
Performance Optimization of Error Detection
Based on Speculative Reconfiguration

Adrian Lifa Petru Eles Zebo Peng
Linköping University, Linköping, Sweden

{adrian.alin.lifa, petru.eles, zebo.peng}@liu.se

ABSTRACT
This paper presents an approach to minimize the average program
execution time by optimizing the hardware/software implementation
of error detection. We leverage the advantages of partial dynamic
reconfiguration of FPGAs in order to speculatively place in hard-
ware those error detection components that will provide the highest
reduction of execution time. Our optimization algorithm uses fre-
quency information from a counter-based execution profile of the
program. Starting from a control flow graph representation, we build
the interval structure and the control dependence graph, which we
then use to guide our error detection optimization algorithm.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Realtime
and embedded systems; B.8.1 [Performance and Reliability]: Reli-
ability, Testing, and Fault-Tolerance;

General Terms
Algorithms, Performance, Design, Reliability.

Keywords
Error detection implementation, reconfigurable systems, fault toler-
ance, FPGA, system-level optimization.

1. INTRODUCTION

In the context of electronic systems implemented with modern
semiconductor technologies faults have become more and more
frequent. Such faults might be transient, intermittent or permanent.
Factors like high complexity, smaller transistor sizes, higher opera-
tional frequencies and lower voltage levels have contributed to the
increase in the rate of transient and intermittent faults in modern
electronic systems [3]. Our work focuses on optimizing the error
detection for these types of faults, while permanent ones are not
addressed here.

As error detection is needed, no matter what tolerance strategy is
applied, the detection mechanisms are always present and active.
Unfortunately, they are also a major source of time overhead. In
order to reduce this overhead, one possible approach is to implement
the error detection mechanisms in hardware, which, however, in-
creases the cost of the system. Thus, careful optimization of error
detection early in the design phase of a system is important.

Previous work proposed various techniques for error detection,
both software and hardware-based [2, 6, 15], or focused on efficient-
ly implementing the error detection at a system level [10]. There has
been much research done in the area of speculative execution and
supporting compiler techniques, but there has been less work ad-
dressing the problem of performance optimization using speculative
reconfiguration of FPGAs. Jean et al. describe in [7] a dynamically
reconfigurable system that can support multiple applications running
concurrently and implement a strategy to preload FPGA configura-
tions in order to reduce the execution time. Several other papers

present different configuration prefetching techniques in order to
minimize the reconfiguration overhead [4, 9, 13, 19], but error de-
tection or fault tolerance are not tackled in any of them. Many of the
previous papers address the performance optimization problem at a
task level. For a large class of applications (e.g. those that consist of
a single sequential task) using such a task-level coarse granularity is
not appropriate and, instead of considering the tasks as black boxes,
it is necessary to analyze their internal structure and properties.

We propose a speculative reconfiguration strategy to optimize the
hardware/software implementation of error detection, in order to
minimize the average execution time, while meeting the imposed
hardware area constraints. The frequency information used to guide
our decision process is obtained from a counter-based execution pro-
file of the program.

2. PRELIMINARIES

2.1 Error Detection Technique
We focus on application-aware error detection techniques, which

make use of the knowledge about the application’s characteristics in
order to create customized solutions, tuned to better suit each appli-
cation’s needs. The main idea of the application-aware technique
proposed in [12] is to identify, based on specific metrics [14], criti-
cal variables in a program. A critical variable is defined as “a pro-
gram variable that exhibits high sensitivity to random data errors in
the application” [12]. Then, the backward program slice for each
acyclic control path is extracted for the identified critical variables.
The backward program slice is defined as “the set of all program
statements/instructions that can affect the value of the variable at a
program location” [12]. Next, each slice is aggressively optimized at
compile time, resulting in a series of checking expressions (check-
ers). These will be inserted in the original code after the computation
of a critical variable. The checkers can be seen as customized asser-
tions, specialized for each acyclic control path in the backward pro-
gram slice of a variable. Finally, the original program is instru-
mented with instructions to keep track of the control paths followed
at runtime and with checking instructions that would choose the
corresponding checker, and then compare the results obtained.

The above technique has two main sources of performance
overhead: path tracking and variable checking. Both can be imple-
mented either in software, potentially incurring high performance
overheads, or in hardware, which can lead to costs sometimes ex-
ceeding the amount of available resources. In [12], complete hard-
ware implementations of the path tracker and checkers have been
proposed. The modules are part of a framework tightly intercon-
nected with the host processor (the pipeline signals are exposed
through an interface, some special purpose registers provide fast
communication and the framework also has a direct memory access
module for improved effectiveness). The path tracker is efficient and
low-overhead. Unfortunately, implementing each checker to its own
dedicated hardware incurs excessive costs. In order to overcome this
wasteful use of hardware resources, we propose to leverage the ad-
vantages of partial dynamic reconfiguration (PDR) of FPGAs in
order to place in hardware only those checkers that have the poten-
tial to provide the highest performance improvement.

