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Abstract

Modern electronic systems are constituted by heterogeneous elements, e.g. hardware/so
and are typically embedded. The complexity of this kind of systems is such, that tradi
validation techniques, like simulation and testing, are not enough to verify the correctne
these systems. In consequence, new formal verification techniques that overcome the
tions of traditional validation methods and are suitable for hardware/software systems
needed. Formal methods require the system to be represented by a formal computa
model with clear semantics. We present a Petri net based representation, called PRES,
is able to capture information relevant to embedded systems. This report also explor
approach to formal verification of embedded systems in which the underlying representa
PRES. We use symbolic model checking to prove the correctness of such systems, sp
properties in CTL and verifying whether they hold under all possible situations. This cov
cation method permits to reason formally about design properties as well as timing req
ments. This work has been done in the frame of the SAVE project, which aims to stu
specification and verification of heterogeneous electronic systems.

1. Introduction

In the coming years, most objects of common use will be based on electronic systems
electronic market demands high-performance and low-cost products, and—for safety-c
applications—reliable components. Thus, the chip industry has faced the challeng
increasing the system complexity and reducing design times. In order to reduce time-to
ket, designers tend to use programmable processors. When using programmable comp
new specifications of evolving products can easily be adapted to previous designs. T
nowadays programmable processors are powerful, certain applications demand spec
tures, in terms of performance, power consumption, and correctness, among others,
some systems require the design of specific hardware. Still for those hardware compo
there exists a trend to re-use elements like intellectual property (IP) blocks.

Most modern electronic systems consist of dedicated hardware elements and software r
on specific platforms. Such systems are obviously heterogeneous, i.e. are composed
ments with inherent distinct properties. For instance, they may contain microproce
1
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(MPUs), digital signal processors (DSPs) and microcontrollers (MCUs), as well as applic
specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs). At the
time, such systems are typically embedded, that is, they are part of larger systems and i
continuously with their environment. Hardware/software codesign, i.e. the concurrent d
of mixed hardware/software systems, exploits the advantages of HW and SW working cl
for a given task as long as they are considered as a whole instead of independent e
Although benefits of hardware and software working together are evident, the design of
complex systems, involving both HW and SW components, is a non-trivial task.

We advocate design cycles based on formal models so that the synthesis of a design from
ification to implementation can be carried out systematically. In order to devise system
meet the performance, cost and reliability goals, the design process should be founded
clear representation that allows to accomplish the design cycle, based on formal no
Modeling is an essential issue of any systematic design methodology. In this work, we pr
a model suited to embedded systems. The model, called Petri net based Representa
Embedded Systems (PRES), is an extension to classical Petri nets. It explicitly capture
information, allows representations at different levels of granularity, and supports hierarc
decomposition. Another important feature of this model is its expressiveness since the t
might carry information. Concurrency and sequential behavior are also captured by P
The above characteristics are very important when modeling embedded systems. As an
Petri net based model, PRES is inherently asynchronous.

The inherent heterogeneity of embedded systems makes them very complex and diffi
verify. Moreover, the increasing demand on high-performance products has boosted the
of sophistication of such systems. For the levels of complexity typical to modern electr
systems, traditional validation techniques, like simulation and testing, are neither suffi
nor viable to verify the correctness of digital designs. First, these techniques may cover
small fraction of the system behavior. Second, long simulation times and bugs found la
prototyping phases have a negative impact on time-to-market. Formal methods are beco
practical alternative to ensure the correctness of designs. They might overcome some
limitations of traditional validation methods. Formal verification can give a better underst
ing of the system behavior, help to uncover ambiguities and reveal new insights of the s

Formal methods have been extensively used in software development [Gan94] and ha
verification as well [Ker99]. However, they are not commonplace in embedded sys
design. There is a lack of techniques for formal verification of hardware/software system
this paper we also present an approach to verification of embedded systems using sy
model checking, based on PRES. With this approach it is possible to validate properties
system as well as timing requirements. Design properties are specified as CTL (Compu
Tree Logic) formulas and the model checker determines whether they are satisfied.

2. HW/SW Codesign Representation Models

Many computational models have been proposed in the literature to represent digital sy
These models encompass a broad range of styles, characteristics and application domai
ticularly in the field of hardware/software codesign, a variety of models has been deve
and used for system representation. Many different models coexist in the scenario of HW
codesign. Their features largely differ even though they all are computational models inte
2
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for heterogeneous hardware/software systems. These computational representations ha
ally distinct characteristics and support diverse kinds of applications.

Many of the computational models used for hardware/software systems are based on
sions to finite-state machines, Petri nets, discrete-event systems, data-flow graphs,
called synchronous/reactive models, communicating processes, among others. We ad
several representative computational models used to capture hardware/software s
[Cor99]. The key aspects of these models are discussed and a comparison of their mo
vant features is presented. Edwardset al. [Edw97] evaluate the properties of several represe
tations employed for the design of embedded systems, based on the tagged-signal
[Lee96], a framework where computational models can be compared. Similarly, Lavaget
al. [Lav98] review and study some models of computation for embedded system design
the same framework.

2.1. Modeling Embedded Systems using Petri Nets

Due to their intrinsic characteristics and particular extensions to the conventional model
might be an interesting representation for embedded systems. We address in this sectio
known approaches to the modeling of such systems using Petri nets in the frame of hard
software codesign.

Stoy [Sto95] presents a modeling technique for hardware/software systems, based
extended timed Petri nets notation [Pen94]. This Petri net representation is founded on a
lel model with data-control notation and provides timing information. The model consis
two different but closely related parts: control unit and computational/data part. In
approach, timed Petri nets with restricted transition rules are used to represent control fl
both hardware and software. This representation allows to capture hardware and softwa
consistent way, so it can be utilized during the synthesis process taking advantage of th
cient movement of functionality between hardware and software domains.

