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Abstract

In hardware/software codesign, modeling is a very important issue. The model must capture th
tures of the system and describe its functionality. The design cycle must be based on formal rep
tations so that the synthesis of a design from specification to implementation can be carrie
systematically. Many models have been proposed for representing HW/SW systems. This repo
result of a survey on hardware/software codesign representation models. It relates the characte
of several existing models and compares their properties. This work is encompassed in the
project, which aims to study the specification and verification of heterogeneous electronic sys
The main objective of this survey is to explore the field of modeling of heterogeneous system

1. Introduction

Most modern electronic systems consist of dedicated hardware components and software run
specific platforms. Thus, complex systems might be composed of several standard process
several ASICs working closely for a given task.

Mixed HW/SW systems are not new. What has considerably grown in recent years is the trend t
methodologies that concurrently apply design techniques from different areas to develop mixe
ital systems. When hardware is tuned to its software applications, and vice versa, during the
process, it is possible to exploit the capabilities of such heterogeneous systems. HW/SW Code
“the system design process that combines the hardware and software perspectives from the
stages to exploit design flexibility and efficient allocation of functions” [Fra91].

The concurrent design of hardware and software has shown to be advantageous as long as H
SW are considered as a whole instead of independent entities. Although benefits of hardware an
ware working together are evident, complex systems design involving both HW and SW is a non
ial task. Designers have to manage complexity and heterogeneity, and they have multiple choic
possible implementations, which is the same reason that makes the design flexible. These are
the new challenges for digital designers due to the interaction of different kinds of system ph
phies.

Today the electronic market demands high-performance and low-cost products. Both perform
and cost are essential to commercial competitiveness. Thus, the chip industry has faced two
challenges in order to satisfy the consumer needs: the increase in system complexity and the re
1
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in design times. High funcionality on a single chip and reduced time-to-market are goals that c
achieved through codesign methodologies exploiting the characteristics of heterogeneous sy
Besides performance and time-to-market, system reliability is a key aspect in the design of elec
systems. Here verification plays a key role.

It must also be pointed out that in order to devise systems that meet the performance, cost a
ability goals, the design process should be based on formal representations, that is, models tha
to carry out the design process from specification to implementation with a formal notation. Mod
is essential for design methods. It is important to note that a model is different from the language
to specify the system. The same model of computation can underlie several languages, and the
some description languages that manage different models. Thus, model and language are two d
concepts. Nonetheless, it is sometimes difficult to see a clear boundary betweenmodelandlanguage.
That is the case of e.g. the so-calledsynchronous languages used to model reactive systems.

1.1. Related Work

Many computational models have been proposed in the literature to represent digital systems.
models encompass a broad range of styles, characteristics and application domains. Some w
dress the features of different models and languages, and compare their properties. Lee and
vanni-Vicentelli [Lee96] propose thetagged-signal modelas a framework for comparing
characteristics from different models of computation. We consider such a representation as a
model which can not describe explicitly by itself a computational system. This “model” is use
Edwardset al. [Edw97] to examine and evaluate the properties of several representations emp
in the design of embedded systems, including discrete event systems, communicating finite sta
chines, synchronous/reactive models, and dataflow process networks.

Narayan and Gajski [Nar93] discuss some issues related to the specification of embedded syste
examine the features of hardware description languages, namely VHDL, HardwareC, SDL,
charts, SpecCharts and CSP. In [Gaj97] some basic representation models are explained w
clude FSM, dataflow graph, and several variants and extensions of these. This work advocates
qualities a model has to possess: formalism, completeness, comprehensiveness, and simplici
scribe systems.

2. Objective

The main purpose of this survey is to explore the field of modeling for heterogeneous systems
is one of the first steps in the workplan of the SAVE Project (Specification and Verification of H
erogeneous Electronic Systems). This project aims at the development of a formal approach t
ification, implementation and verification of heterogeneous electronic systems [SAV99].

Modeling hardware/software systems is a complex task because of their heterogeneity. Ma
proaches can be found in the literature. Some of them give rigorous mathematical treatment
model with high level of formalism. This survey addresses some computational models used in
ware/software codesign. We review some known approaches to the modeling of heterogeneo
tems. Special attention has been paid to those models that are appropriate for transformation
2
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3. Representation Models

A variety of models has been developed and used to represent heterogeneous systems. A m
computation should ideally comprehend concurrency, sequential behaviour and communi
methods. Some models are intended for data-intensive systems while others are suitable for c
oriented applications, and few of them combine data/control as their application domain. The
features can largely differ even though all representations presented in this survey are comput
models for heterogeneous hardware/software systems.

In order to be consequent with the comparison of different models, the wordsynchronous—which has
distinct meanings in different communities—must be first defined. In the following discussion, ex
when referring toreactive/synchronous models, we will use the term synchronous to mean system
with a global clock which synchronizes all the elements. In the frame of reactive representationssyn-
chronous is used in a completely different sense meaning instantaneous reaction.

