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ABSTRACT 

Design modifications to improve testability usually introduce large area overhead and 
performance degradation. One way to reduce the negative impact associated with 
improved testability is to take testability as one of the constraints during high-level 
design phases so that systems are not only optimized for area and performance, but 
also from the testability point of view. This thesis deals with the problem of optimizing 
testing-hardware resources by taking into account testability constraints at high-levels 
of abstraction during the design process. 

Firstly, we have provided an approach to solve the problem of optimizing built-in self-
test (BIST) resources at the behavioral and register-transfer levels under testability 
and testing time constraints. Testing problem identification and BIST enhancement 
during the optimization process are assisted by symbolic testability analysis. Further, 
concurrent test sessions are generated, while signature analysis registers’ sharing 
conflicts as well as controllability and observability constraints are considered. 

Secondly, we have introduced the problem of BIST resources insertion and 
optimization while taking wiring area into account. Testability improvement 
transformations have been defined and deployed in a hardware overhead minimization 
technique used during a BIST synthesis process. The technique is guided by the 
results of symbolic testability analysis and inserts a minimal amount of BIST 
resources into the design to make it fully testable. It takes into consideration both 
BIST components cost and wiring overhead. Two design space exploration approaches 
have been proposed: a simulated annealing based algorithm and a greedy heuristic. 
Experimental results show that considering wiring area during BIST synthesis results 
in smaller final designs as compared to the cases when the wiring impact is ignored. 
The greedy heuristic uses our behavioral and register-transfer levels BIST 
enhancement metrics to guide BIST synthesis in such a way that the number of 
testability improvement transformations performed on the design is reduced. 

The Swedish Foundation for Strategic Research (SSF) under the INTELECT and 
STRINGENT programmes at Linköping University supported this work. 
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Abstract 

Design modifications to improve testability usually introduce large 
area overhead and performance degradation. One way to reduce 
the negative impact associated with improved testability is to take 
testability as one of the constraints during high-level design 
phases so that systems are not only optimized for area and 
performance, but also from the testability point of view. This thesis 
deals with the problem of optimizing testing-hardware resources 
by taking into account testability constraints at high-levels of 
abstraction during the design process. 

Firstly, we have provided an approach to solve the problem of 
optimizing built-in self-test (BIST) resources at the behavioral and 
register-transfer levels under testability and testing time 
constraints. Testing problem identification and BIST enhancement 
during the optimization process are assisted by symbolic 
testability analysis. Further, concurrent test sessions are 
generated, while signature analysis registers’ sharing conflicts as 
well as controllability and observability constraints are considered. 

Secondly, we have introduced the problem of BIST resources 
insertion and optimization while taking wiring area into account. 
Testability improvement transformations have been defined and 
deployed in a hardware overhead minimization technique used 
during a BIST synthesis process. The technique is guided by the 
results of symbolic testability analysis and inserts a minimal 
amount of BIST resources into the design to make it fully testable. 
It takes into consideration both BIST components cost and wiring 
overhead. Two design space exploration approaches have been 
proposed: a simulated annealing based algorithm and a greedy 
heuristic. Experimental results show that considering wiring area 
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during BIST synthesis results in smaller final designs as 
compared to the cases when the wiring impact is ignored. The 
greedy heuristic uses our behavioral and register-transfer levels 
BIST enhancement metrics to guide BIST synthesis in such a way 
that the number of testability improvement transformations 
performed on the design is reduced. 
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Chapter 1 

Introduction 

This chapter introduces the thesis topic. It starts by discussing 
the motivation for the research conducted in this work. After that, 
a formulation of the research problems is provided. A list of 
important contributions of the thesis is then enumerated. The 
chapter concludes by providing an organization of the rest of the 
thesis. 

1.1 Motivation 
Testing of electronic chips is an important step of an electronic 
system’s manufacturing process. A Very Large Scale Integration 
(VLSI) electronic system can only be released into the market if it 
operates correctly. This is usually ascertained during the testing 
process. 

Modern advances in VLSI technology offer tremendous potential 
for manufacturing complex electronic systems with multi-million 
gates. It is now also possible for these complex electronic systems 
to be implemented on a single chip. On the other hand, testing of 
such systems is very difficult. Increase in test data volume, 
reduced access to internal components, and very high operating 
frequency are some of the challenges that make testing of complex 
electronic systems a difficult task [68]. To be able to manufacture 
correctly functioning complex electronic systems, these testing 
challenges must be well addressed and solved. 
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Due to the challenges mentioned above, traditional methods are 
no longer suitable for testing modern, multi-million gate complex 
electronic systems, such as System on Chip (SoC) or Network on 
Chip (NoC). Therefore, testing methods must change in order to 
appropriately utilize the available new capabilities in VLSI 
technology. Currently, there are several approaches that are 
proposed to enhance current testing practices. Some of them are 
briefly discussed in the following paragraphs. 

The process of modifying the designs by, for example, adding 
testing components so that the resulting designs are easy to test, 
is referred to as Design for test (DfT). Traditionally, design 
decisions and optimizations regarding silicon area, performance, 
power consumption, etc. are made first, and then DfT features are 
added at gate-level. An example of gate level DfT technique is gate-
level test point insertion.  

Modern DfT techniques are, on the other hand, applied at high 
levels of abstractions such as register-transfer levels (RTL) or 
behavioral levels. By raising the level of abstraction at which the 
DfT techniques are applied, the complexity of designing suitable 
test infrastructure for the complex systems can be managed. Test 
synthesis, a technique whereby designing for functionality and 
designing for testability are integrated together as early as possible 
in the design process, is one example of high-level DfT techniques. 
In this way functionality, testability and other issues such as 
silicon area, performance and power are simultaneously 
considered and optimized together in the design process. The 
approach helps to eliminate efforts to re-design for testability later 
in the design process. In one category of test synthesis, known as 
high-level test synthesis (HLTS), the tasks of scheduling, allocation 
and binding are done in such a way that testability is one of the 
constraints to be satisfied during design optimizations [44], [45], 
[46].  

Built-in Self-Test (BIST) is an approach, which modifies the design 
in such a way that part of the design is used to test itself [2], [3]. 
This helps to solve such problems as large test data volume, at 
speed testing, and test pin limitation. Although BIST is a suitable 
DfT technique for handling testing problems of the modern 
complex electronic systems, large hardware and performance 
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overheads it introduces are the main obstacles to its industrial 
utilization. Furthermore, inserting BIST components into the 
designs at gate levels adds to the problem. One way to reduce the 
negative impact of BIST insertion is to start the insertion of BIST 
components early during the design process at high levels of 
abstractions such as register-transfer or behavioral. The technique 
of considering BIST insertion at these high levels is referred to as 
BIST synthesis. Therefore, solving the problem of optimizing BIST 
hardware resources during BIST synthesis process such that 
constraints like testing time, performance, or power are met is an 
important step towards improving testability of the complex 
electronic systems. As VLSI technology advances towards deep 
submicron implementations, wiring becomes a critical problem. 
Therefore, BIST synthesis approaches can be even more effective, 
if they not only consider testability, but also wiring when they 
modify the designs to improve testability.  

The purpose of this work is to address the problems of 
optimization of hardware overhead during the BIST synthesis 
process. The hardware overhead includes both BIST resources as 
well as wiring. The aim is not only to produce designs that are 
easy to test by using the BIST approach, but also designs that are 
optimal in terms of total hardware cost including wiring area. 

1.2 Problem Formulation 
The research done in this thesis concentrates on two main 
problems: 

• BIST synthesis under testing time constraints: The objective 
is to optimize BIST resources usage under testing time 
constraints in such a way that testability of all modules in 
the design is guaranteed. The input to the problem is a 
design that is represented as a scheduled data flow graph 
(SDFG) and testing time constraints. The aim is to analyze 
and enhance the testability of the design in such a way that 
minimum amount of BIST resources are added so as to 
simultaneously guarantee the testability and testing time 
constraints. 
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• A wiring-aware BIST synthesis: The aim is to find a way to 
perform BIST synthesis that does not only take into account 
the cost of BIST resources, but also does quantitative 
estimation of the wiring cost that is introduced by inserting 
BIST resources into the design. This approach shall result in 
more efficient designs in terms of total design area. The 
design cost considered is the total area of the functional 
modules, BIST components and wiring area. The problem is 
formulated as follows: given a design represented as an 
SDFG along with allocation/binding information, insert BIST 
modules into the design such that all functional modules are 
self-testable and the total design area is minimized.  

1.3 Contributions 
The main contributions of this thesis are the following: 

• An approach to optimize BIST resources under testing-time 
constraints. The approach uses testability analysis results to 
guide BIST synthesis. Firstly, it explores alternative 
testability options that exist in the design to help determine 
which operations can be tested concurrently. Secondly, it 
proposes design modification heuristics to optimize BIST 
hardware usage under a given testing time constraint. 

• BIST design transformations to guide our wiring-aware BIST 
synthesis process. We have proposed two approaches to 
solve this synthesis problem. In the first approach we have 
formulated the wiring-aware BIST synthesis problem as a 
simulated annealing optimization problem. In the second 
approach we have proposed a greedy heuristic for solving the 
wiring-aware BIST synthesis problem. We have also defined 
new BIST enhancement metrics that are suited for guiding 
synthesis towards low hardware BIST overhead. 

1.4 Thesis Overview 
The rest of the thesis is organized as follows: In Chapter 2 we 
present some background and related work. In Chapter 3 some of 
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our specific definitions and concepts, which are used in the 
discussion of our core concepts, are provided. Chapter 4 
concentrates on the approaches and methods to solve the problem 
of BIST synthesis under testing-time constraints. Chapter 5 
addresses techniques to solve the wiring aware BIST synthesis 
problem. Finally, conclusions and directions for future work are 
discussed in Chapter 6. 
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Chapter 2 

Background and Related Work 

This chapter introduces the background and related works that 
are necessary for understanding this thesis. It starts by giving an 
introduction to the design flow of electronic systems. Since the 
main testing approach targeted by the wok done in this thesis is 
BIST, background knowledge on BIST and its potential for testing 
future complex electronic systems are provided. Attempts to 
integrate testing consideration during high-level synthesis are also 
discussed. Since testability analysis methods that are able to 
characterize designs in terms of their testability quality are used in 
several algorithms and methods presented in this thesis, a 
discussion of high-level testability analysis is also provided at the 
end of the chapter. 

2.1 Digital Systems Design Flow 
Designing and testing of large electronic systems are complex 
processes. To handle complexity, design activities have been 
shifted towards higher levels of abstractions. 
A synthesis approach for designing digital systems usually starts 
by specifying a system in terms of its functionality and some 
implementation constraints [18], [36]. System-level synthesis [66] 
then breaks down a system specification into communicating 
subsystems (processes). Each subsystem has its own behavioral 
level specification, which describes its behavior according to the 
computational problem to be solved. 
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To transform the behavioral specification to an RTL structural 
specification, behavioral level synthesis is used. In automatic 
synthesis of VLSI designs, this step is often referred to as high-
level synthesis (HLS) and it consists of three main tasks [48]. The 
first task, scheduling, assigns each operation to a time slot. The 
second task deals with decisions regarding the type and number of 
functional and memory resources to be used and is known as 
resource allocation. The third task, known as binding, maps each 
behavioral operation to a specific functional resource and each 
variable to a register. The output of the behavioral synthesis is 
usually given as an RTL data-path and a controller. The data-path 
consists of interconnected functional modules, such as adders, 
multipliers, registers, and multiplexers. The controller, at this 
level, is defined by a state transition table. It controls the data flow 
in the data-path by providing control signals to the multiplexers, 
registers and other data-path components. 

Some RTL modules are derived from existing libraries and others 
are designed at logic level. Logic functions are represented by 
truth tables, algebraic expressions or binary decision diagrams 
(BDD). During the logic-level synthesis step, optimizing and 
minimizing of logic functions are performed, and a technology 
independent specification of the system, usually described in 
terms of large combinational or sequential blocks, is produced. 
After that, a Boolean expression is transformed by a process 
known as technology mapping into a network of gates from a target 
library.  

According to classical design methods, testing is typically 
considered after all major high-level design decisions are taken. 
Consequently, many existing test generation tools work with gate 
level representations of the designs. At the gate level, designs are 
quite complex, hence test generation and DfT techniques become a 
bottleneck of the whole design process. If high fault coverage 
cannot be achieved, expensive re-design efforts, which can cause 
delay in product development, are needed to improve testability. 
Several approaches, which will be discussed in the coming 
sections, are proposed to address this problem. 
In recent years, methods have been elaborated addressing design 
problems at high levels (register-transfer, behavioral) of 
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abstractions. At these levels, testability metrics (see Section 2.5) 
can be used to assess the testability of the designs. DfT 
techniques assisted by high-level testability metrics can be 
deployed to embed test components into the designs. It is expected 
that the embedded test components will make generating efficient 
test patterns and their application easier. 

2.2 Testing of Digital Systems 
Manufacturing testing of a VLSI device verifies the correctness of 
the manufacturing process. Hence, it ensures that the physical 
device manufactured from the synthesized VLSI design has no 
manufacturing defects. When testing a VLSI design, it is assumed 
that the synthesized design correctly implements its original 
specification. At the end-user or customer environment, testing is 
used to check for defects that result from wear out, aging or other 
types of problems. The process of testing digital VLSI systems 
usually involves two steps. 

The first step, known as test pattern generation [12], [24], [61], is 
mainly a preparatory step. It is executed once during the design 
process. In this step, test patterns (vectors) together with their 
expected correct responses are generated. The test patterns and 
responses will be used to test the VLSI circuit after it is 
manufactured. The test generation process is usually automated 
using specialized software tools. 

The second step, known as test application, involves the actual 
testing of the manufactured devices. During the test application 
process, the test vectors are applied to the hardware device, 
known as circuit under test (CUT), and the results obtained are 
compared with the expected correct responses. If the results 
obtained are different from those expected, then the device is 
considered faulty. 

In a classical testing set up, the test patterns and correct results 
for testing a given VLSI system are stored in a large testing 
machine, known as automatic test equipment (ATE). The ATE 
sends test patterns to the CUT, reads test responses from it and 
decides whether the CUT is faulty or not.  
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Testing electronic designs is a costly process. While the cost of 
manufacturing a transistor has been constantly decreasing, the 
cost of testing it has remained constant throughout the electronic 
age [62]. As we go into the deep sub-micron (DSM) era, it is likely 
that there will come a time when it will be more expensive to test a 
transistor than to design and manufacture it. The cost of testing a 
VLSI design can be classified into three main categories: 

- In order to simplify testing, it is necessary to modify the 
design so that the test generation process is able to generate 
high-quality tests for a given design. These modifications can 
add area overhead to the chip and can lead to yield 
reduction. If the modifications for testability are done in the 
critical path of the design, then a delay overhead is also 
introduced into the design. This will eventually lead to 
performance degradation. 

- The cost associated with the software processes of test 
pattern generation. There may also be some costs resulting 
from the test programming and debugging. 

- ATE capital cost and the operational cost of the test centre. 
This is the cost associated with the manufacturing test. 

According to predictions of the testing section of the International 
Technology Roadmap for Semiconductor (ITRS-Test), the ATE cost 
dominates product cost [62]. Therefore, use of DfT techniques, and 
in particular BIST techniques, will continue to grow in order to 
move test complexity on chip and thus reduce capability 
requirements and therefore cost of the ATE [62]. 

Physical defects in VLSI designs manifest themselves at the 
electrical level as failure modes such as open and short 
interconnections or parameter degradation [52]. There are many 
physical defects that can occur on VLSI systems. They are caused 
by a number of factors such as processing defects (missing 
contact windows, parasitic transistors and oxide breakdown), 
material defects (cracks and crystal imperfections), surface 
impurities (ion migration), time-dependent failures (dielectric 
breakdown and electro migration) and packaging failures (contact 
degradation and seal leaks) [1], [34], [52]. 
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To facilitate detection of the physical defects, at the logic and 
behavioral levels, the failures are modeled as faults. Since there 
are too many real defects and they are hard to classify and 
analyze, fault models are used to characterize the target faults to 
be tested. Fault models make it possible to analyze designs with 
respect to testability in a quantitative manner. There exist many 
fault models, but here we will mention a few most common ones, 
which are: 

- Single and multiple stuck-at fault models. 

- Functional fault model. 

- Delay fault model. This is similar to stuck-at fault model, but 
enhanced with timing information. 

- Gate (transition) delay faults. 

o Slow-to-rise or slow-to-fall transitions. 

o Interconnect signal with longer than normal 
propagation delay. 

- Path delay faults – accumulation of gate delay faults over 
whole paths. 

A given fault model, say stuck-at fault, models only a subset of 
real defects. In this thesis all our discussion will be based on a 
single stuck-at (SSA) fault model since it is most widely used. 
Many test generation techniques that target other fault models 
extend the principles and techniques used in SSA fault model [1]. 
This fault model assumes that only one line can be faulty at a 
time. The fault is modeled in such a way that the faulty line is 
assumed to be permanently stuck-at a logic value 0 or a logic 
value 1. These faults are assumed to be only present at the inputs 
or outputs of logic gates such as AND, OR, NAND, NOT and XOR. 

Consider an example design depicted in Figure 2.1. According to 
the SSA fault model this design has five fault sites. Each fault site 
can be stuck at 0 or stuck at 1. Hence the circuit can have a 
maximum of ten possible stuck at faults. Generally, a circuit with 
n nets has 2n SSA faults. 



 12

2.3 Automatic Test Pattern Generation 
The test pattern generation problem is formulated as follows: given 
the CUT, usually a gate level net-list, obtain a set of test vectors 
that will detect a sufficiently large number of the modeled faults in 
the CUT. As a measure of quality of the test vectors and the test 
pattern generation algorithms, it is required that the number of 
test vectors be as small as possible, and high fault coverage, 
preferably 100%, be achieved. Fault coverage is defined as the 
ratio of the number of detected faults to the total number of 
modeled faults. 

The cost of test pattern generation depends on the fault model, the 
complexity of the test generation algorithm and the complexity of 
the CUT. 

Test patterns can be generated at different abstraction levels. A 
majority of existing tools perform test generation at gate level [24], 
[61]. With increasing complexity of the designs, test generation at 
gate level becomes a computationally expensive process. In order 
to handle complexity issues, hierarchical test generation 
approaches have been proposed [37]. Such approaches use high-
level functional information to speed up the test generation 
process.  

The deterministic test patterns generated by the automatic test 
pattern generation (ATPG) tools are first stored in an ATE and then 
used for testing the CUT. In the next section, another approach for 
generating test patterns and testing designs, known as BIST, will 
be introduced. 

A
B  

C  

D

E

s-a -0   
Figure 2.1 Single stuck-at faults 
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A stuck-at fault at a line l is denoted as l-s-a-v, where v is 0 or 1. A 
test vector for a given modeled fault l-s-a-v must be able to detect 
whether the line l is permanently stuck at a value v. To do so the 
test vector should be able to set an opposite value ~v at the line l 
and propagate this value all the way to an observable point. 
Therefore, the test generation process can be decomposed into two 
sub-processes: fault activation (excitation) and error propagation. 
Fault activation is achieved by setting primary input (PI) values 
that cause a line l to be set to the value ~v. If it is possible to excite 
a fault then the fault is controllable. Error propagation requires 
that the error ~v be transported from the line l to an observable 
point, usually a primary output (PO). If an error can be observed 
at a PO then the fault is observable.  

Several approaches are used to generate test patterns for a circuit. 
Test generation methods can be classified as random, pseudo-
random, exhaustive or deterministic.  

A random test pattern generation algorithm generates test vectors 
at random without considering the structure of the CUT. For each 
generated test vector, fault simulation is performed to find all the 
faults that it can detect. All the faults that can be detected by the 
generated test vector are then removed from the list of undetected 
modeled faults. The process of generating test patterns is repeated 
until all faults are detected or an acceptable level of fault coverage 
is achieved. Random pattern generation is relatively 
straightforward, but leads to a test set with many test vectors and 
usually can have low fault coverage.  