Maciel and Barros [Mac96] use timed Petri nets as intermediate format for the partitio
process: an occam description constitutes the input of the design cycle and is translate
the proposed representation. Timed PNs, in this approach, are associated with dataflo
mented with time information. Timing analysis guides the hardware/software partitioning
cess. The definition of sub-nets permits handling hierarchies through special places
ports.

A combination of time Petri nets and predicate/transition nets augmented with object-ori
concepts is utilized by Esseret al. [Ess98]. Tokens carry data and transitions have associa
functions, condition guards, and time constraints. Hierarchical constructions are allowed
viding the capability to represent various levels of granularity.

3. Extensions to Petri Nets

Petri nets (PN) have been widely used for system modeling in many fields of science
three decades. They are a well-understood graphical and mathematical tool. Powerful
theories, defining its structure and firing rules, have been developed around this model.
3
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not address here the basic concepts of PNs, but instead we concentrate in this subsec
the main extensions and modifications—concerning our purposes—proposed along the
In our discussion we assume that the reader has a basic knowledge of PNs. [Mur89], [P
[Zur94] are suggested for further reading on PN theory and their applications.

Two important intrinsic features of Petri nets are their concurrency and asynchronous n
These features together with the generality of PNs and their flexibility have stimulated
applications in different areas. However, several drawbacks of the classical PN mode
been pointed out along the years.

A major weakness of PNs is the so-called state explosion problem. Petri nets tend to be
large even for relatively small systems. The lack of hierarchical decomposition makes it
cult to specify and understand complex systems using the conventional model. To ove
this disadvantage, the classical PN model has been extended introducing the concept of
chy [Zub96], [Dit95]. Single elements (transitions and places) may represent a more de
structure. Thus, different levels of abstraction can be used to model high-complexity sy
so that refinements may provide several degrees of granularity.

The conventional PN model lacks the notion of time. This concept is not given in its orig
definition. However in many embedded applications time is a critical factor. Several e
sions have been proposed in order to capture timing aspects. Such are, for example:
Petri nets [Ram74], time Petri nets [Mer76], and timed place-transition nets [Sif80]. In the
approach, timed PNs, an execution time is associated with each transition, representi
finite duration of a firing. Unlike classical Petri nets, the transition is not instantaneous an
firing rule is modified to make a transition to be fired as soon as it is enabled. In time PN
values of time are associated with each transition: the minimum and maximum time (sta
from the moment the transition has been enabled) in which the transition has to fire, unle
disabled by the firing of another transition. These limits represent the interval in which
transition may fire. The firing of a transition in a time Petri net is instantaneous. Finall
timed place-transition nets, unlike the former cases, the time information is associat
places instead of transitions. The time parameter of each place has the meaning of a de
that a token must remain in the place a certain interval of time before it may be remove
these time-extended models, time associated to elements is deterministically given.
approaches, e.g. stochastic Petri nets [Mol82], consider timing information which is pro
listically associated to transitions.

There is another disadvantage regarding classical Petri nets. This model lacks express
for formulating computations as long as tokens are considered “black dots”. No value is t
ferred by communications, limiting the modeling power. Allowing tokens to carry informat
makes it possible to obtain more succinct and precise representations suitable for pr
applications. The extensions that include this new dimension to PNs are encompassed
called high-level Petri nets [Jen91]. High-level PNs, in a broad sense, include predicate/t
tion nets and coloured Petri nets. The former introduce the concept of individuals with ch
ing properties and relations [Gen81]. Places (predicates) represent variable proper
relations of individuals, and transitions depict types of changes of those properties. G
cally, places and transitions are labeled with identifiers which define the net character
Coloured Petri nets have been introduced in [Jen92] and a strong mathematical theo
been built up around this representation. Transitions describe actions and tokens may
data values. The arcs between transitions/places and places/transitions have attached
4
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sions that describe the behavior of the net. A transition is enabled if there are enough tok
its input places and, additionally, these tokens match the arc expressions. Coloured PNs
hierarchical constructions which, together with the characteristic of valued tokens, mak
model powerful in terms of compactness and expressiveness. Although time is not exp
defined in the model, computer tools developed around coloured Petri nets allow toke
have time stamps during simulation, in addition to its value.

4. PRES: Petri Net based Representation for Embedded Systems

In the following we present PRES, a Petri net based model, aimed to represent embedd
tems. As mentioned before, it can be used to model a system at different levels of detail
the feature of hierarchical decomposition. The model also includes an explicit notion of
which is essential for the design of embedded systems. In PRES tokens hold informatio
transitions, when fired, perform transformation of data. As typical of Petri nets, our mod
innately asynchronous which means that there is no global clock mechanism for firing tr
tions. Concurrency and sequential behavior are naturally represented in PRES.

4.1. Basic Definitions

Definition 1. A Petri Net based Representation for Embedded Systemsis a five-tuple
 where
 is a finite non-empty set ofplaces;

 is a finite non-empty set oftransitions;
is a finite non-empty set ofinput arcswhich define the flow relation between place

and transitions;
is a finite non-empty set ofoutput arcswhich define the flow relation between

transitions and places;
M0 is the initialmarking of the net (see Definition 3).
Defined in this way, this structure is anordinary Petri net, which means that there exist n
multiple arcs, if any, from a placepi to a transitiontj (or from a transitionti to a placepj).
Additionally, P andT must be disjoint, i.e. .
Properties, characteristics, and behavior of PRES will be introduced and defined in de
what follows.

Definition 2. Atoken is a pair  where
vk is thetoken value. This value may be of any type, e.g. boolean, integer, etc., or user-de
type of any complexity (for instance a structure, a set, a record);
rk is thetoken time, a finite positive real number representing the time stamp of the token
Let K be the set of all possible token types for a given system.

