

Linköping Studies in Science and Technology

Thesis No. 1156

High-Level Techniques for Built-In Self-Test
Resources Optimization

by

Abdil Rashid Mohamed

Submitted to the School of Engineering at Linköping University in partial
fulfilment of the requirements for the degree of Licentiate of Engineering

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2005

ISBN 91- 85297-90-9

ISSN 0280-7971

Printed by UniTryck, Linköping, Sweden, 2005

Copyright © 2005 Abdil Rashid Mohamed

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

 ISBN 91-85297-90-9 ISSN 0280-7971

High-Level Techniques for Built-In Self-Test
 Resources Optimization

by

Abdil Rashid Mohamed

April 2005
ISBN 91-85297-90-9

Linköpings Studies in Science and Technology
Thesis No. 1156
ISSN 0280-7971

LiU-Tek-Lic-2005-11

ABSTRACT

Design modifications to improve testability usually introduce large area overhead and
performance degradation. One way to reduce the negative impact associated with
improved testability is to take testability as one of the constraints during high-level
design phases so that systems are not only optimized for area and performance, but
also from the testability point of view. This thesis deals with the problem of optimizing
testing-hardware resources by taking into account testability constraints at high-levels
of abstraction during the design process.

Firstly, we have provided an approach to solve the problem of optimizing built-in self-
test (BIST) resources at the behavioral and register-transfer levels under testability
and testing time constraints. Testing problem identification and BIST enhancement
during the optimization process are assisted by symbolic testability analysis. Further,
concurrent test sessions are generated, while signature analysis registers’ sharing
conflicts as well as controllability and observability constraints are considered.

Secondly, we have introduced the problem of BIST resources insertion and
optimization while taking wiring area into account. Testability improvement
transformations have been defined and deployed in a hardware overhead minimization
technique used during a BIST synthesis process. The technique is guided by the
results of symbolic testability analysis and inserts a minimal amount of BIST
resources into the design to make it fully testable. It takes into consideration both
BIST components cost and wiring overhead. Two design space exploration approaches
have been proposed: a simulated annealing based algorithm and a greedy heuristic.
Experimental results show that considering wiring area during BIST synthesis results
in smaller final designs as compared to the cases when the wiring impact is ignored.
The greedy heuristic uses our behavioral and register-transfer levels BIST
enhancement metrics to guide BIST synthesis in such a way that the number of
testability improvement transformations performed on the design is reduced.

The Swedish Foundation for Strategic Research (SSF) under the INTELECT and
STRINGENT programmes at Linköping University supported this work.

 i

Abstract

Design modifications to improve testability usually introduce large
area overhead and performance degradation. One way to reduce
the negative impact associated with improved testability is to take
testability as one of the constraints during high-level design
phases so that systems are not only optimized for area and
performance, but also from the testability point of view. This thesis
deals with the problem of optimizing testing-hardware resources
by taking into account testability constraints at high-levels of
abstraction during the design process.

Firstly, we have provided an approach to solve the problem of
optimizing built-in self-test (BIST) resources at the behavioral and
register-transfer levels under testability and testing time
constraints. Testing problem identification and BIST enhancement
during the optimization process are assisted by symbolic
testability analysis. Further, concurrent test sessions are
generated, while signature analysis registers’ sharing conflicts as
well as controllability and observability constraints are considered.

Secondly, we have introduced the problem of BIST resources
insertion and optimization while taking wiring area into account.
Testability improvement transformations have been defined and
deployed in a hardware overhead minimization technique used
during a BIST synthesis process. The technique is guided by the
results of symbolic testability analysis and inserts a minimal
amount of BIST resources into the design to make it fully testable.
It takes into consideration both BIST components cost and wiring
overhead. Two design space exploration approaches have been
proposed: a simulated annealing based algorithm and a greedy
heuristic. Experimental results show that considering wiring area

 ii

during BIST synthesis results in smaller final designs as
compared to the cases when the wiring impact is ignored. The
greedy heuristic uses our behavioral and register-transfer levels
BIST enhancement metrics to guide BIST synthesis in such a way
that the number of testability improvement transformations
performed on the design is reduced.

 iii

Acknowledgments

First and foremost I would like to thank Almighty God for giving
me life, health and ability to study.

I would like to thank my supervisor, Professor Zebo Peng. He has
not only given me an opportunity to pursue graduate studies, but
also guided me throughout my graduate studies. I am also deeply
indebted to Professor Petru Eles for good research advice, fruitful
discussions and encouragements.

I would also like to thank all members of the Embedded Systems
Laboratory at Linköping University for creating a good working
environment, and members of the Swedish Network of Design for
Test Research (SNDfT) for fruitful discussions during our regular
meetings. Gert Jervan, Alexey Sinelnikov and Lei Zhao have been
very helpful. Special thanks should go to Gunilla Mellheden and
Lillemor Wallgren for their help in administrative issues. My
friends at Ryd you have been there for nice evening discussions
after long tiresome days at the University. Peter Hazucha,
Odysseas Katapodis, Nasser Ziae, Arnold Rombo, Michael Kwesi
Korsah, Sauli Elingarami, Moses Nyangito and Richard Otieno are
worth mentioning. Bourhane Kadmiry, Abdelbaki Bougerra and
Adam Mantaye thank you very much for sharing your time with
me to discuss various academic and general issues.

This work would not have been possible without continuous
support from my extended family. I am highly thankful to all my
sisters and brothers. Special thanks should go to my mother and
my sisters, Rahima and Rauhia, for their continuous advice,
encouragement and support. I cannot finish writing this
acknowledgement without mentioning my father, late Rashid

 iv

Mohammed Ali Amour Al-aufy, who played an important role to
allow and encourage me to pursue graduate studies.

Finally, I would like to thank my wife, Yusfa Shawwal, for her
support and bringing a beautiful daughter, Nassra, into our
family.

Abdil Rashid Mohamed

Linköping, March 2005.

The Swedish Foundation for Strategic Research (SSF) under the
INTELECT and STRINGENT programmes at Linköping University
supported this work.

 v

TABLE OF CONTENTS

Chapter 1 Introduction ...1
1.1 Motivation.. 1
1.2 Problem Formulation ... 3
1.3 Contributions... 4
1.4 Thesis Overview ... 4

Chapter 2 Background and Related Work..................................7
2.1 Digital Systems Design Flow.. 7
2.2 Testing of Digital Systems.. 9
2.3 Automatic Test Pattern Generation...................................... 12
2.4 Built-In Self-Test.. 14

2.4.1 Test Pattern Generation for BIST 15
2.4.2 Test Response Analysis and Compaction 17
2.4.3 Built-in Logic Block Observer.. 18

2.5 High-Level Testability Analysis... 18
2.5.1 Register Transfer Level Testability Analysis................... 18
2.5.2 Behavioral level Testability Analysis.............................. 21
2.5.3 Symbolic Testability Analysis .. 22

2.6 High-Level Synthesis for Testability 23
2.6.1 Synthesis for General Testability................................... 25
2.6.2 Synthesis for BIST... 27
2.6.3 Synthesis for Scan and Test Point Insertion.................. 29
2.6.4 Other Approaches ... 31

2.7 Wiring and Interconnect Issues ... 32
2.8 Summary ... 33

Chapter 3 Preliminaries ..35
3.1 Design Representation ... 35

3.1.1 Behavioral representation ... 35
3.1.2 Register-Transfer Level Structural Representation........ 36

3.2 Testability of SDFG Operations and Variables 37
3.3 Test Environment Sharing ... 41
3.4 Alternative Test Environment Options 43
3.5 Testability of RTL Modules and Registers............................. 45
3.6 Structure of the Rest of the Thesis....................................... 47

Chapter 4 Testing-Time Constrained BIST Synthesis..............49
4.1 BIST Synthesis Overview ... 49
4.2 Testability Enhancement ... 51
4.3 MISR Sharing... 58
4.4 MISR Incompatibility Sets.. 58
4.5 Concurrent Test Session Selection....................................... 59

 vi

4.6 BIST Resources Optimization... 60
4.7 Experimental Results... 66

Chapter 5 Wiring-Aware BIST Synthesis..................................75
5.1 Design Transformations for BIST... 75

5.1.1 Types of BIST Transformations 76
5.1.2 Transformation Illustration and Motivational Examples 78

5.2 Wiring Area Estimation Techniques..................................... 82
5.3 Cost Function .. 83
5.4 BIST Synthesis Optimization with Simulated Annealing...... 83

5.4.1 Simulated Annealing Based BIST Synthesis Framework84
5.4.2 Experimental Results .. 86

5.5 BIST Synthesis Optimization with Greedy Heuristic 89
5.5.1 BIST Enhancement Metrics... 90
5.5.2 BIST Synthesis Heuristic... 94
5.5.3 Experimental Results .. 100

Chapter 6 Conclusions and Future Work...............................103
6.1 Conclusions ... 103
6.2 Future Work .. 105

References ..107

 vii

LIST OF FIGURES

Figure 2.1 Single stuck-at faults.. 12
Figure 2.2 BIST Architecture ... 15
Figure 2.3 An LFSR example ... 16
Figure 3.1 An SDFG and its corresponding RTL data path............ 36
Figure 3.2 An SDFG example.. 42
Figure 3.3 Multiple alternative observability paths........................ 44
Figure 4.1 Overview of BIST resources optimization strategy......... 51
Figure 4.2 Controllability enhancement algorithm 53
Figure 4.3 Observability problem due to contradictory values on

intermediate nodes .. 54
Figure 4.4 Selecting observability enhancement places 55
Figure 4.5 Observability enhancement algorithm 56
Figure 4.6 Testability enhancement algorithm............................... 57
Figure 4.7 BIST optimization by test schedule shrinking............... 61
Figure 4.8 BIST optimization by test responses redirection 63
Figure 4.9 BIST optimization by test schedule stretching.............. 65
Figure 4.10 BIST cost versus testing time 71
Figure 4.11 Percentage change in BIST cost versus testing time ... 71
Figure 5.1 Illustrating conversion transformations........................ 79
Figure 5.2 Illustrating connection transformations........................ 81
Figure 5.3 Simulated annealing BIST synthesis framework........... 85
Figure 5.4 An SDFG to illustrate the BIST enhancement metrics.. 92
Figure 5.5 Steps of the BIST synthesis heuristic 94
Figure 5.6 Controllability enhancement... 95
Figure 5.7 Observability enhancement .. 96
Figure 5.8 Global testability enhancement and redundant BIST

minimization.. 99

 viii

LIST OF TABLES

Table 3.1 Alternative opTTEs for testing *3 and +5 42
Table 4.1 Sizes of modules and registers 66
Table 4.2 Characteristics of the designs .. 67
Table 4.3 Testability analysis results of the original designs 67
Table 4.4 BIST resources after testability enhancement and optimization to

100% testability ... 68
Table 4.5 Optimization by test schedule shrinking and stretching for the

design Paulin... 69
Table 4.6 Comparison of the results .. 72
Table 5.1 Wiring area ignored during optimization 88
Table 5.2 Wiring area considered during optimization................... 88
Table 5.3 Unnecessary area overhead if wiring is not considered .. 88
Table 5.4 BIST enhancement metrics: 1-to-1 mapping.................. 93
Table 5.5 BIST enhancement metrics: realistic mapping 93
Table 5.6 Experimental results using our heuristic 100
Table 5.7 Performance comparisons .. 101
Table 5.8 CPU time comparisons... 102

 1

Chapter 1

Introduction

This chapter introduces the thesis topic. It starts by discussing
the motivation for the research conducted in this work. After that,
a formulation of the research problems is provided. A list of
important contributions of the thesis is then enumerated. The
chapter concludes by providing an organization of the rest of the
thesis.

1.1 Motivation
Testing of electronic chips is an important step of an electronic
system’s manufacturing process. A Very Large Scale Integration
(VLSI) electronic system can only be released into the market if it
operates correctly. This is usually ascertained during the testing
process.

Modern advances in VLSI technology offer tremendous potential
for manufacturing complex electronic systems with multi-million
gates. It is now also possible for these complex electronic systems
to be implemented on a single chip. On the other hand, testing of
such systems is very difficult. Increase in test data volume,
reduced access to internal components, and very high operating
frequency are some of the challenges that make testing of complex
electronic systems a difficult task [68]. To be able to manufacture
correctly functioning complex electronic systems, these testing
challenges must be well addressed and solved.

 2

Due to the challenges mentioned above, traditional methods are
no longer suitable for testing modern, multi-million gate complex
electronic systems, such as System on Chip (SoC) or Network on
Chip (NoC). Therefore, testing methods must change in order to
appropriately utilize the available new capabilities in VLSI
technology. Currently, there are several approaches that are
proposed to enhance current testing practices. Some of them are
briefly discussed in the following paragraphs.

The process of modifying the designs by, for example, adding
testing components so that the resulting designs are easy to test,
is referred to as Design for test (DfT). Traditionally, design
decisions and optimizations regarding silicon area, performance,
power consumption, etc. are made first, and then DfT features are
added at gate-level. An example of gate level DfT technique is gate-
level test point insertion.

Modern DfT techniques are, on the other hand, applied at high
levels of abstractions such as register-transfer levels (RTL) or
behavioral levels. By raising the level of abstraction at which the
DfT techniques are applied, the complexity of designing suitable
test infrastructure for the complex systems can be managed. Test
synthesis, a technique whereby designing for functionality and
designing for testability are integrated together as early as possible
in the design process, is one example of high-level DfT techniques.
In this way functionality, testability and other issues such as
silicon area, performance and power are simultaneously
considered and optimized together in the design process. The
approach helps to eliminate efforts to re-design for testability later
in the design process. In one category of test synthesis, known as
high-level test synthesis (HLTS), the tasks of scheduling, allocation
and binding are done in such a way that testability is one of the
constraints to be satisfied during design optimizations [44], [45],
[46].

Built-in Self-Test (BIST) is an approach, which modifies the design
in such a way that part of the design is used to test itself [2], [3].
This helps to solve such problems as large test data volume, at
speed testing, and test pin limitation. Although BIST is a suitable
DfT technique for handling testing problems of the modern
complex electronic systems, large hardware and performance

 3

overheads it introduces are the main obstacles to its industrial
utilization. Furthermore, inserting BIST components into the
designs at gate levels adds to the problem. One way to reduce the
negative impact of BIST insertion is to start the insertion of BIST
components early during the design process at high levels of
abstractions such as register-transfer or behavioral. The technique
of considering BIST insertion at these high levels is referred to as
BIST synthesis. Therefore, solving the problem of optimizing BIST
hardware resources during BIST synthesis process such that
constraints like testing time, performance, or power are met is an
important step towards improving testability of the complex
electronic systems. As VLSI technology advances towards deep
submicron implementations, wiring becomes a critical problem.
Therefore, BIST synthesis approaches can be even more effective,
if they not only consider testability, but also wiring when they
modify the designs to improve testability.

The purpose of this work is to address the problems of
optimization of hardware overhead during the BIST synthesis
process. The hardware overhead includes both BIST resources as
well as wiring. The aim is not only to produce designs that are
easy to test by using the BIST approach, but also designs that are
optimal in terms of total hardware cost including wiring area.

1.2 Problem Formulation
The research done in this thesis concentrates on two main
problems:

• BIST synthesis under testing time constraints: The objective
is to optimize BIST resources usage under testing time
constraints in such a way that testability of all modules in
the design is guaranteed. The input to the problem is a
design that is represented as a scheduled data flow graph
(SDFG) and testing time constraints. The aim is to analyze
and enhance the testability of the design in such a way that
minimum amount of BIST resources are added so as to
simultaneously guarantee the testability and testing time
constraints.

 4

• A wiring-aware BIST synthesis: The aim is to find a way to
perform BIST synthesis that does not only take into account
the cost of BIST resources, but also does quantitative
estimation of the wiring cost that is introduced by inserting
BIST resources into the design. This approach shall result in
more efficient designs in terms of total design area. The
design cost considered is the total area of the functional
modules, BIST components and wiring area. The problem is
formulated as follows: given a design represented as an
SDFG along with allocation/binding information, insert BIST
modules into the design such that all functional modules are
self-testable and the total design area is minimized.

1.3 Contributions
The main contributions of this thesis are the following:

• An approach to optimize BIST resources under testing-time
constraints. The approach uses testability analysis results to
guide BIST synthesis. Firstly, it explores alternative
testability options that exist in the design to help determine
which operations can be tested concurrently. Secondly, it
proposes design modification heuristics to optimize BIST
hardware usage under a given testing time constraint.

• BIST design transformations to guide our wiring-aware BIST
synthesis process. We have proposed two approaches to
solve this synthesis problem. In the first approach we have
formulated the wiring-aware BIST synthesis problem as a
simulated annealing optimization problem. In the second
approach we have proposed a greedy heuristic for solving the
wiring-aware BIST synthesis problem. We have also defined
new BIST enhancement metrics that are suited for guiding
synthesis towards low hardware BIST overhead.

1.4 Thesis Overview
The rest of the thesis is organized as follows: In Chapter 2 we
present some background and related work. In Chapter 3 some of

 5

our specific definitions and concepts, which are used in the
discussion of our core concepts, are provided. Chapter 4
concentrates on the approaches and methods to solve the problem
of BIST synthesis under testing-time constraints. Chapter 5
addresses techniques to solve the wiring aware BIST synthesis
problem. Finally, conclusions and directions for future work are
discussed in Chapter 6.

 7

Chapter 2

Background and Related Work

This chapter introduces the background and related works that
are necessary for understanding this thesis. It starts by giving an
introduction to the design flow of electronic systems. Since the
main testing approach targeted by the wok done in this thesis is
BIST, background knowledge on BIST and its potential for testing
future complex electronic systems are provided. Attempts to
integrate testing consideration during high-level synthesis are also
discussed. Since testability analysis methods that are able to
characterize designs in terms of their testability quality are used in
several algorithms and methods presented in this thesis, a
discussion of high-level testability analysis is also provided at the
end of the chapter.

2.1 Digital Systems Design Flow
Designing and testing of large electronic systems are complex
processes. To handle complexity, design activities have been
shifted towards higher levels of abstractions.
A synthesis approach for designing digital systems usually starts
by specifying a system in terms of its functionality and some
implementation constraints [18], [36]. System-level synthesis [66]
then breaks down a system specification into communicating
subsystems (processes). Each subsystem has its own behavioral
level specification, which describes its behavior according to the
computational problem to be solved.

 8

To transform the behavioral specification to an RTL structural
specification, behavioral level synthesis is used. In automatic
synthesis of VLSI designs, this step is often referred to as high-
level synthesis (HLS) and it consists of three main tasks [48]. The
first task, scheduling, assigns each operation to a time slot. The
second task deals with decisions regarding the type and number of
functional and memory resources to be used and is known as
resource allocation. The third task, known as binding, maps each
behavioral operation to a specific functional resource and each
variable to a register. The output of the behavioral synthesis is
usually given as an RTL data-path and a controller. The data-path
consists of interconnected functional modules, such as adders,
multipliers, registers, and multiplexers. The controller, at this
level, is defined by a state transition table. It controls the data flow
in the data-path by providing control signals to the multiplexers,
registers and other data-path components.

Some RTL modules are derived from existing libraries and others
are designed at logic level. Logic functions are represented by
truth tables, algebraic expressions or binary decision diagrams
(BDD). During the logic-level synthesis step, optimizing and
minimizing of logic functions are performed, and a technology
independent specification of the system, usually described in
terms of large combinational or sequential blocks, is produced.
After that, a Boolean expression is transformed by a process
known as technology mapping into a network of gates from a target
library.

According to classical design methods, testing is typically
considered after all major high-level design decisions are taken.
Consequently, many existing test generation tools work with gate
level representations of the designs. At the gate level, designs are
quite complex, hence test generation and DfT techniques become a
bottleneck of the whole design process. If high fault coverage
cannot be achieved, expensive re-design efforts, which can cause
delay in product development, are needed to improve testability.
Several approaches, which will be discussed in the coming
sections, are proposed to address this problem.
In recent years, methods have been elaborated addressing design
problems at high levels (register-transfer, behavioral) of

 9

abstractions. At these levels, testability metrics (see Section 2.5)
can be used to assess the testability of the designs. DfT
techniques assisted by high-level testability metrics can be
deployed to embed test components into the designs. It is expected
that the embedded test components will make generating efficient
test patterns and their application easier.

2.2 Testing of Digital Systems
Manufacturing testing of a VLSI device verifies the correctness of
the manufacturing process. Hence, it ensures that the physical
device manufactured from the synthesized VLSI design has no
manufacturing defects. When testing a VLSI design, it is assumed
that the synthesized design correctly implements its original
specification. At the end-user or customer environment, testing is
used to check for defects that result from wear out, aging or other
types of problems. The process of testing digital VLSI systems
usually involves two steps.

The first step, known as test pattern generation [12], [24], [61], is
mainly a preparatory step. It is executed once during the design
process. In this step, test patterns (vectors) together with their
expected correct responses are generated. The test patterns and
responses will be used to test the VLSI circuit after it is
manufactured. The test generation process is usually automated
using specialized software tools.

The second step, known as test application, involves the actual
testing of the manufactured devices. During the test application
process, the test vectors are applied to the hardware device,
known as circuit under test (CUT), and the results obtained are
compared with the expected correct responses. If the results
obtained are different from those expected, then the device is
considered faulty.

In a classical testing set up, the test patterns and correct results
for testing a given VLSI system are stored in a large testing
machine, known as automatic test equipment (ATE). The ATE
sends test patterns to the CUT, reads test responses from it and
decides whether the CUT is faulty or not.

 10

Testing electronic designs is a costly process. While the cost of
manufacturing a transistor has been constantly decreasing, the
cost of testing it has remained constant throughout the electronic
age [62]. As we go into the deep sub-micron (DSM) era, it is likely
that there will come a time when it will be more expensive to test a
transistor than to design and manufacture it. The cost of testing a
VLSI design can be classified into three main categories:

- In order to simplify testing, it is necessary to modify the
design so that the test generation process is able to generate
high-quality tests for a given design. These modifications can
add area overhead to the chip and can lead to yield
reduction. If the modifications for testability are done in the
critical path of the design, then a delay overhead is also
introduced into the design. This will eventually lead to
performance degradation.

- The cost associated with the software processes of test
pattern generation. There may also be some costs resulting
from the test programming and debugging.

- ATE capital cost and the operational cost of the test centre.
This is the cost associated with the manufacturing test.

According to predictions of the testing section of the International
Technology Roadmap for Semiconductor (ITRS-Test), the ATE cost
dominates product cost [62]. Therefore, use of DfT techniques, and
in particular BIST techniques, will continue to grow in order to
move test complexity on chip and thus reduce capability
requirements and therefore cost of the ATE [62].

Physical defects in VLSI designs manifest themselves at the
electrical level as failure modes such as open and short
interconnections or parameter degradation [52]. There are many
physical defects that can occur on VLSI systems. They are caused
by a number of factors such as processing defects (missing
contact windows, parasitic transistors and oxide breakdown),
material defects (cracks and crystal imperfections), surface
impurities (ion migration), time-dependent failures (dielectric
breakdown and electro migration) and packaging failures (contact
degradation and seal leaks) [1], [34], [52].

 11

To facilitate detection of the physical defects, at the logic and
behavioral levels, the failures are modeled as faults. Since there
are too many real defects and they are hard to classify and
analyze, fault models are used to characterize the target faults to
be tested. Fault models make it possible to analyze designs with
respect to testability in a quantitative manner. There exist many
fault models, but here we will mention a few most common ones,
which are:

- Single and multiple stuck-at fault models.

