
Verifying Safety and Liveness for the FlexTM
Hybrid Transactional Memory

Parosh Abdulla�, Sandhya Dwarkadasy, Ahmed Rezinez, Arrvindh Shriramanx and Yunyun Zhu�,
�Uppsala University, Sweden, Email: fparosh,yunyun.zhug@it.uu.se
yUniversity of Rochester, U.S.A., Email: sandhya@cs.rochester.edu

zLinköping University, Sweden, Email: ahmed.rezine@liu.se
xSimon Fraser University, Canada, Email: ashriram@cs.sfu.ca

Abstract—We consider the verification of safety (strict se-
rializability and abort consistency) and liveness (obstruction
and livelock freedom) for the hybrid transactional memory
framework FLEXTM. This framework allows for flexible imple-
mentations of transactional memories based on an adaptation
of the MESI coherence protocol. FLEXTM allows for both
eager and lazy conflict resolution strategies. Like in the case
of Software Transactional Memories, the verification problem
is not trivial as the number of concurrent transactions, their
size, and the number of accessed shared variables cannot be
a priori bounded. This complexity is exacerbated by aspects
that are specific to hardware and hybrid transactional memories.
Our work takes into account intricate behaviours such as cache
line based conflict detection, false sharing, invisible reads or
non-transactional instructions. We carry out the first automatic
verification of a hybrid transactional memory and establish, by
adopting a small model approach, challenging properties such as
strict serializability, abort consistency, and obstruction freedom
for both an eager and a lazy conflict resolution strategies. We
also detect an example that refutes livelock freedom. To achieve
this, our prototype tool makes use of the latest antichain based
techniques to handle systems with tens of thousands of states.

I. INTRODUCTION

Multicore processors are often presented as the only viable
solution to achieve more performance in modern computers.
This entails writing concurrent code that takes advantage of the
parallelism available on these machines. Traditional concurrent
programming, especially based on lock synchronization, can
easily become a daunting and error prone task. In this context,
the Transactional Memory (TM) approach takes advantage of
the offered parallelism while giving the programmer the illu-
sion of atomicity. More concretely, the programmer describes
the blocks that are to be executed atomically. Each such block
(i.e., a transaction) boils down to a finite sequence of loads
and stores. The sequence ends with a commit instruction. A
successful transaction takes effect and is said to be committed.
Otherwise, the transaction is aborted and may be restarted
if needed. The concurrent transactions run on top of an
underlying Transactional Memory (hardware [1]–[5], software
[6]–[10], or hybrid [11]–[14]) infrastructure that maintains the
atomicity illusion.

In this paper, we consider for the first time the problem
of automatically and formally verifying a hybrid transactional
memory. More concretely, we propose parameterized models

(i.e., infinite models with a size that cannot be a priori
bounded) in order to capture the intricate behaviors of the
FLEXTM hybrid transactional memory [15]. Some of this
complexity is shared with software transactional memories,
like the arbitrary number of concurrent transactions, their size,
the number of shared variables, the granularity of the global
operations (like commit) or the handling of non-transactional
instructions. Other sources of complexity are exclusive to
hardware and to hybrid transactional memories. Aspects like
cache line based conflict detection and tracking mechanisms,
false sharing and invisible reads have not been taken into
account before when verifying properties such as the abort
consistency of a transactional memory. In fact, the models we
propose are so rich that they easily require tens of thousands
of states even to represent small instances of the FLEXTM
transactional memory. We check against these models the va-
lidity of the four challenging properties of strict serializability,
abort consistency, obstruction freedom and livelock freedom
[16]–[18].

Intuitively, strict serializability is a safety property that
requires that all transactions appear to take effect sequentially
(i.e., one after the other) with no interleavings, and such that
the order of non-interleaving transactions is preserved. Abort
consistency further requires that even aborted transactions ob-
serve consistent variables values. On the other hand, obstruc-
tion freedom and livelock freedom are liveness properties that
ensure progress. Obstruction freedom roughly requires that a
transaction in isolation will eventually successfully commit,
and livelock freedom requires that if several transactions are
simultaneously active, then at least one of them will succeed.

Several works have considered the parameterized verifica-
tion of coherence in cache protocols [19]–[21]. The properties
we consider in this work are more complex as they combine
several degrees of infiniteness (number of concurrent transac-
tions, their size, and the number of involved shared variables).
In addition, and unlike previous work on the verification of
software transactional memory [22], we need to take into
account behaviours and mechanisms that can only be found
in hybrid or hardware transactional memories (false sharing,
invisible reads and non-atomic commits with cache line based
conflict detection and tracking).