Definition 3. Amarkingis a function that denotes the absence or presenc
tokens in the places of the net.
For our purposes, we will only considerboundedPetri nets, i.e. nets where the number
tokens in each place does not exceed a finite number. Specifically, we aim to use stru
which aresafeor 1-bounded. Since the intended Petri net in this model must be safe, this fu
tion M might also express the number of tokens in each place. We will say that a placep is

N P T I O M0, , , ,( )=
P p1 p2 … pm, , ,{ }=
T t1 t2 … tn, , ,{ }=
I P T×⊆

O T P×⊆

P T∩ ∅=

k vk r k,〈 〉=

M : P 0 1,{ }→
5
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markedif . Note that a markingM implicitly assigns one tokenk to each marked
place.
We introduce the following notation which will be useful in defining the dynamic behavio
PRES: when a placep is marked, denotes the token present inp. Thus, the token value of
the token in a marked placep will be , and the token time of the token inp will be .

Definition 4. Thetype function associates a place with a token type. Thus, we w
call τ(p) the token type associated with the placep.
It is worth to point out that the token type related to a certain place is fixed, that is, it i
intrinsic property of that place and will not change during the dynamic behavior of the n

4.2. System Description

Definition 5. Thepre-setof a transition is the set ofinput placesof t.
Similarly, thepost-setof a transition is the set ofoutput placesof t.

Definition 6. For every place in the post-set of a transitiont, there exists anoutput function
associated tot. Let us consider the transitiont with its pre-set  and post-set . Formally,

with  and .
Output functions are very important when describing the behavior of the system to be
eled. They allow systems to be modeled at different levels of granularity with transitions
resenting simple arithmetic operations or complex algorithms.

Definition 7. For every output function associated to a transitiont, there exists afunction delay
fd, a positive real number, which represents the execution time (delay) of that function.
mally,

with the set of positive reals. If no function delay is explicitly defined, it will be assum
0.

Definition 8. Theguard Gt of a transitiont is the set of booleanconditionsthat must be satis-
fied in order to enable that transition, when all its input places hold tokens. Aconditionof a
transition

is function of the token values in the places of the pre-set oft ( ).
The guardGt of t is the conjunction of all conditions of that transition.There is no restriction
the number of conditions for a certain transition. Ifall conditions are satisfiedGt = 1, other-
wiseGt = 0. If no guard is explicitly defined, it will be assumed constantly asserted.

Definition 9. Every transition has afunctionality. The functionality of a transitiont is defined
in terms of:
(i) Its output functions;
(ii) Its function delays;
(iii) Its guard.
Intuitively, this functionality describes the “behavior” of the transition when it is fired. Unl
the classical Petri net model, each token holds a value and a time tag. When a transitit is
fired the markingM will generally change by removing all the tokens from the pre-set oft and

M p( ) 1=

k
p

v
kp r

kp

τ : P K→

°t p P p t,( ) I∈∈{ }=
t° p P t p,( ) O∈∈{ }=

t°
°t t°

pj t°∈∀ f j : τ q1( ) τ q2( ) … τ× qa( )×× τ pj( )→∃
°t q1 q2 … q, a, ,{ }= t° p1 p2 … p, b, ,{ }=

f j∀ fd j ℜ+∈∃
ℜ+

condi : τ q1( ) τ q2( ) … τ× qa( )×× 0 1,{ }→
°t q1 q2 … q, a, ,{ }=
6
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depositing one token into each element of the post-set oft. These tokens, added to , hav
values and time stamps which depend on the previous tokens in  and the functionalityt.

4.3. Dynamic Behavior

Definition 10. A transitiont is said to beenabledif all places of its pre-set are marked, its ou
put places different from the input ones1 are empty, and its guard is asserted. Formally, fo
given markingM, a transition  isenabled iff (if and only if)

If the transitiont is enabled, we will note it ast*. Then, the subset of enabled transitions, f
certain markingM, will be .

Definition 11. Every enabled transitiont* has atrigger time tt* that represents the time instan
at which the transition may fire. Each token in the pre-set of an enabled transition has, in
eral, a different token time. From the point of view of time, the transition could not fire be
the tokens are ready. The concept of trigger time is needed to describe how token tim
handled when the transition is fired. The trigger time of an enabled transition is the maxi
token time of the tokens in its input places,

where the pre-set oft* is .
Note that this trigger time varies during the execution of the net and, if the transition is
enabled, it does not make sense.

Definition 12. Thefiring of an enabled transition changes a markingM into a new marking
M+. As a result of firing the transition t (with and

), the following events occur:
(i) Tokens from its pre-set are removed;

(ii) One token is added to each place of its post-set;

(iii) Each new token deposited in has a token value, which is calculated evaluating
respective output function with the token values of tokens in  as arguments;

(iv) Each new token added to has a token time, which is the sum of the respective fun
delay and the trigger time of the transition;

Note that only enabled transitions may fire. The execution time of the functionality of
transition is considered in the time tag of the new tokens.

4.4. Hierarchy

Definition 13. AHierarchical PRES Structureis a seven-tuple
where

 is a finite set ofsubnets with
;

1. A place may be, at the same time, input and output of a transition.

t°
°t

t T∈
qi °t M qi( )∈∀ 1=[ ] pj t° °t–{ } M pj( )∈∀ 0=[ ] Gt 1=[ ]∧ ∧

T* t T t*∈{ }=

tt* max r
k

q1
r

k
q2

… r
k

qa
, , ,( )=

°t q1 q2 … q, a, ,{ }=

°t q1 q2 … q, a, ,{ }=
t° p1 p2 … p, b, ,{ }=

qi °t M
+

qi( )∈∀ 0=

pj t° M
+

pj( )∈∀ 1=
t°

°t
pj t°∈∀ v

k
pj

f j v
k

q1
v

k
q2

… v
k

qa
, , ,( )=

t°

pj t°∈∀ r
k

pj
f d j tt*+=

HN Λ P T I O ρ M0, , , , , ,( )=

Λ HN1 HN2 … HNl, , ,{ }=
HNi ΛHNi

P,
HNi

THNi
I HNi

OHNi
ρHNi

MHNi 0,, , , , ,( )=
7
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ly, the
 is a finite non-empty set of places;
 is a finite set of transitions;

 is a finite set of input arcs;
 is a finite set of output arcs;

is a place assignment relationwhich mapssomeof
the places of the subnets onto places of the hierarchical (higher level) net;
M0 is the initial marking.