- Functional fault model.

- Delay fault model. This is similar to stuck-at fault model, but
enhanced with timing information.

- Gate (transition) delay faults.

o Slow-to-rise or slow-to-fall transitions.

o Interconnect signal with longer than normal
propagation delay.

- Path delay faults – accumulation of gate delay faults over
whole paths.

A given fault model, say stuck-at fault, models only a subset of
real defects. In this thesis all our discussion will be based on a
single stuck-at (SSA) fault model since it is most widely used.
Many test generation techniques that target other fault models
extend the principles and techniques used in SSA fault model [1].
This fault model assumes that only one line can be faulty at a
time. The fault is modeled in such a way that the faulty line is
assumed to be permanently stuck-at a logic value 0 or a logic
value 1. These faults are assumed to be only present at the inputs
or outputs of logic gates such as AND, OR, NAND, NOT and XOR.

Consider an example design depicted in Figure 2.1. According to
the SSA fault model this design has five fault sites. Each fault site
can be stuck at 0 or stuck at 1. Hence the circuit can have a
maximum of ten possible stuck at faults. Generally, a circuit with
n nets has 2n SSA faults.

 12

2.3 Automatic Test Pattern Generation
The test pattern generation problem is formulated as follows: given
the CUT, usually a gate level net-list, obtain a set of test vectors
that will detect a sufficiently large number of the modeled faults in
the CUT. As a measure of quality of the test vectors and the test
pattern generation algorithms, it is required that the number of
test vectors be as small as possible, and high fault coverage,
preferably 100%, be achieved. Fault coverage is defined as the
ratio of the number of detected faults to the total number of
modeled faults.

The cost of test pattern generation depends on the fault model, the
complexity of the test generation algorithm and the complexity of
the CUT.

Test patterns can be generated at different abstraction levels. A
majority of existing tools perform test generation at gate level [24],
[61]. With increasing complexity of the designs, test generation at
gate level becomes a computationally expensive process. In order
to handle complexity issues, hierarchical test generation
approaches have been proposed [37]. Such approaches use high-
level functional information to speed up the test generation
process.

The deterministic test patterns generated by the automatic test
pattern generation (ATPG) tools are first stored in an ATE and then
used for testing the CUT. In the next section, another approach for
generating test patterns and testing designs, known as BIST, will
be introduced.

A
B

C

D

E

s-a -0
Figure 2.1 Single stuck-at faults

 13

A stuck-at fault at a line l is denoted as l-s-a-v, where v is 0 or 1. A
test vector for a given modeled fault l-s-a-v must be able to detect
whether the line l is permanently stuck at a value v. To do so the
test vector should be able to set an opposite value ~v at the line l
and propagate this value all the way to an observable point.
Therefore, the test generation process can be decomposed into two
sub-processes: fault activation (excitation) and error propagation.
Fault activation is achieved by setting primary input (PI) values
that cause a line l to be set to the value ~v. If it is possible to excite
a fault then the fault is controllable. Error propagation requires
that the error ~v be transported from the line l to an observable
point, usually a primary output (PO). If an error can be observed
at a PO then the fault is observable.

Several approaches are used to generate test patterns for a circuit.
Test generation methods can be classified as random, pseudo-
random, exhaustive or deterministic.

A random test pattern generation algorithm generates test vectors
at random without considering the structure of the CUT. For each
generated test vector, fault simulation is performed to find all the
faults that it can detect. All the faults that can be detected by the
generated test vector are then removed from the list of undetected
modeled faults. The process of generating test patterns is repeated
until all faults are detected or an acceptable level of fault coverage
is achieved. Random pattern generation is relatively
straightforward, but leads to a test set with many test vectors and
usually can have low fault coverage.

More efficient approaches are the deterministic test pattern
generation methods, which consider the structure of the CUT
when generating test patterns. They can be expensive in terms of
computational effort, but they lead to a few, efficient test patterns,
which result in a high fault coverage. Generally, a fault-oriented
deterministic test pattern generation algorithm works as follows:
Pick a fault l-s-a-v whose test is to be generated. Find a way to
control line l to an opposite value ~v. Find a way to propagate an
error from line l to an observable point, usually a primary output.
If it is possible to control the line l to a value ~v and to propagate
the resulting error to the observable point then the test pattern is
found. The fault is then removed from the fault list and a test for

 14

another fault is generated in a similar manner. The test generation
process terminates when tests for all modeled faults are generated
or if the allowed maximum user-defined central processing unit
(CPU) time is exhausted. During the course of test generation
fault, simulation can also be performed for each test pattern in
order to find other faults, which can be detected using the same
test pattern.

Generating tests for large circuits is a complex process. The worst-
case complexity of the test generation problem is exponential with
respect to the number of gates in the circuit [12] and was observed
for undetectable faults. Therefore, heuristics are often used to
avoid the worst-case complexity of the test generation algorithms.
Since heuristics limit the search space in order to run in a
reasonable amount of time, they may fail to generate tests for
some detectable faults. Examples of deterministic test generation
heuristics are PODEM [24], D-algorithm [61] and 9-V algorithm
[12] .

A more detailed list of the test pattern generation algorithms is
provided in [1] and a performance comparison is available in [4].

2.4 Built-In Self-Test
BIST is an emerging technique for testing complex VLSI systems.
To test a design by using a BIST methodology, the design has to be
modified (enhanced) in such a way that part of the circuit is used
to test the design itself. Therefore, BIST is defined as a DfT
technique in which testing is accomplished through built-in
hardware components [2], [3].

A general BIST scheme is shown in Figure 2.2. It consists of a test
source block, the CUT, a test response analysis block and a test
controller block, which manages the application of the tests. In a
classical BIST scheme, the test source consists of a special kind of
register, test pattern generator (TPG), which generates on-chip test
patterns. Recently, a new hybrid BIST approach [38] has been
proposed. It enhances the design with a read only memory (ROM)
for storing some deterministic test patterns. These stored test

 15

patterns are used to capture faults that cannot be detected by the
test patterns generated by the on-chip TPG.

BIST offers several advantages over classic testing schemes. Since
test patterns originate from on-chip sources and test responses
are analyzed on-chip, there is no need of huge tester memories to
store an enormous amount of test data. Furthermore, the
bottleneck problem of sending test data from the ATE to the chip
is also addressed. Reducing or eliminating the need for ATE
provides field test capability whereby a chip can be tested on field
or at customer environment. Another important advantage that
BIST offers is the ability to perform at speed testing.

If a testing strategy is well designed, BIST can be used in a
hierarchical fashion whereby the same hardware can test chips,
boards as well as systems [2]. With BIST the problem of reduced
accessibility to internal components is solved since external test
data is not needed.

On the other hand, BIST introduces hardware overhead and delay,
which can degrade performance.

2.4.1 Test Pattern Generation for BIST

On-chip test pattern generators can generate exhaustive or
pseudo-random test patterns. Pseudo-random test patterns have
many characteristics of random patterns, but are generated

 BIST
Controller

CUT
Test

Source
Response
Analysis

Figure 2.2 BIST Architecture

 16

deterministically and hence are repeatable. A cellular automata or
hardware based linear feedback shift register (LFSR) [2], [52] can
be used to generate pseudo-random test patterns. An LFSR will be
generally referred to as a TPG.

An LFSR is a shift register with feedbacks from the last stage and
other stages. The outputs of its flip-flops form the test pattern.
Each state of the LFSR corresponds to one test pattern. The
number of unique test patterns the LFSR can generate depends on
the number and location of the feedbacks as well as its initial
value, which is known as the seed.

An example of an LFSR is shown in Figure 2.3. It is initialized with
the seed 0001. In the subsequent clock cycles, a series of test

D Q

 Q

D Q

 Q

D Q

 Q

D Q

 Q

1 x 2
x 3 x 4 x

y 1 y 2 y 3 y 4

0 0 0 1

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

1 0 1 1

0 1 0 1

1 0 1 0
1 1 0 1

0 1 1 0

0 0 1 1

1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

Figure 2.3 An LFSR example

 17

patterns are produced at the outputs of the flip-flops. This LFSR,
which has n=4 flip-flops, produces a total of 15 (2n - 1) distinct
patterns (except 0000) as shown in Figure 2.3.

The feedback positions are usually described by a characteristic
polynomial [2], [3]. In our example, feedbacks are made from the
first (x) and the fourth (x4) positions, hence the characteristic
polynomial of the LFSR is p(x) = 1 + x + x4. The choice of feedback
positions (the choice of the polynomial) determines the length of
the test sequences generated. Special polynomials known as
primitive polynomials give maximal length sequences (2n-1). A
polynomial p(x) = 1 + x + x4, which is used in our example, is
primitive. It generates a sequence of 15 distinct test patterns
before repetition. Therefore, when designing an LFSR a good
choice of seed and polynomial is crucial for generating a good
sequence of tests.

2.4.2 Test Response Analysis and Compaction

In BIST schemes, all test responses from a CUT are compacted to
a single value known as a signature. Thus, one test signature for
the whole CUT is obtained at the end of the test application
process. Faults are detected by comparing the signature from the
CUT and its fault-free signature. If the two signatures are different
the circuit is considered as faulty.

Response compaction may result in information loss, which can
cause a signature of a faulty circuit to be equal to the fault-free
signature. In this way a fault can escape detection. This kind of
information loss is known as aliasing. Aliasing probability is
nevertheless quite small and decreases with increase in the length
of the test.

Several compaction schemes exist [1], [52], but the most common
one is known as signature analysis. A common form of signature
analysis methodology uses an LFSR (known here as a signature
analysis register) to compact responses from the CUT. At the end
of the test application, the content of the LFSR is the signature of
the CUT. In its simplest form a signature analysis register is a one
input LFSR, which, is suitable for compacting responses from a
single output CUT. Mathematical analysis reveals that the LFSR
divides the input test response stream, G(x), from a CUT by the

 18

LFSR polynomial P(x), producing an output stream corresponding
to the quotient, Q(x), and a remainder R(x). The remainder on the
LFSR after completion of the test application corresponds to the
final signature of the CUT [1]. Although in this discussion we have
presented a single input signature analysis register (SAR), in
practice a multiple input signature register (MISR) is usually used
to compact responses from the CUT with multiple outputs.

2.4.3 Built-in Logic Block Observer

Built-in Logic Block Observers (BILBOs) and Concurrent Built-in
Logic Block Observers (CBILBOs) are other important types of on-
chip BIST registers. They are more advanced than regular TPGs or
MISRs. While a BILBO can generate test vectors and analyze test
responses at different times, a CBILBO can do so at the same
time.

BILBOs are needed if it is necessary to improve both controllability
and observability of a specific part of the design. On the other
hand, if it is necessary to improve controllability, observability and
test application time, the CBILBO, which simultaneously performs
both test pattern generation and test response compression, can
be used. However, BILBOs and CBILBOs usually occupy larger
silicon area than TPGs or MISRs of equivalent bit-width.

2.5 High-Level Testability Analysis
To properly synthesize designs for testability, accurate testability
metrics are needed. These metrics can be used to rank design
alternatives based on their testability during the synthesis
process. Testability analysis methods can be classified into three
categories: analysis for general testability, analysis for ATPG and
analysis for BIST.

There has been work done on testability analysis at gate level,
register-transfer (RT) level and behavioral level. In this thesis we
are mainly interested in RT and behavioral levels testability
analysis approaches.

2.5.1 Register Transfer Level Testability Analysis

At RTL there is a number of testability analysis works done.

 19

Chen and Menon [13] proposed a probability based testability
analysis approach. They defined 0-combinational controllability
(CC0) as the probability that a signal has a value 0. Similarly, 1-
combinational controllability (CC1) is defined as the probability that
a signal has a value 1. Sequential controllability is an estimate of
the length (time steps) of a sequence for setting a signal in a
circuit to a specific value. 0-sequential controllability and 1-
sequential controllability are defined. Combinational observability
is the probability that a change in the input will result in a change
in the output. Sequential observability is an estimate of the
number of time frames required to propagate the effects of a signal
change on a line to the primary output.

Gu [28] has also proposed some probability based testability
metrics. For each line in the design he associated four testability
values, namely combinational controllability, combinational
observability, sequential controllability, and sequential
observability. He also defined a notion of controllability transfer
factor to describe how the controllability of the input and output of
functional modules are related. The controllability transfer factor
is the probability of setting a value at a module’s output by
randomly exercising its inputs. Similarly, the probability of
observing a module’s input by randomly exciting it’s other inputs
and observing its output is known as observability transfer factor.
These metrics target improvement of ATPG and are used in a
testability analysis and enhancement algorithm. Designs are
described using an extended timed Petri net (ETPN) [56].

Papachristou and Lai [55] proposed testability metrics based on
the notion of entropy. The metrics are computed for registers and
are suitable for pseudo-random BIST testing. Controllability of a
register is measured by the metric known as randomness, which is
defined as the ratio of its output entropy to the maximum output
entropy. Observability is measured by the metric called
transparency, which is defined as the probability that an arbitrary
change in the signal value can be observed at the primary output.
These metrics are computed for the variables of a scheduled data
flow graph (SDFG). For a register w, which implements two SDFG
variables a and x, the testability metrics are computed as follows:

 20

321 22
CMMCRRCR xaxa

w +
+

+
+

≈ and
2

xa
w

TT
T

+
=

where Ra, Rx and Rw are the respective randomness of the
variables a, x and w. Coefficients C1, C2, C3 depend on bit length.
Ma and Mx are the probability distributions of a and x. Ta, Tx and Tw
are the respective transparencies of a, x and w.

Flottes et al. in [19] proposed probability based testability metrics
and a testability analysis method and used them during a HLS
process. They concentrated on testability bottlenecks induced by
reconvergence or module transparency properties. The
Controllability measure of a module N is defined as C(N)=y/2n,
where y is the number of any patterns (test or not) that can be
propagated to the node N from the primary inputs. This is likened
to the probability of propagating test patterns to the node N. The
controllability transparency coefficient Tc is the ratio of different
values that can be set on the functional unit output over 2m,
where m is the bit-width. To take into account the correlation
between input ports, the controllability transparency coefficient is
defined as

1
12)(C

n
pCCTc +

×−
=

where n is the bit-width of the input ports, p is the number of
common bits between the input ports, C1 is the proportion of
values that can be obtained on the functional unit output given
that its input ports are not connected to each other (p=0) and C2 is
the proportion of values that can be obtained on the functional
unit output given that its input ports are connected to each other
(p=n).

The observability measure is defined as O(N)=y/(2n-1×(2n-1)), where
y is the number of pairs of different responses that can be
propagated and differentiated at the primary outputs regardless of
their values, and (2n-1×(2n-1)) is the total number of possible pairs.
O(N) is the probability to differentiate fault-free and faulty
responses of the node N. the observability coefficient To is the
proportion of pairs of input values that can be distinguished on
the isolated functional unit output. For a left side shifter with n

 21

input bits and n output bits, and least significant bit set to 0, the
obsevability transparent coefficient To is given by

12
22

−
−

= n

n

oT .

2.5.2 Behavioral level Testability Analysis

Boubezari et al [11] proposed a high-level testability analysis and
test point insertion based on analysis and modification of very
high-speed integrated circuit hardware description language
(VHDL) specifications. They target scan based BIST. Their
testability analysis method searches for hard to detect bits of
signals and variables that are explicitly declared or implied in the
VHDL specification. Test point insertion is carried out using
overloaded VHDL functions and procedures. Since the original
VHDL specification and the added test point VHDL code are
simultaneously synthesized, the approach can lead to very
efficient scan based self-testable designs.

Larsson [41] proposed a technique that analyzes the testability of
the behavioral VHDL specifications. Testability properties are
extracted by analyzing variable range, operation testability and
statement reachability. Value range of a variable v, VR(l,v), at line l
is the range of valid values the variable can have as given in the
specification. defVR(v) is the full range of values defined for the
variable v. A relative value range, RVR, for a variable v at line l is
defined as the ratio

)(
),(

),(
vdefVR

vlVR
vlRVR = .

Operation testability, opT, captures the change in distribution of
test vectors in the output of an operation assuming all possible
test vectors on its input.

)1()(

1
bopQ

opT =

 22

In the equation above, b is the number of bits in the inputs and
Q(op) is the difference between the distribution on the output of an
operation and the uniform distribution.

These testability metrics do not target any particular DfT
technique, but have been used for guiding the selection of partial
scan registers. They were also used in guiding testability
improvement transformations applicable directly in the VHDL
specification [42].

2.5.3 Symbolic Testability Analysis

Bhatia and Jha [9], [10] proposed a hierarchical testability
analysis approach. Ghosh et al [22], [23] further extended the
work and introduced the so-called symbolic testability analysis
(STA). STA derives control (justification) and observation paths for
all operations in the design, which is represented as an SDFG. The
designs analyzed by STA can be tested either using an ATPG
based approach or BIST. If ATPG based testing is targeted, all
justification and propagation paths are computed with respect to
the primary inputs and primary outputs. If BIST testing is
targeted, all justification and propagation paths are computed
with respect to built-in TPGs and MISRs.

STA approach can be applied to designs represented at the
behavioral or RT levels. If a design is specified at the behavioral
level, an SDFG is used for testability analysis. On the other hand,
if a design is specified at the RTL, then controller and data path
are used to extract an intermediate test control data flow (TCDF)
[22] graph representation. In such cases STA uses the TCDF to
perform testability analysis of the design. Therefore, depending on
the available design representation, STA can use an SDFG or a
TCDF graph for performing testability analysis.

To analyze the testability of the design, for each operation, STA
searches the SDFG to find a set of justification paths from PIs (or
TPGs) to the operation in order to get direct accessibility for
bringing test patterns to the operation. Similarly, STA searches the
SDFG to find propagation paths from the operation to POs (or
MISRs) for observing test responses.

The justification paths for the operation under test are obtained by
looking at its inputs and tracing back the paths that can be used

 23

to set its values from the PIs (or TPGs). Similarly, propagation
paths (paths needed to propagate test responses to POs or MISRs)
are obtained by looking at the operation’s output and trace
forward the paths to the POs or MISRs. To derive these paths, it is
necessary to force intermediate active variables (registers) to take
particular values to assist in transporting test data through the
circuit. Suppose that test data is to pass through an intermediate
operation with inputs x, y and output z. If test data shows up at
the input x of the intermediate operation, then the other input, y,
is assigned an appropriate neutral or identity value in such a way
that test data will be transmitted unchanged to the operation’s
output, z.

To derive justification and propagation paths for all operations,
STA defines a number of Boolean values for controllability and
observability of each SDFG variable. General controllability,
Cg(v,n), of an SDFG variable v on the nth control cycle is the ability
to control it to any arbitrary value from the corresponding primary
inputs or TPGs. Similarly, controllability of a variable to the
constant value 1, C1(v,n), controllability to the constant value 0,
C0(v,n), and controllability to a vector of all 1’s, Ca1(v,n), are
defined. C1(v,n) represents an identity value to be set on one input
of the multiplier operation so that the test data on its other input
can reach its output unchanged. C0(v,n) is a neutral value, which
if set on one input of the addition operation, test data on the other
input can reach the output unchanged. Similarly, Ca1(v,n), helps to
pass test data through the logic AND operation. Observability,
Ov(v,n), of a variable v on the nth control step is the ability to
observe any value of the variable at a primary output or on-chip
MISR.

The derivation of justification and propagation paths for a given
design will be discussed in more details in Section 3.3.

2.6 High-Level Synthesis for Testability
Very good designs that have been optimized at high-level for area
and delay only, can have bad testability. Improving testability by
gate level techniques can introduce large area and performance
overhead, which can impair the designs that are already optimized

 24

for area and delay. This is because the DfT technique’s searching
for testable designs is restricted by the already chosen RTL
architectural alternative.

HLS optimizes a circuit by exploration of alternative solutions for
scheduling, allocation and binding. Thus, a HLS system explores a
large design space. Some of the high-level architectural
alternatives are more testable than others. Therefore, if the HLS
system takes testability as one of the constraints to be satisfied,
then a testable architecture may be found very early during the
design process. Consequently, the need to improve testability at a
later stage will be reduced and the resulting RTL design may need
very small gate-level DfT modifications.

High-level test synthesis (HLTS), also known as high-level
synthesis for testability, refers to the inclusion of DfT techniques
in a high (behavioral, RT) level synthesis process. This means that
during scheduling, allocation and binding, testability is also taken
into account as one of the design attributes along with area and
performance. In short, test synthesis focuses on how and when in
the synthesis process

I. Constraints are placed to obtain easily testable circuits.

II. DfT structures are incorporated into the design [52].

An important task that a HLTS system needs to do is to predict
which high-level structures can make testing hard. Examples of
such structures are self-adjacent registers and loops, which are
considered undesirable from the testing point of view. Creation of
these structures should, therefore, be avoided during the HLTS
process.

Testability can be considered at all abstraction levels, although the
effectiveness can be different. In literature, there are HLTS
approaches that enhance testability at both, behavioral and
register-transfer levels. HLS tasks that can be explored to enhance
testability are scheduling, allocation, binding and partitioning.

In order for the HLTS approach to be successful, there must be a
way to measure or predict testability while still at a high-level of
abstraction. As a result, a more testable design can be selected
during the synthesis process. There are many approaches, which

 25

can be used to characterize testability of the designs at high-levels
of abstraction. These approaches have developed high-level
testability metrics (see Section 2.5) that can be used to accurately
measure design testability during the synthesis process.
Consequently, the metrics can be used to guide choices of suitable
test insertion points to improve controllability and observability. If
BIST is used, control test points are then connected to TPGs and
observability test points are connected to MISRs.

During HLTS another question is what to optimize and what are
the constraints to be satisfied. Usually, many test synthesis
approaches try to optimize area, delay, or testability.

In this section, we will discuss several HLTS techniques, which are
proposed in the literature: HLTS for general testability, HLTS for
BIST, HLTS for scan and test point insertion, and other
approaches.
2.6.1 Synthesis for General Testability

These approaches do not target any specific testing strategy. They
simply eliminate undesirable structures or introduce generic
features that are friendly to any testing mechanism. A few
examples of the existing approaches will be discussed below.

An allocation approach to improve testability without assuming
any specific testing strategy was proposed in [46]. The approach
has developed allocation rules for test synthesis. The first rule is
used to enhance controllability and observability of registers
during the register allocation process. In that work it is assumed
that a register is directly controllable if at least one PI variable is
assigned to it. Similarly, a PO variable assigned to a register
makes it directly observable. Thus, controllability and
observability can be improved by maximizing the number of
registers which are assigned at least one PI/PO variable. This
testability aware register allocation is summarized as a synthesis
rule number one (SR1), which states that “whenever possible,
allocate a register to at least one PI or PO variable”.

To further improve testability, the approach in [46] also minimizes
sequential depth during register and module allocation. This is
summarized in a synthesis rule number two (SR2), which states
that “reduce sequential depth from an input register to an output

 26

register”. The two rules were implemented in a register allocation
algorithm.

Since presence of loops in the circuit makes it hard to test, one
possible HLTS task is to eliminate or reduce sequential loops
during the allocation process. Loops in the RTL designs are
created as a result of loop constructs in the behavior or as a result
of hardware sharing. For acyclic data flow graph (DFG), register
and module sharing performed during allocation can create
sequential loops. Thus, an allocation scheme that avoids creating
sequential loops by introducing sequential paths to an input
output (IO) register can improve testability. Cyclic DFG
specifications with loops (while, for, etc.) can also create sequential
loops in the circuit. These loops can be avoided by breaking the
loops in the behavior. This can be achieved by assigning variables
on the cyclic data flow to an IO register or a known scan register
so as to ease controllability and observability of the sequential
loop. This synthesis heuristic is summarized in synthesis rule
number three (SR3) which aims at reducing sequential loops. It
states that “do proper resource sharing to avoid creating
sequential loops for acyclic DFG, and assign IO registers to break
the sequential loops in a cyclic DFG” [44], [46].