We make the following contributions in this paper.
� We propose two fine grained models for the FLEXTM978-3-9815370-0-0 / DATE13 / c 2013 EDAA



FLEXTM + thread scheduler

(tld(a); ti); (com; tj); (tst(b); ti); (abort; tk); : : :

......

thread t1
tld(a)

tld(a) tst(b)

tld(c)

com

r=0 r=1

r=1

r=1

r=0 r=1 r=0

r=0

r=0 r=1

thread tn
tld(c)

tld(c) com

tst(a)

tld(b)

r=0 r=1

r=1

r=1

r=0 r=1 r=0

r=0

r=0 r=1

responses instructions responses instructions

generated trace

Fig. 1. T concurrent threads access V shared variables by running sequences
of (transactional) instructions on top of the FLEXTM hybrid transactional
memory. Threads are modelled as binary trees to capture the control flow and
the possibilities of abort.

hybrid transactional memory [15]. The models differ in
the adopted conflict resolution strategies (i.e., eager and
lazy) and take into account the non transactional code in
the programs.

� We build these models and obtain automata with tens of
thousands of states. We modify them in order to allow
write-write conflicts. This is a commonly allowed conflict
in software transactional memories. Our prototype tool
automatically captures a non serializable execution due
to invisible reads and false sharing. The aspects are
exclusive to hardware implementations and had to be
taken into account, for the first time, when automatically
proving strict serializability.

� We state that the obtained models do in fact exhibit
symmetry properties introduced in [22] allowing us to
make use of a small model theorem for which they
propose a most general description for strict serializability
and for abort consistency. The properties ensure that it
is enough to check the considered properties on models
involving two threads and two variables.

� We establish obstruction freedom and refute livelock
freedom by analyzing the obtained models.

� We prove strict serializability and abort consistency by
language inclusion using recent non trivial automata
based techniques [23], [24] that can establish (or refute)
in seconds language inclusion for automata with tens of
thousands of states.

In the rest of the paper, we introduce the FLEXTM frame-
work and describe its lazy (and most involved) mode in
Section II. We formally define in Section III the generated
transactions and formally prove the required properties in
Section IV. We report on the size of the obtained models,
on the used techniques and on the results in Section V. We
conclude in Section VI.

II. THE FLEXTM TRANSACTIONAL MEMORY

The FLEXTM framework [15] allows for two conflict
detection modes, either lazy or eager. In eager mode, a conflict
manager is called as soon as a conflict is detected. The conflict
manager is then free to decide which transaction to abort.
When a transaction reaches its commit point, it can commit
if it was not aborted by another transaction. In lazy mode,
the hardware keeps track of the conflicts and it is when
the transaction tries to commit that it aborts, one by one,
the conflicting transactions. This takes place non-atomically
in software and can result in races among the competing
transactions. In our work, we modeled both modes. To simplify
the presentation, and unless otherwise stated, we will refer
to the lazy and more involved mode each time we mention
FLEXTM.

A. Threads and programs

Adopting the approach of [22], an arbitrary but fixed number
of threads are assumed to share an arbitrary number of
variables and run concurrently, one per processor, on a multi-
processor machine. We write T to mean the set of concurrent
threads and V for the set of variables they share. For the
sake of clarity, we restrict the presentation in this section to
the case where threads only run transactional instructions. We
explain how we deal with non-transactional instructions at the
end of the present section. As depicted in Fig.1, each thread
in T issues transactional loads (tld(v)), transactional stores
(tst(v)), or commit instructions (com); i.e., instructions in
C = ftld(v); tst(v)gv2V [fcomg. A statement is an element
of S = C � T . We write Ĉ and Ŝ to mean C [ fabortg and
Ĉ � T respectively. A binary tree � : f0; 1g� ! C is used to
capture the sequences of instructions issued by some thread
in T . Intuitively, the control flow is already incorporated in
the possibly infinite trees, and a thread sends an instruction
to the FLEXTM transaction memory which either accepts it
(i.e., returns 1 and the thread proceeds with the right child in
the tree) or rejects it (i.e., returns 0 and the thread proceeds
with the left child in the tree). We write Θ to mean the set of
unrolled threads, i.e., of binary trees over C. A program p is a
tuple (�[1]; �[2]; : : :) of unrolled threads, one for each thread
t1; t2; : : : in T . Pn

k is the set of programs for n threads and k
variables.

