
ters. If we apply to the word with a weaker predicate, the sequence of rules that were
applied to the word with a stronger predicate, we would get a strictly stronger predicate.
This contradicts having reached a fixpoint for the word with a weaker predicate. ut

Normalized words and entailment. We write NCW to mean the set of normalized
words in CW. Assume two normalized counted words ϕ = (l1, σ1, r1) · · · (ln, σn, rn)
and ϕ′ = (l′1, σ

′
1, r
′
1) · · · (l′m, σ′m, r′m) in NCW. We say that ϕ is h-entailed by ϕ′

for some increasing injection h : n → m, and write ϕ vhNCW ϕ′, to mean that the
following three conditions hold for each i ∈ n: ϕ[i] = ϕ′[h(i)], li vC l′h(i), and
ri vC r′h(i). We write ϕ vNCW ϕ′ to mean that ϕ vhNCW ϕ′ for some h. Observe
that ([va ≥ 0], a, [va = 0]) 6vNCW ([va = 0], a, [va ≥ 0]), but [[([va ≥ 0], a, [va = 0])]] =
[[([va = 0], a, [va ≥ 0])]] = a+.

Lemma 5 (Entailment). The relation vNCW on NCW is both reflexive and transi-
tive. Moreover, it can be checked in linear time in the length of the counted words and
ϕ vNCW ϕ′ implies [[ϕ′]] ⊆ [[ϕ]].

Word cut-offs. Similarly to the cut-offs defined in Section (2) for counters, the cut-off of
a well formed word ϕ is a multiset κ(ϕ). It associates to each letter σ the natural number
max {κ(cr)(σ)| cr is a counter in ϕ}. In Example (2), κ(ϕ)(a) = 2 and κ(ϕ)(b) = 1.
We say that a counted word ϕ has a k-cut-off if all its counters are in Ck. For example,
counted words with a 0-cut-off only have inequalities in their counters (they denote
upward closed sets with respect to the subword ordering). We write CWk (NCWk) to
mean the set of (normalized) well formed counted words that have a k-cut-off.

Theorem 1 (WQO). For any fixed k ∈ N, (NCWk,vNCW) is a well quasi ordering.

Proof. Higman’s Lemma [13] states that if (Σ,�) is a wqo, then the pair (Σ∗,�∗)
is also a wqo5. We let Γ = Ck × Σ × Ck and (l, σ, r) � (l′, σ′ , r′) if l vC l′ and
σ = σ′ and r vC r′. Observe that NCWk ⊆ Γ ∗, and that �∗ coincides with vNCW .
Hence, showing that (Γ,�) is a wqo establishes the result. Given an infinite sequence
we can extract an infinite subsequence (lm1

, σm1
, rm1

) , (lm2
, σm2

, rm2
) , . . . in which

σmi = σmj for all i 6= j and use Lemma (1). ut

Meet of counted words. Given ϕ,ϕ′ in NCW, the result of Procedure (zip) is a set
(ϕ uNCW ϕ′) of normalized counted words that entail both ϕ and ϕ′ and whose deno-
tation coincides with [[ϕ]] ∩ [[ϕ′]]. An empty set corresponds to an empty intersection.
The procedure builds a constrained shuffle of ϕ and ϕ′. It is recursive and takes as ar-
guments five counted words z, p, s, p′, s′, with ϕ = (p · s) and ϕ′ = (p′ · s′). We
write (z, (p : s), (p′ : s′)) for clarity. Intuitively, each call tries to complete the first
argument z in order to obtain a counted word that entails both (p · s) and (p′ · s′). The

5 σ1 · · ·σn �∗ σ′1 · · ·σ′m iff there is a strictly increasing h : n→ m with σi � σ′h(i)

procedure starts with (ε, (ε : ϕ), (ε : ϕ′)) and collects all such counted words z. At
each call, it considers contributions to z from hd(s) (lines (2-4)), hd(s′) (lines (9-11)),
or both hd(s) and hd(s′) (lines (5-8)). The contributions are completed by further calls
to Procedure zip, and the results are collected in the local variable collect. Lines
(2-4) capture the situation where a state in z is mapped to hd(s) and tolerated by (i.e.,
not forbidden by the counters of) ϕ′ (test at line (3)). Lines (5-8) correspond to a state
in z simultaneously mapped to hd(s) and hd(s′). The words s and s′ contain states that
are still not treated. Termination is obtained with the ranking function |s| + |s′|. The
following lemma establishes correctness of Procedure (zip).