More efficient approaches are the deterministic test pattern 
generation methods, which consider the structure of the CUT 
when generating test patterns. They can be expensive in terms of 
computational effort, but they lead to a few, efficient test patterns, 
which result in a high fault coverage. Generally, a fault-oriented 
deterministic test pattern generation algorithm works as follows:  
Pick a fault l-s-a-v whose test is to be generated. Find a way to 
control line l to an opposite value ~v. Find a way to propagate an 
error from line l to an observable point, usually a primary output. 
If it is possible to control the line l to a value ~v and to propagate 
the resulting error to the observable point then the test pattern is 
found. The fault is then removed from the fault list and a test for 
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another fault is generated in a similar manner. The test generation 
process terminates when tests for all modeled faults are generated 
or if the allowed maximum user-defined central processing unit 
(CPU) time is exhausted. During the course of test generation 
fault, simulation can also be performed for each test pattern in 
order to find other faults, which can be detected using the same 
test pattern. 

Generating tests for large circuits is a complex process. The worst-
case complexity of the test generation problem is exponential with 
respect to the number of gates in the circuit [12] and was observed 
for undetectable faults. Therefore, heuristics are often used to 
avoid the worst-case complexity of the test generation algorithms. 
Since heuristics limit the search space in order to run in a 
reasonable amount of time, they may fail to generate tests for 
some detectable faults. Examples of deterministic test generation 
heuristics are PODEM [24], D-algorithm [61] and 9-V algorithm 
[12] .  

A more detailed list of the test pattern generation algorithms is 
provided in [1] and a performance comparison is available in [4].  

2.4 Built-In Self-Test 
BIST is an emerging technique for testing complex VLSI systems. 
To test a design by using a BIST methodology, the design has to be 
modified (enhanced) in such a way that part of the circuit is used 
to test the design itself. Therefore, BIST is defined as a DfT 
technique in which testing is accomplished through built-in 
hardware components [2], [3]. 

A general BIST scheme is shown in Figure 2.2. It consists of a test 
source block, the CUT, a test response analysis block and a test 
controller block, which manages the application of the tests. In a 
classical BIST scheme, the test source consists of a special kind of 
register, test pattern generator (TPG), which generates on-chip test 
patterns. Recently, a new hybrid BIST approach [38] has been 
proposed. It enhances the design with a read only memory (ROM) 
for storing some deterministic test patterns. These stored test 
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patterns are used to capture faults that cannot be detected by the 
test patterns generated by the on-chip TPG.  

 

BIST offers several advantages over classic testing schemes. Since 
test patterns originate from on-chip sources and test responses 
are analyzed on-chip, there is no need of huge tester memories to 
store an enormous amount of test data. Furthermore, the 
bottleneck problem of sending test data from the ATE to the chip 
is also addressed. Reducing or eliminating the need for ATE 
provides field test capability whereby a chip can be tested on field 
or at customer environment. Another important advantage that 
BIST offers is the ability to perform at speed testing.  

If a testing strategy is well designed, BIST can be used in a 
hierarchical fashion whereby the same hardware can test chips, 
boards as well as systems [2]. With BIST the problem of reduced 
accessibility to internal components is solved since external test 
data is not needed. 

On the other hand, BIST introduces hardware overhead and delay, 
which can degrade performance.  

2.4.1 Test Pattern Generation for BIST 

On-chip test pattern generators can generate exhaustive or 
pseudo-random test patterns. Pseudo-random test patterns have 
many characteristics of random patterns, but are generated 

 BIST  
Controller 

CUT 
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Source 
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Figure 2.2 BIST Architecture 
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deterministically and hence are repeatable. A cellular automata or 
hardware based linear feedback shift register (LFSR) [2], [52] can 
be used to generate pseudo-random test patterns. An LFSR will be 
generally referred to as a TPG. 

An LFSR is a shift register with feedbacks from the last stage and 
other stages. The outputs of its flip-flops form the test pattern. 
Each state of the LFSR corresponds to one test pattern. The 
number of unique test patterns the LFSR can generate depends on 
the number and location of the feedbacks as well as its initial 
value, which is known as the seed. 

An example of an LFSR is shown in Figure 2.3. It is initialized with 
the seed 0001. In the subsequent clock cycles, a series of test 
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Figure 2.3 An LFSR example 
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patterns are produced at the outputs of the flip-flops. This LFSR, 
which has n=4 flip-flops, produces a total of 15 (2n - 1) distinct 
patterns (except 0000) as shown in Figure 2.3. 

The feedback positions are usually described by a characteristic 
polynomial [2], [3]. In our example, feedbacks are made from the 
first (x) and the fourth (x4) positions, hence the characteristic 
polynomial of the LFSR is p(x) = 1 + x + x4. The choice of feedback 
positions (the choice of the polynomial) determines the length of 
the test sequences generated. Special polynomials known as 
primitive polynomials give maximal length sequences (2n-1). A 
polynomial p(x) = 1 + x + x4, which is used in our example, is 
primitive. It generates a sequence of 15 distinct test patterns 
before repetition. Therefore, when designing an LFSR a good 
choice of seed and polynomial is crucial for generating a good 
sequence of tests. 

2.4.2 Test Response Analysis and Compaction 

In BIST schemes, all test responses from a CUT are compacted to 
a single value known as a signature. Thus, one test signature for 
the whole CUT is obtained at the end of the test application 
process. Faults are detected by comparing the signature from the 
CUT and its fault-free signature. If the two signatures are different 
the circuit is considered as faulty. 

Response compaction may result in information loss, which can 
cause a signature of a faulty circuit to be equal to the fault-free 
signature. In this way a fault can escape detection. This kind of 
information loss is known as aliasing. Aliasing probability is 
nevertheless quite small and decreases with increase in the length 
of the test.  

Several compaction schemes exist [1], [52], but the most common 
one is known as signature analysis. A common form of signature 
analysis methodology uses an LFSR (known here as a signature 
analysis register) to compact responses from the CUT. At the end 
of the test application, the content of the LFSR is the signature of 
the CUT. In its simplest form a signature analysis register is a one 
input LFSR, which, is suitable for compacting responses from a 
single output CUT. Mathematical analysis reveals that the LFSR 
divides the input test response stream, G(x), from a CUT by the 
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LFSR polynomial P(x), producing an output stream corresponding 
to the quotient, Q(x), and a remainder R(x). The remainder on the 
LFSR after completion of the test application corresponds to the 
final signature of the CUT [1]. Although in this discussion we have 
presented a single input signature analysis register (SAR), in 
practice a multiple input signature register (MISR) is usually used 
to compact responses from the CUT with multiple outputs. 

2.4.3 Built-in Logic Block Observer 

Built-in Logic Block Observers (BILBOs) and Concurrent Built-in 
Logic Block Observers (CBILBOs) are other important types of on-
chip BIST registers. They are more advanced than regular TPGs or 
MISRs. While a BILBO can generate test vectors and analyze test 
responses at different times, a CBILBO can do so at the same 
time.  

BILBOs are needed if it is necessary to improve both controllability 
and observability of a specific part of the design. On the other 
hand, if it is necessary to improve controllability, observability and 
test application time, the CBILBO, which simultaneously performs 
both test pattern generation and test response compression, can 
be used. However, BILBOs and CBILBOs usually occupy larger 
silicon area than TPGs or MISRs of equivalent bit-width.  

2.5 High-Level Testability Analysis 
To properly synthesize designs for testability, accurate testability 
metrics are needed. These metrics can be used to rank design 
alternatives based on their testability during the synthesis 
process. Testability analysis methods can be classified into three 
categories: analysis for general testability, analysis for ATPG and 
analysis for BIST. 

There has been work done on testability analysis at gate level, 
register-transfer (RT) level and behavioral level. In this thesis we 
are mainly interested in RT and behavioral levels testability 
analysis approaches. 

2.5.1 Register Transfer Level Testability Analysis 

At RTL there is a number of testability analysis works done. 
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Chen and Menon [13] proposed a probability based testability 
analysis approach. They defined 0-combinational controllability 
(CC0) as the probability that a signal has a value 0. Similarly, 1-
combinational controllability (CC1) is defined as the probability that 
a signal has a value 1. Sequential controllability is an estimate of 
the length (time steps) of a sequence for setting a signal in a 
circuit to a specific value. 0-sequential controllability and 1-
sequential controllability are defined. Combinational observability 
is the probability that a change in the input will result in a change 
in the output. Sequential observability is an estimate of the 
number of time frames required to propagate the effects of a signal 
change on a line to the primary output. 

Gu [28] has also proposed some probability based testability 
metrics. For each line in the design he associated four testability 
values, namely combinational controllability, combinational 
observability, sequential controllability, and sequential 
observability. He also defined a notion of controllability transfer 
factor to describe how the controllability of the input and output of 
functional modules are related. The controllability transfer factor 
is the probability of setting a value at a module’s output by 
randomly exercising its inputs. Similarly, the probability of 
observing a module’s input by randomly exciting it’s other inputs 
and observing its output is known as observability transfer factor. 
These metrics target improvement of ATPG and are used in a 
testability analysis and enhancement algorithm. Designs are 
described using an extended timed Petri net (ETPN) [56]. 

Papachristou and Lai [55] proposed testability metrics based on 
the notion of entropy. The metrics are computed for registers and 
are suitable for pseudo-random BIST testing. Controllability of a 
register is measured by the metric known as randomness, which is 
defined as the ratio of its output entropy to the maximum output 
entropy. Observability is measured by the metric called 
transparency, which is defined as the probability that an arbitrary 
change in the signal value can be observed at the primary output. 
These metrics are computed for the variables of a scheduled data 
flow graph (SDFG). For a register w, which implements two SDFG 
variables a and x, the testability metrics are computed as follows: 
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where Ra, Rx and Rw are the respective randomness of the 
variables a, x and w. Coefficients C1, C2, C3 depend on bit length. 
Ma and Mx are the probability distributions of a and x. Ta, Tx and Tw 
are the respective transparencies of a, x and w. 

Flottes et al. in [19] proposed probability based testability metrics 
and a testability analysis method and used them during a HLS 
process. They concentrated on testability bottlenecks induced by 
reconvergence or module transparency properties. The 
Controllability measure of a module N is defined as C(N)=y/2n, 
where y is the number of any patterns (test or not) that can be 
propagated to the node N from the primary inputs. This is likened 
to the probability of propagating test patterns to the node N. The 
controllability transparency coefficient Tc is the ratio of different 
values that can be set on the functional unit output over 2m, 
where m is the bit-width. To take into account the correlation 
between input ports, the controllability transparency coefficient is 
defined as  
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where n is the bit-width of the input ports, p is the number of 
common bits between the input ports, C1 is the proportion of 
values that can be obtained on the functional unit output given 
that its input ports are not connected to each other (p=0) and C2 is 
the proportion of values that can be obtained on the functional 
unit output given that its input ports are connected to each other 
(p=n). 

The observability measure is defined as O(N)=y/(2n-1×(2n-1)), where 
y is the number of pairs of different responses that can be 
propagated and differentiated at the primary outputs regardless of 
their values, and (2n-1×(2n-1)) is the total number of possible pairs. 
O(N) is the probability to differentiate fault-free and faulty 
responses of the node N. the observability coefficient To is the 
proportion of pairs of input values that can be distinguished on 
the isolated functional unit output. For a left side shifter with n 
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input bits and n output bits, and least significant bit set to 0, the 
obsevability transparent coefficient To is given by 
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2.5.2 Behavioral level Testability Analysis 

Boubezari et al [11] proposed a high-level testability analysis and 
test point insertion based on analysis and modification of very 
high-speed integrated circuit hardware description language 
(VHDL) specifications. They target scan based BIST. Their 
testability analysis method searches for hard to detect bits of 
signals and variables that are explicitly declared or implied in the 
VHDL specification. Test point insertion is carried out using 
overloaded VHDL functions and procedures. Since the original 
VHDL specification and the added test point VHDL code are 
simultaneously synthesized, the approach can lead to very 
efficient scan based self-testable designs. 

Larsson [41] proposed a technique that analyzes the testability of 
the behavioral VHDL specifications. Testability properties are 
extracted by analyzing variable range, operation testability and 
statement reachability. Value range of a variable v, VR(l,v), at line l 
is the range of valid values the variable can have as given in the 
specification. defVR(v) is the full range of values defined for the 
variable v. A relative value range, RVR, for a variable v at line l is 
defined as the ratio  
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vdefVR
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Operation testability, opT, captures the change in distribution of 
test vectors in the output of an operation assuming all possible 
test vectors on its input. 
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In the equation above, b is the number of bits in the inputs and 
Q(op) is the difference between the distribution on the output of an 
operation and the uniform distribution. 

These testability metrics do not target any particular DfT 
technique, but have been used for guiding the selection of partial 
scan registers. They were also used in guiding testability 
improvement transformations applicable directly in the VHDL 
specification [42]. 

2.5.3 Symbolic Testability Analysis 

Bhatia and Jha [9], [10] proposed a hierarchical testability 
analysis approach. Ghosh et al [22], [23] further extended the 
work and introduced the so-called symbolic testability analysis 
(STA). STA derives control (justification) and observation paths for 
all operations in the design, which is represented as an SDFG. The 
designs analyzed by STA can be tested either using an ATPG 
based approach or BIST. If ATPG based testing is targeted, all 
justification and propagation paths are computed with respect to 
the primary inputs and primary outputs. If BIST testing is 
targeted, all justification and propagation paths are computed 
with respect to built-in TPGs and MISRs. 

STA approach can be applied to designs represented at the 
behavioral or RT levels. If a design is specified at the behavioral 
level, an SDFG is used for testability analysis. On the other hand, 
if a design is specified at the RTL, then controller and data path 
are used to extract an intermediate test control data flow (TCDF) 
[22] graph representation. In such cases STA uses the TCDF to 
perform testability analysis of the design. Therefore, depending on 
the available design representation, STA can use an SDFG or a 
TCDF graph for performing testability analysis. 

To analyze the testability of the design, for each operation, STA 
searches the SDFG to find a set of justification paths from PIs (or 
TPGs) to the operation in order to get direct accessibility for 
bringing test patterns to the operation. Similarly, STA searches the 
SDFG to find propagation paths from the operation to POs (or 
MISRs) for observing test responses.  

The justification paths for the operation under test are obtained by 
looking at its inputs and tracing back the paths that can be used 
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to set its values from the PIs (or TPGs). Similarly, propagation 
paths (paths needed to propagate test responses to POs or MISRs) 
are obtained by looking at the operation’s output and trace 
forward the paths to the POs or MISRs. To derive these paths, it is 
necessary to force intermediate active variables (registers) to take 
particular values to assist in transporting test data through the 
circuit. Suppose that test data is to pass through an intermediate 
operation with inputs x, y and output z. If test data shows up at 
the input x of the intermediate operation, then the other input, y, 
is assigned an appropriate neutral or identity value in such a way 
that test data will be transmitted unchanged to the operation’s 
output, z.  

To derive justification and propagation paths for all operations, 
STA defines a number of Boolean values for controllability and 
observability of each SDFG variable. General controllability, 
Cg(v,n), of an SDFG variable v on the nth control cycle is the ability 
to control it to any arbitrary value from the corresponding primary 
inputs or TPGs. Similarly, controllability of a variable to the 
constant value 1, C1(v,n), controllability to the constant value 0, 
C0(v,n), and controllability to a vector of all 1’s, Ca1(v,n), are 
defined. C1(v,n) represents an identity value to be set on one input 
of the multiplier operation so that the test data on its other input 
can reach its output unchanged. C0(v,n) is a neutral value, which 
if set on one input of the addition operation, test data on the other 
input can reach the output unchanged. Similarly, Ca1(v,n), helps to 
pass test data through the logic AND operation. Observability, 
Ov(v,n), of a variable v on the nth control step is the ability to 
observe any value of the variable at a primary output or on-chip 
MISR. 

The derivation of justification and propagation paths for a given 
design will be discussed in more details in Section 3.3.  

2.6 High-Level Synthesis for Testability 
Very good designs that have been optimized at high-level for area 
and delay only, can have bad testability. Improving testability by 
gate level techniques can introduce large area and performance 
overhead, which can impair the designs that are already optimized 
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for area and delay. This is because the DfT technique’s searching 
for testable designs is restricted by the already chosen RTL 
architectural alternative. 

HLS optimizes a circuit by exploration of alternative solutions for 
scheduling, allocation and binding. Thus, a HLS system explores a 
large design space. Some of the high-level architectural 
alternatives are more testable than others. Therefore, if the HLS 
system takes testability as one of the constraints to be satisfied, 
then a testable architecture may be found very early during the 
design process. Consequently, the need to improve testability at a 
later stage will be reduced and the resulting RTL design may need 
very small gate-level DfT modifications. 

High-level test synthesis (HLTS), also known as high-level 
synthesis for testability, refers to the inclusion of DfT techniques 
in a high (behavioral, RT) level synthesis process. This means that 
during scheduling, allocation and binding, testability is also taken 
into account as one of the design attributes along with area and 
performance. In short, test synthesis focuses on how and when in 
the synthesis process 

I. Constraints are placed to obtain easily testable circuits. 

II. DfT structures are incorporated into the design [52]. 

An important task that a HLTS system needs to do is to predict 
which high-level structures can make testing hard. Examples of 
such structures are self-adjacent registers and loops, which are 
considered undesirable from the testing point of view. Creation of 
these structures should, therefore, be avoided during the HLTS 
process. 

Testability can be considered at all abstraction levels, although the 
effectiveness can be different. In literature, there are HLTS 
approaches that enhance testability at both, behavioral and 
register-transfer levels. HLS tasks that can be explored to enhance 
testability are scheduling, allocation, binding and partitioning. 

In order for the HLTS approach to be successful, there must be a 
way to measure or predict testability while still at a high-level of 
abstraction. As a result, a more testable design can be selected 
during the synthesis process. There are many approaches, which 
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can be used to characterize testability of the designs at high-levels 
of abstraction. These approaches have developed high-level 
testability metrics (see Section 2.5) that can be used to accurately 
measure design testability during the synthesis process. 
Consequently, the metrics can be used to guide choices of suitable 
test insertion points to improve controllability and observability. If 
BIST is used, control test points are then connected to TPGs and 
observability test points are connected to MISRs. 

During HLTS another question is what to optimize and what are 
the constraints to be satisfied. Usually, many test synthesis 
approaches try to optimize area, delay, or testability. 

In this section, we will discuss several HLTS techniques, which are 
proposed in the literature: HLTS for general testability, HLTS for 
BIST, HLTS for scan and test point insertion, and other 
approaches. 
2.6.1 Synthesis for General Testability 

These approaches do not target any specific testing strategy. They 
simply eliminate undesirable structures or introduce generic 
features that are friendly to any testing mechanism. A few 
examples of the existing approaches will be discussed below. 

An allocation approach to improve testability without assuming 
any specific testing strategy was proposed in [46]. The approach 
has developed allocation rules for test synthesis. The first rule is 
used to enhance controllability and observability of registers 
during the register allocation process. In that work it is assumed 
that a register is directly controllable if at least one PI variable is 
assigned to it. Similarly, a PO variable assigned to a register 
makes it directly observable. Thus, controllability and 
observability can be improved by maximizing the number of 
registers which are assigned at least one PI/PO variable. This 
testability aware register allocation is summarized as a synthesis 
rule number one (SR1), which states that “whenever possible, 
allocate a register to at least one PI or PO variable”. 

To further improve testability, the approach in [46] also minimizes 
sequential depth during register and module allocation. This is 
summarized in a synthesis rule number two (SR2), which states 
that “reduce sequential depth from an input register to an output 
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register”. The two rules were implemented in a register allocation 
algorithm. 

Since presence of loops in the circuit makes it hard to test, one 
possible HLTS task is to eliminate or reduce sequential loops 
during the allocation process. Loops in the RTL designs are 
created as a result of loop constructs in the behavior or as a result 
of hardware sharing. For acyclic data flow graph (DFG), register 
and module sharing performed during allocation can create 
sequential loops. Thus, an allocation scheme that avoids creating 
sequential loops by introducing sequential paths to an input 
output (IO) register can improve testability. Cyclic DFG 
specifications with loops (while, for, etc.) can also create sequential 
loops in the circuit. These loops can be avoided by breaking the 
loops in the behavior. This can be achieved by assigning variables 
on the cyclic data flow to an IO register or a known scan register 
so as to ease controllability and observability of the sequential 
loop. This synthesis heuristic is summarized in synthesis rule 
number three (SR3) which aims at reducing sequential loops. It 
states that “do proper resource sharing to avoid creating 
sequential loops for acyclic DFG, and assign IO registers to break 
the sequential loops in a cyclic DFG” [44], [46]. 