If allocation for testability is performed after scheduling has been
decided, its effectiveness depends on whether scheduling produces
a good schedule, which is able to produce register/module
allocations that can enhance controllability/observability and
reduce sequential depths and loops. Therefore, there is a need for
a testability aware scheduling, which performs scheduling for
controllability/observability enhancement and for sequential
depth/loop reduction. Schedules obtained from such an approach
can make the successive synthesis tasks (allocation, binding) more
effective in finding efficient testable designs.

A testability aware scheduling is proposed in [45]. This approach
assumes that it knows in advance the allocation algorithm that
will be used. Hence, it performs scheduling in such a way that the
resulting schedules will favor the targeted allocation algorithm to
find testable designs. It is summarized in synthesis rule number
four (SR4) which states that “schedule operations to support
application of SR1, SR2, and SR3”. This scheduling rule is

 27

embedded in a testability aware mobility path-scheduling (MPS)
algorithm [45]. It is an iterative/constructive scheduling algorithm
that iteratively performs partial scheduling followed by a testability
analysis procedure, which applies the synthesis rule SR4.

2.6.2 Synthesis for BIST

The importance of using BIST has already been emphasized in
Section 2.4.

A high-level BIST synthesis approach inserts BIST structures into
the design during the synthesis process. Considering BIST
insertion, at high-levels of abstraction, does not only help to tap
advantages of BIST, but also helps to reduce hardware overhead
and performance degradation that BIST introduces. Since high-
level synthesis for BIST optimizes area, delay and BIST at the
same time, the resulting designs are likely to be more efficient
than those that are first optimized for area and delay, and later, at
lower levels, for BIST. Several high-level BIST synthesis
approaches have been proposed in the literature. The basic idea
implemented by these BIST synthesis works is to make a selection
of functional registers that will be converted to BIST registers such
as LFSR, MISR, BILBO or CBILBO. In order to synthesize efficient
designs, these approaches also reduce structures that are bad for
BIST. An example of such a structure is a self-adjacent register. A
self-adjacent register demands to be converted to a TPG and a
MISR at the same time. Since this can only be achieved by
converting it to a CBILBO, which is very expensive in terms of area
overhead, self-adjacent registers should be avoided.

The Syntest HLTS system [30] utilizes the freedom in allocation to
synthesize self-testing designs. The system completely avoids
creation of self-adjacent registers and guarantees testability by
using BILBOs. To reduce BILBO overhead it also exploits circuit
functionality. Testability of each operation is guaranteed by
mapping it to a testable functional block (TFB) such that the
output of a given TFB cannot drive any of the inputs of the same
TFB. Thereafter, compatible resources, which cause no conflict
and do not introduce self-loops, are mapped to TFBs to minimize
area and delay. During mergers, functional testability metrics
(randomness, transparency) are used to help remove unnecessary

 28

TPGs, MISRs and BILBOs without impairing fault coverage too
much.

An approach that minimizes the number of self-adjacent registers,
after performing scheduling and module allocation, is proposed in
[6]. This approach, known as RALLOC, imposes testability
constraints during register allocation. In doing so, BIST area
overhead is reduced. The synthesis problem is modeled as register
conflict graph, which is solved by a graph coloring method to find
a register allocation with minimal number of self-adjacent
registers. The remaining self-adjacent registers are converted to
CBILBOs and non-self adjacent register to BILBOs. The resulting
RTL design is evaluated by a cost function,

 costBIST = 20nsa-reg + 35sa-reg + #mux-in + #int + #ctl

where nsa-reg is the number of non-self adjacent registers, sa-reg
is the number of self-adjacent registers, #mux-in is the number of
multiplexer inputs, #int is the number of interconnects and #ctl is
the number of control signals.

Syncbist, an approach to synthesize self-testable RTL data paths
with high degree of testing concurrency is proposed in [31], [32]
and [33]. The approach uses partial intrusion BIST (some
functional registers are used as TPGs, MISRs or both). Test paths
(paths through which test data propagate) are identified for testing
each module. The paths are scheduled to minimize testing time. If
two or more test paths share hardware, then they are said to be in
conflict and must be scheduled in different test sessions. Hard
conflict occurs if the same register is used as a TPG in one test
path and a MISR in another. Though, hard conflicts can be
resolved using expensive CBILBOs, the Syncbist approach decides
to schedule the conflicting paths in different test sessions. The
maximum number of hard conflicting paths is the lower bound on
the number of test sessions. Two test paths that share the same
intermediate functional registers, modules, multiplexers or
interconnections at the same cycle are said to be in soft conflict.
Soft conflicts are resolved by scheduling a shared resource in
different cycles. In order to maximize test concurrency, test
conflicts are avoided during the HLS process. The synthesis
process is assisted by testability metrics (conflict probability and
coverage probability).

 29

An approach to minimize testing time in a combined BIST and
ATE environment was presented in [63]. However, the issue of
sharing BIST circuitry among cores or functional modules was not
studied. The work did not explore parallelism inside the cores to
reduce test time during high-level synthesis either. An efficient
approach for BIST hardware insertion with short test application
time is proposed in [53], [54]. It achieves concurrent testing of
modules by sharing test pattern generators. Both short test
application time and low BIST overhead are achieved, but BIST
insertion is performed without testability analysis and loss of
randomness of test data may happen when some modules are
deeply embedded in the design.

An integer linear programming (ILP) formulation for making
simultaneous trade-off between test time and BIST resource
optimization is proposed in [47]. The approach results in very high
BIST hardware overhead and test time minimization is neither
sufficiently discussed nor supported by experimental results.

Chen [13] proposed an approach for concurrent test scheduling in
a BIST environment. First, he assigned BIST registers to each
circuit under test (CUT) and then efficiently solved the test-
scheduling problem to minimize test time and improve BIST
register utilization. BIST register selection is performed without
testability analysis; hence no optimal procedure for selecting BIST
registers is given. Furthermore, selection of BIST registers and test
scheduling are independently performed.

Kim [39] introduced an approach to find an optimal register
assignment for testing a design in a given number of test sessions.

2.6.3 Synthesis for Scan and Test Point Insertion

A scan register is a modified shift register that can scan-in test
vectors and scan-out test responses. By scanning test data in and
out they can provide direct controllability and observability of
registers. Therefore, one way to improve testability is to convert all
registers into scan registers and arrange them in a large chain
known as scan chain. This is a full scan approach. An alternative
is to make an intelligent selection of a few registers to be converted
to scan registers such that full testability is achieved. Converting

 30

only a selected set of registers to scan registers introduces low
overhead and is known as partial scan approach.

Another approach to improve controllability and observability is
through test point insertion, whereby hard to control parts are
identified and then connected directly to controllable points
(primary inputs) and hard to observe parts are connected to
observable points (primary outputs).

Genesis [9], [10] is a synthesis for hierarchical testability
approach, which uses a hierarchical representation of a design to
speed up justification and propagation of test data. This means
that the test set for each module under test (MUT) is computed at
gate level assuming that the module is connected to PIs and POs.
During HLS behavioral/RTL information is used to search for test
transfer paths for transporting test data from PIs to the MUT and
from the MUT to POs. In Genesis, a hierarchical testability
analysis identifies propagation and justification paths for each
module in the SDFG. An allocation algorithm, which is integrated
together with the hierarchical testability analysis, synthesizes the
data path and controller. The synthesized design has a complete
system level test set. Modules without test paths are enhanced
using test multiplexers, which are used to enhance controllability
or observability. The control flow in the SDFG is used for value
justification and propagation; hence scan technique is not needed.
The allocation algorithm used in Genesis works on a compatibility
graph constructed from the SDFG. The nodes are variables and
operations. Weights on edges represent preference of assigning the
two corresponding variables/operations to the same
registers/module in such a way that area will be reduced.
Connected nodes with highest weight are merged during
allocation. If the partially allocated design is hierarchically
untestable then the last allocation is undone, and another
allocation is tried. If all possible allocations yield an untestable
design, a multiplexer is added to enhance testability of a given
module.

A test point insertion methodology at RTL is proposed in [21], [22],
[23] by Ghosh et al. Hierarchical testability analysis is used to
identify untestable modules and a small number of test
multiplexers is inserted into the RTL design to make it

 31

hierarchically testable. To minimize delay overhead, whenever
possible, insertion of test multiplexers on critical paths is avoided.

The test synthesis system proposed in [17] takes a control
dataflow graph (CDFG) as an input and breaks the loops with a
minimal number of scan registers. During the HLS process
sequential loop creation is avoided by sharing scan registers.

Gu et al. [28] proposed a test synthesis approach based on
testability analysis and improvement of VHDL specifications.
Testability improvement is achieved through partial scan and test
point insertion.

2.6.4 Other Approaches

Several other high-level test synthesis approaches are presented in
the literature.

Bhattacharya et al. [8] proposed a transformation and re-synthesis
for testability approach.

In [40] Kim et al. used testability measures based on
controllability/observability of registers, the length of sequential
depth, and the number of sequential loops to do simultaneous
scheduling and allocation for testability. They refer to their
approach as a stepwise refinement synthesis for easy testability.

Partitioning for testability is a divide-and-conquer approach that
simplifies testing. Partitioning can be useful to remove
redundancy, make partitions fan-out free, guide breaking of
feedback loops, insert test points at hard to test places and help to
remove random pattern resistance [26], [27]. After partitioning is
done at high levels, the resulting partitions can then be
synthesized together. The partitions are able to share testing
components whereas tests for each partition are separately
generated.

Since generating test patterns for circuits with long feedback loops
and long sequential depth is very hard, a re-synthesis (re-
scheduling, re-binding) approach to avoid loop creation caused by
hardware sharing is proposed in [57].

During register allocation and binding, not only the number of
registers is minimized but also some constraints are imposed to

 32

increase controllability and observability of registers. In [67] Yang
et al. proposed merger transformations to improve testability.
Their idea is to merge nodes with good controllability with nodes
with bad observability and nodes with bad controllability with
nodes with good observability. The overall impact is to have nodes
with both good controllability and good observability.

2.7 Wiring and Interconnect Issues
In deep sub-micron implementation, wiring can take substantial
amount of the total chip area. With the development of the
microelectronics technology, there is a clear trend towards deep
sub-micron implementation, where the interconnecting wires
dominate the silicon area cost, and it is even more important to
consider the wiring effect in the future deep sub-micron VLSI
implementations.

Since exact wiring information is only available after physical
design steps, such as floor planning and placement, are
performed, most of the existing high-level BIST synthesis and
other test synthesis approaches usually do not consider wiring
effect. The approaches presented in [6], [11], [16], [21] - [23], [31] -
[33], [53], [54], [58], [59] and [63] - [65] are examples of BIST
works that do not consider the impact of placement of the
functional and BIST modules in the final design. Consequently,
they lead to designs, which are optimal in terms of the numbers of
functional modules and BIST resources, but take more silicon
area to implement since the interconnections take a lot of silicon
space. Therefore, it is important to take floor planning and wiring
cost into account during the BIST synthesis process.

To get area efficient designs, the impact of wiring area contribution
should be addressed as early as possible so that functional, BIST
and wiring area can be simultaneously optimized. In this way, the
resulting designs are likely to be better in terms of total area as
compared to the case when wiring is ignored during the synthesis.

In order to take wiring information of the final designs into
account during the BIST insertion process, it is needed to predict
the wiring area and lengths at higher levels of abstractions. There

 33

has been some work done in this direction. Alvandpour et al. [5]
have developed a heuristic to estimate wiring lengths at RT or
higher levels of abstraction. The approach was later deployed by
Hallberg et al. [29] to predict area increase due to wiring in a high-
level synthesis system under local timing constraints. Their
approach makes use of a few technology dependent parameters,
which can be extracted from technology libraries. Recently, Goel
and Marinissen [25] have proposed a model of wiring-length
computation for core based system-on-chip testing, where they
have assumed the layout of the modules to be known beforehand.

2.8 Summary
A general overview on how digital systems are tested has been
provided. We have also presented a number of approaches that are
used to synthesize easy to test systems. Many of these methods
make use of testability analysis and testability metrics. We have
presented a number of testability metrics. Some of them are based
on probabilities/entropies and others are based on analysis of
VHDL specifications. There are also methods, which search the
justification and propagation paths based on the structures of the
SDFGs. High-level testability metrics and testability analysis are
helpful in detecting hard to test parts of the designs early during
the design process. This can help to accelerate the synthesis of
easy to test designs.

Despite the fact that the presented testability analysis approaches
can be used to assist synthesis of designs that have very high fault
coverage and low hardware overhead, the trade-off between
hardware overhead and test time at high-level is insufficiently
explored. Most of the current approaches to BIST test time
minimization are based on test scheduling optimizations, but
efficient test time minimization by sharing BIST components is not
well addressed. Similarly, minimizing BIST hardware overhead
under testing-time constraints needs further investigation.

We have motivated the need for considering wiring cost during the
BIST synthesis process as VLSI technology advances towards DSM
era. In our literature survey, we have found out that many of the
existing test synthesis approaches have omitted wiring issues.

 34

This thesis addresses the weaknesses and limitations of the
current approaches to make them more suitable for testing DSM
VLSI circuits. In Chapter 4 we address the trade-off between BIST
overhead and testing time. In that chapter we provide an
approach, which uses testing time as a constraint in a BIST
hardware minimization problem. In Chapter 5 we propose a
solution to the problem of a wiring-aware BIST synthesis.

 35

Chapter 3

Preliminaries

This chapter focuses on concepts and definitions that are used in
the rest of this thesis. The chapter starts by describing the design
representation for our algorithms. Then our definitions of
testability of SDFG nodes and register-transfer modules are
provided. The concept of alternative test environment options and
how they can be shared for testing the design is also discussed.

3.1 Design Representation
3.1.1 Behavioral representation

The input to our BIST optimization technique is an internal
representation of the behaviors based on a scheduled dataflow
graph.

Definition 3.1: A data flow graph (DFG) is a directed graph
G=(V,E) which consists of a finite set of nodes V={v1, v2... vn} and
an asymmetric data flow relation whose elements are directed
edges VVE ×⊆ .

Nodes in the DFG represent operations and edges represent data
flow relation. A directed edge vi vj from vi∈V to vj∈V exists if the
data produced by the operation oi (represented by node vi) is
consumed by the operation oj (represented by node vj).

Definition 3.2: A schedule of a DFG G=(V,E) is a mapping
S:V {1,2,…,L} where for any pair of operations oi, oj ∈V, S(oi)<S(oj),

 36

if (oi,oj)∈E. {1,2,…,L} corresponds to control steps. L is the latency
of the schedule.

Definition 3.3: A scheduled data flow graph (SDFG) is a DFG
with scheduled operations that obey data dependencies and have
a notion of control steps.

An example of an SDFG is shown in Figure 3.1a, where horizontal
dashed lines are used to delimit control steps.

Throughout this thesis, unless otherwise stated, our testability
analysis is always performed on the SDFG representation of the
designs.

3.1.2 Register-Transfer Level Structural Representation

The structure of a design at the RTL consists of two parts: a data
path and a controller. The data path deals with data manipulation
and the controller controls flow of data in the data path units in
such a way that the implemented behavior is executed.

The data path consists of three main types of components.

• Functional modules such as adders, multipliers, and ALUs,
which perform arithmetic and logic operations specified in
the behavior.

• Memory units such as registers, RAMs, and ROMs, which
store values of variables and constants generated and
consumed during execution of the operations.

+2

+1

a b

*

c d

e f

g

R1 R2 R3 R4

+1,+2 *

a b c d

a) SDFG b) RTL data path

 1

 3

 2

Behaviour
e = a + b;
f = c * d;
g = e + f;

Figure 3.1 An SDFG and its corresponding RTL data path

 37

• Communication units such as multiplexers and buses,
which enable transfer of data between the functional
modules and memory units.

An example of the data path, which is also represented as a graph,
is shown in Figure 3.1b. It is an implementation of the SDFG in
Figure 3.1a.

This thesis concentrates on improving testability of the data path
by using the BIST strategy.

3.2 Testability of SDFG Operations and

Variables
In this thesis we assume that BIST is used as the basic testing
strategy. Definition of testability of SDFG variables and operations
is based on the use of symbolic testability analysis (STA) [21], [22],
[23]. STA asserts an operation to be testable if there is a
guaranteed transparent path from on-chip TPGs to the inputs of
the operation for supplying test patterns, and a transparent path
from the output of the operation to an on-chip MISR or BILBO for
observing test results. In other words, an operation is testable if its
input operands are controllable and its output observable at the
same time.

To model testability and do testability analysis of the design, we
have defined a number of concepts.

Definition 3.4: A primitive STA value (PSTAV) of a given SDFG
variable v is its value in a given control step n at which it exists.

Since STA analyzes testability of the SDFG by using its functional
behavior, only a few PSTAVs have testability importance. We
denote these values as gPSTAV, 0PSTAV, 1PSTAV, a1PSTAV, and
rPSTAV. 0PSTAV is the value 0, 1PSTAV is the value 1, a1PSTAV is
an all 1 vector and gPSTAV is any arbitrary value which can be
requested. gPSTAV is used to model a test pattern and rPSTAV is
used to model a test response. When analyzing the testability of a
design it will be needed that a test pattern is set at a given
variable. Therefore, to set the value of a variable to a gPSTAV is to

 38

set it to a test pattern. The value of a variable is set to rPSTAV if
the variable stores a test response. A set consisting of those STA
values which are needed for testability analysis is called the set of
testability important PSTAVs and is denoted as STIPSTAV. Thus,

STIPSTAV = { 0PSTAV, 1PSTAV, a1PSTAV, gPSTAV, rPSTAV }

To model testability, we have defined a number of basic Boolean
STA constraints (BSTAC). We use them to formally define the way
we model concepts we have used for doing testability analysis.

Definition 3.5: g-Controllability constraint, read general
controllability and symbolized Cg(v,n), of an SDFG variable v on
the control step n is the ability to set (control) the value of v to
gPSTAV in control step n from the PIs or TPGs. If this ability can
be achieved then g-Controllability is true and the variable v is
controllable to a value gPSTAV, otherwise it is false and v is not
controllable to gPSTAV.

Similarly, controllability to the constant value 1 (1-Controllability),
controllability to the constant value 0 (0-Controllability) and
controllability to a vector of all 1’s (a1-Controllability) have been
defined.

Let us assume that a notation Cα(v,β) denotes an STA constraint
and means that a variable v is controlled to a value α in a control
step β. With this notation, for a given variable v in control step n,
its 0-Controllability will be denoted as C0(v,n), 1-Controllability as
C1(v,n), g-Controllability as Cg(v,n), r-Controllability as Cr(v,n) and
a1-Controllability as Ca1(v,n).

Definition 3.6: BSTACS of a variable v in control step n is defined
as a set consisting of all basic STA constraints, that is

BSTACS = {C0(v,n), C1(v,n), Ca1(v,n), Cg(v,n), Cr(v,n) }.

Definition 3.7: A test environment (TE) is defined as a set
consisting of any combination of basic STA constraints in the
design.

Since a TE consists of constraints which can be satisfied or not,
we define an evaluation of a TE as a Boolean product of all the
elements (STA constraints) in the TE, i.e.

 39

 TExxTEeval ii

TE

i
∈= ∧

=

,)(
1

 (3.1)

After the TE and its evaluation are clearly defined, we will now
define controllability TE of a variable (vCTE), controllability TE of
an operation (pCTE), observability TE of a variable (OTE),
testability TE of a variable (vTTE) and testability TE of an
operation (pTTE).

Definition 3.8: vCTE of a variable v in control step n (vCTE(v, n))
is a set of basic STA constraints which together can set the
variable v to a primitive STA value gPSTAV from PIs or TPGs. In
other words, vCTE(v,n) is a TE whose constraints together can set
the variable v to a value gPSTAV.

An SDFG variable v is controllable if eval(vCTE(v,n)) is true.

Definition 3.9: pCTE of a 2-input operation, p, in control step n
(pCTE(p,n)) is the union of the variable controllabilities of its
inputs x and y, i.e.

),(),(),(nyvCTEnxvCTEnppCTE U= (3.2)
An operation, p, is controllable if eval(pCTE(p,n)) is true.

To read test results from an operation, which is being tested, we
need to be able to transport the test response (rPSTAV) from the
tested operation’s output through intermediate operations and
variables to a variable that can be read directly. A variable, which
can be read directly because it is mapped to a PO, MISR or BILBO
is an observable variable. Suppose we are given a variable vi in
control step ni, which needs to be observed and a variable vj which
is observable in control step nj. Analysis of the observability of vi at
vj can be converted to a problem of setting a primitive STA
constraint (Cr(vi,ni) from vi to vj. This is similar to the controllability
analysis problem of finding a set of basic STA constraints which
together can set the variable vj in control step nj to a primitive STA
value rPSTAV from the variable vi.

Definition 3.10: OTE of a variable vi set at a value rPSTAV in
control step ni at another variable vj in control step nj is a set of
STA constraints which together set the value of vj in control step nj
to rPSTAV from vi. It is denoted by Obv(vi, ni , vj, nj).

 40

A variable vi is observable at vj if eval(OTE) is true and vj is
observable. Let Obv(v,n) be true if variable v is observable at
control step n. The variable at which others are observed is
usually a PO or a MISR. Hence, observability, Obv(v,n), of a
variable v on the nth control step is the ability to observe its value
at a primary output or on-chip MISR.

Definition 3.11: Testability TE of a variable v (vTTE) in control
step n with a controllability TE vCTE and observability TE OTE is
the union defined by

),(),(),(nvOTEnvvCTEnvvTTE U= (3.3)
An SDFG variable, v, in control step n is testable if there exists a
testability TE (vTTE(v,n)) that evaluates to True such that all the
STA constraints in it are compatible and Obv(z,m) is true, where z
is a variable at which v is to be observed at a control step m.
Therefore, the testability of an SDFG variable v, vTest(v,n), is
defined as

),()),((),(mzObvnvvTTEevalnvvTest ∧= (3.4)
Definition 3.12: Testability TE of an operation p with inputs x, y
and output z is the union of its controllability TE and observability
TE defined as

)1,(),(),(+= nzOTEnpopCTEnpopTTE U (3.5)
A 2-input SDFG operation, p, with inputs x and y, and output z is
testable if there exists a testability TE (opTTE(p,n)) that evaluates
to True such that all the STA constraints in it are compatible and
Obv(z,m) is true, where z is a variable at which p is to be observed
at a control step m. Therefore, the testability of an SDFG operation
p, opTest(p,n), is defined as

),()),((),(mzObvnpopTTEevalnpopTest ∧= (3.6)
The whole SDFG is testable if all the variables and all the
operations are testable. Therefore, the testability of the whole
SDFG, DTest, is defined as

),(),(
11

jj

NV

j
ii

NP

i
nvvTestnpopTestDTest ∧∧

==

∧= (3.7)

The SDFG is, therefore, testable if the Boolean equation (3.7)
evaluates to True. In the equation (3.7), pi is any operation and ni

 41

is the control step at which it is scheduled, vj is any variable and
nj is the control step at which it is scheduled, NP is the number of
operations and NV is the number of variables in the SDFG. A
symbol ∧ implies the Boolean AND operation.

