SAVE Project Report, Dept. of Computer and Information
Science, Linképing University, Sweden, January 2000.

Verification Methodology for Heterogeneous
Hardware/Software Systems

Luis Alejandro Cortés, Petru Eles and Zebo Peng
Department of Computer and Information Science
Linkdping University
S-581 83 Linkoping, Sweden

Abstract

Modern electronic systems are constituted by heterogeneous elements, e.g. hardware/software,
and are typically embedded. The complexity of this kind of systems is such, that traditional
validation techniques, like simulation and testing, are not enough to verify the correctness of
these systems. In consequence, new formal verification techniques that overcome the limita-
tions of traditional validation methods and are suitable for hardware/software systems are
needed. Formal methods require the system to be represented by a formal computational
model with clear semantics. We present a Petri net based representation, called PRES, which
is able to capture information relevant to embedded systems. This report also explores an
approach to formal verification of embedded systems in which the underlying representation is
PRES. We use symbolic model checking to prove the correctness of such systems, specifying
properties in CTL and verifying whether they hold under all possible situations. This coverifi-
cation method permits to reason formally about design properties as well as timing require-
ments. This work has been done in the frame of the SAVE project, which aims to study the
specification and verification of heterogeneous electronic systems.

1. Introduction

In the coming years, most objects of common use will be based on electronic systems. The
electronic market demands high-performance and low-cost products, and—for safety-critical
applications—reliable components. Thus, the chip industry has faced the challenges of
increasing the system complexity and reducing design times. In order to reduce time-to-matr-
ket, designers tend to use programmable processors. When using programmable components,
new specifications of evolving products can easily be adapted to previous designs. Though
nowadays programmable processors are powerful, certain applications demand special fea-
tures, in terms of performance, power consumption, and correctness, among others, so that
some systems require the design of specific hardware. Still for those hardware components
there exists a trend to re-use elements like intellectual property (IP) blocks.

Most modern electronic systems consist of dedicated hardware elements and software running
on specific platforms. Such systems are obviously heterogeneous, i.e. are composed of ele-
ments with inherent distinct properties. For instance, they may contain microprocessors

(MPUs), digital signal processors (DSPs) and microcontrollers (MCUSs), as well as application
specific integrated circuits (ASICs) and field programmable gate arrays (FPGAS). At the same
time, such systems are typically embedded, that is, they are part of larger systems and interact
continuously with their environment. Hardware/software codesign, i.e. the concurrent design
of mixed hardware/software systems, exploits the advantages of HW and SW working closely
for a given task as long as they are considered as a whole instead of independent entities.
Although benefits of hardware and software working together are evident, the design of such
complex systems, involving both HW and SW components, is a non-trivial task.

We advocate design cycles based on formal models so that the synthesis of a design from spec-
ification to implementation can be carried out systematically. In order to devise systems that
meet the performance, cost and reliability goals, the design process should be founded upon a
clear representation that allows to accomplish the design cycle, based on formal notation.
Modeling is an essential issue of any systematic design methodology. In this work, we propose
a model suited to embedded systems. The model, called Petri net based Representation for
Embedded Systems (PRES), is an extension to classical Petri nets. It explicitly captures time
information, allows representations at different levels of granularity, and supports hierarchical
decomposition. Another important feature of this model is its expressiveness since the tokens
might carry information. Concurrency and sequential behavior are also captured by PRES.
The above characteristics are very important when modeling embedded systems. As any other
Petri net based model, PRES is inherently asynchronous.

The inherent heterogeneity of embedded systems makes them very complex and difficult to
verify. Moreover, the increasing demand on high-performance products has boosted the levels
of sophistication of such systems. For the levels of complexity typical to modern electronic
systems, traditional validation techniques, like simulation and testing, are neither sufficient
nor viable to verify the correctness of digital designs. First, these techniques may cover just a
small fraction of the system behavior. Second, long simulation times and bugs found late in
prototyping phases have a negative impact on time-to-market. Formal methods are becoming a
practical alternative to ensure the correctness of designs. They might overcome some of the
limitations of traditional validation methods. Formal verification can give a better understand-
ing of the system behavior, help to uncover ambiguities and reveal new insights of the system.

Formal methods have been extensively used in software development [Gan94] and hardware
verification as well [Ker99]. However, they are not commonplace in embedded systems
design. There is a lack of techniques for formal verification of hardware/software systems. In
this paper we also present an approach to verification of embedded systems using symbolic
model checking, based on PRES. With this approach it is possible to validate properties of the
system as well as timing requirements. Design properties are specified as CTL (Computation
Tree Logic) formulas and the model checker determines whether they are satisfied.

2. HW/SW Codesign Representation Models

Many computational models have been proposed in the literature to represent digital systems.
These models encompass a broad range of styles, characteristics and application domains. Par-
ticularly in the field of hardware/software codesign, a variety of models has been developed
and used for system representation. Many different models coexist in the scenario of HW/SW
codesign. Their features largely differ even though they all are computational models intended

for heterogeneous hardware/software systems. These computational representations have usu-
ally distinct characteristics and support diverse kinds of applications.

Many of the computational models used for hardware/software systems are based on exten-
sions to finite-state machines, Petri nets, discrete-event systems, data-flow graphs, the so-
called synchronous/reactive models, communicating processes, among others. We addressed
several representative computational models used to capture hardware/software systems
[Cor99]. The key aspects of these models are discussed and a comparison of their most rele-
vant features is presented. Edwaetisl. [Edw97] evaluate the properties of several represen-
tations employed for the design of embedded systems, based on the tagged-signal model
[Lee96], a framework where computational models can be compared. Similarly, Lagagno

al. [Lav98] review and study some models of computation for embedded system design using
the same framework.