If allocation for testability is performed after scheduling has been 
decided, its effectiveness depends on whether scheduling produces 
a good schedule, which is able to produce register/module 
allocations that can enhance controllability/observability and 
reduce sequential depths and loops. Therefore, there is a need for 
a testability aware scheduling, which performs scheduling for 
controllability/observability enhancement and for sequential 
depth/loop reduction. Schedules obtained from such an approach 
can make the successive synthesis tasks (allocation, binding) more 
effective in finding efficient testable designs. 

A testability aware scheduling is proposed in [45]. This approach 
assumes that it knows in advance the allocation algorithm that 
will be used. Hence, it performs scheduling in such a way that the 
resulting schedules will favor the targeted allocation algorithm to 
find testable designs. It is summarized in synthesis rule number 
four (SR4) which states that “schedule operations to support 
application of SR1, SR2, and SR3”. This scheduling rule is 
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embedded in a testability aware mobility path-scheduling (MPS) 
algorithm [45]. It is an iterative/constructive scheduling algorithm 
that iteratively performs partial scheduling followed by a testability 
analysis procedure, which applies the synthesis rule SR4. 

2.6.2 Synthesis for BIST 

The importance of using BIST has already been emphasized in 
Section 2.4.  

A high-level BIST synthesis approach inserts BIST structures into 
the design during the synthesis process. Considering BIST 
insertion, at high-levels of abstraction, does not only help to tap 
advantages of BIST, but also helps to reduce hardware overhead 
and performance degradation that BIST introduces. Since high-
level synthesis for BIST optimizes area, delay and BIST at the 
same time, the resulting designs are likely to be more efficient 
than those that are first optimized for area and delay, and later, at 
lower levels, for BIST. Several high-level BIST synthesis 
approaches have been proposed in the literature. The basic idea 
implemented by these BIST synthesis works is to make a selection 
of functional registers that will be converted to BIST registers such 
as LFSR, MISR, BILBO or CBILBO. In order to synthesize efficient 
designs, these approaches also reduce structures that are bad for 
BIST. An example of such a structure is a self-adjacent register. A 
self-adjacent register demands to be converted to a TPG and a 
MISR at the same time. Since this can only be achieved by 
converting it to a CBILBO, which is very expensive in terms of area 
overhead, self-adjacent registers should be avoided. 

The Syntest HLTS system [30] utilizes the freedom in allocation to 
synthesize self-testing designs. The system completely avoids 
creation of self-adjacent registers and guarantees testability by 
using BILBOs. To reduce BILBO overhead it also exploits circuit 
functionality. Testability of each operation is guaranteed by 
mapping it to a testable functional block (TFB) such that the 
output of a given TFB cannot drive any of the inputs of the same 
TFB. Thereafter, compatible resources, which cause no conflict 
and do not introduce self-loops, are mapped to TFBs to minimize 
area and delay. During mergers, functional testability metrics 
(randomness, transparency) are used to help remove unnecessary 
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TPGs, MISRs and BILBOs without impairing fault coverage too 
much. 

An approach that minimizes the number of self-adjacent registers, 
after performing scheduling and module allocation, is proposed in 
[6]. This approach, known as RALLOC, imposes testability 
constraints during register allocation. In doing so, BIST area 
overhead is reduced. The synthesis problem is modeled as register 
conflict graph, which is solved by a graph coloring method to find 
a register allocation with minimal number of self-adjacent 
registers. The remaining self-adjacent registers are converted to 
CBILBOs and non-self adjacent register to BILBOs. The resulting 
RTL design is evaluated by a cost function, 

  costBIST = 20nsa-reg + 35sa-reg + #mux-in + #int + #ctl 

where nsa-reg is the number of non-self adjacent registers, sa-reg 
is the number of self-adjacent registers, #mux-in is the number of 
multiplexer inputs, #int is the number of interconnects and #ctl is 
the number of control signals. 

Syncbist, an approach to synthesize self-testable RTL data paths 
with high degree of testing concurrency is proposed in [31], [32] 
and [33]. The approach uses partial intrusion BIST (some 
functional registers are used as TPGs, MISRs or both). Test paths 
(paths through which test data propagate) are identified for testing 
each module. The paths are scheduled to minimize testing time. If 
two or more test paths share hardware, then they are said to be in 
conflict and must be scheduled in different test sessions. Hard 
conflict occurs if the same register is used as a TPG in one test 
path and a MISR in another. Though, hard conflicts can be 
resolved using expensive CBILBOs, the Syncbist approach decides 
to schedule the conflicting paths in different test sessions. The 
maximum number of hard conflicting paths is the lower bound on 
the number of test sessions. Two test paths that share the same 
intermediate functional registers, modules, multiplexers or 
interconnections at the same cycle are said to be in soft conflict. 
Soft conflicts are resolved by scheduling a shared resource in 
different cycles. In order to maximize test concurrency, test 
conflicts are avoided during the HLS process. The synthesis 
process is assisted by testability metrics (conflict probability and 
coverage probability). 
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An approach to minimize testing time in a combined BIST and 
ATE environment was presented in [63]. However, the issue of 
sharing BIST circuitry among cores or functional modules was not 
studied. The work did not explore parallelism inside the cores to 
reduce test time during high-level synthesis either. An efficient 
approach for BIST hardware insertion with short test application 
time is proposed in [53], [54]. It achieves concurrent testing of 
modules by sharing test pattern generators. Both short test 
application time and low BIST overhead are achieved, but BIST 
insertion is performed without testability analysis and loss of 
randomness of test data may happen when some modules are 
deeply embedded in the design. 

An integer linear programming (ILP) formulation for making 
simultaneous trade-off between test time and BIST resource 
optimization is proposed in [47]. The approach results in very high 
BIST hardware overhead and test time minimization is neither 
sufficiently discussed nor supported by experimental results. 

Chen [13] proposed an approach for concurrent test scheduling in 
a BIST environment. First, he assigned BIST registers to each 
circuit under test (CUT) and then efficiently solved the test-
scheduling problem to minimize test time and improve BIST 
register utilization. BIST register selection is performed without 
testability analysis; hence no optimal procedure for selecting BIST 
registers is given. Furthermore, selection of BIST registers and test 
scheduling are independently performed.  

Kim [39] introduced an approach to find an optimal register 
assignment for testing a design in a given number of test sessions. 

2.6.3 Synthesis for Scan and Test Point Insertion 

A scan register is a modified shift register that can scan-in test 
vectors and scan-out test responses. By scanning test data in and 
out they can provide direct controllability and observability of 
registers. Therefore, one way to improve testability is to convert all 
registers into scan registers and arrange them in a large chain 
known as scan chain. This is a full scan approach. An alternative 
is to make an intelligent selection of a few registers to be converted 
to scan registers such that full testability is achieved. Converting 
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only a selected set of registers to scan registers introduces low 
overhead and is known as partial scan approach. 

Another approach to improve controllability and observability is 
through test point insertion, whereby hard to control parts are 
identified and then connected directly to controllable points 
(primary inputs) and hard to observe parts are connected to 
observable points (primary outputs). 

Genesis [9], [10] is a synthesis for hierarchical testability 
approach, which uses a hierarchical representation of a design to 
speed up justification and propagation of test data. This means 
that the test set for each module under test (MUT) is computed at 
gate level assuming that the module is connected to PIs and POs. 
During HLS behavioral/RTL information is used to search for test 
transfer paths for transporting test data from PIs to the MUT and 
from the MUT to POs. In Genesis, a hierarchical testability 
analysis identifies propagation and justification paths for each 
module in the SDFG. An allocation algorithm, which is integrated 
together with the hierarchical testability analysis, synthesizes the 
data path and controller. The synthesized design has a complete 
system level test set. Modules without test paths are enhanced 
using test multiplexers, which are used to enhance controllability 
or observability. The control flow in the SDFG is used for value 
justification and propagation; hence scan technique is not needed. 
The allocation algorithm used in Genesis works on a compatibility 
graph constructed from the SDFG. The nodes are variables and 
operations. Weights on edges represent preference of assigning the 
two corresponding variables/operations to the same 
registers/module in such a way that area will be reduced. 
Connected nodes with highest weight are merged during 
allocation. If the partially allocated design is hierarchically 
untestable then the last allocation is undone, and another 
allocation is tried. If all possible allocations yield an untestable 
design, a multiplexer is added to enhance testability of a given 
module. 

A test point insertion methodology at RTL is proposed in [21], [22], 
[23] by Ghosh et al. Hierarchical testability analysis is used to 
identify untestable modules and a small number of test 
multiplexers is inserted into the RTL design to make it 
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hierarchically testable. To minimize delay overhead, whenever 
possible, insertion of test multiplexers on critical paths is avoided. 

The test synthesis system proposed in [17] takes a control 
dataflow graph (CDFG) as an input and breaks the loops with a 
minimal number of scan registers. During the HLS process 
sequential loop creation is avoided by sharing scan registers. 

Gu et al. [28] proposed a test synthesis approach based on 
testability analysis and improvement of VHDL specifications. 
Testability improvement is achieved through partial scan and test 
point insertion. 

2.6.4 Other Approaches 

Several other high-level test synthesis approaches are presented in 
the literature.  

Bhattacharya et al. [8] proposed a transformation and re-synthesis 
for testability approach.  

In [40] Kim et al. used testability measures based on 
controllability/observability of registers, the length of sequential 
depth, and the number of sequential loops to do simultaneous 
scheduling and allocation for testability. They refer to their 
approach as a stepwise refinement synthesis for easy testability.  

Partitioning for testability is a divide-and-conquer approach that 
simplifies testing. Partitioning can be useful to remove 
redundancy, make partitions fan-out free, guide breaking of 
feedback loops, insert test points at hard to test places and help to 
remove random pattern resistance [26], [27]. After partitioning is 
done at high levels, the resulting partitions can then be 
synthesized together. The partitions are able to share testing 
components whereas tests for each partition are separately 
generated. 

Since generating test patterns for circuits with long feedback loops 
and long sequential depth is very hard, a re-synthesis (re-
scheduling, re-binding) approach to avoid loop creation caused by 
hardware sharing is proposed in [57].  

During register allocation and binding, not only the number of 
registers is minimized but also some constraints are imposed to 
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increase controllability and observability of registers. In [67] Yang 
et al. proposed merger transformations to improve testability. 
Their idea is to merge nodes with good controllability with nodes 
with bad observability and nodes with bad controllability with 
nodes with good observability. The overall impact is to have nodes 
with both good controllability and good observability. 

2.7 Wiring and Interconnect Issues 
In deep sub-micron implementation, wiring can take substantial 
amount of the total chip area. With the development of the 
microelectronics technology, there is a clear trend towards deep 
sub-micron implementation, where the interconnecting wires 
dominate the silicon area cost, and it is even more important to 
consider the wiring effect in the future deep sub-micron VLSI 
implementations. 

Since exact wiring information is only available after physical 
design steps, such as floor planning and placement, are 
performed, most of the existing high-level BIST synthesis and 
other test synthesis approaches usually do not consider wiring 
effect. The approaches presented in [6], [11], [16], [21] - [23], [31] - 
[33], [53], [54], [58], [59] and [63] - [65] are examples of BIST 
works that do not consider the impact of placement of the 
functional and BIST modules in the final design. Consequently, 
they lead to designs, which are optimal in terms of the numbers of 
functional modules and BIST resources, but take more silicon 
area to implement since the interconnections take a lot of silicon 
space. Therefore, it is important to take floor planning and wiring 
cost into account during the BIST synthesis process. 

To get area efficient designs, the impact of wiring area contribution 
should be addressed as early as possible so that functional, BIST 
and wiring area can be simultaneously optimized. In this way, the 
resulting designs are likely to be better in terms of total area as 
compared to the case when wiring is ignored during the synthesis. 

In order to take wiring information of the final designs into 
account during the BIST insertion process, it is needed to predict 
the wiring area and lengths at higher levels of abstractions. There 
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has been some work done in this direction. Alvandpour et al. [5] 
have developed a heuristic to estimate wiring lengths at RT or 
higher levels of abstraction. The approach was later deployed by 
Hallberg et al. [29] to predict area increase due to wiring in a high-
level synthesis system under local timing constraints. Their 
approach makes use of a few technology dependent parameters, 
which can be extracted from technology libraries. Recently, Goel 
and Marinissen [25] have proposed a model of wiring-length 
computation for core based system-on-chip testing, where they 
have assumed the layout of the modules to be known beforehand. 

2.8 Summary 
A general overview on how digital systems are tested has been 
provided. We have also presented a number of approaches that are 
used to synthesize easy to test systems. Many of these methods 
make use of testability analysis and testability metrics. We have 
presented a number of testability metrics. Some of them are based 
on probabilities/entropies and others are based on analysis of 
VHDL specifications. There are also methods, which search the 
justification and propagation paths based on the structures of the 
SDFGs. High-level testability metrics and testability analysis are 
helpful in detecting hard to test parts of the designs early during 
the design process. This can help to accelerate the synthesis of 
easy to test designs.  

Despite the fact that the presented testability analysis approaches 
can be used to assist synthesis of designs that have very high fault 
coverage and low hardware overhead, the trade-off between 
hardware overhead and test time at high-level is insufficiently 
explored. Most of the current approaches to BIST test time 
minimization are based on test scheduling optimizations, but 
efficient test time minimization by sharing BIST components is not 
well addressed. Similarly, minimizing BIST hardware overhead 
under testing-time constraints needs further investigation. 

We have motivated the need for considering wiring cost during the 
BIST synthesis process as VLSI technology advances towards DSM 
era. In our literature survey, we have found out that many of the 
existing test synthesis approaches have omitted wiring issues.  
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This thesis addresses the weaknesses and limitations of the 
current approaches to make them more suitable for testing DSM 
VLSI circuits. In Chapter 4 we address the trade-off between BIST 
overhead and testing time. In that chapter we provide an 
approach, which uses testing time as a constraint in a BIST 
hardware minimization problem. In Chapter 5 we propose a 
solution to the problem of a wiring-aware BIST synthesis. 

 



 35

Chapter 3 

Preliminaries 

This chapter focuses on concepts and definitions that are used in 
the rest of this thesis. The chapter starts by describing the design 
representation for our algorithms. Then our definitions of 
testability of SDFG nodes and register-transfer modules are 
provided. The concept of alternative test environment options and 
how they can be shared for testing the design is also discussed. 

3.1 Design Representation 
3.1.1 Behavioral representation 

The input to our BIST optimization technique is an internal 
representation of the behaviors based on a scheduled dataflow 
graph. 

Definition 3.1: A data flow graph (DFG) is a directed graph 
G=(V,E) which consists of a finite set of nodes V={v1, v2... vn} and 
an asymmetric data flow relation whose elements are directed 
edges VVE ×⊆ . 

Nodes in the DFG represent operations and edges represent data 
flow relation. A directed edge vi vj from vi∈V to vj∈V exists if the 
data produced by the operation oi (represented by node vi) is 
consumed by the operation oj (represented by node vj). 

Definition 3.2: A schedule of a DFG G=(V,E) is a mapping 
S:V {1,2,…,L} where for any pair of operations oi, oj ∈V, S(oi)<S(oj), 
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if (oi,oj)∈E. {1,2,…,L} corresponds to control steps. L is the latency 
of the schedule. 

Definition 3.3: A scheduled data flow graph (SDFG) is a DFG 
with scheduled operations that obey data dependencies and have 
a notion of control steps.  

An example of an SDFG is shown in Figure 3.1a, where horizontal 
dashed lines are used to delimit control steps.  

Throughout this thesis, unless otherwise stated, our testability 
analysis is always performed on the SDFG representation of the 
designs. 

 

3.1.2 Register-Transfer Level Structural Representation 

The structure of a design at the RTL consists of two parts: a data 
path and a controller. The data path deals with data manipulation 
and the controller controls flow of data in the data path units in 
such a way that the implemented behavior is executed. 

The data path consists of three main types of components.  

• Functional modules such as adders, multipliers, and ALUs, 
which perform arithmetic and logic operations specified in 
the behavior. 

• Memory units such as registers, RAMs, and ROMs, which 
store values of variables and constants generated and 
consumed during execution of the operations. 
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Behaviour 
e = a + b;  
f = c * d; 
g = e + f; 
 

 
Figure 3.1 An SDFG and its corresponding RTL data path 
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• Communication units such as multiplexers and buses, 
which enable transfer of data between the functional 
modules and memory units. 

An example of the data path, which is also represented as a graph, 
is shown in Figure 3.1b. It is an implementation of the SDFG in 
Figure 3.1a. 

This thesis concentrates on improving testability of the data path 
by using the BIST strategy.  

3.2 Testability of SDFG Operations and 

Variables 
In this thesis we assume that BIST is used as the basic testing 
strategy. Definition of testability of SDFG variables and operations 
is based on the use of symbolic testability analysis (STA) [21], [22], 
[23]. STA asserts an operation to be testable if there is a 
guaranteed transparent path from on-chip TPGs to the inputs of 
the operation for supplying test patterns, and a transparent path 
from the output of the operation to an on-chip MISR or BILBO for 
observing test results. In other words, an operation is testable if its 
input operands are controllable and its output observable at the 
same time. 

To model testability and do testability analysis of the design, we 
have defined a number of concepts. 

Definition 3.4: A primitive STA value (PSTAV) of a given SDFG 
variable v is its value in a given control step n at which it exists. 

Since STA analyzes testability of the SDFG by using its functional 
behavior, only a few PSTAVs have testability importance. We 
denote these values as gPSTAV, 0PSTAV, 1PSTAV, a1PSTAV, and 
rPSTAV. 0PSTAV is the value 0, 1PSTAV is the value 1, a1PSTAV is 
an all 1 vector and gPSTAV is any arbitrary value which can be 
requested. gPSTAV is used to model a test pattern and rPSTAV is 
used to model a test response. When analyzing the testability of a 
design it will be needed that a test pattern is set at a given 
variable. Therefore, to set the value of a variable to a gPSTAV is to 
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set it to a test pattern. The value of a variable is set to rPSTAV if 
the variable stores a test response. A set consisting of those STA 
values which are needed for testability analysis is called the set of 
testability important PSTAVs and is denoted as STIPSTAV. Thus,  

STIPSTAV = { 0PSTAV, 1PSTAV, a1PSTAV, gPSTAV, rPSTAV } 

To model testability, we have defined a number of basic Boolean 
STA constraints (BSTAC). We use them to formally define the way 
we model concepts we have used for doing testability analysis. 

Definition 3.5: g-Controllability constraint, read general 
controllability and symbolized Cg(v,n), of an SDFG variable v on 
the control step n is the ability to set (control) the value of v to 
gPSTAV in control step n from the PIs or TPGs. If this ability can 
be achieved then g-Controllability is true and the variable v is 
controllable to a value gPSTAV, otherwise it is false and v is not 
controllable to gPSTAV.  

Similarly, controllability to the constant value 1 (1-Controllability), 
controllability to the constant value 0 (0-Controllability) and 
controllability to a vector of all 1’s (a1-Controllability) have been 
defined.  

Let us assume that a notation Cα(v,β) denotes an STA constraint 
and means that a variable v is controlled to a value α in a control 
step β. With this notation, for a given variable v in control step n, 
its 0-Controllability will be denoted as C0(v,n), 1-Controllability as 
C1(v,n), g-Controllability as Cg(v,n), r-Controllability as Cr(v,n)  and 
a1-Controllability as Ca1(v,n). 

Definition 3.6: BSTACS of a variable v in control step n is defined 
as a set consisting of all basic STA constraints, that is  

BSTACS = {C0(v,n), C1(v,n), Ca1(v,n), Cg(v,n), Cr(v,n) }. 

Definition 3.7: A test environment (TE) is defined as a set 
consisting of any combination of basic STA constraints in the 
design.  

Since a TE consists of constraints which can be satisfied or not, 
we define an evaluation of a TE as a Boolean product of all the 
elements (STA constraints) in the TE, i.e.  
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After the TE and its evaluation are clearly defined, we will now 
define controllability TE of a variable (vCTE), controllability TE of 
an operation (pCTE), observability TE of a variable (OTE), 
testability TE of a variable (vTTE) and testability TE of an 
operation (pTTE). 

Definition 3.8: vCTE of a variable v in control step n (vCTE(v, n)) 
is a set of basic STA constraints which together can set the 
variable v to a primitive STA value gPSTAV from PIs or TPGs. In 
other words, vCTE(v,n) is a TE whose constraints together can set 
the variable v to a value gPSTAV. 