3.3 Test Environment Sharing
To illustrate the idea of test environment options, consider the
SDFG in Figure 3.2. Inputs and outputs of the operations are
variables, and the opTTEs of a given operation are used to test the
associated functional module that performs that operation. To
test, for example, a multiplier operation *3 (node *3) using TPGs
placed at the inputs of operations *1 and *2, and a MISR at the
output of +4, we need to set variables V6 and V7 to gPSTAV (control
V6 and V7 to general controllability value) in the control step 2.
This means that STA constraints Cg(V6,2) and Cg(V7,2) need to be
satisfied to make test patterns reach the operation *3. We also
need to observe the test response value from V8 in control step 3
(that is Obv(V8,3)).

The respective variable controllability TEs for V6 and V7 are given
by vCTE(v6,2)={Cg(V6,2)} and vCTE(v7,2)={Cg(V7,2)}. Further
derivation gives that

vCTE(v6,2)={Cg(V1,1), C1(V2,1)} or vCTE(v6,2)={C1(V1,1), Cg(V2,1)}, and

vCTE(v7,2)={Cg(V3,1), C1(V4,1)} or vCTE(v7,2)={C1(V3,1), Cg(V4,1)}.

To observe the value of V8 in step 3 we derive its observability TE,
which is given as OTE(V8,3)={C0(V5,1)} and observe the test
response, rPSTAV, at the variable V9 in step 4, i.e. Obv(V9,4).

By analyzing the functionality of the SDFG operations, it is
observed that the variable V6 has two alternative variable
controllability TE options that can be used to control it to a value
Cg in control step 2. Similarly, two options exist for achieving the
controllability value Cg(V7,2) and one option for achieving the
observability value Obv(V8,3). Further analysis shows that there
are four (2 x 2 x 1) different alternative operation testability TE
options for testing the operation *3 (see Table 3.1).

 42

Table 3.1 Alternative opTTEs for testing *3 and +5

Test
Environments

Constraints for controlling
operations

Constraints for
observing responses

opTTE1(*3,2) Cg(V1,1), C1(V2,1), Cg(V3,1), C1(V4,1) C0(V5,1)
opTTE2 (*3,2) Cg(V1,1), C1(V2,1), C1(V3,1), Cg(V4,1) C0(V5,1)
opTTE3(*3,2) C1(V1,1), Cg(V2,1), Cg(V3,1), C1(V4,1) C0(V5,1)
opTTE4(*3,2) C1(V1,1), Cg(V2,1), C1(V3,1), Cg(V4,1) C0(V5,1)

opTTE1 (+5,2) Cg(V1,1), Cg(V4,1) -

To illustrate the idea of sharing test environments, let us consider
operation +5. The testability TE for the operation +5 (Figure 3.2) is
given as opTTE(+5,2)={Cg(V1,2), Cg(V4,2)} since for observing test
responses, no constraints need to be satisfied. The test result has
to be observed at the variable V10. After simplifying opTTE(+5,2), we
get, for the left input,)1,()2,(11 VCVC gg = , for the right input,

)1,()2,(44 VCVC gg = and for the observability of the

output,)4,()3,(1010 VObvVObv = . Hence, opTTE(+5,2)={Cg(V1,1),
Cg(V4,1)}.

Step 1

*1 *2

*3

Step 2

Step 4

Step 3

+4

V6 V7

V8

V9
To be tested

+5
V10

 V1 V2 V3 V4 V5

Figure 3.2 An SDFG example

 43

Suppose that the given SDFG variable, say vk, needs to be set to
Cα(vk,β), where α∈STIPSTAV, in the operation testability TEs
(opTTEs) of different operations OP={p1, p2, …, pn}, that is Cα(vk,β) ∈
opTTE(p1,s1), Cα(vk,β) ∈ opTTE(p2, s2), …, Cα(vk,β) ∈ opTTE(pn, sn),
where si is the control step at which the operation pi is scheduled.
Since the controllability value Cα(vk,β) is common to the test
environments of all the operations in the set OP, it can be shared
by those operations to perform their concurrent testing. For
example, consider variables V1 and V4 in the test environments of
*3 and +5 as discussed above.

As shown in Table 3.1, both the second test environment
alternative of *3 (opTTE2(*3,2)) and the test environment of +5
(opTTE1(+5,2)) need V1 and V4 to be controlled to Cg in the control
step 1, i.e. Cg(V1,1) and Cg(V4,1). Therefore, Cg(V1,1) and Cg(V4,1)
can be shared to perform concurrent testing of both operations
using the test environment opTTE2 of the operation *3.

3.4 Alternative Test Environment Options
As discussed in the previous section, there, possibly, exist more
than one test environment for controlling input operands and
observing test responses for each operation in the SDFG. To
explain this idea, the following definitions are provided:

Definition 3.13: altC0(vi,n) is defined as the number of compatible
alternative test environment options (ATEO) that can be used to
set variable vi to a controllability value 0PSTAV in control step n. �

Definition 3.14: altC1(vi,n) is defined as the number of compatible
ATEOs that can be used to set variable vi to a controllability value
1PSTAV in control step n. �

Definition 3.15: altCg(vi,n) is defined as the number of compatible
ATEOs that can be used to set variable vi to a controllability value
gPSTAV in control step n. �

Definition 3.16: altO(vi,n) is defined as the number of compatible
ATEOs that can be used to enable observability of a variable vi in
control step n at some signature registers. �

 44

Two test environment alternatives are compatible if and only if
every variable that is included in both of them needs to be
controlled to the same value and at the same control step.
However, two ATEOs need not necessarily have exactly the same
number and type of variables. They can have some different
variables, but the common ones have to be consistent.

If we want to observe the node N1 in Figure 3.3, we need to observe
variable vtbo (vtbo and vtbc stand for a variable to be observed and a
variable to be constrained to controllability value 0PSTAV,
respectively). Based on STA, this implies constraining vtbc to
0PSTAV, and observing the value of vtbo at any of the observable
output variables (vo1, vo2… von) at the output of node N3. Therefore,
the number of observability alternatives increases when the node
N3 has multiple observability paths, which, in this case, are also
inherited by the node N1, provided that vtbc can be constrained to
0PSTAV.

In Figure 3.3, the number of observability alternative options for
the variable vtbo, denoted as altO(vtbo,n) is
altC0(vtbc,s0)×altO(vo1,s1)+altC0(vtbc,s0)×altO(vo2,s2)+…+altC0(vtbc,s0)×altO(von
,sn). This leads to the equation (3.8).

N3
 +

vtbo

N1 N2

vtbc

vo1 vo2 von

n

n-1

n+1

Figure 3.3 Multiple alternative observability paths

 45

 ∑
=

×=
n

i
ioialttbcalttboalt svOsvCnvO

1
00),(),(),((3.8)

3.5 Testability of RTL Modules and Registers
If an RTL design is synthesized from an SDFG representation, a
given RTL functional module can implement a number of
operations. Similarly, a number of variables can be implemented
by the same RTL register. This thesis presents a post-HLS
testability enhancement methodology, which is applied to RTL
designs. It is applied after scheduling, allocation and binding are
done. The essence of our approach is the fact that high-level
behavioral information is used for testability analysis. The
approach also makes use of the allocation/binding information
provided by the HLS step.

From the discussion in Section 3.4 we know that each variable v
in the SDFG has a set of compatible ATEOs (for each
controllability value in the set STIPSTAV). Suppose that the set of
ATEOs for controlling variable v to gPSTAV is given as gA(v,n).
Similarly, 0A(v,n), 1A(v,n), and a1A(v,n) are the respective sets of
ATEOs for controlling the variable v to 0PSTAV, 1PSTAV and
a1PSTAV. obvA(v,n) and tA(v,n) are the set of ATEOs for observing
and testing variable v respectively.

Suppose that a set of SDFG variables SV={v1, v2... vv} is mapped to
a register r. Since each variable in the set SV is mapped to the
same physical register, it is sufficient to test only one of the
variables mapped to it. Testability of the register r is therefore
expressed by the Boolean summation of the testabilities of all the
variables it implements, as shown in equation (3.9).

),()(
1

ii

SV

i
svvTestrTest ∨

=

= , (3.9)

where vi ∈ SV and si is the control step at which the variable vi is
scheduled.

 46

Since a variable can possess a number of ATEOs that can be used
to test it, the testability of the register r can be further expanded
by using these ATEOs as shown in equation (3.10).

 ji

vA

j

SV

i
vAiii

SV

i
aaaarTest

it

it ,

)(

11
)(,2,1,

1
)...()(∨∨∨

===

=∨∨∨= , (3.10)

where ai,j denotes the jth testability ATEO of variable vi and |tA(vi)|
is the number of ATEOs that can be used to test variable vi.

To define testability of the RTL functional modules, an argument
similar to that used in defining testability of registers is used.
Suppose a set of SDFG operations SO={p1, p2... pn} is mapped to a
functional module m. Since all operations in SO are mapped to the
same functional module m, testing any one of them is sufficient to
test the module. Testability of the module m is, therefore,
expressed by the equation (3.11), which leads to the equation
(3.12) upon expansion using the testability ATEOs.

),()(
1

ii

SO

i
spopTestmTest ∨

=

= , (3.11)

where pi ∈ SO and si is the control step at which the operation pi is
scheduled.

 ji

pA

j

SO

i
pAiii

SO

i
aaaamTest

it

it ,

)(

11
)(,2,1,

1
)...()(∨∨∨

===

=∨∨∨= , (3.12)

where ai,j denotes the jth testability ATEO for the operation pi and
|tA(pi)| is the number of existing ATEOs that can be used to test
the operation pi.

The whole RTL design, DRT, consisting of a set SM of functional
modules and a set SR of registers is testable if all the registers and
all the functional modules are testable. Thus the RTL design is
testable if the Boolean equation (3.13) evaluates to True.

 47

)()()(
11

j

SR

j
i

SM

i
rTestmTestDRTTest ∧∧

==

∧= , (3.13)

where mi∈SM and rj∈SR.

3.6 Structure of the Rest of the Thesis
The rest of the thesis describes the contributions in detail.

Chapter 4 deals with the minimization of BIST resources under
testing time constraints. To minimize BIST resources and schedule
testing of the operations, we explore the parallelism inherited from
the nature of the design. This means that the topology of the
design representation is analyzed. Using alternative test
environment options captures degree of sharing of the BIST
resources. Therefore, by exploring sharing of the test
environments we try to minimize BIST resources. We assume that
the designer imposes constraints on the testing time. The BIST
resources are optimized such that the testing time constraints and
full testability are satisfied. In Chapter 4 we assume a classical
approach whereby the BIST resources optimization strategy simply
uses the cost of functional, BIST and multiplexer hardware
modules as an optimization objective.

Chapter 5 extends the BIST resources optimization problem with
wiring consideration and proposes two optimization approaches.
This problem is motivated by the fact that the total area of the
design is not only composed of the area of the BIST and functional
modules, but also wiring area. In deep sub-micron technology
wiring constitutes a substantial amount of chip area. Therefore, in
this chapter we study the problem of optimizing the total area of
the design, including wiring, while ensuring that each module is
testable.

 49

Chapter 4

Testing-Time Constrained BIST

Synthesis

This chapter describes an approach to solve the problem of
optimizing BIST resource usage under full-testability and testing
time constraints described in Chapter 1. The test-problem
identification and BIST enhancement strategy during the
optimization process are assisted by symbolic testability analysis.
Since the problem we address is NP hard, we have developed
heuristics to solve it.

4.1 BIST Synthesis Overview
Our approach first analyzes and improves the testability of the
design. After that it determines the initial testing time, Tinit, which
can be achieved as a result of the parallelism, inherited from the
nature of the design itself. In simple terms, Tinit is the testing time
needed to test the design after using our heuristic to achieve one
hundred percent testability of the design.

We have defined a test session as a group of modules that are
tested concurrently and a test schedule as a set of all test sessions
for testing a given design.

We have assumed that pseudo-random BIST technique will be
used to test the design and that the same number of pseudo-
random test vectors will be used for testing each functional
module. Thus, all test sessions will be of equal length, and the

 50

total testing time will be directly proportional to the number of test
sessions. Consequently, Tinit is the number of test sessions needed
to test the design after using our heuristic to achieve one hundred
percent testability of the design multiplied by the length of the test
session.

Detailed explanation on how Tinit is obtained is provided in sub-
sections 4.2 through 4.5.

Given a certain required testing time constraint, Treq, the following
alternatives are taken:

• If Treq<Tinit, shrink the test schedule by adding a minimal
amount of hardware such that the test time constraints are
satisfied;

• If Treq=Tinit, optimize BIST hardware, so that minimal
overhead is left;

• If Treq>Tinit, optimize the BIST hardware by stretching the test
schedule, such that minimal overhead is left and testing time
is TBIST≤Treq (TBIST approaches Treq).

In summary, our BIST time analysis and resource optimization
approach works with RTL designs represented in a notation based
on SDFG. The outputs are: a test schedule that satisfies testing
time constraints and an RTL design with minimal added BIST
resources.

Our overall BIST testing time analysis and resources optimization
approach is described in Figure 4.1. STA is used to select
untestable operations and testability enhancement is performed.
In the course of STA all possible testability test environments for
each operation are also extracted. Then, sets of operations that
cannot be tested concurrently due to MISR sharing conflicts are
identified. Test session selection heuristic is used to select
concurrent test sessions based on test environment options (see
Section 3.3 and 3.4) and MISR sharing conflicts. The objective is
to minimize the length of the test schedule. The testing time of the
resulting test schedule is denoted as Tinit. After that, the time
constraints are considered and appropriate steps taken as
discussed previously in this section. Finally, a merged design and
BIST controller, and a BIST-ed data path are generated.

 51

4.2 Testability Enhancement
The basic idea behind our testability enhancement is a conversion
of functional registers to BIST registers or the insertion of
dedicated BIST registers. We assume that these BIST registers
have dual modes, functional and testing. Consequently, they can
be configured as storage units during functional mode or as on-
chip test pattern generators and/or signature analyzers during
test mode.

Extract MISR incompatibility sets

BISTed datapath and controller

Treq<Tinit Treq>Tinit

Treq=Tinit

Extract all testability TE options

STA guided testability enhancement

MISR based operation scheduling for concurrent Testing

Shrink test schedule

Test response redirection
Test vector sharing

Stretch test schedule

Figure 4.1 Overview of BIST resources optimization
strategy

 52

In this Chapter we propose a testability enhancement heuristic
that aims at adding a small amount of BIST resources that will
guarantee 100% testability for all the modules in the design. The
heuristic does not guarantee that the added BIST hardware is
optimal. The testability enhancement is performed sequentially in
three steps. In the first step controllability enhancement to 100%
is performed, then in the second step observability is enhanced to
100% and finally global testability is enhanced to 100%.

It can be observed that, very often, uncontrollable nodes induce
controllability problems to all successor nodes. This is caused by
data dependency resulting from the topology of the SDFG. Our
controllability enhancement strategy, thus, first enhances the
node that is the source of controllability problems. Consequently,
enhancing one node can improve controllability of most of the
successor nodes.

Our controllability enhancement algorithm is depicted in Figure
4.2. It starts by analyzing testability of the SDFG to find all
uncontrollable operations (line 1). Then the process of
controllability enhancement is repeated until all operations
become controllable (lines 2-22). Each time when there are still
some uncontrollable operations left, we group uncontrollable
operations into connected groups. These connected operations are
referred to as uncontrollable sub-graphs (UCSG) (line 3). The
largest group is referred to as largest uncontrollable sub-graph
(LUCSG) (line 4). The idea is to enhance controllability of an
operation that is at the top (TOP) of the LUCSG (line 5) so that its
controllability can be propagated to other operations in the group.

By first deciding which input register of the operation is to be
enhanced and then converting it to a TPG if it is a primary input
or a BILBO otherwise achieve controllability enhancement. If the
operation has only one uncontrollable input then this input is
enhanced. If both inputs of the operation are uncontrollable, we
prioritize enhancing controllability of the left input register.

 53

Algorithm: EnhanceControllability
 Begin

1. (Uncontrollable, Unobservable, Untestable) STA(SDFG);
2. while (Uncontrollable != φ) do
3. UCSG getUncontrollableSubGraphs(Uncontrollable);
4. LUCSG getLargestUncontrollableSubGraph(UCSG);
5. TOP get operation at the top of LUCSG;
6. X getInput(left, TOP);
7. Y getInput(right, TOP);
8. if X not controllable then
9. if X is a PI then
10. modifyDesign(SDFG, X, TPG); //convert X to TPG
11. else
12. modifyDesign(SDFG, X, BILBO); //convert X to BILBO
13. end if
14. else
15. if Y is a PI then
16. modifyDesign(SDFG, Y, TPG); //convert Y to TPG
17. else
18. modifyDesign(SDFG, Y, BILBO); //convert Y to BILBO
19. end if
20. end if
21. (Uncontrollable, Unobservable, Untestable) STA(SDFG);
22. end while

 End.
Figure 4.2 Controllability enhancement algorithm

Unobservable modules are usually buried far from POs or MISRs.
Observability of a module imposes restrictions on the values of
other variables in order for the test responses to be propagated to
the MISRs. Sometimes the restrictions are not able to force
propagation of the values to MISRs and in some cases some
variables are simultaneously forced to have contradictory values to
enable observability, thus, these operations become unobservable
as shown in Figure 4.3.

If node N1 in Figure 4.3 is to be tested, controllability value Cg(V1,1)
is to be set at V1 and Cg(V2,1) at V2 while the output of N2 has to be
controlled to C0(V5,2) to enable observability of the output of N1 at
a MISR. Since V2 is also connected to N2, whatever value is set at
V3, C0(V5,2) cannot be guaranteed at the output of N2, hence, test
responses at the output of N1 cannot reach the MISR.

 54

One solution to the observability problem discussed above is to
introduce a MISR at the output of the node N1 or redirect test
responses from N1 to an existing MISR in the design. However, in
more complex designs, this has to be done in a way such that
MISR resources are efficiently used. Therefore, our BIST
observability enhancement heuristic is to add a dedicated MISR at
the output of a node situated at the end of a sub-graph of
unobservable nodes. If a MISR is added to improve an
unobservable node that is not at the end of the unobservable sub-
graph, then the downstream modules will still be unobservable.
This idea is illustrated in Figure 4.4. Before BIST enhancement,
the design has three primary input variables (V1, V2 and V3) and
three constant nodes (C1, C2 and C3). STA reveals the existence of
two unobservable sub-graphs. The first one consists of nodes *1,
2 and *3 whereas the second consists of *2, *4 and –1. To
enhance the observability of these sub-graphs, our approach
selects to enhance the observability of variables V9 and V10, which
are at the end of the first and second unobservable sub-graphs
respectively. As a result, the observability of all three nodes in
each of the two sub-graphs is enhanced. Had we, for example,

TPG1 TPG2
 V1 V2 V3

 Cg(V1,1) Cg(V2,1) Cg(V2,1)

MISR

Test
 responses

 V5 C0(V5,2)
Needed, but not guaranteed

V4

V6

 N2 +1 N1 *1

 N3 +2

Step 1

Step 2

Step 3

To be tested.
Unobservable since test

responses cannot reach MISR.

Contradiction

Figure 4.3 Observability problem due to contradictory values

on intermediate nodes

 55

enhanced observability of variable V5 instead, only observability of
node *2 would have been enhanced. Consequently, it would have
been necessary to add more MISRs to improve the observability of
the remaining four nodes. Therefore, our approach selects places
to enhance observability such that the smallest number of MISRs
and BILBOs is added into the design as shown in Figure 4.4.

Our complete observability enhancement algorithm is depicted in
Figure 4.5. It starts by running STA to find all unobservable
operations (line 1). Then the process of observability enhancement
is repeated until all operations become observable (lines 2-15).
Each time when there are still some unobservable operations, we
group them into unobservable sub-graphs (UOSG) as discussed in
the previous paragraph. Then the largest unobservable sub-graph,
LUOSG, is found (line 4). The idea is to enhance observability of
an operation (BOP) that is at the bottom of the LUOSG (line 6) so

TPG1 TPG2 TPG3 TPG4 TPG5 TPG6
 V1 V2 C3 C2 C1 V3

MISR1

V4 V5 V6 V7 V8

V11

 N2 *2 N1 *1

 N5 *3

Step 1

Step 2

Step 3

 N3 -1 N4 +1

 N6 *4

 N7 -2

 N8 -3

Step 4

Step 5

 V9 V10

V12

MISR2

BILBO2

BILBO1

Figure 4.4 Selecting observability enhancement places

 56

that other unobservable operations up the sub-graph will also be
enhanced. For the chosen operation, we enhance observability of
one of its output register, which is converted to a MISR if it is a
primary output, otherwise to a BILBO.

Algorithm: EnhanceObservability
 Begin

1. (Uncontrollable, Unobservable, Untestable) STA(SDFG);
2. while (Unobservable != φ) do
3. UOSG getUnobservableSubGraphs(Unobservable);
4. LUOSG getLargestUnobservableSubGraph(UOSG);
5. // EnhanceObservability(LUOSG);
6. BOP get operation at the bottom of LUOSG;
7. Z getOutputRegisters(BOP);
8. if R∈Z is a PO then
9. convert R to MISR;
10. else
11. R Z[0];
12. convert R to BILBO;
13. end if
14. (Uncontrollable, Unobservable,Untestable) STA(SDFG);
15. end while

 End.
Figure 4.5 Observability enhancement algorithm

After controllability and observability are enhanced, it is still
possible that the design will not be testable. Therefore, testability
of the design has to be re-checked, and if there are still some
untestable modules, then their testability has to be enhanced.

Note that a module is considered testable if it is simultaneously
controllable and observable. It is, therefore, possible that a module
that is both controllable and observable can still be untestable.
This can happen if a given SDFG variable is required to be set to
different values at the same time, one for enabling controllability
and another for enabling observability. Consequently, the
associated module becomes untestable since two different values
cannot be set to the same variable at the same time [50]. To solve
the problem, we have proposed a testability enhancement
algorithm shown in Figure 4.6. It is based on the same idea as the

 57

controllability and the observability algorithms. The untestable
operations are grouped in sub-graphs and the largest one is
improved first (line 4). The operation at the bottom of the largest
untestable sub-graph is prioritized for enhancement. Since an
operation usually has two inputs and one output, the priority of
enhancement is in the order left input, right input and then
output. Since the controllability and the observability
enhancements have been done, all PIs and POs have been
enhanced for BIST. Therefore, testability enhancement mainly
targets internal registers, which are usually converted into
BILBOs. The algorithm proceeds as shown in Figure 4.6.

Algorithm: EnhanceTestability
 Begin

1. (Uncontrollable, Unobservable, Untestable) STA(SDFG);
2. while (Untestable != φ) do
3. UTSG getUntestableSubGraphs(Untestable);
4. LUTSG getLargestUntestableSubGraph(UTSG);
5. // Enhance testability
6. BOP get operation at the bottom of LUTSG;
7. X getInput(left, BOP);
8. Y getInput(right, BOP);
9. Z getOutputRegisters(BOP);
10. // Enhance controllability
11. if X != BILBO and hasInputs(X) then
12. convert X to BILBO
13. goto checkTestability;
14. if Y != BILBO and hasInputs(Y) then
15. convert Y to BILBO
16. goto checkTestability;
17. // Enhance observability
18. if R∈Z is a PO then
19. convert R to MISR;
20. else
21. R Z[0];
22. convert R to BILBO;
23. end if
24. checkTestability:
25. (Uncontrollable, Unobservable, Untestable) STA(SDFG);
26. end while

 End.
Figure 4.6 Testability enhancement algorithm

 58

4.3 MISR Sharing
Simultaneous analysis of test responses from multiple functional
modules requires the availability of as many MISRs as there are
modules that are to be analyzed at the same time. This means that
the number of available MISRs bounds the number of modules,
which can be simultaneously analyzed. In addition, all
concurrently analyzed modules must have all their inputs
simultaneously controlled by setting appropriate controllability
values on the variables as given in their testability TEs. Modules
that are analyzed using the same MISR must be scheduled in
different test sessions due to MISR sharing conflicts.