2.1. Modeling Embedded Systems using Petri Nets

Due to their intrinsic characteristics and particular extensions to the conventional model, PNs
might be an interesting representation for embedded systems. We address in this section some
known approaches to the modeling of such systems using Petri nets in the frame of hardware/
software codesign.

Stoy [Sto95] presents a modeling technique for hardware/software systems, based on an
extended timed Petri nets notation [Pen94]. This Petri net representation is founded on a paral-
lel model with data-control notation and provides timing information. The model consists of
two different but closely related parts: control unit and computational/data part. In this
approach, timed Petri nets with restricted transition rules are used to represent control flow in
both hardware and software. This representation allows to capture hardware and software in a
consistent way, so it can be utilized during the synthesis process taking advantage of the effi-
cient movement of functionality between hardware and software domains.

Maciel and Barros [Mac96] use timed Petri nets as intermediate format for the partitioning
process: an occam description constitutes the input of the design cycle and is translated into
the proposed representation. Timed PNs, in this approach, are associated with dataflow aug-
mented with time information. Timing analysis guides the hardware/software partitioning pro-
cess. The definition of sub-nets permits handling hierarchies through special places called
ports.

A combination of time Petri nets and predicate/transition nets augmented with object-oriented
concepts is utilized by Esset al. [Ess98]. Tokens carry data and transitions have associated
functions, condition guards, and time constraints. Hierarchical constructions are allowed, pro-
viding the capability to represent various levels of granularity.

3. Extensions to Petri Nets

Petri nets (PN) have been widely used for system modeling in many fields of science over
three decades. They are a well-understood graphical and mathematical tool. Powerful formal
theories, defining its structure and firing rules, have been developed around this model. We do

not address here the basic concepts of PNs, but instead we concentrate in this subsection on
the main extensions and modifications—concerning our purposes—proposed along the years.
In our discussion we assume that the reader has a basic knowledge of PNs. [Mur89], [Pet81],
[Zur94] are suggested for further reading on PN theory and their applications.

Two important intrinsic features of Petri nets are their concurrency and asynchronous nature.
These features together with the generality of PNs and their flexibility have stimulated their
applications in different areas. However, several drawbacks of the classical PN model have
been pointed out along the years.

A major weakness of PNs is the so-called state explosion problem. Petri nets tend to become
large even for relatively small systems. The lack of hierarchical decomposition makes it diffi-
cult to specify and understand complex systems using the conventional model. To overcome
this disadvantage, the classical PN model has been extended introducing the concept of hierar-
chy [Zub96], [Dit95]. Single elements (transitions and places) may represent a more detailed
structure. Thus, different levels of abstraction can be used to model high-complexity systems
so that refinements may provide several degrees of granularity.

The conventional PN model lacks the notion of time. This concept is not given in its original
definition. However in many embedded applications time is a critical factor. Several exten-
sions have been proposed in order to capture timing aspects. Such are, for example: timed
Petri nets [Ram74], time Petri nets [Mer76], and timed place-transition nets [Sif80]. In the first
approach, timed PNs, an execution time is associated with each transition, representing the
finite duration of a firing. Unlike classical Petri nets, the transition is not instantaneous and the
firing rule is modified to make a transition to be fired as soon as it is enabled. In time PNs two
values of time are associated with each transition: the minimum and maximum time (starting
from the moment the transition has been enabled) in which the transition has to fire, unless it is
disabled by the firing of another transition. These limits represent the interval in which the
transition may fire. The firing of a transition in a time Petri net is instantaneous. Finally, in
timed place-transition nets, unlike the former cases, the time information is associated to
places instead of transitions. The time parameter of each place has the meaning of a delay, so
that a token must remain in the place a certain interval of time before it may be removed. In
these time-extended models, time associated to elements is deterministically given. Other
approaches, e.g. stochastic Petri nets [Mol82], consider timing information which is probabi-
listically associated to transitions.

There is another disadvantage regarding classical Petri nets. This model lacks expressiveness
for formulating computations as long as tokens are considered “black dots”. No value is trans-
ferred by communications, limiting the modeling power. Allowing tokens to carry information
makes it possible to obtain more succinct and precise representations suitable for practical
applications. The extensions that include this new dimension to PNs are encompassed in the
called high-level Petri nets [Jen91]. High-level PNs, in a broad sense, include predicate/transi-
tion nets and coloured Petri nets. The former introduce the concept of individuals with chang-
ing properties and relations [Gen81]. Places (predicates) represent variable properties or
relations of individuals, and transitions depict types of changes of those properties. Graphi-
cally, places and transitions are labeled with identifiers which define the net characteristics.
Coloured Petri nets have been introduced in [Jen92] and a strong mathematical theory has
been built up around this representation. Transitions describe actions and tokens may carry
data values. The arcs between transitions/places and places/transitions have attached expres-

sions that describe the behavior of the net. A transition is enabled if there are enough tokens in
its input places and, additionally, these tokens match the arc expressions. Coloured PNs permit
hierarchical constructions which, together with the characteristic of valued tokens, make the
model powerful in terms of compactness and expressiveness. Although time is not explicitly
defined in the model, computer tools developed around coloured Petri nets allow tokens to
have time stamps during simulation, in addition to its value.

4. PRES: Petri Net based Representation for Embedded Systems

In the following we present PRES, a Petri net based model, aimed to represent embedded sys-
tems. As mentioned before, it can be used to model a system at different levels of detail using
the feature of hierarchical decomposition. The model also includes an explicit notion of time,
which is essential for the design of embedded systems. In PRES tokens hold information and
transitions, when fired, perform transformation of data. As typical of Petri nets, our model is
innately asynchronous which means that there is no global clock mechanism for firing transi-
tions. Concurrency and sequential behavior are naturally represented in PRES.