The error detection technique described above detects any tran-
sient errors that result in corruption of the architectural state (e.g.
instruction fetch and decode errors, execute and memory unit errors
and cache/memory/register file errors) provided that they corrupt
one or more variables in the backward slice of a critical variable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC'11, June 5-10, 2011, San Diego, California, USA

Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00

The authors of [12] report that it is possible to achieve 75%-80%
error coverage for crashes by checking the five most critical va-
riables in each function on a set of representative benchmarks. Fault
injection experiments conducted in [14] showed that the above tech-
nique can reach a coverage of 99% by considering 25 critical va-
riables for the perl interpreter. In order to achieve maximal error
coverage, we assume that some complementary, generic error detec-
tion techniques are used in conjunction with the application-aware
one presented above (like a watchdog processor and/or error-
correcting codes in memory). Some hardware redundancy tech-
niques might also be used to deal with the remaining, not covered,
faults [2]. In this paper we concentrate on the optimization of the
application-aware error detection component.

2.2 Basic Concepts
Definition 1: A control flow graph (CFG) of a program is a di-

rected graph Gcf = (Ncf, Ecf), where each node in Ncf corresponds to a
straight-line sequence of operations and the set of edges Ecf corres-
ponds to the possible flow of control within the program. Gcf cap-
tures potential execution paths and contains two distinguished nodes,
root and sink, corresponding to the entry and the exit of the program.

Definition 2: A node n є Ncf is post-dominated by a node m є Ncf
in the control flow graph Gcf = (Ncf, Ecf) if every directed path from n
to sink (excluding n) contains m.

Definition 3: Given a control flow graph Gcf = (Ncf, Ecf), a node
m є Ncf is control dependent upon a node n є Ncf via a control flow
edge e є Ecf if the below conditions hold:

• there exists a directed path P from n to m in Gcf, starting with e,
with all nodes in P (except m and n) post-dominated by m;

• m does not post-dominate n in Gcf.
In other words, there is some control edge from n that definitely

causes m to execute, and there is some path from n to sink that
avoids executing m.

Definition 4: A control dependence graph (CDG) Gcd = (Ncd,
Ecd) corresponding to a control flow graph Gcf = (Ncf, Ecf) is defined
as: Ncd = Ncf and Ecd = {((n, m), e) | m is control dependent upon n
via edge e}. A forward control dependence graph (FCDG) is ob-
tained by ignoring all back edges in CDG.

Definition 5: An interval I(h) in a control flow graph Gcf = (Ncf,
Ecf), with header node h є Ncf, is a strongly connected region of Gcf
that contains h and has the following properties:

• I(h) can be entered only through its header node h;
• all nodes in I(h) can be reached from h along a path contained

in I(h);
• h can be reached from any node in I(h) along a path contained

in I(h).
The interval structure represents the looping constructs of a pro-

gram.

Definition 6: An extended control flow graph (ECFG) is ob-
tained by augmenting the initial control flow graph with a pseudo
control flow edge (root, sink) and with explicit interval entry and
exit nodes as follows:

• for each interval I(h), a preheader node, ph, is added and all
interval entries are redirected to ph (i.e. every edge (n, h), with
n not in I(h) is replaced with the edge (n, ph) and an uncondi-
tional edge (ph, h) is added);

• a postexit node, pe, is added and every edge (n, m) with n in
I(h) and m not in I(h) is replaced by edges (n, pe) and (pe, m);

• a pseudo control flow edge (ph, pe) is added.
The pseudo control flow edges provide a convenient structure to

the control dependence graph (causing all nodes in an interval to be
directly or indirectly control dependent on the preheader node).

Definition 7: Given an edge (n, m) є Efcd in the forward control
dependence graph (FCDG) Gfcd = (Nfcd, Efcd), the execution frequen-
cy of the edge [16] is defined as follows:

• if n is a preheader and m is a header, FREQ(n, m) ≥ 0 is the av-
erage loop frequency for interval I(m);

• otherwise, 0 ≤ FREQ(n, m) ≤ 1 is the branch probability.

3. MOTIVATIONAL EXAMPLE

Let us consider the ECFG in Figure 1. The graph shows two
conditional branches. The execution times of the nodes are: a = 1, b
= 10, d = 20, e = 1, f = 20, g = 10, while the root (r) and sink (s)
have 0 execution times. The conditional edges have their associated
probabilities presented on the graph.

Let us assume that inside node h we have a critical variable that
needs to be checked and, by applying the technique described in
Section 2.1, we derived four checkers for it: c1 to c4. Each of them
corresponds to a different acyclic control path in the ECFG, as
shown in Figure 1. In Table 1 we present the time overheads in-
curred by the software implementation of each checker, as well as
the overheads, area and reconfiguration time incurred by the hard-
ware implementation. Since node h is composed of the four check-
ers, its execution time depends on the actual path followed at run-
time, which will determine which of the four, mutually exclusive,
checkers will get executed.

For the given example, if we assume that all the checkers are
implemented in software, the resulting average execution time of the
ECFG is 54.01. On the other hand, if we assume that we have
enough FPGA area so that we can place all the checkers in hardware
from the beginning (i.e. 95 area units), the average execution time
will be 36.44.