4.4 MISR Incompatibility Sets
MISR incompatibility sets (MISRISs) consist of operations that
cannot be concurrently tested due to MISR sharing conflicts. Two
operations are contained in the same set if they share the same
MISR for test response analysis and, therefore, cannot be
concurrently tested.

STA results give sufficient information for extracting MISRISs. To
extract MISRISs we group operations based on the signature
registers that are used to analyze their responses. Each signature
analysis register, Mi, corresponds to one set, Gi, which will include
all operations that are analyzed by it. All operations in the same
set are known as incompatible operations with respect to their
corresponding MISR.
The number of incompatible operations in the largest MISRIS
determines a lower bound on the minimal number of test sessions
that are needed for testing the whole design. In reality, the total
testing time is not only determined by MISR sharing
incompatibilities, but also is constrained by the choice of good test
environment options, which determine whether the TEs are
conflict free to enable concurrent testing of the modules.

 59

4.5 Concurrent Test Session Selection
Once the MISRISs are available, the next step is to select
concurrent test sessions. A group consisting of one operation from
each MISRIS can possibly be tested concurrently if the operations
will not violate the test environment constraints.

If the test environment constraints are not considered, it can be
possible to schedule operations in a minimal number of test
sessions equal to the maximum number of operations in the most
congested MISRIS. However, these may not be correct test
sessions because the availability of MISRs for concurrent
observation of responses does not guarantee that those operations
can be properly controlled and the responses properly propagated
to the corresponding MISR registers at the same time for all tested
operations in a given test session. In this way, controllability
constraints imposed by the test environments of individual
operations may cause an increased number of test sessions. This
is due to the fact that there may exist operations that use different
MISRs for signature analysis, but compete for the same variables
to control their inputs or propagate test response to the
appropriate MISR, hence cannot be simultaneously controlled.

Test environments have two components. The first component
consists of the controllability values necessary to control the
inputs of the operations and the second component consists of the
controllability values necessary to force propagation of test
responses to the corresponding MISR. Thus, when constraints due
to both controllability of the input operands and those imposed to
propagate test responses to the appropriate MISR are taken into
account during the test session selection process, an increase in
the number of test sessions will be noticed and the MISRs will be
less effectively used, with some of them remaining idle during
several test sessions. After all constraints are taken into
consideration, the resulting number of test sessions represents the
initial testing time, Tinit. Thus, it is possible to test the design in
Tinit test sessions as a result of the nature of parallelism inherited
from the design itself.

Out of the compatible test environment alternatives, the particular
testability TE alternative option that minimizes MISR conflicts and

 60

can lead to packing as many operations as possible in each test
session will be chosen. Consequently, the total number of test
sessions will be minimized. In addition, TEs of all operations in a
test session must be simultaneously supported. When the best
choice of TE alternatives is achieved, the associated testing time is
the initial testing time, Tinit. The best choice among the alternative
TE options is the one targeted to favor maximum parallelism in
testing operations.

Our heuristic for selection of concurrent test sessions is based on
an equal length test-scheduling algorithm [16]. We extended the
algorithm to take into consideration controllability and
observability constraints when choosing operations to be included
in a given test session. Therefore, operations are included in the
same concurrent test session not only if they do not share MISR,
but also if controllability and observability constraints are satisfied
for all of them at the same time.

4.6 BIST Resources Optimization
After Tinit is obtained, further hardware optimization is performed
until the requested test time constraint, Treq, is satisfied. Three
different optimization cases are considered based on comparison
of Tinit and the test time constraint, Treq. In all cases the
optimization objective is the cost of BIST registers and
multiplexers as shown in equation (4.1), where bi is the area of
the ith BIST register, B is the number of BIST registers, mj is the
area of the jth multiplexer, and M is the number of multiplexers.

 ∑∑
==

+=
M

j
j

B

i
i mbCost

11
 (4.1)

Case 1: Treq < Tinit: If the requested number of test sessions, Treq, is
less than Tinit, our approach optimizes hardware by shrinking the
test schedule. Since we want to satisfy the constraint Treq, and up
to this moment the hardware has been optimized in such a way
that the design can be tested in Tinit test sessions, our approach
continues to shrink the test schedule by adding more hardware
until the test time T equals Treq.

 61

Hardware optimization by test schedule shrinking is described by
the algorithm in Figure 4.7 and proceeds as follows: All Tinit test
sessions are ranked in decreasing order of the number of
operations to be tested in that session (line 1). Suppose rTS is a
set of test sessions ranked in decreasing order of the number of
operations. This means that the first test session in rTS has the
greatest number of operations. We take the first Treq (Treq≤ Tinit) test
sessions and make them default test sessions of our shrinked test
schedule (STS). All the operations in the remaining test sessions
are then considered unscheduled (lines 2-6) and will be re-
scheduled in one of the test session TSi ∈ STS, 1≤i≤|STS|. An
operation will be placed in the test session in which it needs
minimal additional hardware and can be concurrently tested with
all the other operations in the same test session. Lines 7-21 of our
shrink test schedule algorithm achieve this.

For each unscheduled operation, the set of all potential possible

Algorithm: ShrinkTestSchedule
 Begin

1. rTS rank test sessions in decreasing order of complexity;
2. Uns φ ; // unscheduled operations
3. for i Treq+1, Treq+2, .., Tinit do
4. Uns Uns ∪ rTS[i];
5. rTS rTS - rTS[i];
6. end for
7. STS rTS; // initialize shrinked test schedule
8. while (Uns ≠ φ) do
9. op get one unscheduled operation from Uns;
10. Uns Uns – { op };
11. Ψp compute potential TEs for op;
12. for i 1, 2, .., |STS| do
13. TSi STS[i]; // getTestSession(i);
14. Ω get TEs used in TSi;
15. Ψc computeCompatibility(Ψp, Ω);
16. bestATEO[i] getBestATEO for TSi from Ψc; //cheapest ATEO
17. end for
18. chosenATEO a, a∈bestATEO | cost(a)=Min{bestATEO[i]},1≤i≤Treq;
19. Schedule op in the test session where chosenATEO is;
20. Add hardware to accommodate op in the chosen test session;
21. end while
22. Apply TestResponseRedirection algorithm;

 End.
Figure 4.7 BIST optimization by test schedule shrinking

 62

TEs, Ψp, is computed (line 11). During the computation process of
the potential TEs, the STA procedure assumes that the internal
non-BIST registers can be converted into BIST registers to provide
more possibilities of the TEs. For each test session in the shrinked
test schedule TSi ∈ STS, 1≤i≤|STS|, we find all TE ∈ Ψp that are
compatible with all the operations in that session (lines 13-15).
This process tries to find all the TEs for the given operation that
can be used to schedule it in a given, existing test session. These
compatible TEs are denoted as Ψc. For a given test session, the
compatible TE ∈ Ψc that will need the cheapest modification of the
design is considered as the best candidate TE for scheduling the
operation in that test session (line 16). The process is repeated to
find best candidate TE for each test session for the given
operation. Out of all candidate TEs, the candidate TE that needs
the overall minimum cost is chosen and the operation is
scheduled in the corresponding test session using the TE that
incur the cheapest hardware cost. The design is then modified so
that the chosen TE can be provided.

Case 2: Treq= Tinit: Our approach explores the possibility of further
hardware optimization by using the strategy of test response
redirection. As it has been emphasized in the discussion in
Section 4.5, several MISRs are not effectively used in some test
sessions; hence, our approach recovers some of them and converts
them back to normal registers. The operations that use recovered
MISRs are redirected to other free MISRs in the same test session.

To optimize resource usage, one basic idea is to redirect test
responses from some operations to other MISRs different from
those originally assigned to, if the time constraints are not violated
and the MISRs allow the redirection.

Let Lu represents a MISR that is least used in all test sessions.
This means that Lu remains idle in most of the test sessions as
compared to other MISRs. Let U be a set consisting of test sessions
in which Lu is used. During execution of the algorithm, Mc is the
set of currently used MISRs. When a MISR is recovered and
converted back to a normal register, it is removed from Mc. F is a
set consisting of MISRs that are free in every test session in which
Lu is used. Among the free MISRs in set F, P is the one that is
mostly packed, which means, P analyzes responses from the

 63

greatest number of operations as compared to the other MISRs in
F. Let G be the set of all MISR incompatibility sets. Given a certain
MISR X, GX represents the incompatibility set corresponding to
MISR X. The algorithm shown in Figure 4.8 minimizes the
hardware cost (see equation (4.1)) and produces the set MC of
used MISRs and the corresponding incompatibility sets. This
optimization is performed without increasing the number of test
sessions.

Algorithm: TestResponseRedirection
 Begin

1. G set of all incompatibility sets;
2. Best_selection_obtained FALSE;
3. while (best_selection_obtained != TRUE) do
4. Lu X, X ∈ MC and X is least used;
5. U All test sessions in which Lu is used;
6. F Free MISRs in sessions U;
7. If F ≠φ then
8. P X, X ∈ F and X is most packed;
9. for every operation op∈GLu do
10. connect operation op to MISR P;
11. end for
12. if cost is reduced then
13. G G – { GP, GLu };
14. GP GP U GLu;
15. G G U { GP };
16. MC MC - { Lu };
17. else
18. Discard all connections done in line 10;
19. end if
20. else
21. best_selection_obtained TRUE;
22. end if
23. end while
24. return MC, G;

 End.
Figure 4.8 BIST optimization by test responses redirection

 64

Case 3: Treq> Tinit: As discussed above, initially all operations are
scheduled in Tinit test sessions, which are denoted as TSi, 1≤i≤Tinit.
If Treq>Tinit, our approach increases the testing time from Tinit to
TBIST by stretching the test schedule in such a way that the
required time constraint is satisfied (Tinit<TBIST≤Treq). In this case,
we can recover more BIST hardware resources that may not
necessarily be needed. The success of this optimization depends
on test environment conflicts of the operations and on how large
Treq is compared to Tinit.

To optimize BIST hardware by stretching the test schedule, first
we find two most utilized TPGs and the most utilized MISR. Since
these resources are already highly utilized, we will keep them.
Then we will try to recover as many of the remaining BIST
registers as test time constraint will allow. These remaining BIST
registers are referred to as candidate registers for recovery and are
denoted as Candid.

First of all, the remaining BIST registers are ranked in increasing
degree of utilization, i.e. the least used register first. These
remaining BIST registers are candidates for removal in order to
minimize hardware while satisfying given a testing-time
constraint. Our hardware reduction technique utilizes the longer
testing-time freedom to reduce hardware overhead.

To remove a candidate BIST register b ∈ Candid, we find all
operations which use b for BIST activities, and then we search for
alternative connections (cheapest ones) to perform BIST activities
for those operations. If these connection alternatives exist and
they make the design testable and if the operations can be
scheduled in other test sessions and they lead to hardware
reduction, then b is removed (converted to functional register).
Otherwise the BIST register b and test schedule are left intact.
This process is repeated for all candidate registers. The detailed
stretch test schedule algorithm is described in Figure 4.9.

 65

Algorithm: TestScheduleStretching
 Begin

1. PrTPG get 2 most utilized TPGs;
2. PrMISR get one most utilized MISR;
3. BR set of BIST resources ranked in increasing order of utilization;
4. BR BR – {PrTPG} – {PrMISR};
5. STS get test schedule of size Tinit; // STS is stretched test schedule
6. ESTS extend STS with empty test sessions till |ESTS|=Treq;
7. RC φ; // recovered BIST registers;
8. for i 1, 2, .., |BR| do
9. b BR[i];
10. BR BR – {b};
11. OP all operations which use b for BIST activities;
12. D find alternative BIST for OP by connections;
13. ConnectAlternativeBIST(OP, D);
14. Testable Check testability by doing STA;
15. Schedulable ScheduleOperations(OP, ESTS);
16. if (Schedulable and Testable and cost is reduced) then
17. Convert b to normal register;
18. RC RC U { b };
19. ESTS UpdateSchedule(OP);
20. Accept design modification;
21. else
22. Cancel design modification;
23. BR BR U { b };
24. end if
25. end for
26. apply TestResponseRedirection algorithm;
27. Return RC, TSS;

 End.
Figure 4.9 BIST optimization by test schedule stretching

The other idea to reduce BIST overhead is to share test pattern
generators among operations. In order to effectively share TPGs,
our approach first chooses two most utilized TPGs and assumes
that they cannot be removed. For each of the remaining TPGs, we
find all operations, which get test patterns from it and connect
them to other alternative TPGs in the design. Then the TPG is
removed. If the design becomes testable and operations
schedulable in the same number of test sessions and the BIST
overhead is reduced then the TPG is permanently removed.
Otherwise the TPG is put back in the design.

 66

Additional multiplexers and wiring will be needed in order to
redirect test responses for analysis to different MISRs or to share
test patterns among operations. After some TPGs and MISRs are
disabled as BIST registers, they will still remain in the design as
normal registers for their functional storage use, hence not adding
any BIST overhead.

4.7 Experimental Results
Researchers on high-level BIST insertion typically evaluate the
efficiency of their approaches by comparing the amount of BIST
hardware added. This is usually computed as the number of
TPGs, MISRs, BILBOs and CBILBOs added. On the other hand,
our approach takes the area of the BIST registers and multiplexers
as the optimization objective.

Sizes of the functional registers and modules are adopted from
[51]. For the BIST registers, we have assumed a simple
relationship between the sizes of the functional and BIST registers:
Register < TPG < MISR < BILBO < CBILBO. The areas of the 16-bit
modules used in the experiments are shown in Table 4.1.

Table 4.1 Sizes of modules and registers
Name Area (µm2)
Adder 50,000
Subtractor 50,000
Multiplier 250,000
Divider 250,000
Register 15,000
TPG 20,000
MISR 30,000
BILBO 40,000
CBILBO 50,000
Multiplexer N×+ 5001000 , where N is the number of multiplexer inputs

We have tested our approach on several HLS benchmarks.
Characteristics of the designs used in our experiments are
summarized in Table 4.2. The designs have been synthesized
using a very simple HLS algorithm such that each SDFG operation

 67

is implemented using a separate functional module. Details of the
design features can be found in [44].

Table 4.2 Characteristics of the designs
Design name #Adders #Subtractors #Multipliers #Dividers #LogicAND
Tseng 3 1 2 1 1
Real 3 2 4 2 0
Paulin 2 2 6 0 0
Overnctrl 5 1 1 1 0
Ewf 26 0 8 0 0

The first set of experimental results (Table 4.3, Table 4.4) deals
with our initial testability enhancements and test hardware
optimization by test response redirection and test patterns
sharing. In these experiments, testability degree is computed as a
percentage of fully testable operations. An operation is testable if
all its input operands are controllable and its output observable at
the same time. Controllability degree is the percentage of the
operations that are controllable, that is, the ratio of the
controllable operations to the total number of operations in the
design times one hundred percent. In order for the operation to be
counted as controllable, both its left and right hand operands
must be simultaneously controllable. If any input operand is not
fully controllable, the associated operation is assumed to be not
controllable. Similarly, observability degree is the percentage of the
observable operations in the design.

Table 4.3 Testability analysis results of the original designs
Design name #TPG #MISR Controllabilitý

degree
Observability

degree
Testability

degree
Paulin 4 3 40.0 80.0 30.0
Real 3 2 9.0 16.0 0.0

Overnctrl 5 2 75.0 62.5 37.5
Tseng 5 2 87.5 75.0 12.5
EWF 8 7 20.6 88.0 5.9

 68

Table 4.4 BIST resources after testability enhancement and
optimization to 100% testability

 Straightforward Optimized %Hardware
reduction

Name Tinit #TPG #MISR #BILBO #TPG #MISR #BILBO HW
cost

Number of
BIST regs

Paulin 6 5 3 2 4 3 2 6.0 10.0
Real 3 6 2 5 6 2 3 19.0 15.4

Overnctrl 5 6 2 1 5 2 1 8.2 11.1
Tseng 4 5 2 3 5 2 2 12.9 10.0
EWF 7 9 7 12 11 5 5 31.0 25.0

Average 15.4 14.3

Table 4.3 shows testability results as proposed after the original
application of STA, but before our testability enhancement and
optimization are applied, whereas Table 4.4 shows results after
testability enhancement and BIST optimization by test response
redirection and test patterns sharing. In Table 4.3, the first
column shows the names of the designs, the second column
shows the number of TPGs, and the third column shows the
number of MISRs. The fourth column depicts the percentage of
operations that are fully controllable, the fifth column gives the
percentage of operations that are observable and the sixth column
shows the percentage of operations that are testable. The BIST
registers reported in Table 4.3 are obtained by assuming that all
primary input registers and primary output registers are converted
to TPGs and MISRs respectively.

The total number of TPGs, MISRs and BILBOs after enhancement
to 100% testability is shown in Table 4.4 whose first column
depicts design names and number of test sessions needed to test
them after 100% testability has been achieved by using our
approach. The sub-columns of the column titled Straightforward
show the number of TPGs, MISRs and BILBOs after initial
straightforward testability enhancement is performed. By
straightforward testability enhancement we simply mean applying
the testability enhancement algorithms discussed in Section 4.2 to
get 100% testability. The sub-columns of the column titled
Optimized show the number of TPGs, MISRs and BILBOs that
remain in the design after our BIST resource optimization by test
response redirection and test patterns sharing are applied. The
sub-columns of the column titled %Hardware reduction show

 69

hardware reduction, in terms of BIST cost and number of BIST
registers, resulting from our optimized approach as compared to
the straightforward solution. In all our experimental results we
have considered that Treq=Tinit. The results show that by careful
BIST optimization at the high-level, the needed BIST area
overhead can be reduced by up to 15.4% and 14.3% in terms of
hardware cost and the number of BIST registers respectively (last
column in Table 4.4).

The second set of experimental results demonstrates our test-time
constrained BIST resource optimization by test schedule shrinking
and test schedule stretching. We will use the design Paulin (Table
4.5) to discuss our experimental results in detail and after that we
will present a table, which summarizes the results for other
designs. In Table 4.5 the column Treq is the requested testing time
constraint and TBIST is the testing time returned by our approach.
Columns TPG, MISR, BILBO, and CBILBO represent the numbers
of respective types of BIST registers. The column Muxs represents
the number of test multiplexers and the column Mux input is the
number of inputs of the test multiplexers. The column HW cost is
the sum of the area of the BIST registers and test multiplexers.

Table 4.5 Optimization by test schedule shrinking and stretching
for the design Paulin

Treq TBIST TPG MISR BILBO CBILBO Muxs

Mux
inputs HW Cost

1 1 2 3 0 7 6 12 492000 Shrink
2 2 4 3 2 2 2 4 354000 ,,
3 3 3 3 2 2 4 8 338000 ,,
4 4 4 3 0 3 2 4 324000 ,,
5 5 4 3 2 1 2 4 304000 ,,
6 6 5 3 2 0 0 0 270000 straightforward

6 6 4 3 2 0 2 4 254000
Optimized by

sharing MISRs+TPGs

7 7 4 1 1 0 4 11 159500 Stretch
8 7 4 1 1 0 4 11 159500 ,,
9 7 4 1 1 0 4 11 159500 ,,
10 7 4 1 1 0 4 11 159500 ,,

Initially, after testability enhancements were applied, the resulting
number of test sessions, Tinit, for the Paulin example, was 6.

 70

We have progressively shrinked the test schedule (Treq=5, 4... 1)
and observed how BIST resources are utilized for each requested
number of test sessions. It is observed that more BIST resources
are needed to shrink the test schedule. The shorter the schedule
the higher the BIST cost needed to guarantee it.

We have also performed experiments on resources optimization by
test schedule stretching. It is observed that we can reduce the
number of BIST registers by elongating the test schedule.
However, additional multiplexers are needed to guarantee the
testability (by BIST resource sharing). Stretching the test schedule
beyond 7 test sessions does not result in any more reduction in
BIST cost. This is due to the fact that any more reduction in BIST
registers by relaxing testing time constraints renders the design
untestable or test multiplexers add more overhead than can be
gained by recovering BIST registers. Therefore, there is no benefit
to stretch the test schedule beyond 7 test sessions. Our approach
shows that if a minimal amount of BIST resources to make the
design testable is used the design must be tested in 7 test
sessions. In both cases, shrinking and stretching the test
schedule, our approach tries to optimize hardware resource cost
(BIST and multiplexer) in such a way that the design can be tested
in a requested number of test sessions.

Figure 4.10 shows how BIST cost changes as the test schedule is
shrinked or stretched to satisfy testing time constraints for the
design Paulin. Figure 4.11 shows the relationship between the
percentage changes in BIST cost, as the test schedule is shrinked
or stretched for the same design. The reference BIST cost is the
cost that our initial testability enhancement achieves after
performing further hardware optimization by test patterns sharing
and test responses redirection, but before test schedule stretching
or shrinking are performed. It is observed that the BIST cost can
increase by 94% as we try to optimize the BIST so as to test the
design in one test session.

 71

BIST cost versus Treq

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10

Treq

B
IS

T
co

st

Figure 4.10 BIST cost versus testing time

%Change in BIST cost versus Treq

-60

-40

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10
Treq

%
C

ha
ng

e
in

 B
IS

T
co

st

Figure 4.11 Percentage change in BIST cost versus testing

time

We have tested several other designs and the results are depicted
in Table 4.6. The first column gives design names. The second

 72

column represents ∆shr1TS and the third column represents ∆strthr.
These terms are defined in the following two equations:

 %1001
1 ×

−
=∆

opt
optshrshr TS

TS (4.2)

 %100×
−

=∆
opt

optstrstr thr
thr (4.3)

where shr1TS is the hardware cost that is needed if the test
schedule is shrinked so that the design is tested in 1 test session
and strthr is the smallest hardware cost which our stretch test
schedule algorithm obtains assuming that it can stretch the test
schedule infinitely long. On the other hand, opt is the optimized
hardware cost obtained after applying our test pattern sharing and
test response redirection algorithms, but not test schedule
shrinking or stretching. In other words ∆shr1TS is the percentage
change in the BIST cost if the test schedule is shrinked so that
design is tested in 1 test session as compared to the optimized
cost after test pattern sharing and test response redirection.

Table 4.6 Comparison of the results
Design
Name

∆shr1TS
(single TS) ∆strthr Tinit Tthr Tmax

Paulin 94 -37 6 7 10
Real 82 -35 3 5 11

Overnctrl 87 -21 5 6 8
Tseng 66 -35 4 5 8
EWF 173 -31 7 9 34

Average 100,4 -31,8

The column named Tinit is the initial number of test sessions as
discussed in Sub-section 4.5. Tmax is the required number of test
sessions if one operation is to be tested per test session. We have
observed that, on average, an increase in BIST cost of 100% is
needed to be able to test the design in 1 test session. On the other
hand, an average BIST cost reduction of 32% is achieved if we
relax our testing time constraint to be very large. Experimental
results show that in all designs, stretching the test schedule by

 73

providing very large testing time constraints is not necessarily
beneficial in terms of BIST hardware reduction. Each design has a
limit, Tthr, on the number of test sessions beyond which, further
stretching does not lead to any more hardware reduction. The
BIST hardware that can satisfy testing the design in Tthr test
sessions is also the minimum hardware that is needed to
guarantee testability of the design. Removal of any more BIST
registers will make the design untestable or more expensive due to
too many multiplexers, which will be needed.