B. The FLEXTM transactional memory

FLEXTM builds on the inherent versioning capabilities of
the MESI [25] cache coherence protocol. Schematically, each
processor has a private L1 cache and shares the L2 cache with
other processors. Given a variable v in V , we write $(v) to
mean the cache line associated with v, and $(V ) to mean
the set of all cache lines. We also write v0 2 $(v) to mean
that v and v0 share the same cache line. When a processor
accesses a variable v for read or write, it atomically brings
the whole line $(v) to its cache. This is known as invisible
reads and amounts to simultaneously reading all variables
associated to $(v). In the descriptions that follow, and given
a thread t, we use

�
�v02$(v)(tld(v0); t)

�
to mean a sequence



(tld(v1); t) � (tld(v2); t) � � � (tld(vm); t) of instructions where
thread t reads, in some fixed arbitrary order, all variables in
$(v). For example, we write

�
�vi2$(v)(tld(vi); t)

�
�(tst(v); t) to

mean a sequence of instructions where t reads all variables in
$(v) and then writes to v itself. FLEXTM handles in software
the management of the lines that do not fit in the cache. We
therefore abstract away from this aspect and uniformly handle
all cache lines in the same way.

FLEXTM induces a transition system (Q;∆; sinit). A state
s in Q is a tuple (status; sigs; cst; cst�) where:
� status : T ! fidle; active; check; abortg keeps track of

the status of the current transaction of each thread in T .
� sigs is a pair (rsig; wsig) of mappings T ! 2$(V ) that

keep track, for a thread t, of the cache lines of the
variables that are read (in rsig(t)) or written (in wsig(t))
by its current transaction.

� cst is a tuple (rw;wr;ww) of three mappings T ! 2T
that associate to each thread the set of threads with trans-
actions that have a cache line based (read-write, write-
read, or write-write) conflict with its current transaction.

� cst� is a pair of mappings used during the nonatomic
commit phase, they hold copies of wr and ww.

idlestart

active check

abort

(com; (com; t); 1)

�
tst(v);

��
�vi2$(v)(tld(vi); t)

�
� (tst(v); t)

�
; 1

�
�
tld(v);

�
�vi2$(v)(tld(vi); t)

�
; 1

�

�
tld(v);

�
�vi2$(v)(tld(vi); t)

�
; 1

�
�
tst(v);

��
�vi2$(v)(tld(vi); t)

�
� (tst(v); t)

�
; 1

�

(com; (check; t);?)

(com; (com; t); 1)

(com; (inval; t);?)
(tld(v); (abort; t); 0)
(tst(v); (abort; t); 0)
(com; (abort; t); 0)

Fig. 2. Possible status changes for a thread t in the lazy mode of FLEXTM.

The initial state sinit maps all threads to the idle status,
and all signatures and tables to the empty ones. We let Q be
the set of states of the FlexTM. Fig.2 describes the possible
status changes for a thread in FLEXTM. A transition in ∆
is a tuple (s; c; d; r; s0), where s; s0 2 Q, c 2 C and d
in f(c1; t) � � � (cm; t)j8i : 1 � i � m : ci 2 C and t 2

Tg [ (fabort; check; invalg � T ) and r 2 f0; 1;?g. We write
threadOf(d) to mean the thread issuing the instructions in d.
Intuitively, the thread t issues an instruction c which has as ef-
fect that the (sequence of) statement(s) d is executed by thread
threadOf(d). FLEXTM responds to the instruction using r to
state whether c has been accepted (r = 1 and the thread can
proceed with the following instruction in the thread, or with a
new transaction if c was a successful commit), rejected and the
current transaction is aborted (r = 0 and d = (abort; t)), or

1) c = tld(v) and Uw = fuju 6= t and $(v) 2 wsig(u)g, then:
a) status0 = status [t active], and
b) r0sig = rsig [t (rsig(t) [ $(v))], and
c) rw0 = rw [t (rw(t) [ U)], and
d) wr0 = wr [fu (wr(u) [ ftg)ju 2 Ug], and
e) d =

“
�vi2$(v)(tld(vi); t)

”
and r = 1;