Let us now consider an FPGA supporting partial dynamic recon-
figuration and having an area of only 40 units. For the reconfigura-
tion decision on each of the outgoing edges of node a, one intuitive
solution would be the following: if edge (a, b) is followed, we would
start reconfiguring the checker that has the highest probability to be
reached on this branch (i.e. c1). At runtime, when we reach the
second conditional node, if the edge (e, f) is followed, then our pre-
vious speculation was right, and the reconfiguration of c1 will have
been finished by the time we reach it; otherwise, if the edge (e, g) is
taken, then we can drop the reconfiguration of c1 (because we will
not execute it for sure) and we can start the reconfiguration of c2. Let
us now consider the situation when edge (a, d) is followed. Applying
the same strategy as above, we would start reconfiguring c3 (because
its probability is 60% compared to 40% for c4). In this case, when
we reach node e, if the prediction was right, we will have c3 on
FPGA by the time we reach it. But if the prediction was wrong, it is
not profitable to reconfigure c4 (on edge (e, g)) because reconfigur-
ing it and then executing it in hardware would take 40 + 3 = 43 time
units (note that node g is executed in parallel with the reconfigura-

checking expr. c1 c2

SW - overhead 22 18

HW

overhead 4 3

area 25 10

recon. time 25 10

checking expr. c3 c4

SW - overhead 15 29

HW

overhead 2 3

area 20 40

recon. time 20 40

 PATH(c1) = {(a, b), (e, f)}

PATH(c2) = {(a, b), (e, g)}

PATH(c3) = {(a, d), (e, f)}

PATH(c4) = {(a, d), (e, g)}

 r

a

b

e

g f

h

s

0.55

0.40 0.60

0

d

c1 c2 c3 c4

pseudo

 0.45

1

10

1

20 10

20

Condition: (a, b) (a, b) Λ (e, g) (a, d) (a, d) Λ (e, g)

S1 action: rec. c1 rec. c2 rec. c3 –

Condition: (a, b) (a, b) Λ (e, g) (a, d) (a, d) Λ (e, f)

S2 action: rec. c1 rec. c2 rec. c4 rec. c3

Table 2. Conditional Reconfiguration Schedule Tables

Table 1. Overheads

Figure 1. Motivational Example

0

0

tion), while leaving c4 in software will result in a shorter execution
time (10 + 29 = 39 time units). The result is that only c1, c2 and c3
will possibly be placed in hardware, while c4 is kept in software. In
Table 2 we capture the discussion above in the form of a conditional
reconfiguration schedule (the alternative denoted with S1). This
schedule table contains a set of conditions and the corresponding
reconfigurations that should be started when the condition is true.
These conditions are given as a conjunction of edges, meaning that
in order for the condition to evaluate to true, the edges have to be
followed in the specified order at runtime. The schedule alternative
S1 will lead to an average execution time of 42.16.

However, investigating carefully the example, one can observe
that a better scheduling alternative than S1 can be generated. We can
see that, in case edge (a, d) is taken, it is better to start the reconfigu-
ration of c4 (although it might seem counterintuitive since it has a
smaller probability to be reached than c3). Doing this way, if the
prediction is wrong, it is still profitable to later place c3 in hardware
(schedule S2 from Table 2). For c3 it is possible to postpone its re-
configuration until a later point, since its execution is further away
in time and its reconfiguration overhead is smaller than that of c4.
Even if we start the reconfiguration of c4 first, we still introduce a
waiting time because the reconfiguration is not ready by the time we
reach node h (we start reconfiguring c4 at the end of node a, and the
path to h is only 20 + 1 + 10 = 31 time units, while the reconfigura-
tion takes 40). Nevertheless, waiting 9 time units and then executing
the checker in hardware for 3 units is better than executing it in
software for 29 time units. So, by applying schedule S2, the resulting
average execution time is 38.42, with an FPGA of just 40 area units.

When generating the more efficient scheduling alternative S2 we
did not base our decisions exclusively on execution probabilities (as
is the case with S1). Instead, we took into account the time gain re-
sulted from each checker, as well as its reconfiguration overhead in
conjunction with the length of the path from the current decision
point, up to the location where the checker will be executed.

4. SYSTEM MODEL

We consider a structured [1] program1, modeled as a control
flow graph Gcf = (Ncf, Ecf). The program runs on an architecture
composed of a central processing unit, a memory subsystem and a
reconfigurable device (FPGA). Knowing that SRAM-based FPGAs
are susceptible to single event upsets [20], we assume that suitable
mitigation techniques are employed (e.g. [11]) in order to provide
sufficient reliability of the hardware used for error detection.

We model our FPGA, supporting partial dynamic reconfigura-
tion, as a rectangular matrix of configurable logic blocks (CLBs).
Each checker occupies a contiguous rectangular area of this matrix.
The model allows modules of any rectangular shape and size. The
execution of a checker can proceed in parallel with the reconfigura-
tion of another checker, but only one reconfiguration may be done at
a certain time.