In the following we present the main representation models that have been utilized in codesig
group them according to some characteristics they have in common. We do not pretend to be e
tive in this survey but address some representative computational models used to depict he
neous electronic systems. In this section we briefly describe the key aspects of the models here
and in next section we compare their most important features. Several codesign representati
derived from well-known models (e.g. FSMs or Petri nets), so a short description of significant
acteristics of each group is done at the beginning of each subsection.

3.1. Finite State Machines

The classicalFSM representation is maybe the most well-known model for describing control
tems. This model consists of a set of states, a set of inputs, a set of outputs, a function which d
the outputs in terms of inputs and states, and a next-state function. One of its disadvantages is
ponential growth of the number of the states as the system complexity rises. Finite state mach
not allow concurrency of states and they are flat, that is to say, no hierarchical constructions
lowed. Besides, a small variation in the specification might produce a large change of the auto
In consequence FSMs are not appropriate for modeling practical systems. A number of extensio
variations of the typical FSM model have been suggested attempting to overcome the weakne
the FSM representation.

SOLARis a design representation for high-level concepts in control-flow dominated systems an
mainly suited for synthesis purposes [Jer95]. This representation is based on the extended-FSM
which might describe hierarchy and concurrency, and uses an EDIF-like syntax to model syste
a set of communicating FSMs. Systems are depicted by communicatingDesign Units. Design Units
in SOLAR (system-level processes) communicate through either the classical concept of wired
or theChannel Unitwhich supplies primitives that hide the protocol and thus its details. Each De
Unit is specified as a combination of states (FSMs), using the basic constructStateTable. As Design
Units may comprise other units and communication operators, the computational model admi
level of hierarchy. The model provides an intermediate format that allows hardware/software de
at the system-level to be represented in such a way that they can be synthesized.

Codesign Finite State Machine(CFSM) is a formal model for hardware/software codesign propos
by Chiodoet al. [Chi93]. It is based on FSMs and is intended for control-oriented systems with r
tively low algorithmic complexity. Even though its semantics is closely related to standard FSM
model can be used to represent both hardware and software. The communication primitive be
3
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CFSMs, calledevent, is the basic entity which characterizes the behavior of the system to be mod
The broadcast communication uses events with non-zero propagation time, where the sender d
wait for acknowledgment. The behavior of the system is defined as sequences of events that
observed when interact with the environment. Due to its low level, CFSMs are used as interm
representation which high-level languages are directly mapped into.

Even though Harel’sstatecharts[Har87] could be considered as an extension of traditional state
grams, this computational model is mainly appropriate for large and complex reactive system
high degree of concurrency. Statecharts have the structure of finite-state automata enhanc
three important features: hierarchy, concurrency and broadcast communication. The so-calleOR/
ANDdecomposition of states allows the first two characteristics. At some level of hierarchy, a p
ular state can be composed by substates which means that being in the higher-level state is inte
as being in one of its several substates. Concurrent states are permitted in this model and som
parallel states can similarly be seen as a single state using the property of hierarchy. The comm
tion mechanism in statecharts is instantaneous broadcast, where the receiver proceeds immed
response to the sender message. A statechart might contain instructions to carry out activities
putations or processes) either describing the states themselves or appending information on th
of transitions.

3.2. Discrete-Event Systems

A discrete-event systemcan be defined as a discrete-state event-driven system, that is, its state e
tion depends entirely on the occurrence of asynchronous discrete events over time [Cas93]. Aevent
is an instantaneous action that causes transitions from one discrete state to another. The inte
between computational tasks (processes) is accomplished bysignals. In the discrete-event model o
computation, a signal is a set of atomic events that occur in some instant of physical time. Thus
event has a value and is marked with a time stamp. The events are sorted by time label and t
analyzed in chronological order. Signals allow the communication between processes that re
send events. Lee gives a formal mathematical description of such systems [Lee98]. This fram
advocates formal semantics for this model in order to maintain a consistent view of time in a sy
In this approach, the mathematical formalism deals, among many other aspects of its semantic
solutions to the problem of simultaneous events and zero-delay feedback loops, so the represe
becomes deterministic. Though this kind of representation is useful for real-time systems, the p
pal disadvantage of discrete-event modeling is its cost: It is computationally expensive becau
necessary to sort globally all the events according with their time of occurrence.

3.3. Petri Nets

Modeling of systems usingPetri netshas been applied widely in many fields of science. In the cla
sical approach, a Petri net is composed of four basic elements: a set ofplaces, a set oftransitions, an
input functionthat maps transitions to places, and anoutput functionwhich is also a mapping from
transitions to places. The mathematical formalism developed over many years, which defin
structure and firing rules, has made Petri nets a well-understood modeling tool [Pet81]. Two im
tant intrinsic features of Petri nets are its concurrency and asynchronous nature. The former c
teristic (parallelism) signifies that events may occur independently if they are enabled.
asynchronous property shows that there is no inherent clock mechanism for firing transitions.
ever, some communities claim that its drawbacks are the lack of hierarchical decomposition a
deficient expressiveness for computations.