2) c = tst(v) with Ur = fuju 6= t and $(v) 2 rsig(u)g and Uw =
fuju 6= t and $(v) 2 wsig(u)g, then:

a) status0 = status [ft activeg], and
b) w0

sig = wsig [t (wsig(t) [ $(v))], and
c) wr0 = wr [t (wr(t) [ Ur)], and
d) rw0 = rw [fu (rw(u) [ ftg)ju 2 Urg], and

e) ww0 = ww

»
fu (ww(u) [ ftg)ju 2 Uwg
[ ft (ww(t) [ Uw)g

–
, and

f) d =
““
�vi2$(v)(tld(vi); t)

”
� (tst(v); t)

”
and r = 1;

3) c = com, then d = (c; t) and r = 1;

Fig. 3. Thread t with idle status issues an instruction c

1) If c = tld(v) and Uw = fuju 6= t and $(v) 2 wsig(u)g:
a) r0sig = rsig [t (rsig(t) [ $(v))], and
b) rw0 = rw [t (rw(t) [ U)], and
c) wr0 = wr [fu (wr(u) [ ftg)ju 2 Ug], and
d) d =

“
�vi2$(v)(tld(vi); t)

”
and r = 1;

2) If c = tst(v) with Ur = fuju 6= t and $(v) 2 rsig(u)g and Uw =
fuju 6= t and $(v) 2 wsig(u)g, then:

a) w0

sig = wsig [t (wsig(t) [ $(v))], and
b) wr0 = wr [t (wr(t) [ Ur)], and
c) rw0 = rw [fu (rw(u) [ ftg)ju 2 Urg], and

d) ww0 = ww

»
fu (ww(u) [ ftg)ju 2 Uwg
[ ft (ww(t) [ Uw)g

–
, and

e) d =
““
�vi2$(v)(tld(vi); t)

”
� (tst(v); t)

”
and r = 1;

3) If c = com then:
a) status0 = status [t check],
b) wr0� = wr� [t wr(t)], and
c) ww0

� = ww� [t ww(t)], and
d) wr0 = wr [t ;], and
e) ww0 = ww [t ;], and
f) d = (check; t) and r = ?;

Fig. 4. Thread t with active status issues an instruction c

the thread has to wait for FLEXTM to respond (r = ?). The
third case occurs when c is a commit, it results in transitions
that involve some instructions that are internal to FLEXTM,
namely to start the commit phase (with check) or to abort
conflicting transactions (with inval). In this case r = ? and
d 2 fcheck; invalg�T . If a read (resp. write) to variable v is
accepted by FLEXTM (r = 1), then we take into account
the entailed invisible reads with d =

�
�vi2$(v)(tld(vi); t)

�

(resp. d =
�
�vi2$(v)(tld(vi); t) � (tst(v))

�
). The transitions

∆ are depicted in Fig.3, Fig.4, Fig.5 and Fig.6. In these
figures, we write f [x  b] to mean the mapping g with
the same domain as f and such that g(y) = f(y) for
all y 6= x and g(x) = b. In addition, we let s =
(status; (rsig; wsig) ; (rw;wr;ww) ; (wr� ; ww�)) and s0 =�
status0;

�
rsig
0; w0sig

�
; (rw0; wr0; ww0) ; (wr0� ; ww0�)

�

For example, Fig.5 describes a thread t running the non-
atomic commit procedure. In this description, t aborts con-
flicting threads in an active or a check status (case 1). If
there are no more conflicting threads and no new conflicts
have been added since last copying the conflicts in wr and
ww, then the transaction is committed and the status of the
new transaction is set to idle (case 3). Otherwise, a new round
that takes into account the new conflicts is started (case 2). In



1) If there is a thread u 6= t with u in (ww�(t) [ wr�(t)), then:
a) ww0

� = ww� [t ww�(t) n fug]
b) wr0� = wr� [t wr�(t) n fug],
c) if status(u) 2 factive; checkg then

i) status0 = status [u abort]
ii) d = (inval; u) and r = ?;

2) If (ww�(t) [ wr�(t)) = ; but (ww(t) [ wr(t)) 6= ;, then
a) wr0� = wr� [t wr], and
b) ww0

� = ww� [t ww], and
c) wr0 = wr [t ;], and
d) ww0 = ww [t ;], and
e) d = (check; t) and r = ?;

3) If (ww�(t) [ wr�(t) [ ww(t) [ wr(t)) = ;, then
a) status0 = status [t idle], d = (com; t) and r = 1;

Fig. 5. Thread t runs the non-atomic commit, i.e., status(t) = check.