5. PROBLEM FORMULATION

Input: a structured program modeled as a CFG Gcf = (Ncf, Ecf).
Each node has a corresponding execution time: TIME : Ncf → Z

+.
Each edge has associated the probability to be taken: PROB : Ecf →
[0; 1]. We assume that this information is obtained by profiling the
program and it is given.

The set of checkers (checking expressions), CE, corresponding
to the program is also given. Each checker c є CE has associated the
following:
1. the node where it will be executed (HOST : CE → Ncf);
2. the acyclic path for which the checker has been derived (de-

noted with PATH(c) = sequence of edges that lead to HOST(c)
in the CFG);

3. the execution time (SW : CE → Z+) if implemented in software;

1 Since any non-structured program is equivalent to some structured
one, our assumption loses no generality.

4. the execution time (HW : CE → Z
+), necessary FPGA area

(AREA : CE → Z+×Z
+) and reconfiguration overhead (REC :

CE → Z+) if implemented in hardware.
The total available FPGA area which can be used to implement

the error detection is also given.
Goal: to minimize the average execution time of the program,

while meeting the imposed hardware area constraints.
Output: a conditional reconfiguration schedule table.

6. OPTIMIZATION USING SPECULATIVE

RECONFIGURATION

Latest generations of commercially available FPGA families
provide support for partial dynamic reconfiguration (PDR) [21].
This means that parts of the device may be reconfigured at runtime,
while other parts remain functional [17].

We propose a constructive algorithm to solve the problem de-
fined in Section 5. The idea is to use the knowledge regarding al-
ready taken branches, in order to take the best possible decision for
the future and speculatively reconfigure on FPGA the checkers with
the highest potential to provide a performance improvement.

Since for each checker c є CE we have the corresponding acyc-
lic path specified as a sequence of instrumented branches (edges
from the CFG), we define the reach probability (REACH_PROB :
Ncf × CE → [0; 1]): REACH_PROB(n, c) is the probability that the
checker's path is followed at runtime, given that node n є PATH(c) is
reached and all the nodes on PATH(c) up to n where visited. This is
computed as the product of the probabilities of the edges in the
checker's path, from n up to HOST(c). If n is not on PATH(c), then
the reach probability will be zero. Considering the example from
Figure 1, e.g. REACH_PROB(a, c1) = 0.45 × 0.60 = 0.27,
REACH_PROB(b, c1) = 0.60 and REACH_PROB(d, c1) = 0.

For each checker c є CE we also define its time gain as the dif-
ference between its time overhead when implemented in SW versus
in HW (GAIN : CE → Z+, GAIN(c) = SW(c) - HW(c)). Finally, we
denote with ITERATIONS(c) the average frequency of the loop in-
side which c is executed. If c is not inside a loop, ITERATIONS(c) =
1. We will use this value to give higher priority to checkers that get
executed inside loops.

We also assign a weight to each checker c є CE:

)(

)()(),(_
),(

cAREA

cGAINcITERATIONScnPROBREACH
cnWEIGHT

××
=

This weight represents the average time gain per area unit cor-

responding to c. As the execution of the program proceeds, the
weights of some checkers might become zero (if certain paths are
followed, such that those checkers will never get executed, i.e.
REACH_PROB becomes zero), while the weight of other checkers
will increase (as we approach their HOST on a certain path).

6.1 Reconfiguration Schedule Generation
The pseudocode of our reconfiguration schedule generation al-

gorithm is presented in Figure 2. Considering the CFG received as
an input, we first determine its interval structure (line 1), then we
build the ECFG (line 2) according to Definition 6, and the FCDG
(line 3) according to Definition 4.

The next step is to traverse the ECFG and build the reconfigura-
tion schedule (line 5). Once the schedule is generated all the check-
ers have been assigned an implementation (in hardware or in soft-
ware), on any path that might get executed at runtime. Thus we can
estimate the average execution time of the given CFG (line 6).

The actual optimization is performed in the recursive procedure
build_schedule. The ECFG is traversed such that each back edge
and each loop exit edge is processed exactly once (line 8). In order
to be able to handle the complexity, whenever a back or loop exit
edge is taken, we reset the current context (lines 10-11). This means
that in each loop iteration we take the same reconfiguration deci-
sions, regardless of what happened in previous loop iterations. The
same applies to loop exit: decisions after a loop are independent of
what happened inside or before the loop. This guarantees that the
conditional reconfiguration schedule table that we generate is com-

plete (i.e. we tried to take the best possible decision for any path that
might be followed at runtime). The generated schedule table con-
tains a set of conditions and the corresponding reconfigurations to be
performed when a condition is activated at runtime. Considering the
example in Figure 1 a condition and its corresponding action is:

(a, b) Λ (e, g): reconfiguration of c2.
At runtime, a condition is activated only if the particular path

specified by its constituent edges is followed. Once it is activated,
the condition will be restarted, in order to prepare for possible future
activations (if, for example, the path is inside a loop).

At each control node n є Necf in the ECFG we take a different re-
configuration decision on every outgoing edge (line 7). We will next
describe the decision process for one such edge, e = (n, m) є Eecf.
First, the new condition is constructed (line 12). This condition cor-
responds to a conjunction of all the taken edges so far, and the cur-
rent edge, e.