An SDFG variable v is controllable if eval(vCTE(v,n)) is true. 

Definition 3.9: pCTE of a 2-input operation, p, in control step n 
(pCTE(p,n)) is the union of the variable controllabilities of its 
inputs x and y, i.e. 

 ),(),(),( nyvCTEnxvCTEnppCTE U=  ( 3.2 ) 
An operation, p, is controllable if eval(pCTE(p,n)) is true. 

To read test results from an operation, which is being tested, we 
need to be able to transport the test response (rPSTAV) from the 
tested operation’s output through intermediate operations and 
variables to a variable that can be read directly.  A variable, which 
can be read directly because it is mapped to a PO, MISR or BILBO 
is an observable variable. Suppose we are given a variable vi in 
control step ni, which needs to be observed and a variable vj which 
is observable in control step nj. Analysis of the observability of vi at 
vj can be converted to a problem of setting a primitive STA 
constraint (Cr(vi,ni) from vi to vj. This is similar to the controllability 
analysis problem of finding a set of basic STA constraints which 
together can set the variable vj in control step nj to a primitive STA 
value rPSTAV from the variable vi. 

Definition 3.10: OTE of a variable vi set at a value rPSTAV in 
control step ni at another variable vj in control step nj is a set of 
STA constraints which together set the value of vj in control step nj 
to rPSTAV from vi. It is denoted by Obv(vi, ni , vj, nj ).  
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A variable vi is observable at vj if eval(OTE) is true and vj is 
observable. Let Obv(v,n) be true if variable v is observable at 
control step n. The variable at which others are observed is 
usually a PO or a MISR. Hence, observability, Obv(v,n), of a 
variable v on the nth control step is the ability to observe its value 
at a primary output or on-chip MISR.  

Definition 3.11: Testability TE of a variable v (vTTE) in control 
step n with a controllability TE vCTE and observability TE OTE is 
the union defined by  

 ),(),(),( nvOTEnvvCTEnvvTTE U=  ( 3.3 ) 
An SDFG variable, v, in control step n is testable if there exists a 
testability TE (vTTE(v,n)) that evaluates to True such that all the 
STA constraints in it are compatible and Obv(z,m) is true, where z 
is a variable at which v is to be observed at a control step m. 
Therefore, the testability of an SDFG variable v, vTest(v,n), is 
defined as 

 ),()),((),( mzObvnvvTTEevalnvvTest ∧=  ( 3.4 ) 
Definition 3.12: Testability TE of an operation p with inputs x, y 
and output z is the union of its controllability TE and observability 
TE defined as 

 )1,(),(),( += nzOTEnpopCTEnpopTTE U  ( 3.5 ) 
A 2-input SDFG operation, p, with inputs x and y, and output z is 
testable if there exists a testability TE (opTTE(p,n)) that evaluates 
to True such that all the STA constraints in it are compatible and 
Obv(z,m) is true, where z is a variable at which p is to be observed 
at a control step m. Therefore, the testability of an SDFG operation 
p, opTest(p,n), is defined as 

 ),()),((),( mzObvnpopTTEevalnpopTest ∧=  ( 3.6 ) 
The whole SDFG is testable if all the variables and all the 
operations are testable. Therefore, the testability of the whole 
SDFG, DTest, is defined as  
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The SDFG is, therefore, testable if the Boolean equation ( 3.7) 
evaluates to True. In the equation ( 3.7), pi is any operation and ni 
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is the control step at which it is scheduled, vj is any variable and 
nj is the control step at which it is scheduled, NP is the number of 
operations and NV is the number of variables in the SDFG. A 
symbol ∧ implies the Boolean AND operation. 

3.3 Test Environment Sharing 
To illustrate the idea of test environment options, consider the 
SDFG in Figure 3.2. Inputs and outputs of the operations are 
variables, and the opTTEs of a given operation are used to test the 
associated functional module that performs that operation. To 
test, for example, a multiplier operation *3 (node *3) using TPGs 
placed at the inputs of operations *1 and *2, and a MISR at the 
output of +4, we need to set variables V6 and V7 to gPSTAV (control 
V6 and V7 to general controllability value) in the control step 2. 
This means that STA constraints Cg(V6,2) and Cg(V7,2) need to be 
satisfied to make test patterns reach the operation *3. We also 
need to observe the test response value from V8 in control step 3 
(that is Obv(V8,3)).  

The respective variable controllability TEs for V6 and V7 are given 
by vCTE(v6,2)={Cg(V6,2)} and vCTE(v7,2)={Cg(V7,2)}. Further 
derivation gives that  

vCTE(v6,2)={Cg(V1,1), C1(V2,1)} or vCTE(v6,2)={C1(V1,1), Cg(V2,1)}, and 

vCTE(v7,2)={Cg(V3,1), C1(V4,1)} or vCTE(v7,2)={C1(V3,1), Cg(V4,1)}. 

To observe the value of V8 in step 3 we derive its observability TE, 
which is given as OTE(V8,3)={C0(V5,1)} and observe the test 
response, rPSTAV, at the variable V9 in step 4, i.e. Obv(V9,4).  

By analyzing the functionality of the SDFG operations, it is 
observed that the variable V6 has two alternative variable 
controllability TE options that can be used to control it to a value 
Cg in control step 2. Similarly, two options exist for achieving the 
controllability value Cg(V7,2) and one option for achieving the 
observability value Obv(V8,3). Further analysis shows that there 
are four (2 x 2 x 1) different alternative operation testability TE 
options for testing the operation *3 (see Table 3.1). 
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Table 3.1 Alternative opTTEs for testing *3 and +5 

Test 
Environments

Constraints for controlling 
operations 

Constraints for 
observing responses 

opTTE1(*3,2) Cg(V1,1), C1(V2,1), Cg(V3,1), C1(V4,1) C0(V5,1) 
opTTE2 (*3,2) Cg(V1,1), C1(V2,1), C1(V3,1), Cg(V4,1) C0(V5,1) 
opTTE3(*3,2) C1(V1,1), Cg(V2,1), Cg(V3,1), C1(V4,1) C0(V5,1) 
opTTE4(*3,2) C1(V1,1), Cg(V2,1), C1(V3,1), Cg(V4,1) C0(V5,1) 

   
opTTE1 (+5,2) Cg(V1,1), Cg(V4,1) - 

 

To illustrate the idea of sharing test environments, let us consider 
operation +5. The testability TE for the operation +5 (Figure 3.2) is 
given as opTTE(+5,2)={Cg(V1,2), Cg(V4,2)} since for observing test 
responses, no constraints need to be satisfied. The test result has 
to be observed at the variable V10. After simplifying opTTE(+5,2), we 
get, for the left input, )1,()2,( 11 VCVC gg = , for the right input, 

)1,()2,( 44 VCVC gg =  and for the observability of the 

output, )4,()3,( 1010 VObvVObv = . Hence, opTTE(+5,2)={Cg(V1,1), 
Cg(V4,1)}. 

  
Step 1 

*1 *2

*3

Step 2 

Step 4 

Step 3 
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+5 
V10
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Figure 3.2 An SDFG example 
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Suppose that the given SDFG variable, say vk, needs to be set to 
Cα(vk,β), where α∈STIPSTAV, in the operation testability TEs 
(opTTEs) of different operations OP={p1, p2, …, pn}, that is Cα(vk,β) ∈ 
opTTE(p1,s1), Cα(vk,β) ∈ opTTE(p2, s2), …, Cα(vk,β) ∈ opTTE(pn, sn), 
where si  is the control step at which the operation pi is scheduled. 
Since the controllability value Cα(vk,β) is common to the test 
environments of all the operations in the set OP, it can be shared 
by those operations to perform their concurrent testing. For 
example, consider variables V1 and V4 in the test environments of 
*3 and +5 as discussed above. 

As shown in Table 3.1, both the second test environment 
alternative of *3 (opTTE2(*3,2)) and the test environment of +5 
(opTTE1(+5,2)) need V1 and V4 to be controlled to Cg in the control 
step 1, i.e. Cg(V1,1) and Cg(V4,1). Therefore, Cg(V1,1) and Cg(V4,1) 
can be shared to perform concurrent testing of both operations 
using the test environment opTTE2 of the operation *3. 

3.4 Alternative Test Environment Options 
As discussed in the previous section, there, possibly, exist more 
than one test environment for controlling input operands and 
observing test responses for each operation in the SDFG. To 
explain this idea, the following definitions are provided: 

Definition 3.13: altC0(vi,n) is defined as the number of compatible 
alternative test environment options (ATEO) that can be used to 
set variable vi to a controllability value 0PSTAV in control step n. � 

Definition 3.14: altC1(vi,n) is defined as the number of compatible 
ATEOs that can be used to set variable vi to a controllability value 
1PSTAV in control step n. � 

Definition 3.15: altCg(vi,n) is defined as the number of compatible 
ATEOs that can be used to set variable vi to a controllability value 
gPSTAV in control step n. � 

Definition 3.16: altO(vi,n) is defined as the number of compatible 
ATEOs that can be used to enable observability of a variable vi in 
control step n at some signature registers. � 
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Two test environment alternatives are compatible if and only if 
every variable that is included in both of them needs to be 
controlled to the same value and at the same control step. 
However, two ATEOs need not necessarily have exactly the same 
number and type of variables. They can have some different 
variables, but the common ones have to be consistent. 

If we want to observe the node N1 in Figure 3.3, we need to observe 
variable vtbo (vtbo and vtbc stand for a variable to be observed and a 
variable to be constrained to controllability value 0PSTAV, 
respectively). Based on STA, this implies constraining vtbc to 
0PSTAV, and observing the value of vtbo at any of the observable 
output variables (vo1, vo2… von) at the output of node N3. Therefore, 
the number of observability alternatives increases when the node 
N3 has multiple observability paths, which, in this case, are also 
inherited by the node N1, provided that vtbc can be constrained to 
0PSTAV.  

In Figure 3.3, the number of observability alternative options for 
the variable vtbo, denoted as altO(vtbo,n) is 
altC0(vtbc,s0)×altO(vo1,s1)+altC0(vtbc,s0)×altO(vo2,s2)+…+altC0(vtbc,s0)×altO(von
,sn). This leads to the equation ( 3.8).  

N3
  + 

vtbo

N1  N2  

vtbc

vo1 vo2 von

n 

n-1 

n+1 

 
Figure 3.3 Multiple alternative observability paths 
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3.5 Testability of RTL Modules and Registers 
If an RTL design is synthesized from an SDFG representation, a 
given RTL functional module can implement a number of 
operations. Similarly, a number of variables can be implemented 
by the same RTL register. This thesis presents a post-HLS 
testability enhancement methodology, which is applied to RTL 
designs. It is applied after scheduling, allocation and binding are 
done. The essence of our approach is the fact that high-level 
behavioral information is used for testability analysis. The 
approach also makes use of the allocation/binding information 
provided by the HLS step. 

From the discussion in Section 3.4 we know that each variable v 
in the SDFG has a set of compatible ATEOs (for each 
controllability value in the set STIPSTAV). Suppose that the set of 
ATEOs for controlling variable v to gPSTAV is given as gA(v,n). 
Similarly, 0A(v,n), 1A(v,n), and a1A(v,n) are the respective sets of 
ATEOs for controlling the variable v to 0PSTAV, 1PSTAV and 
a1PSTAV. obvA(v,n) and tA(v,n) are the set of ATEOs for observing 
and testing variable v respectively. 

Suppose that a set of SDFG variables SV={v1, v2... vv} is mapped to 
a register r. Since each variable in the set SV is mapped to the 
same physical register, it is sufficient to test only one of the 
variables mapped to it. Testability of the register r is therefore 
expressed by the Boolean summation of the testabilities of all the 
variables it implements, as shown in equation ( 3.9). 
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where vi ∈ SV and si is the control step at which the variable vi is 
scheduled. 
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Since a variable can possess a number of ATEOs that can be used 
to test it, the testability of the register r can be further expanded 
by using these ATEOs as shown in equation ( 3.10). 
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where ai,j denotes the jth testability ATEO of variable vi and |tA(vi)| 
is the number of ATEOs that can be used to test variable vi. 

To define testability of the RTL functional modules, an argument 
similar to that used in defining testability of registers is used. 
Suppose a set of SDFG operations SO={p1, p2... pn} is mapped to a 
functional module m. Since all operations in SO are mapped to the 
same functional module m, testing any one of them is sufficient to 
test the module. Testability of the module m is, therefore, 
expressed by the equation ( 3.11), which leads to the equation  
( 3.12) upon expansion using the testability ATEOs. 
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where pi ∈ SO and si is the control step at which the operation pi is 
scheduled. 
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where ai,j denotes the jth testability ATEO for the operation pi and 
|tA(pi)| is the number of existing ATEOs that can be used to test 
the operation pi. 

The whole RTL design, DRT, consisting of a set SM of functional 
modules and a set SR of registers is testable if all the registers and 
all the functional modules are testable. Thus the RTL design is 
testable if the Boolean equation ( 3.13) evaluates to True.  
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where mi∈SM and rj∈SR. 

3.6 Structure of the Rest of the Thesis 
The rest of the thesis describes the contributions in detail.  

Chapter 4 deals with the minimization of BIST resources under 
testing time constraints. To minimize BIST resources and schedule 
testing of the operations, we explore the parallelism inherited from 
the nature of the design. This means that the topology of the 
design representation is analyzed. Using alternative test 
environment options captures degree of sharing of the BIST 
resources. Therefore, by exploring sharing of the test 
environments we try to minimize BIST resources. We assume that 
the designer imposes constraints on the testing time. The BIST 
resources are optimized such that the testing time constraints and 
full testability are satisfied. In Chapter 4 we assume a classical 
approach whereby the BIST resources optimization strategy simply 
uses the cost of functional, BIST and multiplexer hardware 
modules as an optimization objective. 

Chapter 5 extends the BIST resources optimization problem with 
wiring consideration and proposes two optimization approaches. 
This problem is motivated by the fact that the total area of the 
design is not only composed of the area of the BIST and functional 
modules, but also wiring area. In deep sub-micron technology 
wiring constitutes a substantial amount of chip area. Therefore, in 
this chapter we study the problem of optimizing the total area of 
the design, including wiring, while ensuring that each module is 
testable. 

 





 49

Chapter 4 

Testing-Time Constrained BIST 

Synthesis 

This chapter describes an approach to solve the problem of 
optimizing BIST resource usage under full-testability and testing 
time constraints described in Chapter 1. The test-problem 
identification and BIST enhancement strategy during the 
optimization process are assisted by symbolic testability analysis. 
Since the problem we address is NP hard, we have developed 
heuristics to solve it. 

4.1 BIST Synthesis Overview 
Our approach first analyzes and improves the testability of the 
design. After that it determines the initial testing time, Tinit, which 
can be achieved as a result of the parallelism, inherited from the 
nature of the design itself. In simple terms, Tinit is the testing time 
needed to test the design after using our heuristic to achieve one 
hundred percent testability of the design. 

We have defined a test session as a group of modules that are 
tested concurrently and a test schedule as a set of all test sessions 
for testing a given design.  

We have assumed that pseudo-random BIST technique will be 
used to test the design and that the same number of pseudo-
random test vectors will be used for testing each functional 
module. Thus, all test sessions will be of equal length, and the 
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total testing time will be directly proportional to the number of test 
sessions. Consequently, Tinit is the number of test sessions needed 
to test the design after using our heuristic to achieve one hundred 
percent testability of the design multiplied by the length of the test 
session. 

Detailed explanation on how Tinit is obtained is provided in sub-
sections 4.2 through 4.5. 

Given a certain required testing time constraint, Treq, the following 
alternatives are taken: 

• If Treq<Tinit, shrink the test schedule by adding a minimal 
amount of hardware such that the test time constraints are 
satisfied; 

• If Treq=Tinit, optimize BIST hardware, so that minimal 
overhead is left; 

• If Treq>Tinit, optimize the BIST hardware by stretching the test 
schedule, such that minimal overhead is left and testing time 
is TBIST≤Treq (TBIST approaches Treq). 

In summary, our BIST time analysis and resource optimization 
approach works with RTL designs represented in a notation based 
on SDFG. The outputs are: a test schedule that satisfies testing 
time constraints and an RTL design with minimal added BIST 
resources. 

Our overall BIST testing time analysis and resources optimization 
approach is described in Figure 4.1. STA is used to select 
untestable operations and testability enhancement is performed. 
In the course of STA all possible testability test environments for 
each operation are also extracted. Then, sets of operations that 
cannot be tested concurrently due to MISR sharing conflicts are 
identified. Test session selection heuristic is used to select 
concurrent test sessions based on test environment options (see 
Section 3.3 and 3.4) and MISR sharing conflicts. The objective is 
to minimize the length of the test schedule. The testing time of the 
resulting test schedule is denoted as Tinit. After that, the time 
constraints are considered and appropriate steps taken as 
discussed previously in this section. Finally, a merged design and 
BIST controller, and a BIST-ed data path are generated. 
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4.2 Testability Enhancement 
The basic idea behind our testability enhancement is a conversion 
of functional registers to BIST registers or the insertion of 
dedicated BIST registers. We assume that these BIST registers 
have dual modes, functional and testing. Consequently, they can 
be configured as storage units during functional mode or as on-
chip test pattern generators and/or signature analyzers during 
test mode.  

 

Extract MISR incompatibility sets

BISTed datapath and controller 

Treq<Tinit Treq>Tinit

Treq=Tinit

Extract all testability TE options

STA guided testability enhancement

MISR based operation scheduling for concurrent Testing

Shrink test schedule 

Test response redirection
Test vector sharing 

Stretch test schedule

 
Figure 4.1 Overview of BIST resources optimization 
strategy 
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In this Chapter we propose a testability enhancement heuristic 
that aims at adding a small amount of BIST resources that will 
guarantee 100% testability for all the modules in the design. The 
heuristic does not guarantee that the added BIST hardware is 
optimal. The testability enhancement is performed sequentially in 
three steps. In the first step controllability enhancement to 100% 
is performed, then in the second step observability is enhanced to 
100% and finally global testability is enhanced to 100%. 

It can be observed that, very often, uncontrollable nodes induce 
controllability problems to all successor nodes. This is caused by 
data dependency resulting from the topology of the SDFG. Our 
controllability enhancement strategy, thus, first enhances the 
node that is the source of controllability problems. Consequently, 
enhancing one node can improve controllability of most of the 
successor nodes.  

Our controllability enhancement algorithm is depicted in Figure 
4.2. It starts by analyzing testability of the SDFG to find all 
uncontrollable operations (line 1). Then the process of 
controllability enhancement is repeated until all operations 
become controllable (lines 2-22). Each time when there are still 
some uncontrollable operations left, we group uncontrollable 
operations into connected groups. These connected operations are 
referred to as uncontrollable sub-graphs (UCSG) (line 3). The 
largest group is referred to as largest uncontrollable sub-graph 
(LUCSG) (line 4). The idea is to enhance controllability of an 
operation that is at the top (TOP) of the LUCSG (line 5) so that its 
controllability can be propagated to other operations in the group.  

By first deciding which input register of the operation is to be 
enhanced and then converting it to a TPG if it is a primary input 
or a BILBO otherwise achieve controllability enhancement. If the 
operation has only one uncontrollable input then this input is 
enhanced. If both inputs of the operation are uncontrollable, we 
prioritize enhancing controllability of the left input register.  
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Algorithm: EnhanceControllability 
 Begin 

1. (Uncontrollable, Unobservable, Untestable)  STA(SDFG); 
2. while (Uncontrollable != φ) do 
3. UCSG  getUncontrollableSubGraphs(Uncontrollable); 
4. LUCSG  getLargestUncontrollableSubGraph(UCSG); 
5. TOP  get operation at the top of LUCSG; 
6. X  getInput(left, TOP); 
7. Y  getInput(right, TOP); 
8. if X not controllable then 
9. if X is a PI then  
10. modifyDesign(SDFG, X, TPG);   //convert X to TPG 
11. else 
12.    modifyDesign(SDFG, X, BILBO); //convert X to BILBO 
13. end if  
14. else  
15. if Y is a PI  then  
16. modifyDesign(SDFG, Y, TPG);   //convert Y to TPG 
17. else  
18.    modifyDesign(SDFG, Y, BILBO); //convert Y to BILBO 
19. end if 
20. end if 
21. (Uncontrollable, Unobservable, Untestable)  STA(SDFG); 
22. end while 

 End. 
Figure 4.2 Controllability enhancement algorithm 

 

Unobservable modules are usually buried far from POs or MISRs. 
Observability of a module imposes restrictions on the values of 
other variables in order for the test responses to be propagated to 
the MISRs. Sometimes the restrictions are not able to force 
propagation of the values to MISRs and in some cases some 
variables are simultaneously forced to have contradictory values to 
enable observability, thus, these operations become unobservable 
as shown in Figure 4.3.  