4.1. Basic Definitions

Definition 1. A Petri Net based Representation for Embedded Sysien®s five-tuple

N = (P T,I O M, where

P ={py Py Py} is afinite non-empty set pfaces

T ={t,t, ..., t,} is afinite non-empty set tfansitions

| OP x T is afinite non-empty set afiput arcswhich define the flow relation between places
and transitions;

OO Tx P is a finite non-empty set adutput arcswhich define the flow relation between
transitions and places;

Mg is the initialmarkingof the net (see Definition 3).

Defined in this way, this structure is amdinary Petri nef which means that there exist no
multiple arcs, if any, from a placp; to a transitiont; (or from a transitiort; to a placep;).
Additionally, P andT must be disjoint, i.eP n T = [

Properties, characteristics, and behavior of PRES will be introduced and defined in detail in
what follows.

Definition 2. Atokenis a pairk = 04, r [0 where

vy is thetoken valueThis value may be of any type, e.g. boolean, integer, etc., or user-defined
type of any complexity (for instance a structure, a set, a record);

re is thetoken timea finite positive real number representing the time stamp of the token.
LetK be the set of all possible token types for a given system.

Definition 3. Amarkingis a functionM : P - {0, 1} that denotes the absence or presence of
tokens in the places of the net.

For our purposes, we will only consideoundedPetri nets, i.e. nets where the number of
tokens in each place does not exceed a finite number. Specifically, we aim to use structures
which aresafeor 1-boundedSince the intended Petri net in this model must be safe, this func-
tion M might also express the number of tokens in each place. We will say that ajpiace

markedif M(p) = 1. Note that a markingVl implicitly assigns one tokek to each marked
place.

We introduce the following notation which will be useful in defining the dynamic behavior of
PRES: when a placgis marked k" denotes the token presenp.ihus, the token value of
the token in a marked plapewill be Vi and the token time of the tokenpmvill be Moo
Definition 4. Thetype functiont : P » K associates a place with a token type. Thus, we will
call t(p) the token type associated with the plpce

It is worth to point out that the token type related to a certain place is fixed, that is, it is an
intrinsic property of that place and will not change during the dynamic behavior of the net.

4.2. System Description

Definition 5. Thepre-setof a transition°t = { pO P|(p) 01} isthe set afput placesoft.
Similarly, thepost-sebf a transitiont® = { p O P|(t, p) O O} is the set afutput placef t.

Definition 6. For every place in the post-¢ét of a transitidhere exists aoutput function
associated tb Let us consider the transitiomvith its pre-seft and post-s&ét . Formally,

Op; Ot Of 2 7(dy) X T(G) X ... XT(0y) — T(Py)
with °t = {Qy, 0y, ..., 0y} andt® = {py, Py, ..., P} -
Output functions are very important when describing the behavior of the system to be mod-
eled. They allow systems to be modeled at different levels of granularity with transitions rep-
resenting simple arithmetic operations or complex algorithms.

Definition 7. For every output function associated to a transititimere exists éunction delay
fd, a positive real number, which represents the execution time (delay) of that function. For-
mally,

. Of;, Ofd, 00"
with 00 the set of positive reals. If no function delay is explicitly defined, it will be assumed
0.

Definition 8. Theguard G of a transitiont is the set of booleanonditionsthat must be satis-
fied in order to enable that transition, when all its input places hold tokem®nditionof a
transition

cond : T(dy) X T(0y) X ... xT(ql) — {0, 1}
is function of the token values in the places of the pre-get®f= {q,, d,, ..., 0.}).
The guardG; of t is the conjunction of all conditions of that transition. There is no restriction in
the number of conditions for a certain transitionalf conditions are satisfie@; = 1, other-
wiseG; = 0. If no guard is explicitly defined, it will be assumed constantly asserted.

Definition 9. Every transition hasfanctionality The functionality of a transitiohis defined

in terms of:

(1) Its output functions

(i) Its function delays

(iii) Its guard

Intuitively, this functionality describes the “behavior” of the transition when it is fired. Unlike
the classical Petri net model, each token holds a value and a time tag. When a trdnsition
fired the markingM will generally change by removing all the tokens from the pre-sétot

depositing one token into each element of the post-sét Diese tokens, added t&6 , have
values and time stamps which depend on the previous tokéhs in and the functionality of

4.3. Dynamic Behavior

Definition 10. A transitiort is said to beenabledf all places of its pre-set are marked, its out-
put places different from the input orfesre empty, and its guard is asserted. Formally, for a
given markingM, a transitiont 0 T i®nabled iff(if and only if)

[Og O°t M(q) =1] O[0Op; O{t°*-°t} M(p;) =0] O[G; =1]
If the transitiont is enabled, we will note it ag. Then, the subset of enabled transitions, for
certain markingv, willbe T* = {tOT|t*} .

Definition 11. Every enabled transitidthhas atrigger time tt that represents the time instant
at which the transition may fire. Each token in the pre-set of an enabled transition has, in gen-
eral, a different token time. From the point of view of time, the transition could not fire before
the tokens are ready. The concept of trigger time is needed to describe how token times are
handled when the transition is fired. The trigger time of an enabled transition is the maximum
token time of the tokens in its input places,

tt* = maxrq,r g, I q)
where the pre-set ¢f is °t = {q;, 0y, ..., 9% . ¥ K
Note that this trigger time varies during the execution of the net and, if the transition is not
enabled, it does not make sense.

Definition 12. Thefiring of an enabled transition changes a markignto a new marking
M*. As a result of firing the transitont (with °t ={q,,dy, ..., g,y and
t> = {py Py ..., Pp}), the following events occur:
(i) Tokens from its pre-set are removed,;

Og, 0°t M'(q) = 0
(i) One token is added to each place of its post -set;

Dp dt° M (p) =1
(i) Each new token deposited itf has a token value, which is calculated evaluating the
respective output function with the token values of tokert$ in as arguments;

Op; O0t° v, = fj(vq, ap 1V q)
(iv) Each new token added 6 has'a token iifne, Which i&the sum of the respective function
delay and the trigger time of the transition;
Dp ate r fdJ+tt*

Note that only enabled transltlons may fl'fe The execution time of the functionality of that
transition is considered in the time tag of the new tokens.