As we process a control edge e = (n, m) є Eecf in the ECFG, we
compute the REACH_PROB(m, c) and the WEIGHT(m, c) of all
checkers in CE (line 14). These values will obviously be different
from the previously computed ones, REACH_PROB(n, c) and
WEIGHT(n, c). To be more exact they will increase as we approach
HOST(c).

We also compute the path length of each checker (denoted with
PATH_LENGTH(n, c)). This represents the length (in time) of the
path that leads from the current node n to HOST(c) in the CFG.

Please note that all the checkers active along that path will have
assigned an implementation (either SW or HW) for the current tra-
versal of the ECFG, so we can compute (line 15) the length of the
path (from the current node up to the location of the checker):





+

=



















+= ∑ ∑
∈

=

≠∈

hardwareindimplementeiskifkHWkWAIT

softwareindimplementeiskifkSW
kOVERHEADwhere

kOVERHEADmTIMEcnLENGTHPATH

cPATHonn
ofsuccessorm

cPATHm

activek
mkHOST

ckCEk

),()(

),(
)(

)()(),(_

)(

),(
,)(

,,

and WAIT(k) = eventual waiting time introduced due to the fact that reconfi-

guration is not finished when the checker is reached.
We denote with ACE(e) the set of currently active checking ex-

pressions (checkers) if edge e is taken in the ECFG, i.e.:
ACE(e) = {c є CE | e є PATH(c) Λ

AREA(c) fits in currently available FPGA area Λ
REC(c) + HW(c) < PATH_LENGTH(n, c) + SW(c) Λ
path from m to HOST(c) does not contain any back edge}.

We discard all the checkers for which we do not currently have
enough contiguous FPGA area available for a feasible placement, as
well as the ones for which it is actually more profitable (at this
point) to leave them in software (because they are too close to the
current location and reconfiguring and executing the checker in
hardware would actually take longer time than executing it in soft-
ware). We also don't start reconfigurations for checkers over a back
edge, because we reset the context on back edges; thus, if a reconfi-
guration would be running, it would be stopped, and this might pos-
sibly lead to a wasteful use of the reconfiguration controller.

The next step after building ACE(e) (line 16) is to check if the
reconfiguration controller is available, in order to schedule new
reconfigurations (line 17). We distinguish three cases:
1. the reconfiguration controller is free. In this case we can simply

proceed and use it;
2. the reconfiguration controller is busy, but it is currently recon-

figuring a checker that is not reachable anymore from the cur-
rent point (we previously started a speculative reconfiguration
and we were wrong). In this case we can drop the current re-
configuration, mark the FPGA space corresponding to the un-
reachable checker as free and use the reconfiguration controller.

3. the reconfiguration controller is busy configuring a checker that
is still reachable from the current point. In this case we leave
the reconfiguration running and schedule new reconfigurations
only in case the current reconfiguration will finish before the
next basic block will finish. Otherwise, we can take a better de-
cision later, on the outgoing edges of the next basic block.

In case ACE(e) ≠ Ø we start new reconfigurations (line 18) by
calling the procedure schedule_new_reconfigurations (described
below). Otherwise, we do not take any reconfiguration action. Then
we continue traversing the ECFG (line 19).

6.2 FPGA Area Management
When we start a new reconfiguration, we choose a subset of

checkers from ACE(e) so that they fit on the currently available
FPGA area, trying to maximize their total weight (lines 22-29).

Let us next describe how the FPGA space is managed. After a
checker is placed on the FPGA, the corresponding module is marked
as active and that space is kept occupied until the checker gets ex-
ecuted. After this point, the module is marked as inactive but it is not
physically removed from the FPGA. Instead, if the same checker is
needed later (e.g. in a loop), and it has not been overwritten yet, we
simply mark it as active and no reconfiguration is needed, since the
module is already on the FPGA (lines 23-24). In case the module is
not currently loaded on the FPGA we need to choose an FPGA loca-
tion and reconfigure it. We distinguish two cases: (1) We cannot
find enough contiguous space on the FPGA, so we need to pick one
inactive module to be replaced. This is done using the least recently
used policy (line 34). (2) There is enough contiguous free FPGA
space, so we need to pick a location (line 32). The free space is ma-
naged by keeping a list of maximal empty rectangles; we pick the

build_reconfiguration_schedule (CFG cfg)
1 determine interval structure of CFG
2 build ECFG
3 build the FCDG
4 //traverse ECFG and build the reconfiguration schedules
5 build_schedule(root, TRUE)
6 compute the average execution time of CFG
end build_reconfiguration_schedule

build_schedule(NODE n, CONDITION cond)
7 for each outgoing edge e = (n, m)
8 if (e is not a back edge and not a loop exit) or (e has not been visited)
9 mark e as visited
10 if e is a back edge or a loop exit edge
11 cond = TRUE; //reset context
12 new_cond = cond Λ e
13 for each checker c є CE
14 compute REACH_PROB(m, c) and WEIGHT(m, c)
15 compute PATH_LENGTH(n, c)
16 build ACE(e)
17 if reconfiguration controller available and ACE(e) ≠ Ø
18 schedule_new_reconfigurations(e, new_cond)
19 build_schedule(m, new_cond)
end build_schedule