If node N1 in Figure 4.3 is to be tested, controllability value Cg(V1,1) 
is to be set at V1 and Cg(V2,1) at V2 while the output of N2 has to be 
controlled to C0(V5,2) to enable observability of the output of N1 at 
a MISR. Since V2 is also connected to N2, whatever value is set at 
V3, C0(V5,2) cannot be guaranteed at the output of N2, hence, test 
responses at the output of N1 cannot reach the MISR.  
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One solution to the observability problem discussed above is to 
introduce a MISR at the output of the node N1 or redirect test 
responses from N1 to an existing MISR in the design. However, in 
more complex designs, this has to be done in a way such that 
MISR resources are efficiently used. Therefore, our BIST 
observability enhancement heuristic is to add a dedicated MISR at 
the output of a node situated at the end of a sub-graph of 
unobservable nodes. If a MISR is added to improve an 
unobservable node that is not at the end of the unobservable sub-
graph, then the downstream modules will still be unobservable. 
This idea is illustrated in Figure 4.4. Before BIST enhancement, 
the design has three primary input variables (V1, V2 and V3) and 
three constant nodes (C1, C2 and C3). STA reveals the existence of 
two unobservable sub-graphs. The first one consists of nodes *1, 
*2* and *3 whereas the second consists of *2, *4 and –1. To 
enhance the observability of these sub-graphs, our approach 
selects to enhance the observability of variables V9 and V10, which 
are at the end of the first and second unobservable sub-graphs 
respectively. As a result, the observability of all three nodes in 
each of the two sub-graphs is enhanced. Had we, for example, 

  
TPG1                       TPG2  
  V1                  V2              V3 

   Cg(V1,1)            Cg(V2,1)                  Cg(V2,1) 
 

MISR

Test
 responses 

    V5   C0(V5,2) 
Needed, but not guaranteed

V4

V6

 N2    +1   N1   *1 

  N3  +2 

Step 1 

Step 2 

Step 3 

To be tested.
Unobservable since test 

responses cannot reach MISR.

Contradiction

 
Figure 4.3 Observability problem due to contradictory values 

on intermediate nodes 
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enhanced observability of variable V5 instead, only observability of 
node *2 would have been enhanced. Consequently, it would have 
been necessary to add more MISRs to improve the observability of 
the remaining four nodes. Therefore, our approach selects places 
to enhance observability such that the smallest number of MISRs 
and BILBOs is added into the design as shown in Figure 4.4.  

 

Our complete observability enhancement algorithm is depicted in 
Figure 4.5. It starts by running STA to find all unobservable 
operations (line 1). Then the process of observability enhancement 
is repeated until all operations become observable (lines 2-15). 
Each time when there are still some unobservable operations, we 
group them into unobservable sub-graphs (UOSG) as discussed in 
the previous paragraph. Then the largest unobservable sub-graph, 
LUOSG, is found (line 4). The idea is to enhance observability of 
an operation (BOP) that is at the bottom of the LUOSG (line 6) so 

TPG1      TPG2       TPG3        TPG4         TPG5           TPG6 
  V1           V2         C3             C2              C1                 V3 

MISR1

V4           V5         V6           V7                 V8

V11

 N2    *2   N1   *1 

  N5  *3 
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Step 2 

Step 3 

 N3    -1  N4    +1 

  N6  *4 

  N7  -2 

  N8  -3 
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Step 5 

 V9                 V10

V12

MISR2

BILBO2

BILBO1

 
Figure 4.4 Selecting observability enhancement places  
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that other unobservable operations up the sub-graph will also be 
enhanced. For the chosen operation, we enhance observability of 
one of its output register, which is converted to a MISR if it is a 
primary output, otherwise to a BILBO. 

 

Algorithm: EnhanceObservability 
 Begin 

1. (Uncontrollable, Unobservable, Untestable)  STA(SDFG); 
2. while (Unobservable  != φ) do 
3. UOSG  getUnobservableSubGraphs(Unobservable); 
4. LUOSG  getLargestUnobservableSubGraph(UOSG); 
5. // EnhanceObservability(LUOSG); 
6. BOP  get operation at the bottom of LUOSG; 
7. Z  getOutputRegisters(BOP);  
8. if R∈Z is a PO then 
9. convert R to MISR; 
10. else  
11. R  Z[0]; 
12. convert R to BILBO;  
13. end if 
14. (Uncontrollable, Unobservable,Untestable)  STA(SDFG); 
15. end while 

 End. 
Figure 4.5 Observability enhancement algorithm 

 

After controllability and observability are enhanced, it is still 
possible that the design will not be testable. Therefore, testability 
of the design has to be re-checked, and if there are still some 
untestable modules, then their testability has to be enhanced.  

Note that a module is considered testable if it is simultaneously 
controllable and observable. It is, therefore, possible that a module 
that is both controllable and observable can still be untestable. 
This can happen if a given SDFG variable is required to be set to 
different values at the same time, one for enabling controllability 
and another for enabling observability. Consequently, the 
associated module becomes untestable since two different values 
cannot be set to the same variable at the same time [50]. To solve 
the problem, we have proposed a testability enhancement 
algorithm shown in Figure 4.6. It is based on the same idea as the 
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controllability and the observability algorithms. The untestable 
operations are grouped in sub-graphs and the largest one is 
improved first (line 4). The operation at the bottom of the largest 
untestable sub-graph is prioritized for enhancement. Since an 
operation usually has two inputs and one output, the priority of 
enhancement is in the order left input, right input and then 
output. Since the controllability and the observability 
enhancements have been done, all PIs and POs have been 
enhanced for BIST. Therefore, testability enhancement mainly 
targets internal registers, which are usually converted into 
BILBOs. The algorithm proceeds as shown in Figure 4.6.  

 

Algorithm: EnhanceTestability 
 Begin 

1. (Uncontrollable, Unobservable, Untestable)  STA(SDFG); 
2. while (Untestable != φ) do 
3. UTSG  getUntestableSubGraphs(Untestable); 
4. LUTSG  getLargestUntestableSubGraph(UTSG); 
5. // Enhance testability  
6. BOP  get operation at the bottom of LUTSG; 
7. X  getInput(left, BOP); 
8. Y  getInput(right, BOP); 
9. Z  getOutputRegisters(BOP);  
10. // Enhance controllability 
11. if X != BILBO and hasInputs(X) then 
12. convert X to BILBO 
13. goto checkTestability;  
14. if Y != BILBO and hasInputs(Y) then 
15. convert Y to BILBO 
16. goto checkTestability;  
17. // Enhance observability 
18. if R∈Z is a PO then 
19. convert R to MISR; 
20. else  
21. R  Z[0]; 
22. convert R to BILBO;  
23. end if  
24. checkTestability:  
25.              (Uncontrollable, Unobservable, Untestable)  STA(SDFG); 
26. end while 

 End. 
Figure 4.6 Testability enhancement algorithm 
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4.3 MISR Sharing 
Simultaneous analysis of test responses from multiple functional 
modules requires the availability of as many MISRs as there are 
modules that are to be analyzed at the same time. This means that 
the number of available MISRs bounds the number of modules, 
which can be simultaneously analyzed. In addition, all 
concurrently analyzed modules must have all their inputs 
simultaneously controlled by setting appropriate controllability 
values on the variables as given in their testability TEs. Modules 
that are analyzed using the same MISR must be scheduled in 
different test sessions due to MISR sharing conflicts. 

4.4 MISR Incompatibility Sets 
MISR incompatibility sets (MISRISs) consist of operations that 
cannot be concurrently tested due to MISR sharing conflicts. Two 
operations are contained in the same set if they share the same 
MISR for test response analysis and, therefore, cannot be 
concurrently tested. 

STA results give sufficient information for extracting MISRISs. To 
extract MISRISs we group operations based on the signature 
registers that are used to analyze their responses. Each signature 
analysis register, Mi, corresponds to one set, Gi, which will include 
all operations that are analyzed by it. All operations in the same 
set are known as incompatible operations with respect to their 
corresponding MISR.  
The number of incompatible operations in the largest MISRIS 
determines a lower bound on the minimal number of test sessions 
that are needed for testing the whole design. In reality, the total 
testing time is not only determined by MISR sharing 
incompatibilities, but also is constrained by the choice of good test 
environment options, which determine whether the TEs are 
conflict free to enable concurrent testing of the modules. 
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4.5 Concurrent Test Session Selection 
Once the MISRISs are available, the next step is to select 
concurrent test sessions. A group consisting of one operation from 
each MISRIS can possibly be tested concurrently if the operations 
will not violate the test environment constraints. 

If the test environment constraints are not considered, it can be 
possible to schedule operations in a minimal number of test 
sessions equal to the maximum number of operations in the most 
congested MISRIS. However, these may not be correct test 
sessions because the availability of MISRs for concurrent 
observation of responses does not guarantee that those operations 
can be properly controlled and the responses properly propagated 
to the corresponding MISR registers at the same time for all tested 
operations in a given test session. In this way, controllability 
constraints imposed by the test environments of individual 
operations may cause an increased number of test sessions. This 
is due to the fact that there may exist operations that use different 
MISRs for signature analysis, but compete for the same variables 
to control their inputs or propagate test response to the 
appropriate MISR, hence cannot be simultaneously controlled. 

Test environments have two components. The first component 
consists of the controllability values necessary to control the 
inputs of the operations and the second component consists of the 
controllability values necessary to force propagation of test 
responses to the corresponding MISR. Thus, when constraints due 
to both controllability of the input operands and those imposed to 
propagate test responses to the appropriate MISR are taken into 
account during the test session selection process, an increase in 
the number of test sessions will be noticed and the MISRs will be 
less effectively used, with some of them remaining idle during 
several test sessions. After all constraints are taken into 
consideration, the resulting number of test sessions represents the 
initial testing time, Tinit. Thus, it is possible to test the design in 
Tinit test sessions as a result of the nature of parallelism inherited 
from the design itself. 

Out of the compatible test environment alternatives, the particular 
testability TE alternative option that minimizes MISR conflicts and 
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can lead to packing as many operations as possible in each test 
session will be chosen. Consequently, the total number of test 
sessions will be minimized. In addition, TEs of all operations in a 
test session must be simultaneously supported. When the best 
choice of TE alternatives is achieved, the associated testing time is 
the initial testing time, Tinit. The best choice among the alternative 
TE options is the one targeted to favor maximum parallelism in 
testing operations. 

Our heuristic for selection of concurrent test sessions is based on 
an equal length test-scheduling algorithm [16]. We extended the 
algorithm to take into consideration controllability and 
observability constraints when choosing operations to be included 
in a given test session. Therefore, operations are included in the 
same concurrent test session not only if they do not share MISR, 
but also if controllability and observability constraints are satisfied 
for all of them at the same time. 

4.6 BIST Resources Optimization 
After Tinit is obtained, further hardware optimization is performed 
until the requested test time constraint, Treq, is satisfied. Three 
different optimization cases are considered based on comparison 
of Tinit and the test time constraint, Treq. In all cases the 
optimization objective is the cost of BIST registers and 
multiplexers as shown in equation ( 4.1), where bi is the area of 
the ith BIST register, B is the number of BIST registers, mj is the 
area of the jth multiplexer, and M is the number of multiplexers. 
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Case 1: Treq < Tinit: If the requested number of test sessions, Treq, is 
less than Tinit, our approach optimizes hardware by shrinking the 
test schedule. Since we want to satisfy the constraint Treq, and up 
to this moment the hardware has been optimized in such a way 
that the design can be tested in Tinit test sessions, our approach 
continues to shrink the test schedule by adding more hardware 
until the test time T equals Treq. 
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Hardware optimization by test schedule shrinking is described by 
the algorithm in Figure 4.7 and proceeds as follows: All Tinit test 
sessions are ranked in decreasing order of the number of 
operations to be tested in that session (line 1). Suppose rTS is a 
set of test sessions ranked in decreasing order of the number of 
operations. This means that the first test session in rTS has the 
greatest number of operations. We take the first Treq (Treq≤ Tinit) test 
sessions and make them default test sessions of our shrinked test 
schedule (STS). All the operations in the remaining test sessions 
are then considered unscheduled (lines 2-6) and will be re-
scheduled in one of the test session TSi ∈ STS, 1≤i≤|STS|. An 
operation will be placed in the test session in which it needs 
minimal additional hardware and can be concurrently tested with 
all the other operations in the same test session. Lines 7-21 of our 
shrink test schedule algorithm achieve this. 

For each unscheduled operation, the set of all potential possible 

Algorithm: ShrinkTestSchedule 
 Begin 

1. rTS  rank test sessions in decreasing order of complexity; 
2. Uns  φ ;    // unscheduled operations 
3. for i  Treq+1, Treq+2, .., Tinit  do 
4. Uns  Uns ∪ rTS[i];    
5. rTS  rTS - rTS[i];  
6. end for 
7. STS  rTS;  // initialize shrinked test schedule 
8. while (Uns ≠ φ) do  
9. op  get one unscheduled operation from Uns; 
10. Uns  Uns – { op }; 
11. Ψp  compute potential TEs for op; 
12. for i 1, 2, .., |STS| do 
13. TSi  STS[i];    // getTestSession(i);   
14. Ω  get TEs used in TSi; 
15. Ψc  computeCompatibility(Ψp, Ω); 
16. bestATEO[i] getBestATEO for TSi from Ψc; //cheapest ATEO 
17. end for 
18. chosenATEO  a, a∈bestATEO | cost(a)=Min{bestATEO[i]},1≤i≤Treq; 
19. Schedule op in the test session where chosenATEO is; 
20. Add hardware to accommodate op in the chosen test session; 
21. end while 
22. Apply TestResponseRedirection algorithm; 

 End. 
Figure 4.7 BIST optimization by test schedule shrinking 
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TEs, Ψp, is computed (line 11). During the computation process of 
the potential TEs, the STA procedure assumes that the internal 
non-BIST registers can be converted into BIST registers to provide 
more possibilities of the TEs. For each test session in the shrinked 
test schedule TSi ∈ STS, 1≤i≤|STS|, we find all TE ∈ Ψp that are 
compatible with all the operations in that session (lines 13-15). 
This process tries to find all the TEs for the given operation that 
can be used to schedule it in a given, existing test session. These 
compatible TEs are denoted as Ψc. For a given test session, the 
compatible TE ∈ Ψc that will need the cheapest modification of the 
design is considered as the best candidate TE for scheduling the 
operation in that test session (line 16). The process is repeated to 
find best candidate TE for each test session for the given 
operation. Out of all candidate TEs, the candidate TE that needs 
the overall minimum cost is chosen and the operation is 
scheduled in the corresponding test session using the TE that 
incur the cheapest hardware cost. The design is then modified so 
that the chosen TE can be provided.  

Case 2: Treq= Tinit: Our approach explores the possibility of further 
hardware optimization by using the strategy of test response 
redirection. As it has been emphasized in the discussion in 
Section 4.5, several MISRs are not effectively used in some test 
sessions; hence, our approach recovers some of them and converts 
them back to normal registers. The operations that use recovered 
MISRs are redirected to other free MISRs in the same test session.  

To optimize resource usage, one basic idea is to redirect test 
responses from some operations to other MISRs different from 
those originally assigned to, if the time constraints are not violated 
and the MISRs allow the redirection.  

Let Lu represents a MISR that is least used in all test sessions. 
This means that Lu remains idle in most of the test sessions as 
compared to other MISRs. Let U be a set consisting of test sessions 
in which Lu is used. During execution of the algorithm, Mc is the 
set of currently used MISRs. When a MISR is recovered and 
converted back to a normal register, it is removed from Mc. F is a 
set consisting of MISRs that are free in every test session in which 
Lu is used. Among the free MISRs in set F, P is the one that is 
mostly packed, which means, P analyzes responses from the 
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greatest number of operations as compared to the other MISRs in 
F. Let G be the set of all MISR incompatibility sets. Given a certain 
MISR X, GX represents the incompatibility set corresponding to 
MISR X. The algorithm shown in Figure 4.8 minimizes the 
hardware cost (see equation ( 4.1)) and produces the set MC of 
used MISRs and the corresponding incompatibility sets. This 
optimization is performed without increasing the number of test 
sessions.  

 

 

Algorithm: TestResponseRedirection 
 Begin 

1. G  set of all incompatibility sets; 
2. Best_selection_obtained  FALSE; 
3. while (best_selection_obtained != TRUE) do 
4. Lu  X, X ∈ MC and X is least used;  
5. U  All test sessions in which Lu is used;  
6. F  Free MISRs in sessions U; 
7. If F ≠φ  then 
8. P  X, X ∈ F and X is most packed;  
9. for every operation op∈GLu do 
10. connect operation op to MISR P; 
11. end for  
12. if cost is reduced then 
13. G  G – { GP, GLu }; 
14. GP  GP U GLu; 
15. G  G U { GP };  
16. MC  MC - { Lu };   
17. else 
18. Discard all connections done in line 10;   
19. end if 
20. else 
21. best_selection_obtained  TRUE;  
22. end if  
23. end while 
24. return MC, G; 

 End. 
Figure 4.8 BIST optimization by test responses redirection 
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Case 3: Treq> Tinit: As discussed above, initially all operations are 
scheduled in Tinit test sessions, which are denoted as TSi, 1≤i≤Tinit. 
If Treq>Tinit, our approach increases the testing time from Tinit to 
TBIST by stretching the test schedule in such a way that the 
required time constraint is satisfied (Tinit<TBIST≤Treq). In this case, 
we can recover more BIST hardware resources that may not 
necessarily be needed. The success of this optimization depends 
on test environment conflicts of the operations and on how large 
Treq is compared to Tinit. 

To optimize BIST hardware by stretching the test schedule, first 
we find two most utilized TPGs and the most utilized MISR. Since 
these resources are already highly utilized, we will keep them. 
Then we will try to recover as many of the remaining BIST 
registers as test time constraint will allow. These remaining BIST 
registers are referred to as candidate registers for recovery and are 
denoted as Candid. 

First of all, the remaining BIST registers are ranked in increasing 
degree of utilization, i.e. the least used register first. These 
remaining BIST registers are candidates for removal in order to 
minimize hardware while satisfying given a testing-time 
constraint. Our hardware reduction technique utilizes the longer 
testing-time freedom to reduce hardware overhead. 

To remove a candidate BIST register b ∈ Candid, we find all 
operations which use b for BIST activities, and then we search for 
alternative connections (cheapest ones) to perform BIST activities 
for those operations. If these connection alternatives exist and 
they make the design testable and if the operations can be 
scheduled in other test sessions and they lead to hardware 
reduction, then b is removed (converted to functional register). 
Otherwise the BIST register b and test schedule are left intact. 
This process is repeated for all candidate registers. The detailed 
stretch test schedule algorithm is described in Figure 4.9. 
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Algorithm: TestScheduleStretching 
 Begin 

1. PrTPG  get 2 most utilized TPGs; 
2. PrMISR  get one most utilized MISR; 
3. BR  set of BIST resources ranked in increasing order of utilization; 
4. BR  BR – {PrTPG} – {PrMISR}; 
5. STS  get test schedule of size Tinit; // STS is stretched test schedule 
6. ESTS  extend STS with empty test sessions till |ESTS|=Treq; 
7. RC  φ;  // recovered BIST registers; 
8. for i  1, 2, .., |BR| do 
9. b  BR[i]; 
10. BR  BR – {b}; 
11. OP  all operations which use b for BIST activities; 
12. D  find alternative BIST for OP by connections;  
13. ConnectAlternativeBIST(OP, D);  
14. Testable  Check testability by doing STA; 
15. Schedulable  ScheduleOperations(OP, ESTS);  
16. if (Schedulable and Testable and cost is reduced) then 
17. Convert b to normal register; 
18. RC  RC U  { b };  
19. ESTS  UpdateSchedule(OP); 
20. Accept design modification; 
21. else 
22. Cancel design modification; 
23. BR  BR U  { b };  
24. end if  
25. end for 
26. apply TestResponseRedirection algorithm; 
27. Return RC, TSS; 

 End. 
Figure 4.9 BIST optimization by test schedule stretching 

 

The other idea to reduce BIST overhead is to share test pattern 
generators among operations. In order to effectively share TPGs, 
our approach first chooses two most utilized TPGs and assumes 
that they cannot be removed. For each of the remaining TPGs, we 
find all operations, which get test patterns from it and connect 
them to other alternative TPGs in the design. Then the TPG is 
removed. If the design becomes testable and operations 
schedulable in the same number of test sessions and the BIST 
overhead is reduced then the TPG is permanently removed. 
Otherwise the TPG is put back in the design. 