4.4. Hierarchy

Definition 13. AHierarchical PRES Structures a seven-tupledN = (A, P, T, I, O, p, M)
where
A = {HNy, HN,, ..., HN,} is afinite set ofubnetswith

HN; = (Ayny Py Tang Tang Oung Prng Min, o)

1. A place may be, at the same time, input and output of a transition.

={py Py ..., Py} is afinite non-empty set of places;
= {t,t, ..., 1.} is afinite set of transitions;
| OP x T is a finite set of input arcs;
OO T x P is a finite set of output arcs;
PU{Pyn, U Pyy, 0 ... OPyy} xP is aplace assignment relatiowhich mapssomeof
the places of the subnets onto places of the hierarchical (higher level) net;
Mg is the initial marking.

4.5. A Simple Example

This example will not show all the power of the model and its capabilities but rather explain
the different concepts and definitions aforementioned. The purpose of this very simple net is to
illustrate the semantics of our model. The net represents a multiplier which takes two positive
integers and produces as output the result of multiplying those numbers. It implements a sim-
ple algorithm of iterative sums.

The PRES model of this multiplier is shown in Figure 1. We also show the C description cor-
responding to this algorithm. Like in classical Petri nets, places are graphically represented by
circles, transitions by boxes, and arcs by arrows. For this exaRPple{ A B X Y, Z G

andT = {t;,t, t5 t,} . Inthis particular example, we consider that the function delays for a
given transition are the same, so we can call it transition tira@d it is inscribed to the left of
transition boxes. For instanceg = 6 time units. We have borrowed notation from Coloured
Petri nets [Jen92] to graphically express output functions and guards. We use inscriptions on
the arcs: given a transition, its output functions (inscribed on output arcs) are captured as
expressions in terms of the variables written on its input arcs. Guards are enclosed in square
brackets and are also functions of the variables on input arcs.

int mult(int a,int b)
{
int x,y,z;
X=a;
y=b;
z=0;
while (y>0) {
zZ=z+X;
y=y-1;
}

return z;

c=mult(a,b); @é+x L , @
(@) (b)
Figure 1. Multiplier: (a) algorithm; (b) PRES.

Figure 2 shows the behavior of the net for an initial markifg(Mg(A) = Mg(B) = 1). Marked
places are shaded and enabled transitions are highlighted using thicker lines. Token informa-
tion is also shown in marked places. When several transitions are enabled simultaneously, the

one that has minimum trigger time will fire in the next step. If the trigger time of two or more
enabled transitions is the same, any of them may fire (one at each step). Let us assume, for the
initial marking,k* = (5, 0) anckB = (2, 0). It means that the token in plaséas a value 5 and

a time stamp 0. Initially, transitiorts andt, are enabled and both have trigger tithé = tt,*

= 0. Then eithet; ort, may fire.

[y=0]
y-1
O

Figure 2. Dynamic Behavior of the Multiplier.

Firing t; produces the marking shown in Fig. 2(b), whife= (5, 2),k% = (0, 2) andk? = (2,

0). Value and time of the new tokens are calculated following Definition 12. It is easy to see
that, for this particular system, firing transitions with equal trigger time in any order does not
affect the final result.

Fig. 2(c) illustrates some interesting aspects of PRES. Even if each place in the pre;set of
(°t, = {X,Y, Z) has a token, the transition is not enabled because its guard is not asserted.
For the marking in this figurdg is the only enabled transition so it will be fired in the next
step. Looking at the token time of tokensit, , we note that they have different time stamps

(rkX =r; =2, My = 1). Hencet; may not fire beforét,* = max ro rkz) =2

kZ kY ’

After ts fires the marking changes into the one shown in Fig. 2(d). Let us analyze, for instance,
the new token irZ, k% = (5, 8). The arctg, Z) has the inscription “z+x”, so that the token value

in Zis calculated adding the previous token valueX ahdZ (vkZ = VetVx = 0+5 =5).

The token time irZ is done byr ; = rtg+1tt;* = 6+2 =18 .

Finally, Fig. 2(f) shows the output result of the multiplication (10) and the token time shows
the total time needed for the operation (18 time units). The net is not live in this configuration
because it is not possible to ultimately fire any transition. If this multiplier is part of a larger
system, the token in plac@will likely be consumed and new tokens will be added\tandB,
allowing the net to perform its function again.

5. Formal Verification of Embedded Systems

5.1. Related Work

The increasing complexity of embedded systems poses a challenge in verifying their correct-
ness. Some verification approaches, suitable to hardware/software systems, have been pro-
posed recently. Aluet. al[Alu96] present a model checking procedure based on the Hybrid
Automata model: given a system represented as communicating machines with real-valued
variables, the method shows if an ICTL-formula (Integrator Computation Tree Logic), speci-
fying system requirements, holds for all possible states of the automaton. Using the same
model, Hybrid Automata, another coverification method is proposed in [Hsi99], where com-
plex systems can be analyzed using a simplification strategy to verify individually the hard-
ware, the software and the interface. Balaenh al [Bal96] introduce a verification
methodology based on Codesign Finite State Machines (CFSMs), in which CFSMs are trans-
lated into traditional state automata. This technique checks if all possible sequences of inputs
and outputs of the system satisfy the desired properties. To do so, those sequences that meet
the requirements constitute the language of another automaton, reducing the problem to verify
language containment between automata. In [Gar98], a partitioned system, described using a
Pascal-like language, is the input to the proposed coverification framework in which CTL and
TCTL formulas are evaluated in order to check behavioral and timing properties. An approach
to symbolic model checking of process networks and related models is proposed in [Str98],
where IDDs (Interval Decision Diagrams) are used to represent multi-valued functions.