4.5. A Simple Example

This example will not show all the power of the model and its capabilities but rather exp
the different concepts and definitions aforementioned. The purpose of this very simple ne
illustrate the semantics of our model. The net represents a multiplier which takes two po
integers and produces as output the result of multiplying those numbers. It implements a
ple algorithm of iterative sums.

The PRES model of this multiplier is shown in Figure 1. We also show the C description
responding to this algorithm. Like in classical Petri nets, places are graphically represen
circles, transitions by boxes, and arcs by arrows. For this example
and . In this particular example, we consider that the function delays f
given transition are the same, so we can call it transition timert and it is inscribed to the left of
transition boxes. For instance,rt3 = 6 time units. We have borrowed notation from Coloure
Petri nets [Jen92] to graphically express output functions and guards. We use inscriptio
the arcs: given a transition, its output functions (inscribed on output arcs) are captur
expressions in terms of the variables written on its input arcs. Guards are enclosed in s
brackets and are also functions of the variables on input arcs.

Figure 1. Multiplier: (a) algorithm; (b) PRES.

Figure 2 shows the behavior of the net for an initial markingM0 (M0(A) = M0(B) = 1). Marked
places are shaded and enabled transitions are highlighted using thicker lines. Token in
tion is also shown in marked places. When several transitions are enabled simultaneous

P p1 p2 … pm, , ,{ }=
T t1 t2 … tn, , ,{ }=
I P T×⊆
O T P×⊆
ρ PHN1

PHN2
… PHNl

∪ ∪ ∪{ } P×⊆

P A B X Y Z C, , , , ,{ }=
T t1 t2 t3 t4, , ,{ }=

t1

a

B

t2

b

ba

Y

A

X

t3 t4

y y

y-1

[y=0][y>0]

Z

x x

x

z

zz+x

0

C

z

2 1

6 4

int mult(int a,int b)
{
   int x,y,z;
   x=a;
   y=b;
   z=0;
   while (y>0) {
      z=z+x;
      y=y-1;
   }
   return z;
}

c=mult(a,b);

(a) (b)
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one that has minimum trigger time will fire in the next step. If the trigger time of two or m
enabled transitions is the same, any of them may fire (one at each step). Let us assume,
initial marking,kA = (5, 0) andkB = (2, 0). It means that the token in placeA has a value 5 and
a time stamp 0. Initially, transitionst1 andt2 are enabled and both have trigger timett1* = tt2*
= 0. Then eithert1 or t2 may fire.

Figure 2. Dynamic Behavior of the Multiplier.

Firing t1 produces the marking shown in Fig. 2(b), wherekX = (5, 2),kZ = (0, 2) andkB = (2,
0). Value and time of the new tokens are calculated following Definition 12. It is easy to
that, for this particular system, firing transitions with equal trigger time in any order does
affect the final result.
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(a) (b)

(c) (d)

(e) (f)
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Fig. 2(c) illustrates some interesting aspects of PRES. Even if each place in the pre-set4
( ) has a token, the transition is not enabled because its guard is not ass
For the marking in this figure,t3 is the only enabled transition so it will be fired in the ne
step. Looking at the token time of tokens in , we note that they have different time sta
( , ). Hence,t3 may not fire before .

After t3 fires the marking changes into the one shown in Fig. 2(d). Let us analyze, for inst
the new token inZ, kZ = (5, 8). The arc (t3, Z) has the inscription “z+x”, so that the token valu
in Z is calculated adding the previous token values ofX andZ ( ).
The token time inZ is done by .

Finally, Fig. 2(f) shows the output result of the multiplication (10) and the token time sh
the total time needed for the operation (18 time units). The net is not live in this configura
because it is not possible to ultimately fire any transition. If this multiplier is part of a la
system, the token in placeC will likely be consumed and new tokens will be added toA andB,
allowing the net to perform its function again.

5. Formal Verification of Embedded Systems

5.1. Related Work

The increasing complexity of embedded systems poses a challenge in verifying their co
ness. Some verification approaches, suitable to hardware/software systems, have be
posed recently. Aluret. al [Alu96] present a model checking procedure based on the Hyb
Automata model: given a system represented as communicating machines with real-v
variables, the method shows if an ICTL-formula (Integrator Computation Tree Logic), sp
fying system requirements, holds for all possible states of the automaton. Using the
model, Hybrid Automata, another coverification method is proposed in [Hsi99], where c
plex systems can be analyzed using a simplification strategy to verify individually the h
ware, the software and the interface. Balarinet. al [Bal96] introduce a verification
methodology based on Codesign Finite State Machines (CFSMs), in which CFSMs are
lated into traditional state automata. This technique checks if all possible sequences of
and outputs of the system satisfy the desired properties. To do so, those sequences th
the requirements constitute the language of another automaton, reducing the problem to
language containment between automata. In [Gar98], a partitioned system, described u
Pascal-like language, is the input to the proposed coverification framework in which CTL
TCTL formulas are evaluated in order to check behavioral and timing properties. An appr
to symbolic model checking of process networks and related models is proposed in [S
where IDDs (Interval Decision Diagrams) are used to represent multi-valued functions.