Lemma 6 (intersection). Given ϕ,ϕ′ in NCW, zip(ε, (ε : ϕ), (ε : ϕ′)) returns a set
{ϕ1, . . . ϕn} s.t. (ϕvNCWϕi), (ϕ′vNCWϕi) for each i ∈ n, and ∪i∈n[[ϕi]] = [[ϕ]]∩ [[ϕ′]].

Procedure zip(z, (p:s), (p′:s′))
1 collect := ∅ ;
2 if (s 6= ε) then
3 if κ(

−→
p′)(hd(s)) = 0 and κ(

←−
s′)(hd(s)) = 0 then

4 collect ∪ := zip(z · hd(s), (p · hd(s) : tl(s)), (p′ : s′))

5 if (s 6= ε and s′ 6= ε) then
6 if (

←−−−
hd(s) uC

←−−−−
hd(s′) 6= false) and (hd(s) = hd(s′)) and (

−−−→
hd(s) uC

−−−−→
hd(s′) 6= false) then

7 e := (
←−−−
hd(s) uC

←−−−−
hd(s′), hd(s),

−−−→
hd(s) uC

−−−−→
hd(s′));

8 collect ∪ := zip(z · e, (p · hd(s) : tl(s)), (p′ · hd(s′) : tl(s′)))

9 if (s′ 6= ε) then
10 if κ(−→p)(hd(s′)) = 0 and κ(←−s)(hd(s′)) = 0 then
11 collect ∪ := zip(z · hd(s′), (p : s), (p′ · hd(s′) : tl(s′)))

12 if (s = ε and s′ = ε) then
13 collect := {Normalize(z)}
14 return collect;

Relaxation. We use the notion of relaxing a counted word ϕ wrt. a multiset ρ. First,
given a counter cr = [∧σ inΣ(vσ ∼ k)], relaxing cr wrt. ρ, written ∇ρ(cr), results in
the counter [∧σ inΣ(vσ ∼′ k)] s.t. (vσ ∼′ k) is equal to (vσ ≥ k) if (vσ ∼ k) was
(vσ = k) in cr with k ≥ ρ(σ), and to (vσ ∼ k) otherwise. In other words, relaxation
wrt. ρ replaces by inequalities those equalities that involve constants larger or equal to
what is allowed by ρ. Relaxation of a counted word ϕ wrt. a multiset ρ is simply the
word∇ρ(ϕ) obtained by normalizing the result of relaxing all counters in ϕ wrt. ρ. We
let∇NCW be the set {∇ρ| ρ is a multiset over Σ}.
Lemma 7 (Relaxation). ∇ρ(ϕ) vNCW ϕ for any ϕ ∈ NCW and multiset ρ. In addi-
tion, κ(∇ρ(ϕ))(σ) ≤ max(0, 2ρ(σ)− 1) for each σ ∈ Σ.

Proof. Sketch. Suppose ∇ρ(ϕ) 6vNCW ϕ, then there is a counter crϕ in ϕ that does
not entail a corresponding counter cr∇ in ∇ρ(ϕ). This is not possible. Indeed, be-
fore normalization, ∇ρ(ϕ) and ϕ are both well formed with the same base and nor-
malization in ∇ρ(ϕ) starts with weaker counters than those in ϕ . By applying to ϕ
the sequence of normalization rules used to normalize ∇ρ(ϕ), we obtain (by mono-
tonicity) that the counters in ∇ρ(ϕ) are weaker than those in ϕ. The strongest cut-
off (2ρ(σ) − 1) is obtained when both left and right counters in some tuple (l, σ, r)
associate the predicate vσ = (ρ(σ) − 1) to the letter σ. One can show by induc-
tion on the number of applications of the normalization rules, that for any letter σ′,
κ(l ⊕C 1σ ⊕C r)(σ

′) ≤ max(0, 2ρ(σ′)− 1). ut

4 Reachability for Linear Parameterized Systems

Linear Parameterized Systems with Global Conditions. Such a system consists of arbi-
trary many finite processes placed in an array. Formally, a linear parameterized system
is a pair P = (Q,T), where Q is a finite set of local states and T is a finite set of tran-
sitions. A transition is either local or global. A local transition is of the form q → q′.
It allows a process to change its local state from q to q′ independently of the local
states of the other processes. A global transition is of the form q → q′ : QP , where
Q ∈ {∃L,∃R,∃LR,∀L,∀R,∀LR} and P ⊆ Q. For instance, the condition ∀LP means that
“all processes to the left should be in local states that belong to P ”. This work is well
suited for extensions involving binary or broadcast communication, shared variables or
dynamic creation and deletion of processes. We omit them for clarity. A parameterized
system (Q,T) induces an infinite-state transition system where C = Q∗ is the set of
configurations and −→ is a transition relation on C. For configurations c = c1qc2,
c′ = c1q

′c2, and a transition t ∈ T , we write c −→t c
′ to mean:

– t is a local transition of the form q → q′, or
– t is a global transition q → q′ : QP , and one of the following conditions is satisfied:
• either QP = ∃LP and c1• ∩ P 6= ∅, or QP = ∃RP and c2• ∩ P 6= ∅, or

QP = ∃LRP and (c1
• ∪ c2•) ∩ P 6= ∅.