1) status0 = status [t idle],
2) S0 = S [t ;] for S 2 fwsig; rsig; rw;wr; ww;wr� ; ww�g,
3) d = (abort; t) and r = 0;

Fig. 6. The transaction of thread t has been aborted, i.e. status(t) = abort.

addition, the transaction run by thread t can be aborted by
concurrent transactions running on other processors (cases 1
during the commit of conflicting transactions in Fig.5 ).

C. Generated words and transaction.

A run of a program p = (�[1]; : : : ; �[n]) in Pn
k with a

scheduler � : N! fij 1 � i � ng on a FlexTM is defined as
follows. A run is a sequence � = (s0; l0) �0�! (s1; l1) �1�! : : :
where si 2 Q, li = (li[1]; : : : ; li[n]) 2 (f0; 1g�)n, with
s0 = sinit and l0 = (�; : : : ; �), and such that for all j � 0,
�j = (sj ; cj ; dj ; rj ; sj+1) in ∆ with: t�(j) = threadOf(dj),
cj = �[�(j)](lj [�(j)]) and for all t 2 T , if t 6= t�(j) or rj = ?
then lj+1[�(j)] = lj [�(j)], otherwise lj+1[�(j)] = lj [�(j)]�rj .
We write �jŜ to mean the projection of the sequence d0 �d1 � � �

on Ŝ�. A word w 2 Ŝ� is said to be generated by a program
p, and write w 2 L(p), if w = �jŜ for some run � of p with
respect to some scheduler.

D. Transactions

Given a finite word w in Ŝ�, we project on a thread t
and obtain a sequence wjt. We define terminating statements
to be the statements in f(com; t) ; (abort; t)g in addition to
the last statement in wjt. An initiating statement is either the
first statement of wjt or a statement following a terminating
statement. A transaction of thread t in a word w 2 L(p) is
any contiguous subsequence of wjt that starts with an initiating
statement and finishes with a terminating statement, without
any terminating statement in the middle. We let Txt(w) be
the set of transactions of thread t in the word w. A statement
s in a transaction x is a global read of a variable v if there
are no statements in x that precede s and that write to v.
Given a transaction x 2 Txt(w), x is said to be committing
if (com; t) 2 x (i.e. if the statement (com; t) appears in x),
aborting if (abort; t) 2 Txt(w), and pending otherwise. Given
a word w, we write com(w) to mean the largest subsequence
of w that only contains statements of committing transactions
in w. The projection of a word w on a set X of transactions in

1) c = ld(v), then:

a) d =
“
�vi2$(v)(tld(vi); t) � (com; t)

”
and r = 1;

2) c = st(v) with U = fuju 6= t; $(v) 2 wsig(u) [ rsig(u)g, then:
a) status0 = status [fu abortedju in Ug], and
b) d =

““
�vi2$(v)(tld(vi); t)

”
� (tst(v); t) � (com; t)

”
, r = 1;

Fig. 7. Thread t with idle status issues a non-transactional instruction c

w is the largest subsequence of w that only includes statements
belonging to a transaction in X . The variable projection of a
word w on a set V 0 of variables is the longest subsequence of
w that only contains commit or abort statements, or statements
that read or write variables in V 0. Given two transactions x
and y in a word w, we write x <w y to mean that the initiating
statement of y appears, in w, after the terminating statement
of x. A word is sequential if for every pair of transactions x; y
in the word, either x <w y or y <w x.

E. Non-transactional instructions

In reality, FLEXTM also allows non-transactional instruc-
tions in programs. A non-transactional instruction is either a
read ld(v) or a write st(v) of some variable v 2 V . FLEXTM
treats any non-transactional read (resp. write) instruction c
issued by a thread t as a transactional read (resp. write)
instruction if it appears within a transaction, i.e. there is a
non-terminating transactional instruction c0 issued by t that
precedes c and such that there is no terminating transaction
instruction issued by t between c0 and c. Non-transactional
instructions that appear outside transactions behave like single-
instruction transactions that take immediate effect (aborting
all transactions that write-read or write-write conflict on a
cache line basis). Concretely, this corresponds to adding the
transitions in Fig.7 to ∆, and to replacing c = tld(v) (resp.
c = tst(v)) by c 2 fld(v); tld(v)g (resp. c 2 fst(v); tst(v)g)
in case 1 (resp. case 2) of Fig.4. With these modifications,
we capture the effect of any non-transactional instruction
issued by the programs (the instruction c) using (sequences
of) transactional statements (the effect d).