 75

Chapter 5

Wiring-Aware BIST Synthesis

This chapter describes a hardware overhead minimization
technique used during a BIST synthesis process. The technique
works at the RT level and inserts a minimal amount of BIST
resources into a digital system to make it fully testable. It takes
into consideration the cost of the functional modules,
multiplexers, BIST registers and wiring in order to obtain the
minimal area designs. The problem of optimizing BIST insertion at
the behavioral and RT levels while taking into account geometrical
information of the design has been formulated in Section 1.2.
Since the problem is NP hard, two optimization heuristics, a
simulated annealing (SA) algorithm and a greedy heuristic, are
used to solve the overhead minimization problem. Experimental
results show that considering wiring area during BIST synthesis
results in smaller final designs in terms of silicon area as
compared to the cases when the wiring impact is ignored.

5.1 Design Transformations for BIST
To influence testability, our approach modifies the design by
inserting BIST components. A number of BIST design
transformations (testability modification moves) have been defined.

The transformations provide the optimization heuristic with a
mechanism to perform neighborhood search so as to converge
towards low area, self-testable designs. Some of the
transformations can enhance testability while others can reduce

 76

it. The testability reducing transformations enable the
optimization strategy to create intermediate solutions, which later,
as a result of further transformations, converge towards minimal
area designs while guaranteeing testability. Therefore, for each
type of testability enhancement transformation (TET) a reverse
testability enhancement transformation (RTET) to cancel its effect
is also defined. For example, if TET(rk,TPGk) is a move that converts
a functional register rk, to a TPGk, then its reverse transformation,
converts TPGk to functional register rk, and is used to eliminate
the effect of TET(rk,TPGk).

Each testability transformation has advantages (reduced area
overhead, reduced wiring, and/or improved testability) or
disadvantages (additional area overhead, additional wiring, and/or
reduced testability).

Some transformations introduce additional interconnections,
which are used to connect the BIST modules to untestable data-
path modules. These interconnections introduce area overhead.
Furthermore, accommodating newly added BIST modules or test
multiplexers can cause changes in positions of other modules on
the chip. This can happen if the floor-plan algorithm changes the
position of the modules to accommodate newly added ones in an
efficient way. Such changes can impact wiring length and, hence,
total design area.

5.1.1 Types of BIST Transformations

Our design transformations for BIST are classified in four types:
conversion for controllability, conversion for observability,
connection for controllability and connection for observability.

5.1.1.1 Conversion for Controllability

Transformations of this type change controllability by converting
existing functional or signature analysis registers to BIST
registers, which generate on-chip test patterns.

Converting an existing functional register to a TPG improves
controllability of its output interconnections and can also improve
controllability of other nodes further below it in the design. Since
the TPG usually occupies larger area than a functional register,
the conversion incurs an additional area overhead (δA=ATPG-

 77

Aregister). The reverse transformation that converts the TPG back to
the functional register is also defined. While the resulting
functional register occupies smaller area, the controllability can be
impaired when the reverse transformation is applied.

A MISR can be enhanced to a BILBO in order to give it both
capabilities to generate test vectors and analyze test responses at
different times. The disadvantage of the BILBO is its larger area
compared to the MISR. A reverse transformation that converts the
BILBO to the MISR is also defined. It reduces controllability.

If it is necessary to improve test application time, the BILBO can
be enhanced to a CBILBO, which can simultaneously perform
both test pattern generation and test response compression. The
CBILBO is much larger than the BILBO. A reverse transformation
from the CBILBO to the BILBO is also defined. The transformation
affects testing concurrency, but not testability.

5.1.1.2 Conversion for Observability

Transformations of this type improve observability by converting
some of the existing functional or test pattern generation registers
to signature analysis registers. Three types of BIST registers can
be used to enhance the observability. They are MISRs, BILBOs
and CBILBOs.

To improve the observability, an existing functional register can be
converted to a MISR, which can only compress test responses to a
single test signature. A MISR occupies larger area than the
functional register of equivalent bit-width. A move is also defined
to convert a MISR to a functional register in order to recover area.
Unfortunately, this reduces on-chip test response analysis
capability. Similarly, the TPG can be enhanced by converting it to
a BILBO or CBILBO, which performs the dual job of generating
test patterns and compressing test responses on the chip. A
reverse transformation that converts the BILBO or CBILBO to the
TPG is defined. It can save area, but observability can be reduced.

5.1.1.3 Connection for Controllability

This is a controllability enhancement transformation whereby an
existing TPG, BILBO or CBILBO is connected directly to an input
of the functional module. Allocation information is used to analyze

 78

the impact of the transformation on the corresponding SDFG. The
impact of the connection made in the RTL design is translated to
the corresponding connections in the SDFG by the help of the
allocation/binding information. After the corresponding SDFG
connections are identified, corresponding variable-to-operation
connections in the SDFG are also made. To determine testability
after the transformation, STA is performed on the transformed
SDFG. The move necessitates addition or expansion of a test
multiplexer in front of the RTL functional module in order to bring
test patterns to the module in the test mode. Thus, wiring and
multiplexer costs are increased (δA=Awire+Amux). The move can
improve controllability of any RTL module since any module can
be accessed by a direct connection.

The reverse transformation, which disconnects the TPG, the
BILBO or the CBILBO from the functional module, results in
reduced testability, but wiring can be removed and the number of
inputs to a test multiplexer can be reduced. If, after the
disconnection is performed, only one input remains, then the
whole test multiplexer is removed.

5.1.1.4 Connection for Observability

This is an observability enhancement transformation that
connects the output of a module directly to an existing MISR,
BILBO or CBILBO. The transformation introduces wiring and
expands a test multiplexer with an additional input or adds a new
multiplexer. It can enhance the observability of any RTL module
since any module can be connected to an existing MISR, BILBO or
CBILBO.

The reverse transformation, which disconnects the MISR, BILBO
or CBILBO from the module, results in reduced observability, but
savings in wiring and at the same time reductions in the number
of test multiplexer inputs can be achieved. As discussed earlier in
this section, allocation information is used to translate the effect of
the transformation on the corresponding SDFG on which
testability analysis is performed.

5.1.2 Transformation Illustration and Motivational Examples

In this Section we will illustrate the transformations for BIST by
using examples.

 79

Suppose, for the SDFG in Figure 5.1a, one adder implements the
operations +1 and +2 and one multiplier implements the operation
*. One example of an RTL data-path implementation that satisfies
this allocation constraint is shown in Figure 5.1b, whereby a
register R1 implements variables a, e, g; R2 variables b, f; R3
variable c and R4 variable d.

Operation +1 can be tested by generating test patterns from
variables a and b, constraining variable c to 0 and observing test
responses on variable g (see Figure 5.1a). Similarly, the operation
+2 can be tested by supplying test patterns from variables a and c,
constraining variable b to 0, and d to 1. Test responses are
observed on variable g. The operation * is tested by supplying test
patterns from variables c and d, constraining variables a and b to
0, and observing test responses on variable g.

Since one adder implements the operations +1 and +2, it is
sufficient to test only one of them to have the adder tested. To test

+2

+1

a b

*

c d

e f

g

R1 R2 R3 R4

+1,+2 *

a b c d

a) An SDFG b) Corresponding RTL

 1

 3

 2

R1
CBILBO

+1,+2 *

a b c d

c) Cheap BIST solution d) Expensive BIST solution

R3
TPG

R4
TPG

R1
CBILBO

+1,+2 *

a b c d

R3
TPG

R4
TPG

R2
TPG

R2

Figure 5.1 Illustrating conversion transformations

 80

the multiplier, the operation * is tested. Suppose that to test the
RTL design, we choose to test the operations +2 and *. To test +2
implies that registers R1 (variable a) and R3 (variable c) are
converted to TPGs; R1 (variable g) is converted to MISR; Since R1
(variable a) is converted to TPG and R1 (variable g) to MISR, R1 has
to be converted to CBILBO instead. In this way R1 can generate
test patterns and analyze test responses at the same time. To test
the * operation, implies that R3 (variable c) and R4 (variable d) are
to be converted to TPGs and R1 (variable g) to MISR; since R1 is to
be converted to CBILBO for testing +2, it is not converted to MISR
for testing *. R1 remains as CBILBO which can be used to test
both +2 and *. Thus, if R1 is transformed to CBILBO, R3 to TPG and
R4 to TPG, then the RTL design can be self-tested by using the
original dataflow control flow, see Figure 5.1c. These register
transformations for BIST are used in our optimization approach.

On the other hand, if the operation +1 is used to test the adder, R1
(variable a) and R2 (variable b) are converted to TPGs and R1
(variable g) to MISR. Since R1 is already a CBILBO it is not
converted to MISR. Thus, to test the RTL design 3 TPGs and 1
CBILBO are needed, see Figure 5.1d. This is more expensive than
if operations +2 and * are used. In this case our optimization
heuristic chooses +2 and * to test the design, which leads to a
cheaper design with only 2 TPGs and 1 CBILBO, Figure 5.1c.

Now let us use the design in Figure 5.2a to illustrate the wiring
connection transformations. Assume a one-to-one SDFG to RTL
allocation so that the SDFG is the same as the RTL. After STA is
performed, all primary inputs and constant nodes (u, x, c3, y, dx)
are converted to TPGs (P1, P2, P3, P4, P5) and all primary outputs
(u1, y1, x1) to MISRs (M1, M2, M3). An internal register, t4, is
converted to a BILBO B1 to enhance observability of the sub-graph
consisting of operations *1, *3, *2 and to enhance controllability of
the sub-graph consisting of operations -1 and -2. Figure 5.2a
shows one example of a self-testable version of the RTL design
after testability modifications. More transformations can be
performed to get an even cheaper design.

 81

t1

*1 *2

u
x c3 y dx

+1

*3

t2

*4

t4 t5

*6

t7t6

*5-1

u1

+2-2

t8

X1y1

M 1 M 2 M 3

B1

P1 P2 P3 P4 P5

a) An SDFG after conversion transformations

t1

*1 *2

u
x c3 y dx

+1

*3

t2

*4

t4 t5

*6

t7t6

*5-1

u1

+2-2

t8

X1y1

M 1 M 2 M 3

B1

P1 P2 P3 P4 P5

b) An SDFG after successive connection transformations

Figure 5.2 Illustrating connection transformations

 82

To find a cheaper solution using “connection for observability”
transformations, one can connect the output of operation *3
through a multiplexer to the MISR M1 and the BILBO B1 is
converted to a TPG. This intermediate design can be further
transformed by connecting +1 and, later, +2 through the
multiplexer to the MISR M1. These successive transformations lead
to the removal of more MISRs (M2, M3) since the operations +1 and
+2 can now be observed using the MISR M1. Since the multiplexer
already exists, sharing of the MISR depends only on the trade-off
between wiring and the MISR costs, which our optimization
heuristic can find out. Figure 5.2b depicts the same design after
successive transformations are applied. The dashed lines show the
connection transformations. The crosses show the MISRs that
were converted back to functional registers and the BILBO that
was converted to the TPG.

In this example we have assumed that the wiring cost was cheaper
compared to the MISR cost, which is why we eliminate the MISRs.
However, a BIST synthesis optimization algorithm should use an
appropriate cost function to decide which transformations to
apply. In sections 5.4 and 5.5 we will describe two different
approaches to optimize BIST resources.

5.2 Wiring Area Estimation Techniques
The wiring area is estimated using the heuristics presented in [5]
and [29]. These heuristics first estimate the placement of modules
on the chip based on the interconnection relationship and their
sizes, and then compute the lengths of all interconnections.
Finally, the wiring area, Aw, is computed using equation (5.1).

 metalnodesor
i

aviiw NAkWwlA /⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
××= ∑ (5.1)

The sum over i is for all interconnections. li, and wi are the length
and width (in bits) of interconnection i, Wav is the average width of
wires in the design (including the space needed between them), kor
is the over-route factor (fraction of the area above the datapath
nodes and controller units in the metal layers that can be used for

 83

routing), Anodes is the area of the datapath nodes, and Nmetal is the
number of metal layers available.

The input to the wiring area estimation algorithm consists of a list
containing the area of each data-path node to be placed, a list of
interconnection relationships between the RTL nodes and
constants Wav, kor and Nmetal.

5.3 Cost Function
The objective of the BIST synthesis process is to minimize the total
area of the design, which is the sum of the areas of functional
modules (Afmod), functional registers (Afreg), functional multiplexers
(AfMUX), BIST registers (ABIST), test multiplexers (AtMUX) and wiring
area (Awire) as depicted in equation (5.2). Atotal in the equation
(5.2) is the cost that is used to drive our BIST optimization
heuristics.

 wiretMUXBISTfMUXffregtotal AAAAAAA +++++= mod (5.2)

It is assumed that the number of functional modules is fixed when
BIST insertion is performed. In other words, this means that the
HLS algorithm performs scheduling and allocation before BIST
insertion is performed.

5.4 BIST Synthesis Optimization with

Simulated Annealing
In this Section, a simulated annealing algorithm [60] has been
used to optimize the BIST structures in order to minimize the total
design area. The overall optimization approach is assisted by a
testability analysis, which identifies hard to test operations and
modules. The testability analysis is performed at the behavioral
level on the SDFG representation of the design. The BIST
synthesis optimization approach can result in very good designs in
terms of area since both geometrical information and testability
are simultaneously taken into account during the synthesis
process. On the other hand, since computation intensive

 84

testability analysis and wiring area estimation are performed in
each optimization iteration, the whole approach can be slow.

Testability enhancement is performed on the RT-level
representation of the design. The simulated annealing
optimization process uses testability transformations to explore a
design space in search of the smallest self-testable design (see
Section 5.1). Since our objective is to minimize the total design
area, high degree of BIST register sharing is also achieved.

After testability enhancement is performed, 100% controllability,
observability, and testability are achieved for all the modules.
Therefore, for each module, 100% fault coverage is also achieved,
provided that the modules do not have random resistant faults
and a sufficiently large number of pseudo-random test patterns is
applied. If modules have random resistant faults, they need to be
made random resistant free by test point insertion. A low overhead
technique for removing random resistance is described in [22]. If
this technique cannot be deployed, to cover random resistant
faults, a few deterministic test vectors must be used at the end of
the pseudo-random test session. This work assumes that all
modules are random resistant free, hence 100% fault coverage can
be achieved without test point insertion or deterministic test
vectors.

5.4.1 Simulated Annealing Based BIST Synthesis Framework

A simulated annealing based BIST synthesis optimization
framework is depicted in Figure 5.3. In our implementation of the
simulated annealing, a fully testable initial solution, X0, is selected
as an input to the heuristic. A fully testable initial solution is
generated by conversion transformations. All constant nodes and
PI registers are converted to TPGs, all PO registers to MISRs and
all internal registers to BILBOs. This gives a very expensive fully
testable initial solution.

 85

Neighboring solutions are generated by randomly applying
testability transformations on the design. The cost of the design is
computed as discussed in Section 5.3. The selected
transformation is used to modify the design to produce a
neighboring design, which is referred to as the neighboring
solution. Since our aim is to converge towards minimal area, it is
obvious that expensive transformations that increase area cost
should be rejected. However, in order to escape from a local
optimum, the simulated annealing approach [60] can
probabilistically accept expensive transformations hoping that

Technology
library

Generate initial testable solution

Choose and implement a move
(modify design)

Compute wiring and total area

 Testable?

Store modifed design

Cmodified<Cbest?

Best design modified design

 Finish?

Output best RT design

y

n

y

n

yy

 Cost
 reduced?

Discard changes

Testability analysis

Probabilistic
 accept?

iterations at current
temperature?

Enough

n

n

y

n

y

Reduce temperature

RTL design
library

n

Figure 5.3 Simulated annealing BIST synthesis framework

 86

subsequent transformations may enable the optimization strategy
to converge towards the global optimum of the cost function. As
the temperature parameter decreases, probabilities of accepting
expensive transformations decrease as well [60], hence at low
temperatures only the cheap solutions are accepted and the
annealing converges to minimum area designs. After applying the
transformation, if the area of the design is reduced or the
transformation can be probabilistically accepted, then the
testability status (testable, not testable) of the RTL design is
checked by performing STA on the corresponding SDFG
representation. The optimization algorithm proceeds as depicted in
Figure 5.3.

5.4.2 Experimental Results

Our approach does not only show how many TPGs, MISRs,
BILBOs and CBILBOs are added, but also performs quantitative
estimation of the wiring cost during the BIST synthesis process. It
takes overall design cost as the optimization objective. Thus, it
potentially results in more cost efficient designs. Other approaches
use the number of TPGs, MISRs, BILBOs and CBILBOs as
optimization criteria. Since they ignore quantitative computation
of wiring area, they do not necessarily guarantee highly efficient
designs in terms of total design area.

We have tested our approach on several benchmarks. In our
experiments, the technology dependent parameters are based on
Intel’s 65nm logic technology [7], which will be delivered for
production in 2005. In this technology a transistor occupies an
estimated area of 0.1µm2. We have assumed that the RTL modules
will be wired using metal layer 3, 4 or 5, and that we will have two
of these layers to use for connecting the RTL modules. The wiring
pitch (the average width of a 1-bit wire including spacing between
the wires) used is 0.277µm. It is the average pitch of the metal
layers 3, 4 and 5, whose respective pitches are 0.22µm, 0.28µm
and 0.33µm. We have assumed that wire over-routing factor is
0.5.

Characteristics of the designs have already been presented in
Section 4.7. To estimate sizes of the functional registers,
functional modules, multiplexers and BIST registers, we have
developed a library of gate-level RTL modules. To compute the

 87

number of transistors in basic gates such as AND, NAND, OR,
NOR, XOR and NOT, we have used an approach described in [35].
The number of transistors that are required to implement a given
RTL module is obtained by summing up the number of transistors
in all the gates which compose the module. The size of the
modules is then computed as the product of the size of a
transistor in the 65nm technology and the total number of
transistors in the module. The number of transistors required to
implement 16-bit modules are: adder – 480, subtractor – 704,
multiplier – 8736, divider – 9248, register – 96, TPG – 210, MISR –
306, BILBO – 376 and multiplexer –)1(96 −× N , where N is the
number of multiplexer inputs.

The experimental results are summarized in Table 5.1 through
Table 5.3. Columns P, M and B denote the number of TPGs, MISRs
and BILBOs respectively. Anodes is the sum of the node areas, Awires
is the sum of all wiring areas, Nmux is the number of test
multiplexers, Amux is the area of test multiplexers and %Aw/At is
the percentage of wiring area with respect to total design area.
Atotal represents the total area of the design after synthesis,
including wiring area. The column with title time represents CPU
time taken by our approach. Experiments were run on a Sun
Solaris workstation with 440 MHz CPU and 256MB RAM.

In Table 5.3, At_with_wire and At_no_wire are the respective total design
areas with and without considering wiring during BIST
optimization. The third column represents the percentage of
unnecessary area overhead (UAO) which is incurred if wiring is not
considered as compared to the case when wiring is considered.

The optimization process was run in two different ways. In the first
case we have ignored wiring area (Aw=0) during our BIST synthesis
optimization. This is in accordance with many previous works that
optimize BIST by only counting the number of TPGS, MISRs and
BILBOs that are introduced. The design cost that is minimized is
the total area consisting of functional data-path nodes, BIST
registers and test multiplexers. The results are shown in Table
5.1. In the second set of experiments, we have taken into account
wiring area during the BIST optimization process, as described in
this section. The cost minimized is the total area of the data-path
nodes, BIST nodes, test multiplexers and wiring area. The results

 88

are summarized in Table 5.2. For each case we have run our total
area estimation algorithm to compute total area (wiring inclusive)
after synthesis.

Table 5.1 Wiring area ignored during optimization
Design
Name

P

M

B

Anodes

(µm2)
Awire

(µm2)
Atotal

(µm2)

%Aw/At

Nmux

Amux

CPU
Time
(sec)

Paulin 4 1 1 5841.8 3072.1 8913.9 34.5 8 124.8 3412.7
Real 3 1 1 6019.2 3508.9 9528.1 36.8 12 144.0 4609.0

Overnctrl 4 1 0 2444.2 2537.2 4981.4 50.9 10 134.4 3259.2
EX2 3 1 0 4794.4 2362.8 7157.2 33.0 9 105.6 2162.6
EWF 4 1 6 9076.2 8773.1 17849.3 49.2 15 192.0 10348.3

Table 5.2 Wiring area considered during optimization

Design
Name

P

M

B

Anodes

(µm2)
Awire

(µm2)
Atotal

(µm2)

%Aw/At

Nmux

Amux

CPU Time
(sec)

Paulin 5 3 1 5770.4 1284.2 7054.6 18.2 0 0 1439.1
Real 6 2 4 6014.4 1391.6 7406.0 18.8 0 0 2017.3

Overnctrl 6 2 1 2381.6 1019.9 3401.5 30.0 0 0 1549.5
EX2 6 1 1 4751.0 686.2 5437.2 12.6 0 0 1823.4
EWF 9 7 7 9095.2 5380.9 14476.1 37.2 0 0 5819.9

Table 5.3 Unnecessary area overhead if wiring is not
considered

Design Name At_no_wire
(µm2)

At_with_wire
(µm2) UAO

Paulin 8913.9 7054.6 26.4

Real 9528.1 7406.0 28.7

Overnctrl 4981.4 3401.5 46.5

EX2 7157.2 5437.2 31.6

EWF 17849.3 14476.1 23.3

In our simulated annealing experiments, the temperature was
decreased very slowly according to the formula f(t) = t/(1+t*tscale)
[60], where the parameter tscale is a suitably small value. We have
set the parameter tscale to be 0.1 and the initial temperature to be
227. In our experiments we have not waited for the temperature to

 89

become zero before stopping, instead we have set a stopping
criterion that puts an upper limit on the number of consecutive
rejected moves and the total number of simulated annealing
iterations. The number of consecutive rejected moves is the
number of consecutive simulated annealing iterations that are
run, but which give no improvement in quality of the solution. We
defined a constant known as the maximum number of allowed
consecutive rejected moves (MNACRM). If the number of
consecutive rejected moves exceeds the value of MNACRM, then
our simulated annealing process terminates. We have set the
value of MNACRM to be 1000.

For all designs, when the area of the wiring is taken into
consideration during BIST synthesis optimization, we get smaller
total design area, as shown in Table 5.3. If wiring is taken into
consideration, the area occupied by the BIST registers is larger
than that occupied by the BIST registers if wiring is not
considered.

We compared the total node (functional, BIST and multiplexer)
areas in the cases when wiring is considered and when it is not
considered. The results show that when wiring area is considered,
more BIST registers are used (Table 5.1, Table 5.2). This means
that one would expect the total data-path node (functional + BIST)
area to be larger in the case when wiring is considered and the
gain in saving total area comes only from savings in wiring area,
i.e. a trade off between BIST register and wiring is made. This is
not the case in the presented experimental results, except for the
design EWF. This is because when wiring is not considered some
multiplexers are added. Our approach optimizes total design area
(wiring, functional, BIST and multiplexers) in such a way that a
globally cheaper design is generated.

5.5 BIST Synthesis Optimization with Greedy

Heuristic
In this Section, we propose a greedy heuristic for addressing the
problem of wiring-aware BIST synthesis optimization. The
technique uses our behavioral and RT levels BIST enhancement

 90

metrics to guide BIST synthesis. As discussed in the previous
section, testability analysis is performed on the SDFG and
testability enhancement based on BIST design transformations
(see Section 5.1) is performed on the corresponding RTL
architectural implementation.