On the other hand, related work in the area of Petri nets (PNs) includes [Wim97], which pre-
sents a BDD-based model checker for safe nets. Although the approach is intended to verify
Petri nets in general, with no particular interest in embedded systems and without dealing with
time information, it studies different forms of describing PNs using the SMV system [SMV/],
developed at Carnegie Mellon University. An interesting approach used for analysis and verifi-
cation of bounded Petri nets is presented in [Pas94]. Using the efficiency of BDDs to represent
sets of markings and reduction rules to transform PNs, this technique can be used for reach-
ability analyses and verification of some properties of PNs with large state spaces.

10

5.2. Symbolic Model Checking

The above approaches reveal a big interest for model checking in the community of hardware/
software codesign. In consequence, this section will consider the basic ideas of model check-
ing and BDDs as efficient structures to represent symbolically transition relations and sets of
states.

Model checking is an approach to formal verification that lets the designer determine if the
model of a system satisfies certain required properties. The model checker proves whether
those properties hold. Clarlet. al[Cla86] introduced a model checking algorithm for formu-

las specified in temporal logic CTL (Computation Tree Logic). CTL is based on propositional
logic of branching time, that is, a logic where time may split into more than one possible
future using a discrete model of time. Formulas in CTL are composed of atomic propositions,
boolean connectors and temporal operators. Temporal operators consist of forward-time oper-
ators G globally, F in the future X next time, andJ until) preceded by a path quantifiex @ll
computation paths, artl some computation path). Thus, formulas may describe properties of
computation paths over labeled state-transition structures. This algorithm, however, requires
the entire state transition graph to be constructed, causing a serious state explosion problem.

One way to overcome the state explosion is to represent symbolically the transition relation
instead of explicit enumeration. A compact and efficient form of representing boolean formu-
las and transition relations is using ordered binary decision diagrams (BDDs). BDDs are
canonical representations that make boolean manipulations much simpler computationally
[Bry92]. Symbolic model checking [Bur94] makes use of BDDs to represent sets of states and
the transition relation, and the algorithm employs fixed-point techniques that manipulate sets
using their characteristic functions encoded as BDDs. Therefore, it is possible to reason about
designs with large state spaces without constructing the state graph of the system.

SMV [SMV] is one of the available tools that uses the BDD-based symbolic model checking
algorithm. This model checker has an input language that allows to describe systems using
boolean, scalar or fixed-array data types, and boolean and basic scalar operations. CTL formu-
las to be checked, also specified in the SMV language, may express safety, fairness, liveness,
and deadlock-freedom, among other properties.

6. The Coverification Methodology

The coverification methodology will be explained in reference to a medical monitoring system
in order to illustrate the different aspects of this technique. This system has been modeled
using PRES and will be formally verified using this methodology.

6.1. Patient Monitoring Application

Figure 3 shows a net represents a patient monitoring system as introduced in [Dro93] and
studied in [Cam94]. The patient monitor measures physiological phenomena and analyzes this
information. If the system detects abnormal conditions on the patient, it activates aural and
visual alarms. The patient condition information is displayed and recorded as well. The func-
tionality of the system can be captured as a set of processesctjn@eprocess reads infor-

11

mation from the sensors. Usually this information contains spurious data that must be
debuggedfilter processes such data and eliminates false information received from the sen-
sors. Once the information has been filtered, processes which detect anomalous conditions on
blood pressure, heart rate, or temperature may start, depending on the data available. For
instance, a possible anomaly in the blood pressure will make the prbloessactivate, in

order to study the data. If, after analyzing the information, an irregular condition of the patient

is encountered, the procesgarm will be executed and an audio signal (procaadio) will be
triggered. The information resulted from tHidter process is displayed on a screen and
recorded by the processdsplayandrecorder respectively. The specification of the patient
monitoring system includes a timing constraint which states that data from sensors must be

sampled every 15 ms and that acquisition of new information requires the system to finish its
functionality before the next execution.

rt, display |

rt,, ecorder ‘

[

', blood|iGe) [n, heart|[Ge) [r, templiGy]

Figure 3. Medical Monitoring System.

The medical monitoring system is modeled in PRES as shown in Figure 3, where the opera-
tions performed in the process are captured by transitions and the data dependence between
them is captured by the structure of the net. Transitions have been named after the processes.
The markingM,, for the model of the monitoring system, shoR&as the only place initially
marked. As it has been mentioned above, output functions are very important when describing
the behavior of the system to be modeled. For instance, in Figure 3, there are three output
functions associated to transiti@fier, which define token values of new tokensH8, P7 and

P9, whenfilter is fired (executed). These three functions represent what has been earlier called
the proceséilter. In this particular example, we assume that all function delays corresponding

to output functions associated to a given transition are identical. This time is captured as “tran-

12

sition time” and is inscribed on the respective transition box. Thygsepresents the execution
time of the functions associated to transitiemp

In Figure 3, for exampIeGt4 represents the condition that must be fulfilled to execute the pro-
cessblood If no guard is explicitly defined for a given transition, that transition will be
enabled whenever its input places are marked. There are two transitions that have no name
attached: we have introduced them in order to model the situation in which no abnormal con-
dition is detected. The associated execution time is zero because there are no activities to be
performed in this case.

6.2. Methodology

The coverification method presented here is based on the Petri net based model introduced in
Section 4. The purpose of the approach presented in this work is to reason about embedded
systems, using PRES as underlying representation. There are several types of analysis that can
be performed on systems represented in this model. A given marking, i.e. absence or presence
of tokens in places of the net, may represent the state of the system in a certain moment in the
dynamic behavior of the net. Based on this, different properties can be studied. For instance, in
a landing gear controller, the door must not close while the plane is landing, under any circum-
stance. This sort of safety requirement might be formally proven, checking that the places
which represent such states are never marked simultaneously. Sometimes, the designer could
be interested in proving that the system eventually reaches a certain state whose marking rep-
resents the completion of a task.