On the other hand, related work in the area of Petri nets (PNs) includes [Wim97], which
sents a BDD-based model checker for safe nets. Although the approach is intended to
Petri nets in general, with no particular interest in embedded systems and without dealin
time information, it studies different forms of describing PNs using the SMV system [SM
developed at Carnegie Mellon University. An interesting approach used for analysis and
cation of bounded Petri nets is presented in [Pas94]. Using the efficiency of BDDs to repr
sets of markings and reduction rules to transform PNs, this technique can be used for
ability analyses and verification of some properties of PNs with large state spaces.

°t4 X Y Z, ,{ }=

°t3
r

kX r
kZ 2= = r

kY 1= tt3* max r
kX r

kY r
kZ, ,( ) 2= =

v
kZ v

kZ v
kX+ 0 5+ 5= = =

r
kZ rt3 tt3*+ 6 2+ 8= = =
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5.2. Symbolic Model Checking

The above approaches reveal a big interest for model checking in the community of hard
software codesign. In consequence, this section will consider the basic ideas of model c
ing and BDDs as efficient structures to represent symbolically transition relations and s
states.

Model checking is an approach to formal verification that lets the designer determine
model of a system satisfies certain required properties. The model checker proves w
those properties hold. Clarkeet. al [Cla86] introduced a model checking algorithm for formu
las specified in temporal logic CTL (Computation Tree Logic). CTL is based on propositi
logic of branching time, that is, a logic where time may split into more than one poss
future using a discrete model of time. Formulas in CTL are composed of atomic proposi
boolean connectors and temporal operators. Temporal operators consist of forward-time
ators (G globally,F in the future,X next time, andU until) preceded by a path quantifier (A all
computation paths, andE some computation path). Thus, formulas may describe propertie
computation paths over labeled state-transition structures. This algorithm, however, re
the entire state transition graph to be constructed, causing a serious state explosion pro

One way to overcome the state explosion is to represent symbolically the transition re
instead of explicit enumeration. A compact and efficient form of representing boolean fo
las and transition relations is using ordered binary decision diagrams (BDDs). BDDs
canonical representations that make boolean manipulations much simpler computati
[Bry92]. Symbolic model checking [Bur94] makes use of BDDs to represent sets of state
the transition relation, and the algorithm employs fixed-point techniques that manipulate
using their characteristic functions encoded as BDDs. Therefore, it is possible to reason
designs with large state spaces without constructing the state graph of the system.

SMV [SMV] is one of the available tools that uses the BDD-based symbolic model chec
algorithm. This model checker has an input language that allows to describe systems
boolean, scalar or fixed-array data types, and boolean and basic scalar operations. CTL
las to be checked, also specified in the SMV language, may express safety, fairness, liv
and deadlock-freedom, among other properties.

6. The Coverification Methodology

The coverification methodology will be explained in reference to a medical monitoring sy
in order to illustrate the different aspects of this technique. This system has been mo
using PRES and will be formally verified using this methodology.

6.1. Patient Monitoring Application

Figure 3 shows a net represents a patient monitoring system as introduced in [Dro93
studied in [Cam94]. The patient monitor measures physiological phenomena and analyz
information. If the system detects abnormal conditions on the patient, it activates aura
visual alarms. The patient condition information is displayed and recorded as well. The
tionality of the system can be captured as a set of processes. Theacquireprocess reads infor-
11
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mation from the sensors. Usually this information contains spurious data that mu
debugged.filter processes such data and eliminates false information received from the
sors. Once the information has been filtered, processes which detect anomalous condit
blood pressure, heart rate, or temperature may start, depending on the data availab
instance, a possible anomaly in the blood pressure will make the processblood activate, in
order to study the data. If, after analyzing the information, an irregular condition of the pa
is encountered, the processalarmwill be executed and an audio signal (processaudio) will be
triggered. The information resulted from thefilter process is displayed on a screen a
recorded by the processesdisplayandrecorder, respectively. The specification of the patie
monitoring system includes a timing constraint which states that data from sensors m
sampled every 15 ms and that acquisition of new information requires the system to fini
functionality before the next execution.

Figure 3. Medical Monitoring System.

The medical monitoring system is modeled in PRES as shown in Figure 3, where the o
tions performed in the process are captured by transitions and the data dependence b
them is captured by the structure of the net. Transitions have been named after the pro
The markingM0, for the model of the monitoring system, showsP1 as the only place initially
marked. As it has been mentioned above, output functions are very important when desc
the behavior of the system to be modeled. For instance, in Figure 3, there are three
functions associated to transitionfilter, which define token values of new tokens inP3, P7and
P9, whenfilter is fired (executed). These three functions represent what has been earlier
the processfilter. In this particular example, we assume that all function delays correspon
to output functions associated to a given transition are identical. This time is captured as
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sition time” and is inscribed on the respective transition box. Thus,rt6 represents the execution
time of the functions associated to transitiontemp.

In Figure 3, for example, represents the condition that must be fulfilled to execute the
cessblood. If no guard is explicitly defined for a given transition, that transition will b
enabled whenever its input places are marked. There are two transitions that have no
attached: we have introduced them in order to model the situation in which no abnorma
dition is detected. The associated execution time is zero because there are no activitie
performed in this case.

6.2. Methodology

The coverification method presented here is based on the Petri net based model introdu
Section 4. The purpose of the approach presented in this work is to reason about emb
systems, using PRES as underlying representation. There are several types of analysis
be performed on systems represented in this model. A given marking, i.e. absence or pr
of tokens in places of the net, may represent the state of the system in a certain momen
dynamic behavior of the net. Based on this, different properties can be studied. For instan
a landing gear controller, the door must not close while the plane is landing, under any cir
stance. This sort of safety requirement might be formally proven, checking that the p
which represent such states are never marked simultaneously. Sometimes, the designe
be interested in proving that the system eventually reaches a certain state whose marki
resents the completion of a task.