• or QP = ∀LP and c1• ⊆ P , or QP = ∀RP and c2• ⊆ P , or QP = ∀LRP and
(c1
• ∪ c2•) ⊆ P .

We write −→ to mean ∪t∈T −→t and use ∗−→ to denote its reflexive transitive closure.
We assume that prior to starting the execution of the system, each process is in an
(identical) initial state. We use Init to denote the set of initial configurations. Notice
that the set Init is infinite. It can be shown, using standard techniques (see e.g. [19]),
that checking safety properties (expressed as regular languages) can be translated into
instances of the following reachability problem: given P = (Q,T) and a possibly
infnite set CF of configurations, check whether Init ∗−→ CF .

A counted word based refinable reachability scheme We use normalized counted words
over Q as a symbolic representation for sets of configurations of (Q,T). For this pur-
pose, we require Init and CF to be captured using a (set of) counted words. We then
proceed by repeatedly computing (lemma (8)) in forward (resp. backward) the set of
successor (resp. predecessor) configurations starting from the counted words capturing
Init (resp. CF). We use lemma (6) to check the intersection with CF (resp. Init). We
use the vNCW relation (lemma (5)) to maintain a minimal set (i.e. a set of pairwise un-
related elements) capturing the set of configurations that are forward (resp. backward)
reachable from Init (resp. CF). To ensure termination, we systematically apply some
relaxation∇ρ that imposes bounded cut-offs (lemma (7) and theorem (1)). We start with
the cut-off ρ = 0 and strengthen it (i.e. increment the values associated to some of the
letters in Q) in case the over-approximation induced by ∇ρ results in a spurious trace.
Strengthening the cut-off ρ results in a more precise (and hence more expensive) anal-
ysis. We use the following heuristic to eliminate encountered spurious traces without
making the analysis unecessary expensive. We follow without relaxation, the trace ob-
tained using∇ρ and identify the letters in Q for which the relaxation in ρ is responsible
for generating the supious trace. We then only increase the cut-offs for those letters.

Lemma 8 (Post and Pre). Given ϕ ∈ NCW and a transition t, we can compute two
sets of counted words postt(ϕ) and pret(ϕ) such that (∪ϕ′∈postt(ϕ)[[ϕ

′]]) and (∪ϕ′∈pret(ϕ)[[ϕ
′]])

respectively equal {c′| c −→t c
′ with c in [[ϕ]]} and {c′| c′ −→t c with c in [[ϕ]]}.

re
fin

e

tim
e

st
ep

s

w
or

ds

sa
fe

Fo
rw

ar
d

I

1 .01 0 1 ?
2 .03 6 241 ?
3 .11 17 875

√

II

1 .01 0 1 ?
2 .02 7 343 ?
3 .02 8 323 ?
4 .02 9 241 ?
5 .15 11 297 ?
6 .04 12 105 ?
7 5.85 171 5143

√

II
I

1 .01 0 1 ?
2 .03 8 356 ?
3 .04 10 406 ?
4 .32 24 1252 ?
5 .36 25 1248 ?
6 .81 35 1043 ?
7 .54 40 685 ?
8 .04 12 149 ?
9 39.35 532 11006 ?
10 > 1200 > 2000 > 68000 ×

IV
1 .01 0 1 ?
2 .06 9 636 ?
3 .07 11 685 ?
4 .07 12 602 ?
5 .09 13 651 ?
6 .08 28 1695 ?
7 2.52 54 3003 ?
8 10.02 52 2758 ?
9 3.03 57 866 ?
10 1.80 81 1006 ?
11 >1200 >2800 > 120000 ×

B
ac

kw
ar

d
I 1 .02 2 151

√

II 1 .18 19 3026
√

II
I 1 110.14 1166 169789 ?

2 158.29 1567 194425 ?
3 30.31 583 78942

√

IV

1 138.10 932 233604 ?
2 34.33 434 129368

√

Table 3. NCW based forward
and backward analysis of mutex
algorithms.