The kind of analysis described above, calledchability analysisis very useful but says
nothing about timing aspects nor does it deal with token values. In many embedded applica-
tions, however, time is an essential factor. Moreover, in hard real-time systems, where dead-
lines can not be missed, it is crucial to reason quantitatively about temporal properties to
assure the correctness of the design. Therefore, it is needed not only to check that a certain
state will eventually be reached but also to ensure that this will occur within some bound on
time. In PRES, time information is attached to tokens, so that we can analyze quantitative tim-
ing properties: we may, for example, prove that a given place will always be marked in the
future and that its time stamp, for any possible condition, will be less than a certain time value
that represents a temporal constraint. Such study will be ¢eflecanalysis

A third type of analysis using PRES involves reasoning about values of tokens in marked
places. This type adbehavior analysiss not part of the coverification method proposed here.

In this work we address just reachability and time analyses. In other words, we concentrate on
the absence/presence of tokens in the places of the net and their time stamps, but we do not
deal with the values of those tokens. We assume that output functions (see Section 4) are cor-
rectly defined.

As it has been mentioned above, in a PRES model a place may hold at most one token for a
certain marking. Thus, it is possible to encode a marking—or a set of markings—as a boolean
function where the variables correspond to places of the net. Boolean functions can be
straightforwardly represented by BDDs. Firing a transition in a Petri net changes the marking
into a new one, which is a variation in the state of the system. It is possible to build the BDD
that represents the transition relation of the system and then compute efficiently the reachable

13

states using BDDs [Bry92], [Hu97]. With such a BDD-based representation we can formally
verify properties, specified in CTL, using symbolic model checking [Bur94] and accomplish
reachability analyses. In our experiments, we use the SMV tool (a BDD-based symbolic
model checker) [SMV] and its input language to describe and verify systems modeled in
PRES.

A program in SMV describes both the system and the specification (properties to verify). The
system is described as a collection of “modules”. Each module may contain variables, its ini-
tial state, and assignments of variables for the next state. A “process” is an instance of a mod-
ule, in such a way that the model checker executes a step by choosing non-deterministically a
process and then executing all assignment statements of that process in parallel.

To translate a PRES model into the SMV input language, we declare inathenodule a
boolean as well as an integer variable for each place of the net. The boolean variable repre-
sents absence/presence of tokens in that place, while the integer one represents the time stamp
of the token when the particular place is marked. We instantiate each transition as a process
that has as parameters its input and output places as well as time stamps of tokens in those
places. In thenain module we also define the initial marking of the net assigning initial values

to the variables that represent places and to time stamps of tokens in initially marked places.
We describe each transition of the Petri net as a module that adds/removes tokens (changes the
marking) when it is executed (fires). Figure 5 illustrates the description dblte process
corresponding to the implementation shown in Figure 4(b). When a transition fires, it changes
the marking of the system removing tokens from its input places and adding new tokens to
output places. This is captured usieg assignments for input/output places of the transition.
Thus, if the transition is enable@nfoled = P3 & Pa & P4), execution ofblood will assign

boolean values t®3, Pa and P4 according to the transition firing rules, that istfo output

places and to input places.

As stated in the definition of PRES, time tags of new tokens are calculated as the sum of the
trigger time and the respective function delay, @igger_time + func_delay_a) mod 28 . In this

case, we are using integer addition “modulo 28” because integer variables in SMV must be
bounded when they are defined. The bound of variables for time stamps, in the example of
Figure 4(b), is27. This upper bound can be determined summing all transition times when
there no loops in the net, and it represents the maximum time stamp that a token may have in
the net (this is, of course, assuming that time stamps of all tokens in the initial marking are
zero). The larger the value of this bound, the longer is the computation time needed to verify
timing properties. The complexity of this problem grows exponentially in the size of the
bound for time stamps. This becomes a limitation of our approach when large time stamps are
needed to characterize the timing aspects of a system. Every transition described as an SMV
process must include the declaratiomrness running to ensure that it is executed infinitely
often and the system progresses.

In PRES each token has two components: a value and a time tag. Time tags, according to the
definition of the model, can be positive reals. However, the reader might have noted, that in
order to use the SMV system we need to restrict the time to discrete (integer) values. Another
issue is that, since we are not dealing with token values, only certain kind of systems that
include guards in their models may be analyzed using this approach. On the other hand, mod-
els in which transitions bear no guard may be straightly studied. For some models that include
guards, as the one in Figure 3, those guards are “complementary”. For this exé)g;p@u , :

14

Gt5 and Gt6 are complementary because when®&is marked, just one of these guards will

be asserted. Similarly, ar(HtB are complementary. For PRES models with complementary
guards, those guards can be ignored without affecting the reachability and time analyses. In
that case, the model will exhibit non-determinism when firing transitions whose guards have

been dropped.

6.3. Verification of the Medical Monitoring System

In this section we show the verification of the medical monitoring application described above
for two possible implementations of the system. This practically illustrates a transformational
design space exploration methodology based on formal verification. We consider first, in
Figure 4(a), an implementation using a single programmable processor. Note that values have
been assigned to transition times. These times are the estimated worst case execution times of
the respective functions on the selected processor. For example, the transition tiearfcs

4 ms. The reader can also notice that, by reason of the considerations explained in the previous
section, the guards have been ignored. The pRecgnitially marked) models the processor:

this place is both input and output of all transitions, which captures processes mapped onto
that processor. We use lines with no arrowheads to indicate this bidirectional flow relation
between transitions arfée. PlaceP1 models the data read from the sens&8andP10the
information to be recorded and displayed, respectively, Rfids the indicator which shows

that the analysis has been performBd, P6, P8 andP10 are the places through which the
system interacts with its environment. Initially1 and Pa are marked and time stamps for
tokens inPlandPaarer ., = 0 andr .. = O . If the system operates properly, a new token
will be added td1 after ﬁwe patient monitor finishes its functionality.