The kind of analysis described above, calledreachability analysis, is very useful but says
nothing about timing aspects nor does it deal with token values. In many embedded ap
tions, however, time is an essential factor. Moreover, in hard real-time systems, where
lines can not be missed, it is crucial to reason quantitatively about temporal properti
assure the correctness of the design. Therefore, it is needed not only to check that a
state will eventually be reached but also to ensure that this will occur within some boun
time. In PRES, time information is attached to tokens, so that we can analyze quantitativ
ing properties: we may, for example, prove that a given place will always be marked in
future and that its time stamp, for any possible condition, will be less than a certain time
that represents a temporal constraint. Such study will be calledtime analysis.

A third type of analysis using PRES involves reasoning about values of tokens in ma
places. This type ofbehavior analysisis not part of the coverification method proposed he
In this work we address just reachability and time analyses. In other words, we concentr
the absence/presence of tokens in the places of the net and their time stamps, but we
deal with the values of those tokens. We assume that output functions (see Section 4) a
rectly defined.

As it has been mentioned above, in a PRES model a place may hold at most one toke
certain marking. Thus, it is possible to encode a marking—or a set of markings—as a bo
function where the variables correspond to places of the net. Boolean functions ca
straightforwardly represented by BDDs. Firing a transition in a Petri net changes the ma
into a new one, which is a variation in the state of the system. It is possible to build the
that represents the transition relation of the system and then compute efficiently the rea

Gt4
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states using BDDs [Bry92], [Hu97]. With such a BDD-based representation we can form
verify properties, specified in CTL, using symbolic model checking [Bur94] and accomp
reachability analyses. In our experiments, we use the SMV tool (a BDD-based sym
model checker) [SMV] and its input language to describe and verify systems modele
PRES.

A program in SMV describes both the system and the specification (properties to verify)
system is described as a collection of “modules”. Each module may contain variables, i
tial state, and assignments of variables for the next state. A “process” is an instance of a
ule, in such a way that the model checker executes a step by choosing non-deterministi
process and then executing all assignment statements of that process in parallel.

To translate a PRES model into the SMV input language, we declare in themain module a
boolean as well as an integer variable for each place of the net. The boolean variable
sents absence/presence of tokens in that place, while the integer one represents the tim
of the token when the particular place is marked. We instantiate each transition as a p
that has as parameters its input and output places as well as time stamps of tokens in
places. In themain module we also define the initial marking of the net assigning initial valu
to the variables that represent places and to time stamps of tokens in initially marked pl
We describe each transition of the Petri net as a module that adds/removes tokens (chan
marking) when it is executed (fires). Figure 5 illustrates the description of theblood process
corresponding to the implementation shown in Figure 4(b). When a transition fires, it cha
the marking of the system removing tokens from its input places and adding new toke
output places. This is captured usingnext assignments for input/output places of the transitio
Thus, if the transition is enabled (enabled := P3 & Pa & !P4 ), execution ofblood will assign
boolean values toP3, Pa andP4 according to the transition firing rules, that is,1 to output
places and0 to input places.

As stated in the definition of PRES, time tags of new tokens are calculated as the sum
trigger time and the respective function delay, e.g.(trigger_time + func_delay_a) mod 28 . In this
case, we are using integer addition “modulo 28” because integer variables in SMV mu
bounded when they are defined. The bound of variables for time stamps, in the exam
Figure 4(b), is27. This upper bound can be determined summing all transition times w
there no loops in the net, and it represents the maximum time stamp that a token may h
the net (this is, of course, assuming that time stamps of all tokens in the initial markin
zero). The larger the value of this bound, the longer is the computation time needed to
timing properties. The complexity of this problem grows exponentially in the size of
bound for time stamps. This becomes a limitation of our approach when large time stam
needed to characterize the timing aspects of a system. Every transition described as a
process must include the declarationFAIRNESS running to ensure that it is executed infinitely
often and the system progresses.

In PRES each token has two components: a value and a time tag. Time tags, according
definition of the model, can be positive reals. However, the reader might have noted, t
order to use the SMV system we need to restrict the time to discrete (integer) values. An
issue is that, since we are not dealing with token values, only certain kind of systems
include guards in their models may be analyzed using this approach. On the other hand
els in which transitions bear no guard may be straightly studied. For some models that in
guards, as the one in Figure 3, those guards are “complementary”. For this example,Gt3

Gt4
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and are complementary because wheneverP3 is marked, just one of these guards wi
be asserted. Similarly, and are complementary. For PRES models with compleme
guards, those guards can be ignored without affecting the reachability and time analys
that case, the model will exhibit non-determinism when firing transitions whose guards
been dropped.

6.3. Verification of the Medical Monitoring System

In this section we show the verification of the medical monitoring application described a
for two possible implementations of the system. This practically illustrates a transformat
design space exploration methodology based on formal verification. We consider fir
Figure 4(a), an implementation using a single programmable processor. Note that value
been assigned to transition times. These times are the estimated worst case execution t
the respective functions on the selected processor. For example, the transition time forheart is
4 ms. The reader can also notice that, by reason of the considerations explained in the pr
section, the guards have been ignored. The placePa (initially marked) models the processor
this place is both input and output of all transitions, which captures processes mapped
that processor. We use lines with no arrowheads to indicate this bidirectional flow rel
between transitions andPa. PlaceP1 models the data read from the sensors,P8 andP10 the
information to be recorded and displayed, respectively, andP6 is the indicator which shows
that the analysis has been performed.P1, P6, P8 andP10 are the places through which th
system interacts with its environment. Initially,P1 and Pa are marked and time stamps fo
tokens inP1 andPa are and . If the system operates properly, a new tok
will be added toP1 after the patient monitor finishes its functionality.

Figure 4. Different Implementations of the Patient Monitoring System.