III. CORRECTNESS PROPERTIES OF THE GENERATED
SEQUENCES

We formally define the safety and liveness we aim to verify.
First we introduce some notions we use in the definitions of

the correctness properties. Two statements s1 (from transaction
x) and s2 (from transaction y) are said to conflict if either: s1
is a global read of a variable v (which means v has not been
written in x before), y writes to v and s2 is a commit, or if
both x and y write to v and both s1 and s2 are commits. Two
words w and w0 with the same, possibly reordered, statements
are conflict equivalent if for every pair s, s0 of statements in w,
if s conflicts with s0 and s occurs before s0, then s also occurs
before s0 in w0. Two conflict equivalent words w and w0 are
strictly equivalent if for every two transactions x; y in w, if
x <w y then x <w0 y. A word w is strictly serializable (resp.
abort consistent) if there exists a sequential word w0 such
that com(w) (resp. w) is strictly equivalent to w0. We say



that FLEXTM is strictly serializable (resp. abort consistent)
if all generated words (i.e. all w 2 [n;k [p2Pn

k
L(p)) are

strictly serializable (resp. abort consistent). Observe that abort
consistency implies strict serializability.

Obstruction [18] and livelock freedom [17] are liveness
properties and capture requirements on the progress of trans-
actions. Intuitively, obstruction freedom requires that a trans-
action is guaranteed to make progress if all other transac-
tions are suspended. Formally, ^t2T (��((com; t) _ (c; u)) _
��:(abort; t)) with c 2 Ĉ and u 6= t. Livelock freedom
requires that there is always progress in any infinite trace.
Formally, ��(_t2T (com; t)) _ ��(^t2T:(abort; t)).

Given T and V , observe from the description of FLEXTM
in Section II, that the only way to generate a word that violates
obstruction freedom is to go through a loop that has an abort
but no commit and where all statements are from the same
thread. Showing the absence of such a loop, for any sets T and
V therefore proves obstruction freedom. Similarly, showing
the absence, for any sets T and V , of a loop that has no
commit but where all threads have at least an abort statement,
proves livelock freedom.

IV. SMALL MODEL THEOREM AND REQUIRED PROPERTIES

We recall and state the properties introduced in [22] in order
to justify a number of small model theorems. In short, these
theorems ensure that if the correctness properties introduced
in Section III hold for all programs running on FLEXTM with
two threads and two variables, then they will hold for any
program with any number of threads or variables. For lack of
space, we do not prove the properties in this Section.

A. Safety properties

For strict serializability, it is enough to show that FLEXTM
satisfies the properties P1, P2, P3 and P4 below in order to
apply the small model theorem. Let w 2 L(p) for some pro-
gram p 2 Pn

k . Let � = (s0; l0) �0�! (s1; l1) �1�! : : : (sm; lm)
be generated by some program p 2 Pn

k with w = �jŜ .
P1. Assume w has no aborting transactions. If for all trans-

actions x 2 Txt(w) and y 2 Txu(w) we have that either
x <w y, or that y <w x, then the word w0 = w[t=u]
obtained by renaming all transactions of thread u to be
from thread t is in L(p0) for some program p0 2 Pn�1

k .
lemma 1: FLEXTM satisfies P1.

P2. Let X be a subset of the set of committing and pending
transactions in w. The transaction projection of w on X
is in L(p0) for some program p0.
lemma 2: FLEXTM satisfies P2.

P3. Let w be a generated word that have no aborting trans-
action. For a program p, the variable projection of p on
V 0 � V is the program obtained by removing, from all
unrolled threads in p, all reads and writes to the variables
which are not in V 0. The variable projection of p on V 0

is generated by p0 where p0 is the projection of p on V 0.
lemma 3: FLEXTM satisfies P3.

P4. If a word w generated by some program p is an extension
of some word w1, i.e., w = w1 � s, where w1 is strictly

serializable and s is a non aborting statement of the
only pending transaction of w1, then there is a word w2
such that w1 is strictly equivalent to w2 and com(w2) is
sequential and w2 � s is also generated by p.
lemma 4: FLEXTM satisfies P4.

In a similar manner, if the properties P5 and P6 hold, then
it is enough to show obstruction freedom for all programs
on two threads and two variables to deduce that FLEXTM is
obstruction free.