 66

Additional multiplexers and wiring will be needed in order to 
redirect test responses for analysis to different MISRs or to share 
test patterns among operations. After some TPGs and MISRs are 
disabled as BIST registers, they will still remain in the design as 
normal registers for their functional storage use, hence not adding 
any BIST overhead. 

4.7 Experimental Results 
Researchers on high-level BIST insertion typically evaluate the 
efficiency of their approaches by comparing the amount of BIST 
hardware added. This is usually computed as the number of 
TPGs, MISRs, BILBOs and CBILBOs added. On the other hand, 
our approach takes the area of the BIST registers and multiplexers 
as the optimization objective.  

Sizes of the functional registers and modules are adopted from 
[51]. For the BIST registers, we have assumed a simple 
relationship between the sizes of the functional and BIST registers: 
Register < TPG < MISR < BILBO < CBILBO. The areas of the 16-bit 
modules used in the experiments are shown in Table 4.1. 

 

Table 4.1 Sizes of modules and registers 
Name Area (µm2)  
Adder 50,000  
Subtractor 50,000  
Multiplier 250,000  
Divider 250,000  
Register 15,000  
TPG 20,000  
MISR 30,000  
BILBO 40,000  
CBILBO 50,000  
Multiplexer N×+ 5001000  , where N is the number of multiplexer inputs 

 

We have tested our approach on several HLS benchmarks. 
Characteristics of the designs used in our experiments are 
summarized in Table 4.2. The designs have been synthesized 
using a very simple HLS algorithm such that each SDFG operation 
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is implemented using a separate functional module. Details of the 
design features can be found in [44]. 

 

Table 4.2 Characteristics of the designs 
Design name #Adders #Subtractors #Multipliers #Dividers #LogicAND 
Tseng 3 1 2 1 1 
Real 3 2 4 2 0 
Paulin 2 2 6 0 0 
Overnctrl 5 1 1 1 0 
Ewf 26 0 8 0 0 

 

The first set of experimental results (Table 4.3, Table 4.4) deals 
with our initial testability enhancements and test hardware 
optimization by test response redirection and test patterns 
sharing. In these experiments, testability degree is computed as a 
percentage of fully testable operations. An operation is testable if 
all its input operands are controllable and its output observable at 
the same time. Controllability degree is the percentage of the 
operations that are controllable, that is, the ratio of the 
controllable operations to the total number of operations in the 
design times one hundred percent. In order for the operation to be 
counted as controllable, both its left and right hand operands 
must be simultaneously controllable. If any input operand is not 
fully controllable, the associated operation is assumed to be not 
controllable. Similarly, observability degree is the percentage of the 
observable operations in the design.  

 

Table 4.3 Testability analysis results of the original designs 
Design name #TPG #MISR Controllabilitý 

degree 
Observability 

degree 
Testability 

degree 
Paulin 4 3 40.0 80.0 30.0 
Real 3 2 9.0 16.0 0.0 

Overnctrl 5 2 75.0 62.5 37.5 
Tseng 5 2 87.5 75.0 12.5 
EWF 8 7 20.6 88.0 5.9 
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Table 4.4 BIST resources after testability enhancement and 
optimization to 100% testability 

 Straightforward Optimized %Hardware 
reduction 

Name Tinit #TPG #MISR #BILBO #TPG #MISR #BILBO HW 
cost 

Number of 
BIST regs 

Paulin 6 5 3 2 4 3 2 6.0 10.0 
Real 3 6 2 5 6 2 3 19.0 15.4 

Overnctrl 5 6 2 1 5 2 1 8.2 11.1 
Tseng 4 5 2 3 5 2 2 12.9 10.0 
EWF 7 9  7 12 11 5 5 31.0 25.0 

Average 15.4 14.3 
 

Table 4.3 shows testability results as proposed after the original 
application of STA, but before our testability enhancement and 
optimization are applied, whereas Table 4.4 shows results after 
testability enhancement and BIST optimization by test response 
redirection and test patterns sharing. In Table 4.3, the first 
column shows the names of the designs, the second column 
shows the number of TPGs, and the third column shows the 
number of MISRs. The fourth column depicts the percentage of 
operations that are fully controllable, the fifth column gives the 
percentage of operations that are observable and the sixth column 
shows the percentage of operations that are testable. The BIST 
registers reported in Table 4.3 are obtained by assuming that all 
primary input registers and primary output registers are converted 
to TPGs and MISRs respectively. 

The total number of TPGs, MISRs and BILBOs after enhancement 
to 100% testability is shown in Table 4.4 whose first column 
depicts design names and number of test sessions needed to test 
them after 100% testability has been achieved by using our 
approach. The sub-columns of the column titled Straightforward 
show the number of TPGs, MISRs and BILBOs after initial 
straightforward testability enhancement is performed. By 
straightforward testability enhancement we simply mean applying 
the testability enhancement algorithms discussed in Section 4.2 to 
get 100% testability. The sub-columns of the column titled 
Optimized show the number of TPGs, MISRs and BILBOs that 
remain in the design after our BIST resource optimization by test 
response redirection and test patterns sharing are applied. The 
sub-columns of the column titled %Hardware reduction show 
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hardware reduction, in terms of BIST cost and number of BIST 
registers, resulting from our optimized approach as compared to 
the straightforward solution. In all our experimental results we 
have considered that Treq=Tinit. The results show that by careful 
BIST optimization at the high-level, the needed BIST area 
overhead can be reduced by up to 15.4% and 14.3% in terms of 
hardware cost and the number of BIST registers respectively (last 
column in Table 4.4). 

The second set of experimental results demonstrates our test-time 
constrained BIST resource optimization by test schedule shrinking 
and test schedule stretching. We will use the design Paulin (Table 
4.5) to discuss our experimental results in detail and after that we 
will present a table, which summarizes the results for other 
designs. In Table 4.5 the column Treq is the requested testing time 
constraint and TBIST is the testing time returned by our approach.  
Columns TPG, MISR, BILBO, and CBILBO represent the numbers 
of respective types of BIST registers. The column Muxs represents 
the number of test multiplexers and the column Mux input is the 
number of inputs of the test multiplexers. The column HW cost is 
the sum of the area of the BIST registers and test multiplexers. 

 

Table 4.5 Optimization by test schedule shrinking and stretching 
for the design Paulin 

 
Treq TBIST TPG MISR BILBO CBILBO Muxs 

Mux 
inputs HW Cost

 

1 1 2 3 0 7 6 12 492000 Shrink 
2 2 4 3 2 2 2 4 354000 ,, 
3 3 3 3 2 2 4 8 338000 ,, 
4 4 4 3 0 3 2 4 324000 ,, 
5 5 4 3 2 1 2 4 304000 ,, 
6 6 5 3 2 0 0 0 270000 straightforward 

6 6 4 3 2 0 2 4 254000 
Optimized by 

sharing MISRs+TPGs 
          
7 7 4 1 1 0 4 11 159500 Stretch 
8 7 4 1 1 0 4 11 159500 ,, 
9 7 4 1 1 0 4 11 159500 ,, 
10 7 4 1 1 0 4 11 159500 ,, 

 

Initially, after testability enhancements were applied, the resulting 
number of test sessions, Tinit, for the Paulin example, was 6.  
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We have progressively shrinked the test schedule (Treq=5, 4... 1) 
and observed how BIST resources are utilized for each requested 
number of test sessions. It is observed that more BIST resources 
are needed to shrink the test schedule. The shorter the schedule 
the higher the BIST cost needed to guarantee it. 

We have also performed experiments on resources optimization by 
test schedule stretching. It is observed that we can reduce the 
number of BIST registers by elongating the test schedule. 
However, additional multiplexers are needed to guarantee the 
testability (by BIST resource sharing). Stretching the test schedule 
beyond 7 test sessions does not result in any more reduction in 
BIST cost. This is due to the fact that any more reduction in BIST 
registers by relaxing testing time constraints renders the design 
untestable or test multiplexers add more overhead than can be 
gained by recovering BIST registers. Therefore, there is no benefit 
to stretch the test schedule beyond 7 test sessions. Our approach 
shows that if a minimal amount of BIST resources to make the 
design testable is used the design must be tested in 7 test 
sessions. In both cases, shrinking and stretching the test 
schedule, our approach tries to optimize hardware resource cost 
(BIST and multiplexer) in such a way that the design can be tested 
in a requested number of test sessions.   

Figure 4.10 shows how BIST cost changes as the test schedule is 
shrinked or stretched to satisfy testing time constraints for the 
design Paulin. Figure 4.11 shows the relationship between the 
percentage changes in BIST cost, as the test schedule is shrinked 
or stretched for the same design. The reference BIST cost is the 
cost that our initial testability enhancement achieves after 
performing further hardware optimization by test patterns sharing 
and test responses redirection, but before test schedule stretching 
or shrinking are performed. It is observed that the BIST cost can 
increase by 94% as we try to optimize the BIST so as to test the 
design in one test session.  
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BIST cost versus Treq
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Figure 4.10 BIST cost versus testing time  
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Figure 4.11 Percentage change in BIST cost versus testing 

time 
 

We have tested several other designs and the results are depicted 
in Table 4.6. The first column gives design names. The second 
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column represents ∆shr1TS and the third column represents ∆strthr. 
These terms are defined in the following two equations: 

 %1001
1 ×

−
=∆

opt
optshrshr TS

TS  ( 4.2 ) 

 

 %100×
−

=∆
opt

optstrstr thr
thr  ( 4.3 ) 

where shr1TS is the hardware cost that is needed if the test 
schedule is shrinked so that the design is tested in 1 test session 
and strthr is the smallest hardware cost which our stretch test 
schedule algorithm obtains assuming that it can stretch the test 
schedule infinitely long. On the other hand, opt is the optimized 
hardware cost obtained after applying our test pattern sharing and 
test response redirection algorithms, but not test schedule 
shrinking or stretching. In other words ∆shr1TS is the percentage 
change in the BIST cost if the test schedule is shrinked so that 
design is tested in 1 test session as compared to the optimized 
cost after test pattern sharing and test response redirection.  

 

Table 4.6 Comparison of the results 
Design 
Name 

∆shr1TS 
(single TS) ∆strthr  Tinit Tthr Tmax 

Paulin 94 -37 6 7 10 
Real 82 -35 3 5 11 

Overnctrl 87 -21 5 6 8 
Tseng 66 -35 4 5 8 
EWF 173 -31 7 9 34 

Average 100,4 -31,8    
 

The column named Tinit is the initial number of test sessions as 
discussed in Sub-section 4.5. Tmax is the required number of test 
sessions if one operation is to be tested per test session. We have 
observed that, on average, an increase in BIST cost of 100% is 
needed to be able to test the design in 1 test session. On the other 
hand, an average BIST cost reduction of 32% is achieved if we 
relax our testing time constraint to be very large. Experimental 
results show that in all designs, stretching the test schedule by 
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providing very large testing time constraints is not necessarily 
beneficial in terms of BIST hardware reduction. Each design has a 
limit, Tthr, on the number of test sessions beyond which, further 
stretching does not lead to any more hardware reduction. The 
BIST hardware that can satisfy testing the design in Tthr test 
sessions is also the minimum hardware that is needed to 
guarantee testability of the design. Removal of any more BIST 
registers will make the design untestable or more expensive due to 
too many multiplexers, which will be needed. 
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Chapter 5 

Wiring-Aware BIST Synthesis 

This chapter describes a hardware overhead minimization 
technique used during a BIST synthesis process. The technique 
works at the RT level and inserts a minimal amount of BIST 
resources into a digital system to make it fully testable. It takes 
into consideration the cost of the functional modules, 
multiplexers, BIST registers and wiring in order to obtain the 
minimal area designs. The problem of optimizing BIST insertion at 
the behavioral and RT levels while taking into account geometrical 
information of the design has been formulated in Section 1.2. 
Since the problem is NP hard, two optimization heuristics, a 
simulated annealing (SA) algorithm and a greedy heuristic, are 
used to solve the overhead minimization problem. Experimental 
results show that considering wiring area during BIST synthesis 
results in smaller final designs in terms of silicon area as 
compared to the cases when the wiring impact is ignored. 

5.1 Design Transformations for BIST 
To influence testability, our approach modifies the design by 
inserting BIST components. A number of BIST design 
transformations (testability modification moves) have been defined. 

The transformations provide the optimization heuristic with a 
mechanism to perform neighborhood search so as to converge 
towards low area, self-testable designs. Some of the 
transformations can enhance testability while others can reduce 
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it. The testability reducing transformations enable the 
optimization strategy to create intermediate solutions, which later, 
as a result of further transformations, converge towards minimal 
area designs while guaranteeing testability. Therefore, for each 
type of testability enhancement transformation (TET) a reverse 
testability enhancement transformation (RTET) to cancel its effect 
is also defined. For example, if TET(rk,TPGk) is a move that converts 
a functional register rk, to a TPGk, then its reverse transformation, 
converts  TPGk to functional register rk, and is used to eliminate 
the effect of TET(rk,TPGk).  

Each testability transformation has advantages (reduced area 
overhead, reduced wiring, and/or improved testability) or 
disadvantages (additional area overhead, additional wiring, and/or 
reduced testability).  

Some transformations introduce additional interconnections, 
which are used to connect the BIST modules to untestable data-
path modules. These interconnections introduce area overhead. 
Furthermore, accommodating newly added BIST modules or test 
multiplexers can cause changes in positions of other modules on 
the chip. This can happen if the floor-plan algorithm changes the 
position of the modules to accommodate newly added ones in an 
efficient way. Such changes can impact wiring length and, hence, 
total design area. 

5.1.1 Types of BIST Transformations 

Our design transformations for BIST are classified in four types: 
conversion for controllability, conversion for observability, 
connection for controllability and connection for observability.  

5.1.1.1 Conversion for Controllability 

Transformations of this type change controllability by converting 
existing functional or signature analysis registers to BIST 
registers, which generate on-chip test patterns. 

Converting an existing functional register to a TPG improves 
controllability of its output interconnections and can also improve 
controllability of other nodes further below it in the design. Since 
the TPG usually occupies larger area than a functional register, 
the conversion incurs an additional area overhead (δA=ATPG-
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Aregister). The reverse transformation that converts the TPG back to 
the functional register is also defined. While the resulting 
functional register occupies smaller area, the controllability can be 
impaired when the reverse transformation is applied. 

A MISR can be enhanced to a BILBO in order to give it both 
capabilities to generate test vectors and analyze test responses at 
different times. The disadvantage of the BILBO is its larger area 
compared to the MISR. A reverse transformation that converts the 
BILBO to the MISR is also defined. It reduces controllability. 

If it is necessary to improve test application time, the BILBO can 
be enhanced to a CBILBO, which can simultaneously perform 
both test pattern generation and test response compression. The 
CBILBO is much larger than the BILBO. A reverse transformation 
from the CBILBO to the BILBO is also defined. The transformation 
affects testing concurrency, but not testability. 

5.1.1.2 Conversion for Observability 

Transformations of this type improve observability by converting 
some of the existing functional or test pattern generation registers 
to signature analysis registers. Three types of BIST registers can 
be used to enhance the observability. They are MISRs, BILBOs 
and CBILBOs.  

To improve the observability, an existing functional register can be 
converted to a MISR, which can only compress test responses to a 
single test signature. A MISR occupies larger area than the 
functional register of equivalent bit-width. A move is also defined 
to convert a MISR to a functional register in order to recover area. 
Unfortunately, this reduces on-chip test response analysis 
capability. Similarly, the TPG can be enhanced by converting it to 
a BILBO or CBILBO, which performs the dual job of generating 
test patterns and compressing test responses on the chip. A 
reverse transformation that converts the BILBO or CBILBO to the 
TPG is defined. It can save area, but observability can be reduced.  

5.1.1.3 Connection for Controllability 

This is a controllability enhancement transformation whereby an 
existing TPG, BILBO or CBILBO is connected directly to an input 
of the functional module. Allocation information is used to analyze 
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the impact of the transformation on the corresponding SDFG. The 
impact of the connection made in the RTL design is translated to 
the corresponding connections in the SDFG by the help of the 
allocation/binding information. After the corresponding SDFG 
connections are identified, corresponding variable-to-operation 
connections in the SDFG are also made. To determine testability 
after the transformation, STA is performed on the transformed 
SDFG. The move necessitates addition or expansion of a test 
multiplexer in front of the RTL functional module in order to bring 
test patterns to the module in the test mode. Thus, wiring and 
multiplexer costs are increased (δA=Awire+Amux). The move can 
improve controllability of any RTL module since any module can 
be accessed by a direct connection. 

The reverse transformation, which disconnects the TPG, the 
BILBO or the CBILBO from the functional module, results in 
reduced testability, but wiring can be removed and the number of 
inputs to a test multiplexer can be reduced. If, after the 
disconnection is performed, only one input remains, then the 
whole test multiplexer is removed.  

5.1.1.4 Connection for Observability 

This is an observability enhancement transformation that 
connects the output of a module directly to an existing MISR, 
BILBO or CBILBO. The transformation introduces wiring and 
expands a test multiplexer with an additional input or adds a new 
multiplexer. It can enhance the observability of any RTL module 
since any module can be connected to an existing MISR, BILBO or 
CBILBO. 

The reverse transformation, which disconnects the MISR, BILBO 
or CBILBO from the module, results in reduced observability, but 
savings in wiring and at the same time reductions in the number 
of test multiplexer inputs can be achieved. As discussed earlier in 
this section, allocation information is used to translate the effect of 
the transformation on the corresponding SDFG on which 
testability analysis is performed. 

5.1.2 Transformation Illustration and Motivational Examples 

In this Section we will illustrate the transformations for BIST by 
using examples. 
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Suppose, for the SDFG in Figure 5.1a, one adder implements the 
operations +1 and +2 and one multiplier implements the operation 
*. One example of an RTL data-path implementation that satisfies 
this allocation constraint is shown in Figure 5.1b, whereby a 
register R1 implements variables a, e, g; R2 variables b, f; R3 
variable c and R4 variable d. 

Operation +1 can be tested by generating test patterns from 
variables a and b, constraining variable c to 0 and observing test 
responses on variable g (see Figure 5.1a). Similarly, the operation 
+2 can be tested by supplying test patterns from variables a and c, 
constraining variable b to 0, and d to 1. Test responses are 
observed on variable g. The operation * is tested by supplying test 
patterns from variables c and d, constraining variables a and b to 
0, and observing test responses on variable g. 

Since one adder implements the operations +1 and +2, it is 
sufficient to test only one of them to have the adder tested. To test 
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the multiplier, the operation * is tested. Suppose that to test the 
RTL design, we choose to test the operations +2 and *. To test +2 
implies that registers R1 (variable a) and R3 (variable c) are 
converted to TPGs; R1 (variable g) is converted to MISR; Since R1 
(variable a) is converted to TPG and R1 (variable g) to MISR, R1 has 
to be converted to CBILBO instead. In this way R1 can generate 
test patterns and analyze test responses at the same time. To test 
the * operation, implies that R3 (variable c) and R4 (variable d) are 
to be converted to TPGs and R1 (variable g) to MISR; since R1 is to 
be converted to CBILBO for testing +2, it is not converted to MISR 
for testing *. R1 remains as CBILBO which can be used to test 
both +2 and *. Thus, if R1 is transformed to CBILBO, R3 to TPG and 
R4 to TPG, then the RTL design can be self-tested by using the 
original dataflow control flow, see Figure 5.1c. These register 
transformations for BIST are used in our optimization approach. 