Gt5
Gt6

Gt7
Gt8

r
kP1 0= r

kPa 0=

P2

5

P1

2
ac

qu
ir

e

di
sp

la
y

6
fi

lte
r

P9

34

P10

P8

4
re

co
rd

erP7

P3

5 blood heart temp

Pa

3
al

ar
m P5

2 audio00

P6

P4

��
��
��

��
��
��

��
��
��

��
��
��

blood temp

3

audio0 0 2

1

5 4 heart 3

P1

P7

P3a

al
ar

m

P9

3
fi

lte
r

2
re

co
rd

er
3

di
sp

la
y

ac
qu

ir
e

P10

P2

P3

P8

Pb

P5

P6

P4

Pa

comm1

B

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

(a) (b)
15



ality,
e

re 4.
5 ms.
e
is con-

ives
nt, we
mple-
t

ost

ally
men-
ance
We have to verify first that the system, under any circumstance, will complete its function
that is, eventuallyP6, P8 andP10will be marked. Using the SMV tool, this property can b
expressed as a CTL formula preceded by the by the keywordSPEC:

SPEC AF (P6 & P8 & P10)

which reads “always eventually (P6 & P8 & P10)”, i.e. the state in whichP6, P8 andP10are
simultaneously marked is inevitable. This formula holds for both representations in Figu
The second property, that concerns our design, is the constraint of a maximum delay of 1
We have to formally verify that whenP6, P8andP10are marked (which has been shown to b
true) time stamps of tokens in these places are less than or equal 15. We may express th
straint in our description as three CTL formulas:

SPEC AF (P6 & (time_P6<=15))
SPEC AF (P8 & (time_P8<=15))
SPEC AF (P10 & (time_P10<=15))

All three formulas above turn out to be false, for the model in Figure 4(a), and SMV g
counter-examples. As the implementation in Figure 4(a) does not meet the time constrai
consider an alternative architecture. Figure 4(b) models the patient monitoring system i
mented using one programmable processor (represented byPa) and one hardware componen
(Pb). Processesacquire, filter, recorderanddisplayare mapped ontoPb while the other pro-
cesses ontoPa. A new transition (comm) has been introduced in the model to consider the c
of inter-processor communication. This processcomm is the only one that utilizes bus
resources (placeB). Note that execution times of processes mapped ontoPb have changed
with respect to the previous design alternative. For the model in Figure 4(b) we have form
verified, using symbolic model checking through the SMV system, that the properties
tioned above do hold for all possible situations. This implementation has superior perform
because of parallelism and lower execution times for the hardware.

Figure 5. Description of Transition blood using SMV.

MODULE blood(P3,time_P3,Pa,time_Pa,P4,time_P4)
ASSIGN

next(P3) := case
enabled : 0;
1 : P3;

esac;
next(Pa) := case

enabled : 1;
1 : Pa;

esac;
next(P4) := case

enabled : 1;
1 : P4;

esac;
next(time_Pa) := case

enabled : (trigger_time + func_delay_a) mod 28;
1 : time_Pa;

esac;
next(time_P4) := case

enabled : (trigger_time + func_delay_4) mod 28;
1 : time_P4;

esac;
DEFINE

func_delay_a := 5;
func_delay_4 := 5;
trigger_time := case

(time_P3 >= time_Pa) : time_P3;
(time_Pa >= time_P3) : time_Pa;

esac;
enabled := P3 & Pa & !P4;

FAIRNESS running
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7. Conclusions

We have presented PRES, a Petri net based model with extensions to capture importa
tures of embedded systems. The model is simple, intuitive and can be easily handled
designer. We introduced an approach to formal verification of embedded systems using
bolic model checking with PRES as underlying computational model. Thus, coverificatio
possible dealing with timing properties.

It has been also shown how to translate PRES models into the input formalism of a m
checker. A patient monitoring system has been studied to illustrate the applicability of the
erification approach to practical systems. Transformations during design space explorati
be smoothly captured and properties to be checked can derived directly from the mode
easy manner as well.

One of the main contribution lies in modeling embedded systems in such a way that the
sentation is adequate to be analyzed using formal methods. The model that we use is
net based notation in which tokens bear both value and time tag. We address a coverifi
method that allows to reason formally about the presence/absence of tokens in places
net and their time stamps, but we do not deal with their token values. This is a problem w
for further research.

References

[Alu96] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic Symbolic Verification of Embedded Systems,
IEEE Trans. Software Engineering, vol. 22, pp. 181-201, March 1996.
[Bal96] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli, “Formal Verificatio
Embedded Systems based on CFSM Networks,” inProc. DAC, 1996, pp. 568-571.
[Bry92] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,” inACM Com-
puting Surveys, vol. 24, pp. 293-318, Sept. 1992.
[Bur94] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill, “Symbolic Model Checking fo
Sequential Circuit Verification,” inIEEE Trans. CAD of Integrated Circuits and Systems, vol. 13, pp. 401-424,
April 1994.
[Cam94] S. Campos, E. M. Clarke, W. Marrero, and M. Minea, “Timing Analysis of Industrial Real-Time S
tems,” inProc. Workshop on Industrial-Strength Formal Specification Techniques, 1995, pp. 97-107.
[Cla86] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-State Concurrent
tems Using Temporal Logic Specifications,” inACM Trans. on Programming Languages and Systems, vol. 8, pp.
244-263, April 1986.
[Cor99] L. A. Cortés, P. Eles, and Z. Peng, “A Survey on Hardware/Software Codesign Representation Mo
SAVE Project Report, Dept. of Computer and Information Science, Linköping University, Linköping, 1999
[Dit95] G. Dittrich, “Modeling of Complex Systems Using Hierarchically Represented Petri Nets,” inProc. Intl.
Conference on Systems, Man and Cybernetics, 1995, pp. 2694-2699.
[Dro93] P. J. Drongowski, “Software architecture in realtime systems,” inProc. Workshop on Real-Time Applica
tions, 1993, pp. 198-203.
[Edw97] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, “Design of Embedded Sys
Formal Models, Validation, and Synthesis,” inProc. IEEE, vol. 85, pp. 366-390, March 1997.
[Ess98] R. Esser, J. Teich, and L. Thiele, “CodeSign: An embedded system design environment,” inIEE Proc.
Computers and Digital Techniques, vol. 145, pp. 171-180, May 1998.
[Gan94] J. D. Gannon, J. M. Purtilo, and M. V. Zelkowitz,Software Specification: A Comparison of Forma
Methods. Norwood, NJ: Ablex Publishing, 1994.
[Gar98] E. H. A. Garcez and W. Rosenstiel, “CVF - Coverification Framework,” inProc. Brazilian Symposium
on Integrated Circuit Design, 1998, pp. 103-106.
17