Let w = w1 � w2 be an infinite word in L(p) for some
program p. Assume there are no pending transactions from w1
that have a statement in w2, and all statements in w2 belong
to the same thread.
P5. Let w01 be the projection of w1 on non aborting trans-

actions. Then w01 � w2 2 L(p0) for some program p0.
Moreover, if w1 has no aborting transactions, there exists
a word w0 = w001 � w2 in L(p) where w001 is obtained by
projecting w1 to transactions of thread t, where t has
instructions in w1.
lemma 5: FLEXTM satisfies P5.

P6. There exists a word w0 = w1 �w
0
2 such that w02 is obtained

by projecting on variable fvg, where v is accessed in w2,
and w0 is in L(p) for some program p. Moreover, if w1
has no aborting transactions, then the word w0 = w01 �w2
is in L(p0) for some program p0, where w01 is obtained
by projecting on the variables of w1 accessed in w2.
lemma 6: FLEXTM satisfies P6.

V. EXPERIMENTS

We build four models to capture the behavior of FLEXTM
and two reference models capturing most general descriptions
for both strict serializability and for abort consistency [22].
Every model involves two threads and two variables and
is represented by an automaton. For the FLEXTM models,
we implement both lazy and eager conflict detection modes
and take non-transactional instructions into account. For each
mode we build two models: one has two cache lines with one
variable in each line, while the other has only one cache line
with both variables in the line. We handle non-transactional
instructions and invisible reads as described in II-E and II-B.

We use VATA Library [24], a tool that implements the
antichain based algorithm for checking language inclusion
of (tree and word) automata [23]. The results are obtained
on a dual core laptop PC with 2GB of RAM. As described
in TABLE I, we establish the inclusion of the languages
of the four FLEXTM automata in the languages of each
of the two reference automata. This ensures that all the
traces generated by the models of the two modeled varieties
FLEXTM (i.e., eager and lazy) are both strictly serializable
and abort consistent. Using the small model theorem intro-
duced in Section IV, this establishes that the two modeled
varieties of conflict detection and management in FLEXTM
satisfy both strict serializability and abort consistency. We also
modified the models in order to allow write-write conflicts.
This is a commonly allowed conflict in software transactional



TABLE I
NUMBER OF STATES AND SECONDS REQUIRED TO ESTABLISH THE
INCLUSION OF THE LANGUAGES OF THE AUTOMATA IN THE FIRST

COLUMN IN THE LANGUAGES OF THE AUTOMATA IN THE FIRST ROW.

�
strict serializability abort consistency

(24173 states) (53084 states)
Eager-1-cache 20s 39s(695 states)
Eager-2-cache 29s 50s(19985 states)
Lazy-1-cache 20s 38s(1708 states)
Lazy-2-cache 41s 65s(57755 states)

memories. Our implementation automatically exhibits the fol-
lowing non serializable execution (tst(v1); t1) � (tld(v2); t1) �
((tst(v2); t2)) � (tld(v1); t2) � (com; t1) � (com; t2) where the
underlined statements are accesses due to invisible reads.

We verify liveness properties by looking for loops in the
generated models. We establish that FLEXTM is obstruction
free by checking the absence of loops with an abort, no com
and where all statements are from the same thread (see Section
III). In a similar manner, we refute livelock-freedom by finding
loops that have no com but where all threads have at least
an abort statement; for instance (discarding invisible reads
for clarity) (tld(v); t1) � ((tst(v); t2) � (abort; t1) � (tst(v); t1) �
(abort; t2))! for the eager mode, and (tst(v); t1)�(tst(v); t2)�
((check; t1) � (inval; t1) � (abort; t2) � (tst(v); t2) � (check; t2) �
(inval; t2) � (abort; t1) � (tst(v); t1))! for the lazy mode with
non-atomic commit.

VI. CONCLUSION

We have proposed faithful and detailed models for both the
eager and the lazy modes of the FLEXTM hybrid transac-
tional memory. We have considered intricate aspects that are
specific to hardware and hybrid transactional memories such
as invisible reads and cache line based conflict detection and
tracking. Then, we have adapted a small model based approach
developed for software transactional memories in order to
establish a number of properties allowing simplification of
safety and liveness verification for any numbers of concur-
rent transactions of arbitrary lengths and accessing arbitrary
numbers of variables. This has resulted in representations on
which it was crucial to apply state-of-the-art techniques for
checking inclusion of regular languages in order to automat-
ically establish, for the first time, strict serializability, abort
consistency and obstruction freedom for a hybrid transactional
memory. This work can be extended by establishing a high
level language for describing several hardware and hybrid
transactional memories. We believe a challenging task is to
automatically establish the properties allowing the application
of small model approaches, and to extract the corresponding
systems and carry out the actual verification.