On the other hand, if the operation +1 is used to test the adder, R1 
(variable a) and R2 (variable b) are converted to TPGs and R1 
(variable g) to MISR. Since R1 is already a CBILBO it is not 
converted to MISR. Thus, to test the RTL design 3 TPGs and 1 
CBILBO are needed, see Figure 5.1d. This is more expensive than 
if operations +2 and * are used. In this case our optimization 
heuristic chooses +2 and * to test the design, which leads to a 
cheaper design with only 2 TPGs and 1 CBILBO, Figure 5.1c. 

Now let us use the design in Figure 5.2a to illustrate the wiring 
connection transformations. Assume a one-to-one SDFG to RTL 
allocation so that the SDFG is the same as the RTL. After STA is 
performed, all primary inputs and constant nodes (u, x, c3, y, dx) 
are converted to TPGs (P1, P2, P3, P4, P5) and all primary outputs 
(u1, y1, x1) to MISRs (M1, M2, M3). An internal register, t4, is 
converted to a BILBO B1 to enhance observability of the sub-graph 
consisting of operations *1, *3, *2 and to enhance controllability of 
the sub-graph consisting of operations -1 and -2. Figure 5.2a 
shows one example of a self-testable version of the RTL design 
after testability modifications. More transformations can be 
performed to get an even cheaper design.  
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b) An SDFG after successive connection transformations 

 

Figure 5.2 Illustrating connection transformations 
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To find a cheaper solution using “connection for observability” 
transformations, one can connect the output of operation *3 
through a multiplexer to the MISR M1 and the BILBO B1 is 
converted to a TPG. This intermediate design can be further 
transformed by connecting +1 and, later, +2 through the 
multiplexer to the MISR M1. These successive transformations lead 
to the removal of more MISRs (M2, M3) since the operations +1 and 
+2 can now be observed using the MISR M1. Since the multiplexer 
already exists, sharing of the MISR depends only on the trade-off 
between wiring and the MISR costs, which our optimization 
heuristic can find out. Figure 5.2b depicts the same design after 
successive transformations are applied. The dashed lines show the 
connection transformations. The crosses show the MISRs that 
were converted back to functional registers and the BILBO that 
was converted to the TPG.  

In this example we have assumed that the wiring cost was cheaper 
compared to the MISR cost, which is why we eliminate the MISRs. 
However, a BIST synthesis optimization algorithm should use an 
appropriate cost function to decide which transformations to 
apply. In sections 5.4 and 5.5 we will describe two different 
approaches to optimize BIST resources. 

5.2 Wiring Area Estimation Techniques 
The wiring area is estimated using the heuristics presented in [5] 
and [29]. These heuristics first estimate the placement of modules 
on the chip based on the interconnection relationship and their 
sizes, and then compute the lengths of all interconnections. 
Finally, the wiring area, Aw, is computed using equation ( 5.1). 
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××= ∑  ( 5.1 ) 

The sum over i is for all interconnections. li, and wi are the length 
and width (in bits) of interconnection i, Wav is the average width of 
wires in the design (including the space needed between them), kor 
is the over-route factor (fraction of the area above the datapath 
nodes and controller units in the metal layers that can be used for 
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routing), Anodes is the area of the datapath nodes, and Nmetal is the 
number of metal layers available. 

The input to the wiring area estimation algorithm consists of a list 
containing the area of each data-path node to be placed, a list of 
interconnection relationships between the RTL nodes and 
constants Wav, kor and Nmetal. 

5.3 Cost Function 
The objective of the BIST synthesis process is to minimize the total 
area of the design, which is the sum of the areas of functional 
modules (Afmod), functional registers (Afreg), functional multiplexers 
(AfMUX), BIST registers (ABIST), test multiplexers (AtMUX) and wiring 
area (Awire) as depicted in equation ( 5.2). Atotal in the equation  
( 5.2) is the cost that is used to drive our BIST optimization 
heuristics. 

 wiretMUXBISTfMUXffregtotal AAAAAAA +++++= mod  ( 5.2 ) 

It is assumed that the number of functional modules is fixed when 
BIST insertion is performed. In other words, this means that the 
HLS algorithm performs scheduling and allocation before BIST 
insertion is performed. 

5.4 BIST Synthesis Optimization with 

Simulated Annealing 
In this Section, a simulated annealing algorithm [60] has been 
used to optimize the BIST structures in order to minimize the total 
design area. The overall optimization approach is assisted by a 
testability analysis, which identifies hard to test operations and 
modules. The testability analysis is performed at the behavioral 
level on the SDFG representation of the design. The BIST 
synthesis optimization approach can result in very good designs in 
terms of area since both geometrical information and testability 
are simultaneously taken into account during the synthesis 
process. On the other hand, since computation intensive 
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testability analysis and wiring area estimation are performed in 
each optimization iteration, the whole approach can be slow. 

Testability enhancement is performed on the RT-level 
representation of the design. The simulated annealing 
optimization process uses testability transformations to explore a 
design space in search of the smallest self-testable design (see 
Section 5.1). Since our objective is to minimize the total design 
area, high degree of BIST register sharing is also achieved. 

After testability enhancement is performed, 100% controllability, 
observability, and testability are achieved for all the modules. 
Therefore, for each module, 100% fault coverage is also achieved, 
provided that the modules do not have random resistant faults 
and a sufficiently large number of pseudo-random test patterns is 
applied. If modules have random resistant faults, they need to be 
made random resistant free by test point insertion. A low overhead 
technique for removing random resistance is described in [22]. If 
this technique cannot be deployed, to cover random resistant 
faults, a few deterministic test vectors must be used at the end of 
the pseudo-random test session. This work assumes that all 
modules are random resistant free, hence 100% fault coverage can 
be achieved without test point insertion or deterministic test 
vectors. 

5.4.1 Simulated Annealing Based BIST Synthesis Framework 

A simulated annealing based BIST synthesis optimization 
framework is depicted in Figure 5.3. In our implementation of the 
simulated annealing, a fully testable initial solution, X0, is selected 
as an input to the heuristic. A fully testable initial solution is 
generated by conversion transformations. All constant nodes and 
PI registers are converted to TPGs, all PO registers to MISRs and 
all internal registers to BILBOs. This gives a very expensive fully 
testable initial solution. 
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Neighboring solutions are generated by randomly applying 
testability transformations on the design. The cost of the design is 
computed as discussed in Section 5.3. The selected 
transformation is used to modify the design to produce a 
neighboring design, which is referred to as the neighboring 
solution. Since our aim is to converge towards minimal area, it is 
obvious that expensive transformations that increase area cost 
should be rejected. However, in order to escape from a local 
optimum, the simulated annealing approach [60] can 
probabilistically accept expensive transformations hoping that 
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Figure 5.3 Simulated annealing BIST synthesis framework 
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subsequent transformations may enable the optimization strategy 
to converge towards the global optimum of the cost function. As 
the temperature parameter decreases, probabilities of accepting 
expensive transformations decrease as well [60], hence at low 
temperatures only the cheap solutions are accepted and the 
annealing converges to minimum area designs. After applying the 
transformation, if the area of the design is reduced or the 
transformation can be probabilistically accepted, then the 
testability status (testable, not testable) of the RTL design is 
checked by performing STA on the corresponding SDFG 
representation. The optimization algorithm proceeds as depicted in 
Figure 5.3. 

5.4.2 Experimental Results  

Our approach does not only show how many TPGs, MISRs, 
BILBOs and CBILBOs are added, but also performs quantitative 
estimation of the wiring cost during the BIST synthesis process. It 
takes overall design cost as the optimization objective. Thus, it 
potentially results in more cost efficient designs. Other approaches 
use the number of TPGs, MISRs, BILBOs and CBILBOs as 
optimization criteria. Since they ignore quantitative computation 
of wiring area, they do not necessarily guarantee highly efficient 
designs in terms of total design area. 

We have tested our approach on several benchmarks. In our 
experiments, the technology dependent parameters are based on 
Intel’s 65nm logic technology [7], which will be delivered for 
production in 2005. In this technology a transistor occupies an 
estimated area of 0.1µm2. We have assumed that the RTL modules 
will be wired using metal layer 3, 4 or 5, and that we will have two 
of these layers to use for connecting the RTL modules. The wiring 
pitch (the average width of a 1-bit wire including spacing between 
the wires) used is 0.277µm. It is the average pitch of the metal 
layers 3, 4 and 5, whose respective pitches are 0.22µm, 0.28µm 
and 0.33µm. We have assumed that wire over-routing factor is 
0.5. 

Characteristics of the designs have already been presented in 
Section 4.7. To estimate sizes of the functional registers, 
functional modules, multiplexers and BIST registers, we have 
developed a library of gate-level RTL modules. To compute the 
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number of transistors in basic gates such as AND, NAND, OR, 
NOR, XOR and NOT, we have used an approach described in [35]. 
The number of transistors that are required to implement a given 
RTL module is obtained by summing up the number of transistors 
in all the gates which compose the module. The size of the 
modules is then computed as the product of the size of a 
transistor in the 65nm technology and the total number of 
transistors in the module. The number of transistors required to 
implement 16-bit modules are: adder – 480, subtractor – 704, 
multiplier – 8736, divider – 9248, register – 96, TPG – 210, MISR – 
306, BILBO – 376 and multiplexer – )1(96 −× N , where N is the 
number of multiplexer inputs. 

The experimental results are summarized in Table 5.1 through 
Table 5.3. Columns P, M and B denote the number of TPGs, MISRs 
and BILBOs respectively. Anodes is the sum of the node areas, Awires 
is the sum of all wiring areas, Nmux is the number of test 
multiplexers, Amux is the area of test multiplexers and %Aw/At is 
the percentage of wiring area with respect to total design area. 
Atotal represents the total area of the design after synthesis, 
including wiring area. The column with title time represents CPU 
time taken by our approach. Experiments were run on a Sun 
Solaris workstation with 440 MHz CPU and 256MB RAM. 

In Table 5.3, At_with_wire and At_no_wire are the respective total design 
areas with and without considering wiring during BIST 
optimization. The third column represents the percentage of 
unnecessary area overhead (UAO) which is incurred if wiring is not 
considered as compared to the case when wiring is considered. 

The optimization process was run in two different ways. In the first 
case we have ignored wiring area (Aw=0) during our BIST synthesis 
optimization. This is in accordance with many previous works that 
optimize BIST by only counting the number of TPGS, MISRs and 
BILBOs that are introduced. The design cost that is minimized is 
the total area consisting of functional data-path nodes, BIST 
registers and test multiplexers. The results are shown in Table 
5.1. In the second set of experiments, we have taken into account 
wiring area during the BIST optimization process, as described in 
this section. The cost minimized is the total area of the data-path 
nodes, BIST nodes, test multiplexers and wiring area. The results 
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are summarized in Table 5.2. For each case we have run our total 
area estimation algorithm to compute total area (wiring inclusive) 
after synthesis. 

Table 5.1 Wiring area ignored during optimization 
Design 
Name 

 
P 

 
M 

 
B 

Anodes 

(µm2) 
Awire 

(µm2) 
Atotal 

(µm2) 
 

%Aw/At 

 
Nmux 

 
Amux 

CPU 
Time 
(sec) 

Paulin 4 1 1 5841.8 3072.1 8913.9 34.5 8 124.8 3412.7 
Real 3 1 1 6019.2 3508.9 9528.1 36.8 12 144.0 4609.0 

Overnctrl 4 1 0 2444.2 2537.2 4981.4 50.9 10 134.4 3259.2 
EX2 3 1 0 4794.4 2362.8 7157.2 33.0 9 105.6 2162.6 
EWF 4 1 6 9076.2 8773.1 17849.3 49.2 15 192.0 10348.3 

 
Table 5.2 Wiring area considered during optimization 

Design 
Name 

 
P 

 
M 

 
B 

Anodes 

(µm2) 
Awire 

(µm2) 
Atotal 

(µm2) 
 

%Aw/At 

 
Nmux 

 
Amux 

CPU Time 
(sec) 

Paulin 5 3 1 5770.4 1284.2 7054.6 18.2 0 0 1439.1 
Real 6 2 4 6014.4 1391.6 7406.0 18.8 0 0 2017.3 

Overnctrl 6 2 1 2381.6 1019.9 3401.5 30.0 0 0 1549.5 
EX2 6 1 1 4751.0 686.2 5437.2 12.6 0 0 1823.4 
EWF 9 7 7 9095.2 5380.9 14476.1 37.2 0 0 5819.9 

 

Table 5.3 Unnecessary area overhead if wiring is not 
considered 

Design Name At_no_wire 
(µm2) 

At_with_wire 
(µm2) UAO 

Paulin 8913.9 7054.6 26.4 

Real 9528.1 7406.0 28.7 

Overnctrl 4981.4 3401.5 46.5 

EX2 7157.2 5437.2 31.6 

EWF 17849.3 14476.1 23.3 

 

In our simulated annealing experiments, the temperature was 
decreased very slowly according to the formula f(t) = t/(1+t*tscale) 
[60], where the parameter tscale is a suitably small value. We have 
set the parameter tscale to be 0.1 and the initial temperature to be 
227. In our experiments we have not waited for the temperature to 
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become zero before stopping, instead we have set a stopping 
criterion that puts an upper limit on the number of consecutive 
rejected moves and the total number of simulated annealing 
iterations. The number of consecutive rejected moves is the 
number of consecutive simulated annealing iterations that are 
run, but which give no improvement in quality of the solution. We 
defined a constant known as the maximum number of allowed 
consecutive rejected moves (MNACRM). If the number of 
consecutive rejected moves exceeds the value of MNACRM, then 
our simulated annealing process terminates. We have set the 
value of MNACRM to be 1000. 

For all designs, when the area of the wiring is taken into 
consideration during BIST synthesis optimization, we get smaller 
total design area, as shown in Table 5.3. If wiring is taken into 
consideration, the area occupied by the BIST registers is larger 
than that occupied by the BIST registers if wiring is not 
considered.  

We compared the total node (functional, BIST and multiplexer) 
areas in the cases when wiring is considered and when it is not 
considered. The results show that when wiring area is considered, 
more BIST registers are used (Table 5.1, Table 5.2). This means 
that one would expect the total data-path node (functional + BIST) 
area to be larger in the case when wiring is considered and the 
gain in saving total area comes only from savings in wiring area, 
i.e. a trade off between BIST register and wiring is made. This is 
not the case in the presented experimental results, except for the 
design EWF. This is because when wiring is not considered some 
multiplexers are added. Our approach optimizes total design area 
(wiring, functional, BIST and multiplexers) in such a way that a 
globally cheaper design is generated.  

5.5 BIST Synthesis Optimization with Greedy 

Heuristic 
In this Section, we propose a greedy heuristic for addressing the 
problem of wiring-aware BIST synthesis optimization. The 
technique uses our behavioral and RT levels BIST enhancement 
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metrics to guide BIST synthesis. As discussed in the previous 
section, testability analysis is performed on the SDFG and 
testability enhancement based on BIST design transformations 
(see Section 5.1) is performed on the corresponding RTL 
architectural implementation.  

The testability enhancement performed by our heuristic 
guarantees complete testability of each RTL module while keeping 
the design area minimum. The heuristic also addresses the 
drawbacks of the simulated annealing based BIST synthesis 
approach (discussed in Section 5.4), which is very slow.  

The heuristic provides a novel way to quickly explore the design 
space in search of cheap, yet testable design solutions. It proceeds 
in the following steps: 

A. Controllability enhancement.  

B. Observability enhancement. 

C. Global testability enhancement. 

In each of these steps, the following two actions are repeated until 
complete controllability (step A), observability (step B) and 
testability (step C) are, respectively, achieved: 

i. Choose a module m that is not controllable (observable, 
testable respectively). 

ii. Visit all possible enhancements for the module m and choose 
the enhancement that incurs the lowest area overhead.  

In order to make the design space exploration efficient, it is 
important to choose and enhance the modules in such a sequence 
so as to minimize the overall number of testability enhancements. 
This is made possible by using our novel BIST enhancement 
metrics (Section 5.5.1) to help decide in which sequence to 
enhance modules, which have controllability, observability, or 
testability problems.  

5.5.1 BIST Enhancement Metrics  

We need to choose uncontrollable, unobservable or untestable 
modules and an order in which to enhance them, in such a way 
that the total number of enhancements performed on the design is 
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reduced. We can achieve this objective by ensuring that each time 
we choose a module to enhance, the enhancement will improve as 
many other modules as possible.  

To solve this problem, we propose an approach, which uses our 
novel behavioral-level BIST enhancement metrics to guide the 
testability enhancement process. The BIST enhancement metrics 
are defined below. 

Definition 5.1: Total Controllability Enhancement Potential (TCEP) 
of a given SDFG operation or variable node is the number of 
operations and variables whose controllability it can affect. 

Controllability of a node nj can be affected by the controllability of 
a node ni if there is a path in the SDFG from ni to nj and the 
control step of ni precedes the control step of nj. For instance, 
consider the operation *1 in Figure 5.4. It can be observed that 
starting from the operation *1, it is possible to reach seven nodes 
namely t1, *3, t4, -1, t6, -2, and u1. Therefore, the value of TCEP for 
the operation *1 is 7. 

Definition 5.2: Total Observability Enhancement Potential (TOEP) 
of a given SDFG operation or variable node is the number of 
operations whose observability it can affect. 

Observability of a node ni can be affected by the observability of a 
node nj if there is a path in the SDFG from ni to nj and the control 
step of ni precedes the control step of nj. For instance, consider the 
operation -1 in Figure 5.4. It can be observed that starting from 
the operation -1, it is possible to traverse the graph upwards and 
reach 10 nodes namely u, t4, *3, t1, *1, dx, t2, *2, x, and c3. 
Therefore, the value of TOEP for the operation -1 is 10. 

The BIST enhancement metrics TCEP and TOEP presented so far 
are computed with reference to the SDFG nodes. Controllability, 
observability and testability enhancements are, however, 
performed on the RT level architectural representation of the 
design. Therefore, we need to extend the definitions of the BIST 
enhancement metrics so that we can apply them to the RTL 
designs. 
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Definition 5.3: RTL Total Controllability Enhancement Potential 
(RTCEP) of a given RTL module, mi, which implements a set of 
SDFG operations SMi = {op1, op2… opn} whose respective values of 
the TCEP are given by the set STCEPi = {TCEP1, TCEP2, TCEPn} is 
defined as the maximum TCEP value in the set STCEPi, i.e. 

}{1 j
n
ji TCEPMaxRTCEP == . 

Definition 5.4: RTL Total Observability Enhancement Potential 
(RTOEP) of a given RTL module, mi, which implements a set of 
SDFG operations SMi = {op1, op2… opn} whose respective values of 
the TOEP are given by the set STOEPi = {TOEP1, TOEP2… TOEPn} is 
defined as the maximum TOEP value in the set STOEPi, i.e. 

}{1 j
n
ji TOEPMaxRTOEP == . 

To explain our RTL BIST enhancement metrics, consider the 
example of an SDFG shown in Figure 5.4. If a 1-to-1 SDFG to RTL 
allocation is used, the TCEP and RTCEP metrics are the same. 

 

t1 

*1 *2

u 
x c3 y dx

+1

*3 

t2

*4

t4 t5

*6

t7t6 

*5-1 

u1 

+2-2 

t8

x1y1

P1  P2  P3 P4 P5 
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metrics 



 93

Similarly, the TOEP and RTOEP metrics are the same (see Table 
5.4). 

Suppose that a more realistic allocation, as shown in row 1 and 
row 2 in Table 5.5, is used. Row 3 shows the TCEP values and row 
4 shows the TOEP values for the SDFG. After applying the 
definitions above, the values of RTCEP and RTOEP are shown in 
rows 5 and 6 respectively in Table 5.5. 