Experimental Results. We have implemented the
counted words based reachability scheme in Ocaml
and run experiments on an Intel Core 2 Duo 2.26
GHz laptop with 4GB of memory. Table (3) summa-
rizes the results. We have considered four classical mu-
tex algorithms, namely Burns [2], compact [5] and re-
fined [15] versions of Szymanski’s algorithm, and the
related Gribomont-Zenner mutex [12]. The algorithms
respectively appear under rows (I,II,III and IV) in Ta-
ble (3). We instantiate the scheme both in forward and
backward. For each instantiation and each algorithm,
we give running times in seconds, the number of re-
finement steps, the number of generated counted words
and the outcome of the analysis. We write “?” to mean
a trace was found by the over-approximated analysis,
and write “

√
” to mean unreachability (i.e., safety) is

established. We allocate a budget of 20 minutes for
each refinement step, and write × in case the analy-
sis exhausted the allocated time. The backward instan-
tiation is more precise and naturally generalizes using
upward closed sets as symbolic representations (as in
monotonic abstraction [2]). It is therefore not surpris-
ing that it managed to establish correctness for all al-
gorithms. Upward closed sets (wrt. the subword rela-
tion) yield however a too imprecise forward analysis.
Still, the new approach could establish mutual exclu-
sion for both algorithms (I) and (II). The analysis ex-
hausted its time budget for the two other algorithms.
Backward analysis seems to profit from the fact that it
starts from an upward closed set of configurations. For-
ward analysis does not have that advantage. We did ex-
periment with simple non-approximated accelerations.
While this boosted performance, we do not report it in
Table (3) in order to simplify the presentation.

5 Conclusions

We have introduced a new symbolic representation for the verification of parameter-
ized systems where processes are organized in a linear array. The new representation
combines counter abstraction together with upward closure based techniques. It allows
for an approximated analysis with a threshold-based precision (or relaxation) that can

be uniformly tuned. Based on the representation, we implemented a counter example
based refinement scheme that illustrated the applicability and the relevance of the ap-
proach, both for forward and for backward analysis. Possible futur work can investigate
more general representations to apply to heap or graph manipulating programs.

References

1. P. A. Abdulla, G. Delzanno, and A. Rezine. Approximated context-sensitive analysis for
parameterized verification. In FMOODS/FORTE, volume 5522, pp 41–56. Springer, 2009.

2. P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Regular model checking without
transducers. In Proc. TACAS, volume 4424 of LNCS, pp 721–736. Springer Verlag, 2007.

3. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Regular model checking made simple
and efficient. In Proc. CONCUR 2002, volume 2421 of LNCS, pp 116–130, 2002.

4. K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems.
Information Processing Letters, 22:307–309, 1986.

5. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with automati-
cally computed inductive assertions. In Proc. CAV, vol 2102 of LNCS, pp 221–234, 2001.

6. B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large. In Proc. 15th Int.
Conf. on Computer Aided Verification, volume 2725 of LNCS, pp 223–235, 2003.

7. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In CAV04,
LNCS, pp 372–386, Boston, July 2004. Springer Verlag.

8. E. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized verification.
In Proc. VMCAI ’06, volume 3855 of LNCS, pp 126–141, 2006.

9. D. Dams, Y. Lakhnech, and M. Steffen. Iterating transducers. In G. Berry, H. Comon, and
A. Finkel, editors, Computer Aided Verification, volume 2102 of LNCS, 2001.

10. G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, Enlarge and Check: new algorithms for
the coverability problem of WSTS. Journal of Computer and System Sciences, 72(1):180–
203, 2006.

11. S. M. German and A. P. Sistla. Reasoning about systems with many processes. Journal of
the ACM, 39(3):675–735, 1992.

12. E. Gribomont and G. Zenner. Automated verification of Szymanski’s algorithm. In Proc.
TACAS ’98, volume 1384 of LNCS, pp 424–438, 1998.

13. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3),
2(7):326–336, 1952.

14. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with
rich assertional languages. In Proc. CAV ’97, volume 1254, pp 424–435, 1997.

15. Z. Manna and A. Pnueli. An exercise in the verification of multi – process programs. In
Beauty is Our Business, pp 289–301. Springer Verlag, 1990.

16. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invariants.
In Proc. TACAS ’01, volume 2031, pp 82–97, 2001.

17. A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,infinity)-counter abstraction. In Proc. 14th

Int. Conf. on Computer Aided Verification, volume 2404 of LNCS, 2002.
18. T. Touili. Regular Model Checking using Widening Techniques. ENTCS, 50(4), 2001. Proc.

Workshop on Verification of Parametrized Systems (VEPAS’01), Crete, July, 2001.
19. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-

tion. In Proc. LICS ’86, Int. Symp. on Logic in Computer Science, June 1986.