ACKNOWLEDGMENT

Work supported by the Uppsala Programming for Multicore
Architectures Research Center (UPMARC) and by the CENIIT

Software Model Checking in the Multicore Era project.

REFERENCES

[1] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in ISCA, 1993, pp. 289–300.

[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie, “Unbounded transactional memory,” in HPCA. IEEE Computer
Society, 2005, pp. 316–327.

[3] L. Hammond, V. Wong, M. K. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun,
“Transactional memory coherence and consistency,” in ISCA. IEEE
Computer Society, 2004, pp. 102–113.

[4] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“Logtm: log-based transactional memory,” in HPCA. IEEE Computer
Society, 2006, pp. 254–265.

[5] R. Rajwar, M. Herlihy, and K. K. Lai, “Virtualizing transactional
memory,” in ISCA. IEEE Computer Society, 2005, pp. 494–505.

[6] D. Dice, O. Shalev, and N. Shavit, “Transactional locking ii,” in DISC,
ser. LNCS, vol. 4167. Springer, 2006, pp. 194–208.

[7] K. Fraser and T. L. Harris, “Concurrent programming without locks,”
ACM Trans. Comput. Syst., vol. 25, no. 2, 2007.

[8] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. III, “Software
transactional memory for dynamic-sized data structures,” in PODC.
ACM, 2003, pp. 92–101.

[9] V. J. Marathe, W. N. S. III, and M. L. Scott, “Adaptive software
transactional memory,” in DISC, ser. LNCS, vol. 3724. Springer, 2005,
pp. 354–368.

[10] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg, “Mcrt-stm: a high performance software transactional
memory system for a multi-core runtime,” in PPOPP. ACM, 2006,
pp. 187–197.

[11] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum, “Hybrid transactional memory,” in ASPLOS. ACM, 2006, pp.
336–346.

[12] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. D. Nguyen, “Hybrid
transactional memory,” in PPOPP. ACM, 2006, pp. 209–220.

[13] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. G. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun, “An effective hybrid transac-
tional memory system with strong isolation guarantees,” in ISCA. ACM,
2007, pp. 69–80.

[14] A. Shriraman, M. F. Spear, H. Hossain, V. J. Marathe, S. Dwarkadas,
and M. L. Scott, “An integrated hardware-software approach to flexible
transactional memory,” in ISCA. ACM, 2007, pp. 104–115.

[15] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible decoupled
transactional memory support,” in ISCA. IEEE, 2008, pp. 139–150.

[16] T. Harris, J. Larus, and R. Rajwar, Transactional Memory, 2nd edition.
Morgan & Claypool, 2010.

[17] J. H. Anderson, Y.-J. Kim, and T. Herman, “Shared-memory mutual
exclusion: major research trends since 1986,” Distributed Computing,
vol. 16, no. 2-3, pp. 75–110, 2003.

[18] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchroniza-
tion: Double-ended queues as an example,” in ICDCS. IEEE Computer
Society, 2003, pp. 522–529.

[19] G. Delzanno, “Automatic verification of parameterized cache coherence
protocols,” in CAV, ser. LNCS, vol. 1855. Springer, 2000, pp. 53–68.

[20] E. A. Emerson and V. Kahlon, “Exact and efficient verification of
parameterized cache coherence protocols,” in CHARME, ser. LNCS, vol.
2860. Springer, 2003, pp. 247–262.

[21] P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine, “Regular
model checking without transducers (on efficient verification of param-
eterized systems),” in TACAS, ser. LNCS, vol. 4424. Springer, 2007,
pp. 721–736.

[22] R. Guerraoui, T. A. Henzinger, B. Jobstmann, and V. Singh, “Model
checking transactional memories,” in PLDI. ACM, 2008, pp. 372–382.

[23] P. A. Abdulla, Y.-F. Chen, L. Holı́k, R. Mayr, and T. Vojnar, “When
simulation meets antichains,” in TACAS, ser. LNCS, vol. 6015. Springer,
2010, pp. 158–174.

[24] O. Lengál, J. Simácek, and T. Vojnar, “Vata: A library for efficient
manipulation of non-deterministic tree automata,” in TACAS, ser. LNCS,
vol. 7214. Springer, 2012, pp. 79–94.

[25] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” in ISCA. ACM,
1984, pp. 348–354.