 

Table 5.4 BIST enhancement metrics: 1-to-1 mapping 
Modules M1 M4 M5 M2 M3 M6 A1 A2 S1 S2 
Operation 
binding 

*1 *4 *5 *2 *3 *6 +1 +2 -1 -2 

TCEP 7 5 3 7 5 3 1 1 3 1 
TOEP 2 2 5 2 8 2 2 5 10 17 
RTCEP 7 5 3 7 5 3 1 1 3 1 
RTOEP 2 2 5 2 8 2 2 5 10 17 

 

Table 5.5 BIST enhancement metrics: realistic mapping 
Modules Mult1 Mult2 Add1 Sub1 
Operation 
binding 

*1 *4 *5 *2 *3 *6 +1 +2 -1 -2 

TCEP 7 5 3 7 5 3 1 1 3 1 
TOEP 2 2 5 2 8 2 2 5 10 17 
RTCEP 7 7 1 3 
RTOEP 5 8 5 17 

 

Once testability analysis has identified a set of modules that have 
to be enhanced, we use the BIST enhancement metrics in order to 
decide which particular module out of them is to be enhanced 
first. The actual metric we use is RTCEP for the case of 
controllability and RTOEP for the case of observability. For the 
case of controllability enhancement, our criterion is to prioritize 
enhancement of the module that has the greatest value of the 
RTCEP among all uncontrollable modules. Similarly, for the case 
of observability enhancement, we prioritize enhancement of the 
module that has the greatest value of the RTOEP among all 
unobservable modules. The exact testability enhancement is then 
performed by applying BIST design transformations on the RTL 
design as described in Section 5.1. 
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Let us now consider a more exact description of how our BIST 
enhancement metrics are used. We discuss the enhancement 
procedure with respect to controllability enhancement. Suppose 
that SMi = {op1, op2, …, opn} is a set of operations that are 
implemented by the RTL module Mi. Suppose also that the 
respective values of the TCEP for the operations in the set SMi are 
given by the set STCEPi = {TCEP1, TCEP2, …, TCEPn}. Since any 
RTL functional module Mi implements one or more SDFG 
operations, it follows that 1≥iSM  and 1≥iSTCEP . Suppose that 
after testability analysis is performed on the design, the set of 
uncontrollable RTL modules is found to be URT = {M1, M2... Mm}. 
An uncontrollable RTL module Mx ∈ URT is chosen to be enhanced 
if there is an operation opy ∈ SMx, which it implements such that 
the operation opy has the greatest value of TCEP among all the 
operations that are in the union set STCEP1 ∪ STCEP2∪  ... ∪ 
STCEPm.  

5.5.2 BIST Synthesis Heuristic 

A general overview of our BIST synthesis heuristic is depicted in 
Figure 5.5. In the first step, all modules are made controllable, in 
the second step, all modules are made observable. After 
controllability and observability are enhanced, it is still possible 
that some untestable modules will remain (see discussion in 
Section 4.2). Therefore, in the third step, all modules are made 
testable. 

 

Step1: Controllability enhancement 

Step2: Observability enhancement 

Step3: Global testability enhancement

 
Figure 5.5 Steps of the BIST synthesis heuristic 
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The controllability enhancement algorithm, shown in Figure 5.6, 
takes as inputs a design represented in SDFG, allocation 
information and RTL data path, and returns a fully controllable 
RTL design. In a similar way, the algorithm depicted in Figure 5.7 
is used to enhance observability. 

 

The symbols and notations used in the pseudo-code in Figure 5.6 
are described as follows: R is the RTL data path, G is the 
corresponding SDFG of the design, and A is the allocation 

Algorithm: EnhanceControllability 
 Begin 

1. Controllable  False; 
2. while Controllable = False do 
3. DFGEP  φ;   RTEP  φ; 
4. UCP  STA(G); 
5. UCM  UncontrollableModules(UCP, R, A); 
6. if UCM = φ  then 
7. Controllable  True; 
8. else   
9. for i  1, 2, ..,|UCP| do 
10. ti  GetTCEP(G, pi) | pi ∈ UCP; 
11. DFGEP  DFGEP ∪ { ti }; 
12. end for 
13. for i  1, 2, ..,|UCM| do 
14. ti  GetRTCEP(mi,DFGEP, A) | mi ∈ UCM; 
15. RTEP  RTEP ∪ { ti }; 
16. end for 
17. MTE  ModuleToEnhance(UCM, RTEP); 
18. ψ  ControllEnhancements (MTE, R); 
19. C  φ; 
20. for i  1, 2,..,|ψ| do 
21. Ci  EnhancementCost(Ei) | Ei ∈ ψ; 
22. C  C ∪ { Ci }; 
23. end for 
24. SE  Ei ∈ ψ | }{)(cos ||

1 j
C
ji CMinEt == ; 

25. R  Modify(R, SE); 
26. end if  
27. end while 

 End. 
Figure 5.6 Controllability enhancement 
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information depicting the relationship between G and R. UCP and 
UOP are respective sets of all uncontrollable and unobservable 
operations. They are obtained by performing testability analysis of 
the SDFG. UCM and UOM are respective sets of all uncontrollable 
and unobservable RTL modules. They are computed based on the 
definition of RTL module controllability and observability. 

 

 
Procedure GetTCEP(G, pi), where pi ∈ UCP, computes the TCEP 
value for the operation pi. DFGEP is the set consisting of TCEP 
values of all the uncontrollable or unobservable operations in the 
SDFG. Procedure GetRTCEP(mi, DFGEP, A), where mi ∈ UCM, 

Algorithm: EnhanceObservability 
 Begin 

1. Observable  False; 
2. while Observable= False do 
3. DFGEP  φ;  RTEP  φ; UOP  STA(G); 
4. UOM  UnobservableModules(UOP, R, A); 
5. if UOM = φ then  
6. Observable  True; 
7. else  
8. for i  1, 2,..,|UOP| do 
9. ti  GetTOEP(G, pi) | pi ∈ UOP; 
10. DFGEP  DFGEP ∪ { ti }; 
11. end for 
12. for i  1, 2,  ..,|UOM| do 
13. ti  GetRTOEP(mi, DFGEP, A) | mi ∈ UOM; 
14. RTEP  RTEP ∪ { ti }; 
15. end for 
16. MTE  ModuleToEnhance (UOM, RTEP); 
17. ψ  ObserveEnhancements(MTE, R);   
18. C  φ; 
19. for i  1, 2, ..,|ψ| do 
20. Ci  EnhancementCost(Ei) | Ei ∈ ψ; 
21. C  C ∪ { Ci };  
22. end for 
23. SE  Ei ∈ ψ | }{)(cos ||

1 j
C
ji CMinEt == ; 

24. R  Modify(R, SE); 
25. end if 
26. end while 

 Begin. 
Figure 5.7 Observability enhancement 



 97

computes the RTCEP value for the module mi. RTEP is the set 
consisting of RTCEP values of all the uncontrollable modules. 

The procedure ModuleToEnhance(UCM, RTEP) searches for a 
suitable module to be enhanced, MTE. Procedure 
ControllEnhancements(MTE, R) returnsψ, which is the set of all 
possible enhancements for the uncontrollable module to be 
enhanced (MTE). The procedure EnhancementCost(Ei) returns the 
cost of applying the enhancement Ei. C is a set, which stores the 
costs of all the potential enhancements for the module MTE. The 
procedure Modify(R, SE) uses the selected enhancement SE∈ ψ, to 
modify the RTL design. 
Many of the notations used in the controllability enhancement 
algorithm are also used in the observability enhancement 
algorithm in Figure 5.7. In addition, the latter algorithm deploys a 
procedure GetTOEP(G, pi), where pi ∈ UOP, to compute the TOEP 
value for the operation pi and procedure GetRTOEP(mi, RTEP, A), 
where mi ∈ UCM, to compute the RTOEP value for the module mi. 
In the observability enhancement algorithm, the set RTEP consists 
of the RTOEP values for all the unobservable modules. 
ObserveEnhancements(MTE, R) is the procedure which finds all 
potential observability enhancements (ψ)  for the unobservable 
module to be enhanced, MTE. 

5.5.2.1 Enhancement Selection  

We need to get the cheapest solution when a given module to 
enhance has been decided.  

Let M = {m1, m2... mk} be a set of k functional modules that 
compose an RTL design. Suppose that PTD represents a partially 
testable RTL design at a certain moment during our controllability 
(observability or testability) enhancement process. Suppose that 
after testability analysis is performed a module m ∈ M is selected 
for enhancement (see enhancement algorithm). Such a module 
can have multiple controllability (observability/testability) 
enhancement options that can be used. For example, convert its 
input register to a TPG or connect its input to an existing TPG or 
BILBO. Suppose that E = {e1, e2… en} is a set consisting of n 
enhancements available for the module m. Each of the 
enhancements ei ∈ E is separately applied to the partially testable 
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design PTD to get a corresponding enhanced design di. Suppose 
that after these enhancements are respectively applied to the 
partially testable design PTD, the respective corresponding 
resulting enhanced designs form a set D={d1, d2,…, dn}.  

In order to decide which enhancement option (BIST design 
transformation) to use for the module m, we evaluate the cost of 
each improved partially testable design di ∈ D. Out of all the 
enhancements in the set E, the enhancement ei ∈ E that leads to 
the cheapest improved design is chosen. The cost that we use is 
the total design area, which consists of the areas of the functional 
modules, functional registers, BIST modules, test multiplexers as 
well as area contribution due to wiring. 

5.5.2.2 Global Testability Enhancement and BIST Redundancy 

Minimization 

After controllability and observability of all the modules are 
enhanced, it is still possible for some of them to be untestable. The 
first part, lines 1-27 of the algorithm shown in Figure 5.8, 
proposes a technique to fix the remaining testability problems. 

In Figure 5.8, the symbol Ω represents the set of all enhancements 
that are done on the design. Procedure UntestableModules(G, R, A) 
takes the SDFG, the RTL design and allocation information, then 
uses STA to find a list of all the untestable modules, UTM. The first 
untestable module from the list UTM, denoted as M, is usually the 
first one to be enhanced. 

Procedure Enhance(M, operand, enhanceType) adds a BIST 
enhancement for the module M. It is used to enhance output 
observability or controllability of the left or right input of the 
module. DiscardEnhancement(R, Enh) is used to remove the 
enhancement, Enh, from the design. Procedure 
PutBackEnhancement(R, Ei) puts back the enhancement Ei if its 
removal renders the design untestable. 
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After all the modules are enhanced and the design becomes 
testable, it is likely that we have added too much BIST overhead. 

Algorithm: EnhanceTestabilityAndMinimizeRedundantBIST 
 Begin 

1. Ω Set of all enhancements from Step1 and Step2 in Figure 5.5; 
2. UTM  UntestableModules(G, R, A); 
3. while UTM != φ do 
4. M  FirstUntestable(UTM); 
5. Enh  Enhance(M, Left, Contr); 
6. UTM  UntestableModules(G, R, A); 
7. if UTM != φ then 
8. DiscardEnhancement(R, Enh); 
9. Enh  Enhance(M, Right, Contr); 
10. UTM  UntestableModules(G, R, A);  
11. if UTM != φ then 
12. DiscardEnhancement(R, Enh); 
13. Enh  Enhance(M, Output, Observ); 
14. UTM  UntestableModules(G, R, A);  
15. if UTM != φ then 
16. Enh  Enhance(M, Left, Contr); 
17. Enh1  Enhance(M, Right, Contr); 
18. Ω  Ω ∪ {Enh} ∪ {Enh1}; 
19. end if 
20. else  
21. Ω  Ω ∪ {Enh}; 
22. end if 
23. else 
24. Ω  Ω ∪ {Enh}; 
25. end if 
26. UTM  UntestableModules(G, R, A); 
27. end while 
28. // Remove unnecessary BIST overhead 
29. for i  1, 2,..,|Ω | do 
30. Ei  GetEnhancement | Ei ∈ Ω; 
31. DiscardEnhancement(R, Ei); 
32. UTM  UntestableModules(G, R, A); 
33. If UTM != φ then 
34. PutBackEnhancement(R, Ei); 
35. end if 
36. end for 

 End. 
Figure 5.8 Global testability enhancement and redundant 

BIST minimization 
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Therefore, we propose a BIST resources minimization (BIST 
redundancy removal) phase, whereby we try to remove each 
enhancement we have added and check if the design remains 
testable. If the design remains testable after the removal, the 
change is made permanent. Otherwise the enhancement is put 
back. In this way BIST overhead is reduced while testability is still 
guaranteed. Pseudo-code of our redundant BIST hardware 
removal algorithm is given as part of Figure 5.8 (lines 28-36). 

5.5.3 Experimental Results 

We have evaluated our heuristic on several benchmarks. The 
technology dependent parameters as well as the sizes of the RTL 
modules used are the same as those in the experimental results 
presented in Section 5.4. Characteristics of the designs we used in 
our experiments have already been summarized in Table 4.2. 

Our experimental results are summarized in Table 5.6. Columns 
titled P, M and B represent the number of TPGs, MISRs and 
BILBOs respectively. The column titled Design Area represents the 
area of the designs before and after our BIST synthesis heuristic is 
applied. The column titled overhead shows the hardware overhead 
of our approach. The last column represents the CPU time taken 
by our heuristic. The experiments were run on a Sun Solaris 
workstation with 440MHz CPU and 256MB RAM. 

 

In our experiments, we have taken into account wiring area during 
the BIST optimization process, as described in this section. The 

Table 5.6 Experimental results using our heuristic 
Design Area (µm2)Design NameP M B 
Before After 

Overhead
(%) 

CPU time
(Sec) 

Paulin 5 3 1 6915.1 7054.6 2.0 113 
Real 6 2 4 7195.7 7406.0 2.9 199 

Ovenctrl 6 2 1 3262.1 3401.5 4.3 70 
Ex2 6 1 1 5329.8 5437.2 2.0 91 
Ewf 9 7 7 14004.1 14476.1 3.4 1030 

Average 2.92  
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design cost minimized is the total data path area including the 
area of functional and BIST modules, test multiplexers and wiring. 

The importance of considering wiring during the BIST synthesis 
process is already experimentally justified in Section 5.4. The 
importance of the work presented in this section is on getting a 
faster approach that can be applicable to realistic large designs 
instead of the slow simulated annealing based approach presented 
in Section 5.4. We have, therefore, compared the results of our 
greedy approach with the results of our simulated annealing based 
approach presented in Section 5.4. As it can be observed from 
Table 5.7, the proposed approach is efficient in terms of run time 
and, at the same time it also produces good quality results. While 
run times are on average one order of magnitude lower, the quality 
of the results produced by the heuristic is on average the same as 
that generated with the simulated annealing approach. 
 

We have also tested our approach with a large design (LD), which 
was randomly generated. This design has 235 modules of which 
83 are adders, 32 multipliers and 120 registers. Our greedy 
heuristic converted 5 registers to TPGs, 14 to MISRs and 24 to 
BILBOs to make the design testable. Overall hardware overhead 
due to our approach is only 2.05% and run time is 12783 
seconds. When we tried to run simulated annealing with the large 
design, run times were so high that we terminated the program 
prematurely. 

Table 5.7 Performance comparisons 
 Simulated annealing 

(Wire considered) 
Our heuristic 

(Wire considered) 
 

Design Name Area 

(µm2) 
CPU Time 

(Sec.) 
Area 

(µm2) 
CPU Time 

(Sec.) 
CPU Time 
reduction 
(#Times) 

Paulin 7054.6 1439.1 7054.6 113 12.7 
Real 7406.0 2017.3 7406.0 199 10.1 

Ovenctrl 3401.5 1549.5 3401.5 70 22.1 
Ex2 5437.2 1823.4 5437.2 91 20.0 
Ewf 14476.1 5819.9 14476.1 1030 5.7 

Average 14.1 
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To further analyze the performance of the heuristic, we have split 
CPU times in two parts: the time taken by the testability analysis 
(STA time) algorithm and the time taken by the cost computation 
algorithm as depicted in Table 5.8. For the designs we have 
experimented with, STA time is far larger than the cost 
computation time. On the other hand, as the designs become very 
large, cost computation time can grow quickly and become 
comparable or even larger than the STA time. Since our heuristic 
restricts the number of STA invocations, the testability analysis 
time will not grow very fast. However, as the design becomes large, 
there is increasing number of possible testability enhancements 
for a given chosen functional module. Since each possible 
enhancement involves evaluation of the design area, these 
possibilities will put a heavy computation burden on the heuristic. 
Therefore, for large designs, a fast and accurate design area 
estimation algorithm is needed to overcome this problem. 

Table 5.8 CPU time comparisons 
CPU time (Sec.)  

Design Name
 

#STA runs STA Design costTotal
Paulin 43 109 4 113 
Real 61 193 6 199 

Overnctrl 24 67 3 70 
Ex2 41 86 5 91 
Ewf 112 898 132 1030
LD 448 11495 1288 12783
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Chapter 6 

Conclusions and Future Work 

This thesis has proposed approaches to solve BIST synthesis 
problems that work at a high-level of abstraction. In this chapter a 
concluding summary and directions for possible future extensions 
of the work presented in this thesis are provided. The conclusions 
are presented in Section 6.1 and future research extensions in 
Section 6.2. 

6.1 Conclusions 
Improving testability of the designs by inserting BIST components 
adds hardware overhead. In this thesis we have provided 
approaches to minimize the amount of BIST hardware overhead 
while guaranteeing 100% testability. Symbolic testability analysis 
has been used to reveal hard to test parts of the design whose 
testabilities need to be enhanced. 

In Chapter 4, a testing-time constrained approach to minimizing 
BIST overhead has been proposed. It explores alternative 
testability options that exist in the design to minimize the BIST 
hardware overhead while satisfying testing-time constraints and 
100% testability. 

Initially, the approach adds a very small amount of overhead to 
achieve 100% testability of all the modules and determines the 
initial resulting testing time, Tinit. Our controllability enhancement 
technique chooses one module at a time to enhance so as to 
improve controllability of a number of others. Similarly, 
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observability of one module is normally enhanced to improve 
observability of a number of others.  

Later, the design is modified so that the use of BIST resources is 
optimized under the given testing time constraint. Our approach 
achieves this by shrinking or stretching the test schedule with 
respect to Tinit. Stretching test schedule is done by removing the 
maximum amount of BIST resources in such a way that the 
resulting ones will still keep the design testable and testing time 
constraint will be satisfied. Shrinking test schedule is achieved by 
adding a minimal amount of additional BIST resources into the 
design so that the tighter testing time constraint will be satisfied. 
These two heuristics, complemented with the heuristics of test 
pattern sharing and test response redirection, optimize BIST 
hardware overhead under the given testing time constraint. 

Experimental results reveal that satisfying very short testing time 
constraints is very expensive. An average of 100% additional BIST 
hardware overhead on top of that incurred by our optimization by 
test pattern sharing and test response redirection is needed to 
guarantee that all operations are tested in one test session. We 
have also observed that there exists a limit on the testing time 
beyond which relaxing testing time constraints does not lead to 
any more hardware reduction. 

In Chapter 5, we have defined a set of BIST transformations and 
proposed two approaches to solve the wiring-aware BIST synthesis 
problem. 

The first approach uses a simulated annealing strategy to 
minimize the total design area. Experimental results indicate that 
when wiring area is considered during the optimization process 
the total area of the resulting designs is smaller compared to cases 
when wiring is not considered, despite the fact that the number of 
BIST registers may be smaller in the latter case. Since in deep-
sub-micron technology wiring occupies a relatively large area, it is 
necessary to include wiring consideration early in the design 
processes. 

The simulated annealing based optimization approach is, however, 
quite slow. To address this problem, the second approach, a 
greedy heuristic, has been proposed. It provides two ways to 
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converge towards testable and cheap solution while keeping 
computational effort low. It minimizes the overall number of 
testability enhancements done on the design. This is assisted by 
our novel BIST enhancement metrics which are used to guide the 
synthesis process in such a way that each controllability or 
observability enhancement targets to improve as many modules as 
possible. This is complemented by a thorough local search of the 
cheapest solution for each enhancement performed. The cheapest 
alternative enhancement for a given module is used. 

Experimental results show that the approach is one order of 
magnitude faster than the simulated annealing. With large designs 
simulated annealing runs extremely slow, whereas our greedy 
heuristic produces results in acceptable run time. 

6.2 Future Work 
This work can be extended in a number of ways. Some possible 
directions for future work are: 

• Extend the wiring-aware BIST synthesis problem with testing 
time constraints.  

• In this thesis we have seen that several alternative testability 
environment options (ATEO) exist for each SDFG operation. 
This work has used behavioral information in the SDFG for 
testability analysis and BIST enhancement was done on the 
already allocated RTL design. One way to improve this work 
can be to use the ATEOs as metrics to guide HLS for BIST. In 
this way BIST insertion can start earlier so that the 
allocation, and even scheduling, can be BIST-aware. 

• The performance of our greedy heuristic can be improved by 
avoiding multiple invocation of the area cost computation for 
each possible testability enhancement for the given module. 
Extending the heuristic with an intelligent algorithm to 
compute the cost of the design after BIST transformation in 
an incremental fashion can achieve this.  
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