_g P10
5O
— L]
g P10 o
g—;_@ z P8
o] g —C)
_— LN
5|
L]
[~

‘5 blood‘ ‘4 heart‘ ‘3 temp‘

\5 blood‘ \4 heart‘ \3 temp‘

(@) (b)

Figure 4. Different Implementations of the Patient Monitoring System.

15

We have to verify first that the system, under any circumstance, will complete its functionality,
that is, eventuallyr6, P8 andP10will be marked. Using the SMV tool, this property can be

expressed as a CTL formula preceded by the by the keyward
SPEC AF (P6 & P8 & P10)

which reads “always eventually (P6 & P8 & P10)”, i.e. the state in wil6hP8 andP10are
simultaneously marked is inevitable. This formula holds for both representations in Figure 4.
The second property, that concerns our design, is the constraint of a maximum delay of 15 ms.
We have to formally verify that whelR6, P8 andP10are marked (which has been shown to be
true) time stamps of tokens in these places are less than or equal 15. We may express this con-

straint in our description as three CTL formulas:
SPEC AF (P6 & (time_P6<=15))
SPEC AF (P8 & (time_P8<=15))
SPEC AF (P10 & (time_P10<=15))

All three formulas above turn out to be false, for the model in Figure 4(a), and SMV gives
counter-examples. As the implementation in Figure 4(a) does not meet the time constraint, we
consider an alternative architecture. Figure 4(b) models the patient monitoring system imple-
mented using one programmable processor (representBd) laynd one hardware component
(Pb). Processeacquire filter, recorderanddisplayare mapped ont®b while the other pro-
cesses ontBa. A new transition §omn) has been introduced in the model to consider the cost
of inter-processor communication. This processmmis the only one that utilizes bus
resources (plac8). Note that execution times of processes mapped Bhtbave changed

with respect to the previous design alternative. For the model in Figure 4(b) we have formally
verified, using symbolic model checking through the SMV system, that the properties men-
tioned above do hold for all possible situations. This implementation has superior performance
because of parallelism and lower execution times for the hardware.

MODULE blood(P3,time_P3,Pa,time_Pa,P4,time_P4)
ASSIGN
next(P3) := case
enabled : 0;
1:P3;
esac;
next(Pa) := case
enabled : 1;
1:Pa;
esac;
next(P4) := case
enabled : 1;
1:P4;
esac;
next(time_Pa) := case
enabled : (trigger_time + func_delay_a) mod 28;
1:time_Pa;
esac;
next(time_P4) := case
enabled : (trigger_time + func_delay_4) mod 28;
1:time_P4;
esac;
DEFINE
func_delay_a :=5;
func_delay_4 :=5;
trigger_time := case
(time_P3 >=time_Pa) : time_P3;
(time_Pa >= time_P3) : time_Pa;
esac;
enabled := P3 & Pa & !P4;
FAIRNESS running

Figure 5. Description of Transition blood using SMV.

16

7. Conclusions

We have presented PRES, a Petri net based model with extensions to capture important fea-
tures of embedded systems. The model is simple, intuitive and can be easily handled by the
designer. We introduced an approach to formal verification of embedded systems using sym-
bolic model checking with PRES as underlying computational model. Thus, coverification is
possible dealing with timing properties.

It has been also shown how to translate PRES models into the input formalism of a model
checker. A patient monitoring system has been studied to illustrate the applicability of the cov-
erification approach to practical systems. Transformations during design space exploration can
be smoothly captured and properties to be checked can derived directly from the model in an
easy manner as well.

One of the main contribution lies in modeling embedded systems in such a way that the repre-
sentation is adequate to be analyzed using formal methods. The model that we use is a Petri
net based notation in which tokens bear both value and time tag. We address a coverification
method that allows to reason formally about the presence/absence of tokens in places of the
net and their time stamps, but we do not deal with their token values. This is a problem worth
for further research.

References

[Alu96] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic Symbolic Verification of Embedded Systems,” in
IEEE Trans. Software Engineeringpl. 22, pp. 181-201, March 1996.

[Bal96] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli, “Formal Verification of
Embedded Systems based on CFSM Network$rat. DAG 1996, pp. 568-571.

[Bry92] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagram#Cl Com-
puting Surveysvol. 24, pp. 293-318, Sept. 1992.

[Bur94] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill, “Symbolic Model Checking for
Sequential Circuit Verification,” IlEEE Trans. CAD of Integrated Circuits and Systend. 13, pp. 401-424,
April 1994.

[Cam94] S. Campos, E. M. Clarke, W. Marrero, and M. Minea, “Timing Analysis of Industrial Real-Time Sys-
tems,” inProc. Workshop on Industrial-Strength Formal Specification Technid9@s, pp. 97-107.

[Cla86] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-State Concurrent Sys-
tems Using Temporal Logic Specifications,”ACM Trans. on Programming Languages and Systewis8, pp.
244-263, April 1986.

[Cor99] L. A. Cortés, P. Eles, and Z. Peng, “A Survey on Hardware/Software Codesign Representation Models,”
SAVE Project Report, Dept. of Computer and Information Science, Linkdping University, Linkdping, 1999.
[Dit95] G. Dittrich, “Modeling of Complex Systems Using Hierarchically Represented Petri NetBfoio. Intl.
Conference on Systems, Man and Cybernetie85, pp. 2694-2699.

[Dro93] P. J. Drongowski, “Software architecture in realtime systemd?tat. Workshop on Real-Time Applica-
tions, 1993, pp. 198-203.