The testability enhancement performed by our heuristic
guarantees complete testability of each RTL module while keeping
the design area minimum. The heuristic also addresses the
drawbacks of the simulated annealing based BIST synthesis
approach (discussed in Section 5.4), which is very slow.

The heuristic provides a novel way to quickly explore the design
space in search of cheap, yet testable design solutions. It proceeds
in the following steps:

A. Controllability enhancement.

B. Observability enhancement.

C. Global testability enhancement.

In each of these steps, the following two actions are repeated until
complete controllability (step A), observability (step B) and
testability (step C) are, respectively, achieved:

i. Choose a module m that is not controllable (observable,
testable respectively).

ii. Visit all possible enhancements for the module m and choose
the enhancement that incurs the lowest area overhead.

In order to make the design space exploration efficient, it is
important to choose and enhance the modules in such a sequence
so as to minimize the overall number of testability enhancements.
This is made possible by using our novel BIST enhancement
metrics (Section 5.5.1) to help decide in which sequence to
enhance modules, which have controllability, observability, or
testability problems.

5.5.1 BIST Enhancement Metrics

We need to choose uncontrollable, unobservable or untestable
modules and an order in which to enhance them, in such a way
that the total number of enhancements performed on the design is

 91

reduced. We can achieve this objective by ensuring that each time
we choose a module to enhance, the enhancement will improve as
many other modules as possible.

To solve this problem, we propose an approach, which uses our
novel behavioral-level BIST enhancement metrics to guide the
testability enhancement process. The BIST enhancement metrics
are defined below.

Definition 5.1: Total Controllability Enhancement Potential (TCEP)
of a given SDFG operation or variable node is the number of
operations and variables whose controllability it can affect.

Controllability of a node nj can be affected by the controllability of
a node ni if there is a path in the SDFG from ni to nj and the
control step of ni precedes the control step of nj. For instance,
consider the operation *1 in Figure 5.4. It can be observed that
starting from the operation *1, it is possible to reach seven nodes
namely t1, *3, t4, -1, t6, -2, and u1. Therefore, the value of TCEP for
the operation *1 is 7.

Definition 5.2: Total Observability Enhancement Potential (TOEP)
of a given SDFG operation or variable node is the number of
operations whose observability it can affect.

Observability of a node ni can be affected by the observability of a
node nj if there is a path in the SDFG from ni to nj and the control
step of ni precedes the control step of nj. For instance, consider the
operation -1 in Figure 5.4. It can be observed that starting from
the operation -1, it is possible to traverse the graph upwards and
reach 10 nodes namely u, t4, *3, t1, *1, dx, t2, *2, x, and c3.
Therefore, the value of TOEP for the operation -1 is 10.

The BIST enhancement metrics TCEP and TOEP presented so far
are computed with reference to the SDFG nodes. Controllability,
observability and testability enhancements are, however,
performed on the RT level architectural representation of the
design. Therefore, we need to extend the definitions of the BIST
enhancement metrics so that we can apply them to the RTL
designs.

 92

Definition 5.3: RTL Total Controllability Enhancement Potential
(RTCEP) of a given RTL module, mi, which implements a set of
SDFG operations SMi = {op1, op2… opn} whose respective values of
the TCEP are given by the set STCEPi = {TCEP1, TCEP2, TCEPn} is
defined as the maximum TCEP value in the set STCEPi, i.e.

}{1 j
n
ji TCEPMaxRTCEP == .

Definition 5.4: RTL Total Observability Enhancement Potential
(RTOEP) of a given RTL module, mi, which implements a set of
SDFG operations SMi = {op1, op2… opn} whose respective values of
the TOEP are given by the set STOEPi = {TOEP1, TOEP2… TOEPn} is
defined as the maximum TOEP value in the set STOEPi, i.e.

}{1 j
n
ji TOEPMaxRTOEP == .

To explain our RTL BIST enhancement metrics, consider the
example of an SDFG shown in Figure 5.4. If a 1-to-1 SDFG to RTL
allocation is used, the TCEP and RTCEP metrics are the same.

t1

*1 *2

u
x c3 y dx

+1

*3

t2

*4

t4 t5

*6

t7t6

*5-1

u1

+2-2

t8

x1y1

P1 P2 P3 P4 P5

Figure 5.4 An SDFG to illustrate the BIST enhancement

metrics

 93

Similarly, the TOEP and RTOEP metrics are the same (see Table
5.4).

Suppose that a more realistic allocation, as shown in row 1 and
row 2 in Table 5.5, is used. Row 3 shows the TCEP values and row
4 shows the TOEP values for the SDFG. After applying the
definitions above, the values of RTCEP and RTOEP are shown in
rows 5 and 6 respectively in Table 5.5.

Table 5.4 BIST enhancement metrics: 1-to-1 mapping
Modules M1 M4 M5 M2 M3 M6 A1 A2 S1 S2
Operation
binding

*1 *4 *5 *2 *3 *6 +1 +2 -1 -2

TCEP 7 5 3 7 5 3 1 1 3 1
TOEP 2 2 5 2 8 2 2 5 10 17
RTCEP 7 5 3 7 5 3 1 1 3 1
RTOEP 2 2 5 2 8 2 2 5 10 17

Table 5.5 BIST enhancement metrics: realistic mapping
Modules Mult1 Mult2 Add1 Sub1
Operation
binding

*1 *4 *5 *2 *3 *6 +1 +2 -1 -2

TCEP 7 5 3 7 5 3 1 1 3 1
TOEP 2 2 5 2 8 2 2 5 10 17
RTCEP 7 7 1 3
RTOEP 5 8 5 17

Once testability analysis has identified a set of modules that have
to be enhanced, we use the BIST enhancement metrics in order to
decide which particular module out of them is to be enhanced
first. The actual metric we use is RTCEP for the case of
controllability and RTOEP for the case of observability. For the
case of controllability enhancement, our criterion is to prioritize
enhancement of the module that has the greatest value of the
RTCEP among all uncontrollable modules. Similarly, for the case
of observability enhancement, we prioritize enhancement of the
module that has the greatest value of the RTOEP among all
unobservable modules. The exact testability enhancement is then
performed by applying BIST design transformations on the RTL
design as described in Section 5.1.

 94

Let us now consider a more exact description of how our BIST
enhancement metrics are used. We discuss the enhancement
procedure with respect to controllability enhancement. Suppose
that SMi = {op1, op2, …, opn} is a set of operations that are
implemented by the RTL module Mi. Suppose also that the
respective values of the TCEP for the operations in the set SMi are
given by the set STCEPi = {TCEP1, TCEP2, …, TCEPn}. Since any
RTL functional module Mi implements one or more SDFG
operations, it follows that 1≥iSM and 1≥iSTCEP . Suppose that
after testability analysis is performed on the design, the set of
uncontrollable RTL modules is found to be URT = {M1, M2... Mm}.
An uncontrollable RTL module Mx ∈ URT is chosen to be enhanced
if there is an operation opy ∈ SMx, which it implements such that
the operation opy has the greatest value of TCEP among all the
operations that are in the union set STCEP1 ∪ STCEP2∪ ... ∪
STCEPm.

5.5.2 BIST Synthesis Heuristic

A general overview of our BIST synthesis heuristic is depicted in
Figure 5.5. In the first step, all modules are made controllable, in
the second step, all modules are made observable. After
controllability and observability are enhanced, it is still possible
that some untestable modules will remain (see discussion in
Section 4.2). Therefore, in the third step, all modules are made
testable.

Step1: Controllability enhancement

Step2: Observability enhancement

Step3: Global testability enhancement

Figure 5.5 Steps of the BIST synthesis heuristic

 95

The controllability enhancement algorithm, shown in Figure 5.6,
takes as inputs a design represented in SDFG, allocation
information and RTL data path, and returns a fully controllable
RTL design. In a similar way, the algorithm depicted in Figure 5.7
is used to enhance observability.

The symbols and notations used in the pseudo-code in Figure 5.6
are described as follows: R is the RTL data path, G is the
corresponding SDFG of the design, and A is the allocation

Algorithm: EnhanceControllability
 Begin

1. Controllable False;
2. while Controllable = False do
3. DFGEP φ; RTEP φ;
4. UCP STA(G);
5. UCM UncontrollableModules(UCP, R, A);
6. if UCM = φ then
7. Controllable True;
8. else
9. for i 1, 2, ..,|UCP| do
10. ti GetTCEP(G, pi) | pi ∈ UCP;
11. DFGEP DFGEP ∪ { ti };
12. end for
13. for i 1, 2, ..,|UCM| do
14. ti GetRTCEP(mi,DFGEP, A) | mi ∈ UCM;
15. RTEP RTEP ∪ { ti };
16. end for
17. MTE ModuleToEnhance(UCM, RTEP);
18. ψ ControllEnhancements (MTE, R);
19. C φ;
20. for i 1, 2,..,|ψ| do
21. Ci EnhancementCost(Ei) | Ei ∈ ψ;
22. C C ∪ { Ci };
23. end for
24. SE Ei ∈ ψ | }{)(cos ||

1 j
C
ji CMinEt == ;

25. R Modify(R, SE);
26. end if
27. end while

 End.
Figure 5.6 Controllability enhancement

 96

information depicting the relationship between G and R. UCP and
UOP are respective sets of all uncontrollable and unobservable
operations. They are obtained by performing testability analysis of
the SDFG. UCM and UOM are respective sets of all uncontrollable
and unobservable RTL modules. They are computed based on the
definition of RTL module controllability and observability.

Procedure GetTCEP(G, pi), where pi ∈ UCP, computes the TCEP
value for the operation pi. DFGEP is the set consisting of TCEP
values of all the uncontrollable or unobservable operations in the
SDFG. Procedure GetRTCEP(mi, DFGEP, A), where mi ∈ UCM,

Algorithm: EnhanceObservability
 Begin

1. Observable False;
2. while Observable= False do
3. DFGEP φ; RTEP φ; UOP STA(G);
4. UOM UnobservableModules(UOP, R, A);
5. if UOM = φ then
6. Observable True;
7. else
8. for i 1, 2,..,|UOP| do
9. ti GetTOEP(G, pi) | pi ∈ UOP;
10. DFGEP DFGEP ∪ { ti };
11. end for
12. for i 1, 2, ..,|UOM| do
13. ti GetRTOEP(mi, DFGEP, A) | mi ∈ UOM;
14. RTEP RTEP ∪ { ti };
15. end for
16. MTE ModuleToEnhance (UOM, RTEP);
17. ψ ObserveEnhancements(MTE, R);
18. C φ;
19. for i 1, 2, ..,|ψ| do
20. Ci EnhancementCost(Ei) | Ei ∈ ψ;
21. C C ∪ { Ci };
22. end for
23. SE Ei ∈ ψ | }{)(cos ||

1 j
C
ji CMinEt == ;

24. R Modify(R, SE);
25. end if
26. end while

 Begin.
Figure 5.7 Observability enhancement

 97

computes the RTCEP value for the module mi. RTEP is the set
consisting of RTCEP values of all the uncontrollable modules.

The procedure ModuleToEnhance(UCM, RTEP) searches for a
suitable module to be enhanced, MTE. Procedure
ControllEnhancements(MTE, R) returnsψ, which is the set of all
possible enhancements for the uncontrollable module to be
enhanced (MTE). The procedure EnhancementCost(Ei) returns the
cost of applying the enhancement Ei. C is a set, which stores the
costs of all the potential enhancements for the module MTE. The
procedure Modify(R, SE) uses the selected enhancement SE∈ ψ, to
modify the RTL design.
Many of the notations used in the controllability enhancement
algorithm are also used in the observability enhancement
algorithm in Figure 5.7. In addition, the latter algorithm deploys a
procedure GetTOEP(G, pi), where pi ∈ UOP, to compute the TOEP
value for the operation pi and procedure GetRTOEP(mi, RTEP, A),
where mi ∈ UCM, to compute the RTOEP value for the module mi.
In the observability enhancement algorithm, the set RTEP consists
of the RTOEP values for all the unobservable modules.
ObserveEnhancements(MTE, R) is the procedure which finds all
potential observability enhancements (ψ) for the unobservable
module to be enhanced, MTE.

5.5.2.1 Enhancement Selection

We need to get the cheapest solution when a given module to
enhance has been decided.

Let M = {m1, m2... mk} be a set of k functional modules that
compose an RTL design. Suppose that PTD represents a partially
testable RTL design at a certain moment during our controllability
(observability or testability) enhancement process. Suppose that
after testability analysis is performed a module m ∈ M is selected
for enhancement (see enhancement algorithm). Such a module
can have multiple controllability (observability/testability)
enhancement options that can be used. For example, convert its
input register to a TPG or connect its input to an existing TPG or
BILBO. Suppose that E = {e1, e2… en} is a set consisting of n
enhancements available for the module m. Each of the
enhancements ei ∈ E is separately applied to the partially testable

 98

design PTD to get a corresponding enhanced design di. Suppose
that after these enhancements are respectively applied to the
partially testable design PTD, the respective corresponding
resulting enhanced designs form a set D={d1, d2,…, dn}.

In order to decide which enhancement option (BIST design
transformation) to use for the module m, we evaluate the cost of
each improved partially testable design di ∈ D. Out of all the
enhancements in the set E, the enhancement ei ∈ E that leads to
the cheapest improved design is chosen. The cost that we use is
the total design area, which consists of the areas of the functional
modules, functional registers, BIST modules, test multiplexers as
well as area contribution due to wiring.

5.5.2.2 Global Testability Enhancement and BIST Redundancy

Minimization

After controllability and observability of all the modules are
enhanced, it is still possible for some of them to be untestable. The
first part, lines 1-27 of the algorithm shown in Figure 5.8,
proposes a technique to fix the remaining testability problems.

In Figure 5.8, the symbol Ω represents the set of all enhancements
that are done on the design. Procedure UntestableModules(G, R, A)
takes the SDFG, the RTL design and allocation information, then
uses STA to find a list of all the untestable modules, UTM. The first
untestable module from the list UTM, denoted as M, is usually the
first one to be enhanced.

Procedure Enhance(M, operand, enhanceType) adds a BIST
enhancement for the module M. It is used to enhance output
observability or controllability of the left or right input of the
module. DiscardEnhancement(R, Enh) is used to remove the
enhancement, Enh, from the design. Procedure
PutBackEnhancement(R, Ei) puts back the enhancement Ei if its
removal renders the design untestable.

 99

After all the modules are enhanced and the design becomes
testable, it is likely that we have added too much BIST overhead.

Algorithm: EnhanceTestabilityAndMinimizeRedundantBIST
 Begin

1. Ω Set of all enhancements from Step1 and Step2 in Figure 5.5;
2. UTM UntestableModules(G, R, A);
3. while UTM != φ do
4. M FirstUntestable(UTM);
5. Enh Enhance(M, Left, Contr);
6. UTM UntestableModules(G, R, A);
7. if UTM != φ then
8. DiscardEnhancement(R, Enh);
9. Enh Enhance(M, Right, Contr);
10. UTM UntestableModules(G, R, A);
11. if UTM != φ then
12. DiscardEnhancement(R, Enh);
13. Enh Enhance(M, Output, Observ);
14. UTM UntestableModules(G, R, A);
15. if UTM != φ then
16. Enh Enhance(M, Left, Contr);
17. Enh1 Enhance(M, Right, Contr);
18. Ω Ω ∪ {Enh} ∪ {Enh1};
19. end if
20. else
21. Ω Ω ∪ {Enh};
22. end if
23. else
24. Ω Ω ∪ {Enh};
25. end if
26. UTM UntestableModules(G, R, A);
27. end while
28. // Remove unnecessary BIST overhead
29. for i 1, 2,..,|Ω | do
30. Ei GetEnhancement | Ei ∈ Ω;
31. DiscardEnhancement(R, Ei);
32. UTM UntestableModules(G, R, A);
33. If UTM != φ then
34. PutBackEnhancement(R, Ei);
35. end if
36. end for

 End.
Figure 5.8 Global testability enhancement and redundant

BIST minimization

 100

Therefore, we propose a BIST resources minimization (BIST
redundancy removal) phase, whereby we try to remove each
enhancement we have added and check if the design remains
testable. If the design remains testable after the removal, the
change is made permanent. Otherwise the enhancement is put
back. In this way BIST overhead is reduced while testability is still
guaranteed. Pseudo-code of our redundant BIST hardware
removal algorithm is given as part of Figure 5.8 (lines 28-36).

5.5.3 Experimental Results

We have evaluated our heuristic on several benchmarks. The
technology dependent parameters as well as the sizes of the RTL
modules used are the same as those in the experimental results
presented in Section 5.4. Characteristics of the designs we used in
our experiments have already been summarized in Table 4.2.

Our experimental results are summarized in Table 5.6. Columns
titled P, M and B represent the number of TPGs, MISRs and
BILBOs respectively. The column titled Design Area represents the
area of the designs before and after our BIST synthesis heuristic is
applied. The column titled overhead shows the hardware overhead
of our approach. The last column represents the CPU time taken
by our heuristic. The experiments were run on a Sun Solaris
workstation with 440MHz CPU and 256MB RAM.

In our experiments, we have taken into account wiring area during
the BIST optimization process, as described in this section. The

Table 5.6 Experimental results using our heuristic
Design Area (µm2)Design NameP M B
Before After

Overhead
(%)

CPU time
(Sec)

Paulin 5 3 1 6915.1 7054.6 2.0 113
Real 6 2 4 7195.7 7406.0 2.9 199

Ovenctrl 6 2 1 3262.1 3401.5 4.3 70
Ex2 6 1 1 5329.8 5437.2 2.0 91
Ewf 9 7 7 14004.1 14476.1 3.4 1030

Average 2.92

 101

design cost minimized is the total data path area including the
area of functional and BIST modules, test multiplexers and wiring.

The importance of considering wiring during the BIST synthesis
process is already experimentally justified in Section 5.4. The
importance of the work presented in this section is on getting a
faster approach that can be applicable to realistic large designs
instead of the slow simulated annealing based approach presented
in Section 5.4. We have, therefore, compared the results of our
greedy approach with the results of our simulated annealing based
approach presented in Section 5.4. As it can be observed from
Table 5.7, the proposed approach is efficient in terms of run time
and, at the same time it also produces good quality results. While
run times are on average one order of magnitude lower, the quality
of the results produced by the heuristic is on average the same as
that generated with the simulated annealing approach.

We have also tested our approach with a large design (LD), which
was randomly generated. This design has 235 modules of which
83 are adders, 32 multipliers and 120 registers. Our greedy
heuristic converted 5 registers to TPGs, 14 to MISRs and 24 to
BILBOs to make the design testable. Overall hardware overhead
due to our approach is only 2.05% and run time is 12783
seconds. When we tried to run simulated annealing with the large
design, run times were so high that we terminated the program
prematurely.

Table 5.7 Performance comparisons
 Simulated annealing

(Wire considered)
Our heuristic

(Wire considered)

Design Name Area

(µm2)
CPU Time

(Sec.)
Area

(µm2)
CPU Time

(Sec.)
CPU Time
reduction
(#Times)

Paulin 7054.6 1439.1 7054.6 113 12.7
Real 7406.0 2017.3 7406.0 199 10.1

Ovenctrl 3401.5 1549.5 3401.5 70 22.1
Ex2 5437.2 1823.4 5437.2 91 20.0
Ewf 14476.1 5819.9 14476.1 1030 5.7

Average 14.1

 102

To further analyze the performance of the heuristic, we have split
CPU times in two parts: the time taken by the testability analysis
(STA time) algorithm and the time taken by the cost computation
algorithm as depicted in Table 5.8. For the designs we have
experimented with, STA time is far larger than the cost
computation time. On the other hand, as the designs become very
large, cost computation time can grow quickly and become
comparable or even larger than the STA time. Since our heuristic
restricts the number of STA invocations, the testability analysis
time will not grow very fast. However, as the design becomes large,
there is increasing number of possible testability enhancements
for a given chosen functional module. Since each possible
enhancement involves evaluation of the design area, these
possibilities will put a heavy computation burden on the heuristic.
Therefore, for large designs, a fast and accurate design area
estimation algorithm is needed to overcome this problem.

Table 5.8 CPU time comparisons
CPU time (Sec.)

Design Name

#STA runs STA Design costTotal
Paulin 43 109 4 113
Real 61 193 6 199

Overnctrl 24 67 3 70
Ex2 41 86 5 91
Ewf 112 898 132 1030
LD 448 11495 1288 12783

 103

Chapter 6

Conclusions and Future Work

This thesis has proposed approaches to solve BIST synthesis
problems that work at a high-level of abstraction. In this chapter a
concluding summary and directions for possible future extensions
of the work presented in this thesis are provided. The conclusions
are presented in Section 6.1 and future research extensions in
Section 6.2.

6.1 Conclusions
Improving testability of the designs by inserting BIST components
adds hardware overhead. In this thesis we have provided
approaches to minimize the amount of BIST hardware overhead
while guaranteeing 100% testability. Symbolic testability analysis
has been used to reveal hard to test parts of the design whose
testabilities need to be enhanced.

In Chapter 4, a testing-time constrained approach to minimizing
BIST overhead has been proposed. It explores alternative
testability options that exist in the design to minimize the BIST
hardware overhead while satisfying testing-time constraints and
100% testability.

Initially, the approach adds a very small amount of overhead to
achieve 100% testability of all the modules and determines the
initial resulting testing time, Tinit. Our controllability enhancement
technique chooses one module at a time to enhance so as to
improve controllability of a number of others. Similarly,

 104

observability of one module is normally enhanced to improve
observability of a number of others.

Later, the design is modified so that the use of BIST resources is
optimized under the given testing time constraint. Our approach
achieves this by shrinking or stretching the test schedule with
respect to Tinit. Stretching test schedule is done by removing the
maximum amount of BIST resources in such a way that the
resulting ones will still keep the design testable and testing time
constraint will be satisfied. Shrinking test schedule is achieved by
adding a minimal amount of additional BIST resources into the
design so that the tighter testing time constraint will be satisfied.
These two heuristics, complemented with the heuristics of test
pattern sharing and test response redirection, optimize BIST
hardware overhead under the given testing time constraint.

Experimental results reveal that satisfying very short testing time
constraints is very expensive. An average of 100% additional BIST
hardware overhead on top of that incurred by our optimization by
test pattern sharing and test response redirection is needed to
guarantee that all operations are tested in one test session. We
have also observed that there exists a limit on the testing time
beyond which relaxing testing time constraints does not lead to
any more hardware reduction.

In Chapter 5, we have defined a set of BIST transformations and
proposed two approaches to solve the wiring-aware BIST synthesis
problem.

The first approach uses a simulated annealing strategy to
minimize the total design area. Experimental results indicate that
when wiring area is considered during the optimization process
the total area of the resulting designs is smaller compared to cases
when wiring is not considered, despite the fact that the number of
BIST registers may be smaller in the latter case. Since in deep-
sub-micron technology wiring occupies a relatively large area, it is
necessary to include wiring consideration early in the design
processes.

The simulated annealing based optimization approach is, however,
quite slow. To address this problem, the second approach, a
greedy heuristic, has been proposed. It provides two ways to

 105

converge towards testable and cheap solution while keeping
computational effort low. It minimizes the overall number of
testability enhancements done on the design. This is assisted by
our novel BIST enhancement metrics which are used to guide the
synthesis process in such a way that each controllability or
observability enhancement targets to improve as many modules as
possible. This is complemented by a thorough local search of the
cheapest solution for each enhancement performed. The cheapest
alternative enhancement for a given module is used.