s,” in

Sys-

are/

ret-

n,” in

evel

MAC,

The-

ech-

pt.
[Gen81] H. J. Genrich and K. Lautenbach, “System modelling with high-level Petri nets,” inTheoretical Compu-
ter Science, vol. 13, pp. 109-136, Jan. 1981.
[Hsi99] P.-A. Hsiung, “Hardware-Software Coverification of Concurrent Embedded Real-Time System
Proc. Euromicro RTS, 1999, pp. 216-223.
[Hu97] A. J. Hu, “Formal Hardware Verification with BDDs: An Introduction,” inProc. Pacific Rim Conference
on Communications, Computers and Signal Processing, 1997, pp. 677-682.
[Jen91] K. Jensen and G. Rozenberg, Eds.High-level Petri Nets. Berlin: Springer-Verlag, 1991.
[Jen92] K. Jensen,Coloured Petri Nets. Berlin: Springer-Verlag, 1992.
[Ker99] C. Kern and M. R. Greenstreet, “Formal Verification in Hardware Design: A Survey,” inACM Trans. on
Design Automation of Electronic Systems, vol. 4, pp. 123-193, April 1999.
[Lav98] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich, “Models of Computation for Embedded
tem Design,” inNATO ASI Proc. on System Synthesis, 1998, pp. 1-57.
[Lee96] E. A. Lee and A. Sangiovanni-Vincentelli, “Comparing Models of Computation,” inProc. ICCAD, 1996,
pp. 234-241.
[Mac96] P. Maciel and E. Barros, “Capturing Time Constraints by Using Petri Nets in the Context of Hardw
Software Codesign,” inProc. Intl. Workshop on Rapid System Prototyping, 1996, pp. 36-41.
[Mer76] P. M. Merlin and D. J. Farber, “Recoverability of Communication Protocols—Implications of a Theo
ical Study,” inIEEE Trans. Communications, vol. COM-24, pp. 1036-1042, Sept. 1976.
[Mol82] M. K. Molloy, “Performance Analysis Using Stochastic Petri Nets,” inIEEE Trans. Computers, vol. C-
31, pp. 913-917, Sept. 1982.
[Mur89] T. Murata, “Petri Nets: Analysis and Applications,” inProc. IEEE, vol. 77, pp. 541-580, April 1989.
[Pas94] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia, “Petri Net Analysis Using Boolean Manipulatio
Application and Theory of Petri Nets 1994, R. Valette, Ed.LNCS 815, Berlin: Springer-Verlag, 1994, pp. 416-
435.
[Pen94] Z. Peng and K. Kuchcinski, “Automated Transformation of Algorithms into Register-Transfer L
Implementations,” inIEEE Trans. CAD of Integrated Circuits and Systems, vol. 13, pp. 150-166, Feb. 1994.
[Pet81] J. Peterson,Petri Net Theory and the Modeling of Systems. Englewood Cliffs, NJ: Prentice-Hall, 1981.
[Ram74] C. Ramchandani, “Analysis of asynchronous concurrent systems by timed Petri nets,” Project
Technical Report 120, Massachusetts Institute of Technology, Cambridge, Feb. 1974.
[Sif80] J. Sifakis, “Performance Evaluation of Systems using Nets,” inNet Theory and Applications, W. Brauer,
Ed.LNCS 84, Berlin: Springer-Verlag, 1980, pp. 307-319.
[SMV] The SMV System,http://www.cs.cmu.edu/~modelcheck/smv.html

[Sto95] E. Stoy, “A Petri Net Based Unified Representation for Hardware/Software Co-Design,” Licentiate
sis, Dept. of Computer and Information Science, Linköping University, Linköping, 1995.
[Str98] K. Strehl and L. Thiele, “Symbolic Model Checking of Process Networks Using Interval Diagrams T
niques,” inProc. ICCAD, 1998, pp. 686-692.
[Wim97] G. Wimmel, “A BDD-based Model Checker for the PEP Tool,” Major Individual Project Report, De
of Computing Science, University of Newcastle, Newcastle, May 1997.
[Zub96] W. M. Zuberek and I. Bluemke, “Hierarchies of Place/Transitions Refinements in Petri Nets,” inProc.
Conference on Emerging on Technologies and Factory Automation, 1996, pp. 355-360.
[Zur94] R. Zurawski and M. Zhou, “Petri Nets and Industrial Applications: A Tutorial,” inIEEE Trans. Industrial
Electronics, vol. 41, pp. 567-583, Dec. 1994.
18


	Verification Methodology for Heterogeneous Hardware/Software Systems
	Abstract
	1. Introduction
	2. HW/SW Codesign Representation Models
	2.1. Modeling Embedded Systems using Petri Nets

	3. Extensions to Petri Nets
	4. PRES: Petri Net based Representation for Embedded Systems
	4.1. Basic Definitions
	4.2. System Description
	4.3. Dynamic Behavior
	4.4. Hierarchy
	4.5. A Simple Example

	5. Formal Verification of Embedded Systems
	5.1. Related Work
	5.2. Symbolic Model Checking

	6. The Coverification Methodology
	6.1. Patient Monitoring Application
	6.2. Methodology
	6.3. Verification of the Medical Monitoring System

	7. Conclusions
	References