schedule_new_reconfigurations(EDGE e = (n, m), CONDITION cond)
20 sort ACE(e) in descending order by WEIGHT
21 do
22 pick and remove c є ACE(e) with highest WEIGHT
23 if c already configured on FPGA but inactive
24 activate c at its current location
25 else
26 loc = choose_FPGA_location(c)
27 mark start of reconfiguration for c, at loc, on new_cond
28 for all checkers c' є ACE(e)
29 recompute PATH_LENGTH(n, c')
30 while (end of reconfiguration < end of m’s execution)
end schedule_new_reconfigurations

choose_FPGA_location(CHECKER c)
31 if there is enough free contiguous space on FPGA
32 return the empty rectangle with lowest fragmentation metric
33 else
34 choose the least recently used inactive modules to be replaced
35 return this location
end choose_FPGA_location

Figure 2. Speculative Optimization Algorithm

location that generates the lowest fragmentation of the FPGA. The
fragmentation metric used to take this decision is described in [5].
The basic idea is to compute the fragmentation contribution of each
cell (FCC) in an empty area (that can fit our module) as:







<

−

−
=

otherwise

Lvif
L

v

CFCC dd

d

d

d

,0

2,
12

1
)(

where vd represents the number of empty cells in the vicinity of cell
C and Ld is the average module size in direction d of all modules
placed so far. We assume that if an empty rectangle can accommo-
date a module as large as twice the average size of the modules
placed so far, the area inside that rectangle is not fragmented. The
total fragmentation of the empty area can be computed as the norma-
lized sum of fragmentation (FCC) of all the cells in that area.

After deciding on a free location, we mark the reconfigurations
in the schedule table as active on the previously built condition (line
27). We stop as soon as the sum of reconfiguration times for the
selected subset of checkers exceeds the execution time of the next
basic block (line 30). For all the other checkers we can take a better
decision later, on the outgoing edges of the next basic block.

7. EXPERIMENTAL RESULTS

In order to evaluate our algorithm we first performed experi-
ments on synthetic examples. We randomly generated control flow
graphs with 100, 200 and 300 nodes (15 CFGs for each application
size). The execution time of each node was randomly generated in
the range of 10 to 250 time units. We then instrumented each CFG
with checkers (35, 50 and 75 checkers for CFGs with 100, 200 and
300 nodes, respectively). For each checker, we generated an execu-
tion time corresponding to its software implementation, as well as
execution time, area and reconfiguration overhead corresponding to
its hardware implementation. The ranges used were based on the
overheads reported in [12] for this error detection technique.

The size of the FPGA available for placement of error detection
modules was varied as follows: we sum up all the hardware areas for
all checkers of a certain application:

∑
=

=

)(

1

)(_
CEcard

i

icAREAHWMAX

Then we generated problem instances by considering the size of

the FPGA corresponding to different fractions of MAX_HW: 3%,
5%, 10%, 15%, 20%, 25%, 40%, 60%, 80% and 100%. As a result,
we obtained a total of 3 × 15 × 10 = 450 experimental settings. All
experiments were run on a PC with CPU frequency 2.83 GHz, 8 GB
of RAM, and running Windows Vista.

We compared the results generated by our optimization algo-
rithm (OPT) with a straight-forward implementation (SF), which
statically places in hardware those expressions that are used most
frequently and give the best gain over a software implementation,
until the whole FPGA is occupied. Module placement is done ac-
cording to the fragmentation metric (FCC) described in Section 6.2.

In order to compute our baseline, we considered that all checkers
are implemented in hardware (for a particular CFG) and then calcu-
lated the execution time of the application (EXHW-only). We also cal-
culated EXSW-only considering that all checkers are implemented in
software. For the same CFGs, we then considered the various hard-
ware fractions assigned and for each resulting FPGA size we com-
puted the execution time after applying our optimization, EXOPT, and
after applying the straight-forward approach, EXSF. In order to esti-
mate the average execution time corresponding to a CFG (line 6 in
Figure 2), we used a modified version of the methodology described
in [16], adapted to take into account reconfiguration of checkers.

For a particular result, EX, we define the normalized distance to
the HW-only solution as:

%100)(












×

−

−

=

−−

−

onlyHWonlySW

onlyHW

EXEX

EXEX
EXD

This distance gives a measure of how close to the HW-only so-
lution we manage to stay, although we use less HW area than the
maximum needed.

In figures 3a and 3b we compare the average D(EXOPT) with
D(EXSF) over all testcases with 100 and 300 nodes2. The setting with
0% HW fraction corresponds to the SW-only solution. It can be
seen, for both problem sizes, that our optimization gets results with-
in 18% of the HW-only solution with only 20% of the maximum
hardware needed. For big fractions the straight-forward solution
(SF) also performs quite well (since there is enough hardware area to
place most of the checkers with high frequencies), but for the small
hardware fractions our algorithm significantly outperforms the SF
solution. As far as the running time of our optimization is concerned,
Figure 3d shows how it scales with the number of nodes in the CFG.
Finally, Figures 3e and 3f present the size of the reconfiguration
tables (number of entries), for testcases with 100 and 300 nodes, for
each hardware fraction considered.