[Edw97] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, “Design of Embedded Systems:
Formal Models, Validation, and Synthesis,Hroc. IEEE vol. 85, pp. 366-390, March 1997.

[Ess98] R. Esser, J. Teich, and L. Thiele, “CodeSign: An embedded system design environmi&ift, Piroc.
Computers and Digital Techniquesl. 145, pp. 171-180, May 1998.

[Gan94] J. D. Gannon, J. M. Purtilo, and M. V. ZelkowiRoftware Specification: A Comparison of Formal
Methods Norwood, NJ: Ablex Publishing, 1994.

[Gar98] E. H. A. Garcez and W. Rosenstiel, “CVF - Coverification FrameworkProc. Brazilian Symposium

on Integrated Circuit Desigri1998, pp. 103-106.

17

[Gen81] H. J. Genrich and K. Lautenbach, “System modelling with high-level Petri nefBijdaretical Compu-

ter Sciencevol. 13, pp. 109-136, Jan. 1981.

[Hsi99] P.-A. Hsiung, “Hardware-Software Coverification of Concurrent Embedded Real-Time Systems,” in
Proc. Euromicro RTSL999, pp. 216-223.

[Hu97] A. J. Hu, “Formal Hardware Verification with BDDs: An Introduction,”roc. Pacific Rim Conference

on Communications, Computers and Signal Proces&®@j7, pp. 677-682.

[Jen91] K. Jensen and G. Rozenberg, Hilgh-level Petri NetsBerlin: Springer-Verlag, 1991.

[Jen92] K. JenserGoloured Petri NetsBerlin: Springer-Verlag, 1992.

[Ker99] C. Kern and M. R. Greenstreet, “Formal Verification in Hardware Design: A Survepg{CiM Trans. on
Design Automation of Electronic Systewdal. 4, pp. 123-193, April 1999.

[Lav98] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich, “Models of Computation for Embedded Sys-
tem Design,” ilNATO ASI Proc. on System Synthek@98, pp. 1-57.

[Lee96] E. A. Lee and A. Sangiovanni-Vincentelli, “Comparing Models of Computatioritac. ICCAD 1996,

pp. 234-241.

[Mac96] P. Maciel and E. Barros, “Capturing Time Constraints by Using Petri Nets in the Context of Hardware/
Software Codesign,” iRroc. Intl. Workshop on Rapid System Prototyp®P6, pp. 36-41.

[Mer76] P. M. Merlin and D. J. Farber, “Recoverability of Communication Protocols—Implications of a Theoret-
ical Study,” inlEEE Trans. Communicationgol. COM-24, pp. 1036-1042, Sept. 1976.

[Mol82] M. K. Molloy, “Performance Analysis Using Stochastic Petri Nets,IlHEE Trans. Computersol. C-

31, pp. 913-917, Sept. 1982.

[Mur89] T. Murata, “Petri Nets: Analysis and Applications,Rroc. IEEE vol. 77, pp. 541-580, April 1989.
[Pas94] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia, “Petri Net Analysis Using Boolean Manipulation,” in
Application and Theory of Petri Nets 199R. Valette, EQLNCS 815 Berlin: Springer-Verlag, 1994, pp. 416-
435.

[Pen94] Z. Peng and K. Kuchcinski, “Automated Transformation of Algorithms into Register-Transfer Level
Implementations,” iIREEE Trans. CAD of Integrated Circuits and Systevos 13, pp. 150-166, Feb. 1994.

[Pet81] J. Petersoetri Net Theory and the Modeling of SysteBrgglewood Cliffs, NJ: Prentice-Hall, 1981.
[Ram74] C. Ramchandani, “Analysis of asynchronous concurrent systems by timed Petri nets,” Project MAC,
Technical Report 120, Massachusetts Institute of Technology, Cambridge, Feb. 1974.

[Sif80] J. Sifakis, “Performance Evaluation of Systems using NetdNeh Theory and Application§V. Brauer,
Ed.LNCS 84 Berlin: Springer-Verlag, 1980, pp. 307-319.

[SMV] The SMV SyStemr,mp://www.cs.cmu.edu/~modelcheck/smv.html

[Sto95] E. Stay, “A Petri Net Based Unified Representation for Hardware/Software Co-Design,” Licentiate The-
sis, Dept. of Computer and Information Science, Link6ping University, Linkbping, 1995.

[Str98] K. Strehl and L. Thiele, “Symbolic Model Checking of Process Networks Using Interval Diagrams Tech-
nigues,” inProc. ICCAD 1998, pp. 686-692.

[Wim97] G. Wimmel, “A BDD-based Model Checker for the PEP Tool,” Major Individual Project Report, Dept.
of Computing Science, University of Newcastle, Newcastle, May 1997.

[Zub96] W. M. Zuberek and I. Bluemke, “Hierarchies of Place/Transitions Refinements in Petri Ne®s¢gdn
Conference on Emerging on Technologies and Factory Automasds, pp. 355-360.

[Zur94] R. Zurawski and M. Zhou, “Petri Nets and Industrial Applications: A Tutorial/ERE Trans. Industrial
Electronics vol. 41, pp. 567-583, Dec. 1994.

18

	Verification Methodology for Heterogeneous Hardware/Software Systems
	Abstract
	1. Introduction
	2. HW/SW Codesign Representation Models
	2.1. Modeling Embedded Systems using Petri Nets

	3. Extensions to Petri Nets
	4. PRES: Petri Net based Representation for Embedded Systems
	4.1. Basic Definitions
	4.2. System Description
	4.3. Dynamic Behavior
	4.4. Hierarchy
	4.5. A Simple Example

	5. Formal Verification of Embedded Systems
	5.1. Related Work
	5.2. Symbolic Model Checking

	6. The Coverification Methodology
	6.1. Patient Monitoring Application
	6.2. Methodology
	6.3. Verification of the Medical Monitoring System

	7. Conclusions
	References