Experimental results show that the approach is one order of
magnitude faster than the simulated annealing. With large designs
simulated annealing runs extremely slow, whereas our greedy
heuristic produces results in acceptable run time.

6.2 Future Work
This work can be extended in a number of ways. Some possible
directions for future work are:

• Extend the wiring-aware BIST synthesis problem with testing
time constraints.

• In this thesis we have seen that several alternative testability
environment options (ATEO) exist for each SDFG operation.
This work has used behavioral information in the SDFG for
testability analysis and BIST enhancement was done on the
already allocated RTL design. One way to improve this work
can be to use the ATEOs as metrics to guide HLS for BIST. In
this way BIST insertion can start earlier so that the
allocation, and even scheduling, can be BIST-aware.

• The performance of our greedy heuristic can be improved by
avoiding multiple invocation of the area cost computation for
each possible testability enhancement for the given module.
Extending the heuristic with an intelligent algorithm to
compute the cost of the design after BIST transformation in
an incremental fashion can achieve this.

 107

References

[1] Abramovici, M., M. A. Breuer and A. D. Friedman, “Digital
Systems Testing and Testable Designs”, IEEE Press, 1995.

[2] Agrawal, V. D., C. R. Kime and K. K. Saluja, “A Tutorial on
Built-In Self-Test Part 1: Principles”, IEEE Design & Test of
Computers, Volume 10, Issue 1, pp.73-82, 1993.

[3] Agrawal, V. D., C. R. Kime and K. K. Saluja, “A Tutorial on
Built-In Self-Test Part 2 Applications”, IEEE Design & Test of
Computers, Volume 10, Issue 2, pp. 69-77, Jun. 1993.

[4] Agrawal, V. D., Lecture notes at:
http://www.ece.wisc.edu/~va/COURSE/lectures.html.

[5] Alvandpour, A. and C. Svensson, "A Wire Capacitance
Estimation Technique for Power Consuming Interconnections
at High Levels of Abstraction”, Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS97), Louvain-
la-Neuve, Belgium, 1997.

[6] Avra, L., “Allocation and Assignment in High-level Synthesis
for Self-testable Data Paths”, Proceedings of International Test
Conference, pp.463-472, Nashville, 1991.

[7] Bai, P., C. Auth, S. Balakrishnan, M. Bost, R. Brain, V.
Chikarmane, R. Heussner, M. Hussein, J. Hwang, D. Ingerly,
R. James, J. Jeong, C. Kenyon, E. Lee, S-H. Lee, N. Lindert,
M. Liu, Z. Ma, T. Marieb, A. Murthy, R. Nagisetty, S.
Natarajan, J. Neirynck, A. Ott, C. Parker, J. Sebastian, R.
Shaheed, S. Sivakumar, J. Steigerwald, S. Tyagi, C. Weber,
B. Woolery, A. Yeoh, K. Zhang, and M. Bohr, “A 65nm Logic
Technology Featuring 35nm Gate Lengths, Enhanced
Channel Strain, 8 Cu Interconnect Layers, Low-k ILD and

 108

0.57 µm2 SRAM Cell”, IEEE International Electron Devices
Meeting, San Francisco, CA, U.S.A, Dec. 2004.

[8] Battacharya, S., F. Brglez and S. Dey, “Transformations and
Resynthesis for Testability of RT level Control-Data Path
Synthesis”, IEEE Transactions on VLSI Systems, Vol. 1, pp.
304-318, Sep. 1993.

[9] Bhatia, S. and N. K. Jha, “Behavioral Synthesis for
Hierarchical Testability of Controller/Data Path Circuits with
Conditional Branches”, Proceedings of the International
Conference on Computer Design, pp.91-96, Boston, MA,
U.S.A., Oct. 1994.

[10] Bhatia, S. and N. K. Jha, “Genesis: A Behavioral Synthesis
System for Hierarchical Testability”, Proceedings of the
European Design and Test Conference, pp. 272-276, Feb.
1994.

[11] Boubezari, S., E. Cerny, B. Kaminska and B. Nadeau-Dostie,
“Testability Analysis and Test-Point Insertion in RTL VHDL
Specifications for Scan-Based BIST”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 18, Issue 9, pp.1327–1340, Sept. 1999.

[12] Cha, D. W., W. E. Donath and F. Ozguner, "9-V Algorithm
for Test Pattern Generation of Combinational Digital
Circuits", IEEE Transactions on Computers, Vol. C-27, pp.
193-200, March 1978.

[13] Chen, C. H., and P. R. Menon, ”An Approach to Functional-
level Testability Analysis”, Proceedings of the International
Test Conference, pp. 373-380, Washington, U.S.A., 1989.

[14] Chen, C.-I. H., and J. T. Yuen, “Concurrent Test Scheduling
in Built-In Self-Test Environment“, Proceedings of IEEE VLSI
International Conference in Computers Design (ICCD’92),
pp.256 –259, Cambridge, MA U.S.A., Oct. 1992.

[15] Chiu, S. S. K., and C. A. Papachristou, “A Built-in Self-
Testing Approach for Minimizing Hardware Overhead”,
Proceedings of IEEE International Conference on Computer
Design: VLSI in Computers and Processors (ICCD '91), pp. 282-
285, Cambridge, MA U.S.A., 14-16 Oct. 1991.

 109

[16] Craig, G. L., C. R. Kime and K. Saluja, “Test Scheduling and
Control for VLSI Built-In Self-Test”, IEEE Transactions on
Computers, Vol. 37, Issue 9, pp. 1099-1109, Sept. 1988.

[17] Dey, S., M. Potkonjak and R. K. Roy, “Exploiting Hardware
Sharing in High-level Synthesis for Partial Scan
Optimization”, Proceedings of the International Conference on
Computer Design, pp. 20-25, Santa Clara, CA U.S.A., Nov.
1993.

[18] Eles, P., Z. Peng and A. Doboli, “VHDL System-Level
Specification and Partitioning in a Hardware/Software Co-
Synthesis Environment”, Proceedings of the 3rd International
Workshop on Hardware/Software Codesign, 1994.

[19] Flottes, M. L., R. Pires and B. Rouzeyre, “Analyzing
Testability from Behavioral to RT Level”, Proceedings of the
European Design and Test Conference, pp.158-165, Paris,
March, 1997.

[20] Gajski, D., R. Dömer and J. Zhu, “IP-Centric Methodology
and Design with the SpecC Language System Level Design of
Embedded Systems”, In System Level Synthesis, Kluwer
Academic Publishers, 1999.

[21] Ghosh, I., A. Raghunathan and N. K. Jha, “Design for
Hierarchical Testability of RTL Circuits Obtained by
Behavioural Synthesis”, Proceedings of the International
Conference on Computer Design, pp. 173-179, Austin, TX,
U.S.A., Oct. 1995.

[22] Ghosh, I., N. K. Jha and S. Bhawmik, ”A BIST Scheme for
RTL Circuits Based on Symbolic Testability Analysis”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 19, Issue 1, pp. 111–128, Jan. 2000.

[23] Ghosh, I., N.K. Jha and S. Bhawmik, “A BIST Scheme for
RTL Controller-Data Paths Based on Symbolic Testability
Analysis”, Proceedings of the 35th ACM IEEE Design
Automation Conference, pp. 554-559, San Francisco, CA,
U.S.A, 1998.

[24] Goel, P., “An Implicit Enumeration Algorithm to Generate
Tests for Combinational Logic Circuits”, IEEE Transaction on
Computers, Vol. C-30, No. 3, pp. 215-222.

 110

[25] Goel, S. K., and E. J. Marinissen, “Layout-Driven SoC Test
Architecture Design for Test Time and Wire Length
Minimization”, Proceedings of Design, Automation and Test in
Europe, pp.738-743, 2003.

[26] Gu, X., “RT-Level Testability Driven Partitioning”,
Proceedings of the 13th IEEE VLSI Test Symposium, pp.176-81,
Princeton U.S.A., May 1995.

[27] Gu, X., K. Kuchcinski and Z. Peng, “An Efficient and
Economic Partitioning Approach for Testability”, Proceedings
of the International Test Conference, pp.403-412, Washington
D.C., U.S.A., 1995.

[28] Gu, X., K. Kuchcinski, Z. Peng, ”Testability Analysis and
Improvement from VHDL Behavioral Specifications”,
Proceedings of the European Design Automation Conference,
pp. 644-649, Sept. 1994, Grenoble, France.

[29] Hallberg, J. and Z. Peng, “Estimation and Consideration of
Interconnection Delays during High Level Synthesis”,
Proceedings of the 24th Euromicro Conference, Vol. 1, pp.349-
356, Vasteras Sweden, Aug. 1998.

[30] Harmanani, H., C. Papachristou, S. Chiu and M. Nourani,
“SYNTEST: An Environment for System-level Design for Test”,
Proceedings of the European Design Automation Conference
(EURO-DAC’92), pp. 402-407, Hamburg, Germany, Sep.1992.

[31] Harris, I. G. and A. Orailoglu, “SYNCBIST: Synthesis for
Concurrent Built-in Self-Testability”, Proceedings of the
International Conference on Computer Design: VLSI in
Computers and Processors (ICCD’94), pp.101-104,
Cambridge, MA, U.S.A., Oct. 1994.

[32] Harris, I. G., A. Orailoglu, “Fine-Grained Concurrency in
Test Scheduling for Partial-Intrusion BIST”, Proceedings of
European Design and Test Conference, pp. 119-123, Paris,
France, 1994.

[33] Harris, I. G., and A. Orailoglu, “Microarchitectural Synthesis
of VLSI Designs with High Test Concurrency”, Proceedings of
the IEEE Design Automation Conference, pp.206-211, San
Diego, CA U.S.A., June 1994.

 111

[34] Howes, M. J., and D. V. Morgan, Reliability and
Degradation-Semiconductor Devices and Circuits, John Wiley
& Sons Inc., 1981.

[35] Hwang, E. O., “Digital Logic and Microprocessor Design with
VHDL”, Thomson-Engineering, 2005.

[36] Jerraya, A. A., M. Romdhani, Ph. Le Marrec, F. Hessel, P.
Coste, C. Valderrama, G. F. Marchioro, J. M. Daveau, N. –E.
Zergainoh, “Multilanguage Specification for System Design”,
In System Level Synthesis, Kluwer Academic Publishers, 1999.

[37] Jervan, G., “High-Level Test Generation and Built-In Self-
test Techniques for Digital Systems”, Licenciate Thesis,
Linköping University, 2002.

[38] Jervan, G., Z. Peng, R. Ubar and H. Kruus, "A Hybrid BIST
Architecture and its Optimization for SoC Testing",
Proceedings of the IEEE 2002 3rd International Symposium on
Quality Electronic Design (ISQED'02), pp. 273-279, San Jose,
California, USA, March 18-20, 2002.

[39] Kim, H. B., T. Takahashi and D. S. Ha, “Test Session Built-
In Self-testable Data Path Synthesis”, Proceedings of
International Test Conference, pp.154–163, Washington D.C.
U.S.A., 1998.

[40] Kim, T., K. -S. Chung and C. L. Liu, “A Stepwise Refinement
Data-path Synthesis Procedure for Easy Testability”,
Proceedings of the European Design and Test Conference,
pp.586-590, Paris, France, 1994.

[41] Larsson, E. and Z. Peng, “Testability Analysis of Behavioral-
Level Specifications”, Proceedings of the European Test
Workshop, pp.143-144, Sitges, May 1998.

[42] Larsson, E., “High-Level Testability Analysis and
Enhancement Techniques”, Licenciate Thesis no. 725,
Linköping University, 1998.

[43] Lavagno, L., A. Sangiovanni-Vincentelli and E. Senyovich,
“Models of Computation for Embedded System Design”, In
System Level Synthesis, Kluwer Academic Publishers, 1999.

[44] Lee, M. T-C., “High-Level Test Synthesis of Digital VLSI
Circuits”, Artech House, 1997.

 112

[45] Lee, T. C., W. H. Wolf and N. K. Jha, “Behavioral Synthesis
of easy Testability in Data Paths Scheduling”, Proceedings of
the International Conference on Computer Design, pp.616-619,
Nov. 1992.

[46] Lee, T. C., W. H. Wolf, J. M. Acken and N. K. Jha,
“Behavioral Synthesis of Easy Testability in Data Paths
Allocation”, Proceedings of the International Conference on
Computer Design: VLSI in Computers and Processors
(ICCD’92), pp.29-32, 1992.

[47] Li, X. and P. Y. S. Cheung, “Exploiting Test Resource
Optimization in Data Path Synthesis for BIST”, Proceedings of
9th Great Lakes Symposium on VLSI, pp.342 –343, Ypsilanti,
MI, U.S.A., March 1999.

[48] Micheli, G. D., “Synthesis and Optimization of Digital
Circuits”, McGraw-Hill, 1994.

[49] Mohamed, A. R., Z. Peng and P. Eles, “A Wiring-Aware
Approach to Minimizing Built-In Self-Test Overhead”,
Proceedings of the IEEE International Workshop on Electronic
Design, Test and Applications (DELTA 2004), pp.413-415,
Perth, Australia, Jan. 28-30, 2004.

[50] Mohamed, A. R., Z. Peng and P. Eles, “BIST Synthesis: An
Approach to Resources Optimization under Test Time
Constraints”, Proceedings of the 5th Design and Diagnostic of
Electronic Circuits and Systems (DDECS2002), Brno, Czech
Republic, pp. 346-351, 2002.

[51] Moshnyaga, V. G., and K. Tumaru, “A Placement Driven
Methodology for High-Level Synthesis of Sub-Micron ASICS”,
International Symposium on Circuits and Systems (ISCAS’96),
May 1996, pp. 572-575.

[52] Mourad, S. and Y. Zorian, “Principles of Testing Electronic
Systems”, John Wiley & Sons Inc., 2000.

[53] Nicolici, N. and B. M. Al-Hashimi, ”Efficient BIST Hardware
Insertion with Low Test Application Time for Synthesized
Data Paths”, Proceedings of Design, Automation and Test In
Europe, pp.289-295, Munich, Germany, March 1999.

[54] Nicolici, N., B. M. Al-Hashimi A. D. Brown and A. C.
Williams, “BIST Hardware Synthesis for RTL Data Paths
based on Test Compatibility Classes”, IEEE Transactions on

 113

Computer-Aided Design of Integrated Circuits and Systems,
Vol. 19, Issue 11, pp.1375–1385, Nov 2000.

[55] Papachristou, C. A., M. Baklashov and K. Lai, “High-Level
Test Synthesis of Behavioral and Structural Designs”, Journal
of Electronic Testing and Applications (JETTA), Vol. 13, No. 2,
pp.167-188, 1998.

[56] Peng, Z. and K. Kuchcinski, “Automated Transformation of
Algorithms into Register-Transfer Level Implementations”,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 13, pp.150-166, 1994.

[57] Potkonjak, M., S. Dey and R. K. Roy, “Behavioral Synthesis
of Area-Efficient Testable Designs Using Interaction between
Hardware Sharing and Partial Scan”, IEEE Transaction on
Computer-Aided Design, Vol. 14, No. 9, pp.1141-1154, Sep.
1995.

[58] Ravi, S., G. Lakshminarayana and N. K. Jha, “TAO: Regular
Expression based High-Level Testability Analysis and
Optimization”, Proceedings of the International Test
Conference (ITC), pp. 331–340, Washington D.C. U.S.A.,
Oct.1998.

[59] Ravi, S., N. K. Jha and G. Lakshminarayana, “TAO-BIST: A
Framework for Testability Analysis and Optimization of RTL
Circuits for BIST”, Proceedings of the 17th IEEE VLSI Test
Symposium, pp. 398-406, Dana Point, CA, U.S.A., 1999.

[60] Reeves, C. R., “Modern Heuristic Techniques for
Combinatorial Problems”, Blackwell Scientific Publications,
1993.

[61] Roth, J. P., W. G. Bouricius, and P. R. Schneider,
“Programmed Algorithms to Compute Tests to Detect and
Distinguish between Failures in Logic Circuits”, IEEE
Transactions on Computers, Vol. EC-16, No. 10, pp. 567-580.

[62] Semiconductor Industry Association, “The International
Technology Roadmap for Semiconductors (ITRS2001)”,
http://public.itrs.net/, 2001.

[63] Sugihara, M., H. Date and H. Yasuura, “Analysis and
Minimization of Test Time in a combined BIST and External
Test Approach”, Proceedings of Design Automation and Test in
Europe, pp.134–140, Paris, France, 2000.

 114

[64] Vahidi, M., and A. Orailoglu, “Metric-Based Transformations
for Self-testable VLSI Designs with High test Concurrency”,
Proceedings of EURO-DAC '95, pp.136-141, 1995.

[65] Vahidi, M., and A. Orailoglu, “Testability Metrics for
Synthesis of Self Testable Designs and Effective Test Plans",
Proceedings of 13th IEEE VLSI Test Symposium, pp.170 –175,
1995.

[66] Wolf, W., “Hardware/Software Co-Synthesis Algorithms”, In
System Level Synthesis, Kluwer Academic Publishers, 1999.

[67] Yang, T., and Z. Peng, “An Efficient Algorithm to Integrate
Scheduling and Allocation in High-level Test Synthesis”,
Proceedings of the Design, Automation and Test in Europe,
pp.74-81, Paris, France, Feb. 1998.

[68] Zorian, Y., S. Dey and M. J. Rodgers, “Test of Future
System-on-Chips”, Proceedings of the IEE/ACM International
Conference on Computer Aided Design (ICCAD-2000), pp. 392
– 398, 5-9 Nov. 2000.

 115

List of Acronyms

ATE Automatic Test Equipment

ATEO Alternative Test Environment Option

ATPG Automatic Test Pattern Generation

BDD Binary Decision Diagram

BILBO Built In Logic Block Observer

BIST Built-in Self Test

CBILBO Concurrent Built In Logic Block Observer

CUT Circuit under Test

DFG Data Flow Graph

DfT Design for Testability

ECEP Effective Controllability Enhancement Potential

EOEP Effective Observability Enhancement Potential

ETPN Extended Timed Petri Net

FC Fault Coverage

HLS High-level Synthesis

HLTS High-level Test Synthesis

ILP Integer Linear Programming

IP Intellectual Property

LFSR Linear Feedback Shift Register

 116

MISR Multiple Input Signature Register

MISRIS MISR Incompatibility Set

MNACRM Maximum number of allowed consecutive rejected
moves

MUT Module under Test

NoC Network-on-Chip

RTL Register-transfer Level

SA Simulated Annealing

s-a-v Stuck at a value v

SDFG Scheduled Data Flow Graph

SoC System-on-Chip

STA Symbolic Testability Analysis

TCDF Test Control Data Flow

TCEP Total Controllability Enhancement Potential

TE Test Environment

TOEP Total Observability Enhancement Potential

TPG Test Pattern Generator

VHDL VLSI High Description Language or

Very high speed integrated circuit Hardware
Description Language

VLSI Very Large Scale Integration

LINKÖPINGS UNIVERSITET

Rapporttyp
Report category

Licentiatavhandling

Examensarbete

C-uppsats

D-uppsats

Övrig rapport

Språk
Language

 Svenska/Swedish

 Engelska/English

Titel
Title High-Level Techniques for Built-In Self-Test Resources Optimization

Författare
Author Abdil Rashid Mohamed

Sammanfattning
Abstract

ISBN

ISRN

Serietitel och serienummer ISSN
Title of series, numbering

Linköping Studies in Science and Technology

Thesis No. 1156

Nyckelord
Keywords

Datum
Date

URL för elektronisk version

X

X

2005-04-28

Avdelning, institution
Division, department

Institutionen för datavetenskap

Department of Computer
and Information Science

http://www.ida.liu.se/~eslab

Design modifications to improve testability usually introduce large area overhead and performance
degradation. One way to reduce the negative impact associated with improved testability is to take testability
as one of the constraints during high-level design phases so that systems are not only optimized for area and
performance, but also from the testability point of view. This thesis deals with the problem of optimizing
testing-hardware resources by taking into account testability constraints at high-levels of abstraction during
the design process.

Firstly, we have provided an approach to solve the problem of optimizing built-in self-test (BIST) resources at
the behavioral and register-transfer levels under testability and testing time constraints. Testing problem
identification and BIST enhancement during the optimization process are assisted by symbolic testability
analysis. Further, concurrent test sessions are generated, while signature analysis registers’ sharing
conflicts as well as controllability and observability constraints are considered.

Secondly, we have introduced the problem of BIST resources insertion and optimization while taking wiring
area into account. Testability improvement transformations have been defined and deployed in a hardware
overhead minimization technique used during a BIST synthesis process. The technique is guided by the
results of symbolic testability analysis and inserts a minimal amount of BIST resources into the design to
make it fully testable. It takes into consideration both BIST components cost and wiring overhead. Two
design space exploration approaches have been proposed: a simulated annealing based algorithm and a
greedy heuristic. Experimental results show that considering wiring area during BIST synthesis results in
smaller final designs as compared to the cases when the wiring impact is ignored. The greedy heuristic uses
our behavioral and register-transfer levels BIST enhancement metrics to guide BIST synthesis in such a way
that the number of testability improvement transformations performed on the design is reduced.

The Swedish Foundation for Strategic Research (SSF) under the INTELECT and STRINGENT programmes at
Linköping University supported this work.

Built-in Self-test, Test Synthesis, Testability Analysis, Wiring-aware BIST Synthesis

91-85297-90-9

0280-7971

LiU-Tek-Lic-2005:11

Department of Computer and Information Science
Linköpings universitet

Linköping Studies in Science and Technology
Faculty of Arts and Sciences - Licentiate Theses

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-

puter Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-

tems, 1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-

Bases, 1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm

for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotatio-

nal Specification, 1992.
No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,

1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinrik-

tat och samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En kompa-

rativ studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,

1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-

betssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-

on, 1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap

och metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod,

1996.
No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska fö-

retag. 1996.
No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,

1997.
No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värde-

ring och vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och vär-

dering av systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.
No 676 Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.
FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveck-

ling, 1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stöd vid utveckling

av partnerskap och informationssystem, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt

i personal inom skogsindustrin, 1998.
No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,

1998.
FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder

och leverantörer på producentmarknader,1999.
No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie

ur ett agentteoretiskt perspektiv, 2000.
No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.
No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.
No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
No 800 Anders Subotic: Software Quality Inspection, 1999.
No 807 Svein Bergum: Managerial communication in telework, 2000.

No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter

från ett FOU-samarbete, 2000.
No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.
No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.
No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.
No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.
No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B

e-procurement, 2001.
No 890 Annika Flycht-Eriksson: Domain Knowledge Management inInformation-providing Dialogue systems,

2001.
Fif-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer, 2001.
No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet

som stöd för beslut om anskaffning av JAS 1982, 2002.
Fif-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
Fif-a-51 Per Oscarsson:Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.
No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.
No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages,

2002.
No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in li-

mited liability companies, 2002.
FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.
Fif-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times,

2002.
No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.
No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.
No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002
No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.
No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for

Irregular Architectures, 2002.
No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.
FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.
No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.
No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts,

2003.
No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.
No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.
No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.
No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.
FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.
No 1024 Aleksandra Tesanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.

No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.
Fif-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.
No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
Fif-a 71 Emma Eliasson: Effektanalys av IT-systems handlingsutrymme, 2003.
No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.
No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region,

2004.
FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.
FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.
No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.
No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
No 1138 Thomas Gustafsson: Maintaining Data Consistency im Embedded Databases for Vehicular Systems, 2004.
No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.