Case study

We also tested our approach on a real-life example, a GSM en-
coder, which implements the European GSM 06.10 provisional
standard for full-rate speech transcoding. This application can be
decomposed into 10 tasks executed in a sequential order: Init, Ge-
tAudioInput, Preprocess, LPC_Analysis, ShortTermAnalysisFilter,
LongTermPredictor, RPE_Encoding, Add, Encode, Output. We
instrumented the whole application with 56 checkers, corresponding
to the 19 most critical variables, according to the technique de-
scribed in Section 2.1. The execution times were derived using the
MPARM cycle accurate simulator, considering an ARM processor
with an operational frequency of 60 MHz. The checking modules
were synthesized for an XC5VLX50 Virtex-5 device, using the Xi-
linx ISE WebPack. The reconfiguration times were estimated consi-
dering a 60 MHz configuration clock frequency and the ICAP 32-bit
width configuration interface. We used a methodology similar to the
one presented in [18] in order to reduce the reconfiguration granular-
ity. The gain, area and reconfiguration overheads for each checker
are given in Table 3. The CFGs for each task, as well as the profiling
information was generated using the LLVM suite [8] as follows:
llvm-gcc was first used to generate LLVM bytecode from the C files.
The opt tool was then used to instrument the bytecode with edge and
basic block profiling instructions. The bytecode was next run using
lli, and then the execution profile was generated using llvm-prof.
Finally, opt-analyze was used to print the CFGs to .dot files. We ran
the profiling considering several audio files (.au) as input. The re-
sults of this step revealed that many checkers (35 out of the 56) were

2 Since the results for 200 nodes CFGs were similar, we omit them
here due to space constraints.

Check Gain

(µs)

Area

(slices)

Rec.

(µs)

Check Gain

(µs)

Area

(slices)

Rec.

(µs)

C1 0.8 6 3.69 C29 0.7 16 9.84

C2 0.71 8 4.92 C30 0.66 13 7.995

C3 0.725 7 4.305 C31 0.515 9 5.535

C4 0.59 2 1.23 C32 1 18 11.07

C5 0.88 3 1.845 C33 1.02 22 13.53

C6 0.45 2 1.23 C34 0.795 17 10.455

C7 0.675 6 3.69 C35 0.82 18 11.07

C8 0.665 6 3.69 C36 0.78 16 9.84

C9 0.82 4 2.46 C37 0.6 19 11.685

C10 1.005 9 5.535 C38 0.625 21 12.915

C11 0.46 6 3.69 C39 0.9 32 19.68

C12 0.67 7 4.305 C40 1.35 45 27.675

C13 0.625 11 6.765 C41 1.34 40 24.6

C14 0.7 13 7.995 C42 1.01 30 18.45

C15 0.73 15 9.225 C43 1.02 40 24.6

C16 0.67 10 6.15 C44 1 35 21.525

C17 1.1 15 9.225 C45 1.01 26 15.99

C18 0.905 15 9.225 C46 1.05 32 19.68

C19 0.91 12 7.38 C47 1.4 34 20.91

C20 0.915 13 7.995 C48 1.45 33 20.295

C21 0.7 14 8.61 C49 1.605 37 22.755

C22 0.62 12 7.38 C50 1.56 37 22.755

C23 0.58 10 6.15 C51 0.5 10 6.15

C24 1.01 16 9.84 C52 0.79 16 9.84

C25 0.705 12 7.38 C53 0.78 14 8.61

C26 0.735 12 7.38 C54 0.7 16 9.84

C27 0.5 14 8.61 C55 0.715 18 11.07

C28 0.96 9 5.535 C56 0.8 22 13.53

Table 3. Time and area overheads for checkers

placed in loops and executed on average as much as 375354 times,
which suggests that it is important to place them in HW.

Using the information generated we ran our optimization algo-
rithm. The results obtained are shown in Figure 3c. It can be seen
that the results follow trends similar to those for the synthetic expe-
riments. Our optimization generated results within 27% of the HW-
only solution with just 15% hardware fraction. Also note that for
hardware fractions between 15% and 40%, the solution generated by
our algorithm (OPT) was roughly 2.5 times closer to the HW-only
solution than that generated by the straight-forward algorithm (SF).
Finally, Figure 3g shows the sizes for the reconfiguration tables.

8. CONCLUSION

This paper presented an algorithm for performance optimization
of error detection based on speculative reconfiguration. We managed
to minimize the average execution time of a program by using par-
tially reconfigurable FPGAs to place in hardware only those error
detection components that provide the highest performance im-
provement. One direction of future work would be to extend this
approach to inter-procedural analysis as well. Another direction
would be to extend the work to a more flexible solution, that uses
online learning to adapt the system to eventual changes (e.g. in the
inputs or in the environment).

REFERENCES

[1] Aho, A. V., Lam, M. S., Sethi, R. and Ullman, J. D. Compilers: Prin-

ciples, Techniques, and Tools. Addison Wesley, 2006.

[2] Bolchini, C., Miele, A., Rebaudengo, M., Salice, F., Sciuto, D., Sterpone,
L. and Violante, M. “Software and Hardware Techniques for SEU Detection
in IP Processors”. J. Electron. Test., 24, 1-3 (2008), 35-44.

[3] Constantinescu, C. “Trends and challenges in VLSI circuit reliability”.
IEEE Micro, 23, 4 (2003), 14-19.

[4] Cordone, R., Redaelli, F., Redaelli, M.A., Santambrogio, M.D. and Sci-
uto, D., “Partitioning and Scheduling of Task Graphs on Partially Dynami-
cally Reconfigurable FPGAs”. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst., 28 (5), 2009, 662-675.

[5] Handa, M. and Vemuri, R., “Area Fragmentation in Reconfigurable Op-
erating Systems”. Intl. Conf. on Engineering of Reconfigurable Systems and

Algorithms, 2004, 77–83.

[6] Hu, J., Li, F., Degalahal, V., Kandemir, M., Vijaykrishnan, N. and Irwin,
M. J. “Compiler-assisted soft error detection under performance and energy
constraints in embedded systems”. ACM Trans. Embed. Comput. Syst., 8, 4
(2009), 1-30.

[7] Jean, J. S. N., Tomko, K., Yavagal, V., Shah, J. and Cook, R. “Dynamic
reconfiguration to support concurrent applications”. IEEE Transactions on

Computers, 48, 6 (1999), 591-602.

[8] Lattner, C. and Adve, V. “LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation”. Intl. Symp. on Code Generation

and Optimization, 2004, 75 - 86.

[9] Li, Z. and Hauck, S. “Configuration prefetching techniques for partial
reconfigurable coprocessor with relocation and defragmentation”. Intl. Symp.

on Field-Programmable Gate Arrays. Monterey, CA, USA, 2002, 187-195.

[10] Lifa, A., Eles, P., Peng, Z. and Izosimov, V. “Hardware/Software Opti-
mization of Error Detection Implementation for Real-Time Embedded Sys-
tems”. CODES+ISSS'10, Scottsdale, AZ, USA, 2010, 41-50.

[11] Lima, F., Carro, L. and Reis, R. “Designing fault tolerant systems into
SRAM-based FPGAs”. Design Automation Conference, Anaheim, CA, USA,
2003, 650-655.

[12] Lyle, G., Chen, S., Pattabiraman, K., Kalbarczyk, Z. and Iyer, R. “An
end-to-end approach for the automatic derivation of application-aware error
detectors”. Dependable Systems & Networks, 2009, 584-589.

[13] Panainte, E., Bertels, K. and Vassiliadis, S. “Interprocedural Compiler
Optimization for Partial Run-Time Reconfiguration”. The Journal of VLSI

Signal Processing, 43, 2 (2006), 161-172.

[14] Pattabiraman, K., Kalbarczyk, Z. and Iyer, R. K. “Application-based
metrics for strategic placement of detectors”. Pacific Rim Intl. Symp. on

Dependable Computing, 2005.

[15] Reis, G. A., Chang, J., Vachharajani, N., Rangan, R., August, D. I. and
Mukherjee, S. S. “Software-controlled fault tolerance”. ACM Trans. Archit.

Code Optim., 2, 4 (2005), 366-396.

[16] Sarkar, V. “Determining average program execution times and their
variance”. SIGPLAN, 24, 7 (1989), 298-312.

[17] Schuck, C., Kuhnle, M., Hubner, M. and Becker, J. “A framework for
dynamic 2D placement on FPGAs”. Intl. Symp. on Parallel and Distributed

Processing, 2008, 1-7.

[18] Sedcole, P., Blodget, B., Anderson, J., Lysaght, P. and Becker, T.,
“Modular Partial Reconfiguration in Virtex FPGAs”, Intl. Conf. on Field

Programmable Logic and Applications, 2005, 211-216.

[19] Sim, J. E., Wong, W., Walla, G., Ziermann, T. and Teich, J. “Interpro-
cedural Placement-Aware Configuration Prefetching for FPGA-Based Sys-
tems”. Symp. on Field-Programmable Custom Computing Machines, 2010.

[20] Wirthlin, M., Johnson, E., Rollins, N., Caffrey, M. and Graham, P. “The
Reliability of FPGA Circuit Designs in the Presence of Radiation Induced
Configuration Upsets”. Symp. on Field-Programmable Custom Computing

Machines, Washington, DC, USA, 2003, 133.

[21] Xilinx Inc. “Early Access Partial Reconfiguration User Guide”. Xilinx
UG208 (v1.1), March 6, 2006.

0

10

20

30

40

50

60

70

80

90

100

100 200 300

se
co
n
d
s

nodes in CFG

Average running time

a) b) c) d)

Figure 3. Experimental evaluation

e) f) g)

 se
co

nd
s