Dittrich [Dit95] usesHierarchical Petri Nets(HPNs) as a representation model. The main motivatio
4
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behind this model is the difficulty for specifying and understanding Petri nets graphs of complex
tems by flat representations. HPNs inherit most important properties of Petri nets, including co
rency and asynchrony. A system is modeled by bipartite directed graphs with inscriptions on the
and the nodes. There are two kind of nodes:transitionnodes represent active components (function
whereasplacenodes describe passive elements (data or conditions). The approach shows tha
variations of Petri nets are appropriate for depicting the behavior of complex systems making
hierarchically represented descriptions.

Stoy [Sto95] presents a modeling technique for hardware/software systems, based on an ex
timed Petri nets (ETPN) notation [Pen94]. This Petri net representation, calledPURE, is founded on
a parallel model with data-control notation and provides timing information. PURE consists of
different, but closely related, parts: control unit and computational/data part. In this approach,
Petri nets with restricted transition rules are used to represent control flow in both hardware an
ware. Hardware and software operations are represented bydatapathsand instruction dependence
graphsrespectively. Communication between modules is modeled by pairs of I/O operations w
form rendezvous points. As in classical Petri nets, PURE provides a concurrent and asynchron
scription of the control. This representation allows to capture hardware and software in a cons
way, so it can be utilized during the synthesis process taking advantage of the efficient movem
funcionality between hardware and software domains.

3.4. Dataflow Graphs

Dataflow graphs are quite popular in modeling data-dominated systems. Computationally inte
systems—complex transformation and/or considerable transportation of data—might be conve
represented by a directed graph where thenodesdescribe computations and thearcsrepresent the or-
der in which the computations are performed. In this model all computations are executed only
the required operands are available. Another characteristic is that operations (nodes) behave
tions without side effects. As a result, computations may be performed either sequentially or co
rently. Nonetheless, the conventional dataflow graph model is inadequate for representing the
unit of systems. Many variations of dataflow models have been used to represent heterogeneo
tems.

Dataflow process networksis a model of computation to be used in signal processing syst
[Lee95]. Programs are specified by directed graphs where nodes (actors) represent computations an
arcs (streams) represent sequences of data. Processing is done in series of iterated firings in wh
actor transforms input data into output ones. Dataflow actors have firing rules to determine whe
must be enabled and then execute a specific operation. In this kind of dataflow notation, comm
tion of concurrent processes is done by unidirectional unbounded FIFO channels. The model a
lows hierarchical representations of the graphs. Special cases of dataflow process net
synchronous data flow(SDF) andcyclo-static data flow(CSDF), are compared in [Par95]. The dif
ference between these models is that in SDF the actors consume and produce a fixed number
tokens in each fire because of their static rules, while in CSDF actors have cyclically variable
rules.

A model graphthat integrates aspects of different models of computation is presented by Ziege
et al. [Zie98a]. The model graph is a directed bipartite graph composed ofprocess nodes, channel
nodesand a set ofedges. The processes are enabled when the required input data is present, as
classical dataflow model. Timing is considered associating alatency timewith each process and eac
channel. This approach is based on basic constructs, augmented with annotations to capture d
the input representation. This internal representation allows scheduling and allocation of syste
scribed by different models. Each input language is mapped into a specific set of annotations
5
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are consistent in order to permit the basic purpose of scheduling and allocation. The model
pounded using an example which combines real-time operating systems (RTOS) and synch
data flow (SDF) models. The processes of different models communicate via FIFO-ordered q

A directed, acyclic, polar graph—consisting ofprocesses, andsingleandconditional edges—is used
in [Ele98] as model for the system representation. The graph has two special nodes (sourceandsink)
used to represent the first and last task. In this graph, each node represents a process which is
to one of the processing elements. These processing elements can be programmable process
icated hardware components or buses. Thus, communication costs are considered by the s
communication processes, mapped to allocated buses, which represent the connection that links
cesses assigned to different processors (programmable or hardware). The representation mode
each process to be characterized by an execution time and a guard which is the condition ne
to activate the task of that process. Theconditional process graphmodel captures, at process leve
both dataflow and flow of control.

3.5. Communicating Processes

In models derived from Hoare’scommunicating sequential processes(CSP)1 [Hoa85], systems can
be outlined as sets of elements (processes) that function independently and communicate with ea
other through unidirectional channels using a synchronizing protocol. Processes can be desc
terms ofevents(atomic actions with zero duration). Time-consuming actions must be described u
a pair of events. In CSP, synchronized communication means that the data transfer is done by a
anism that ensures that the receiver process is in an adequate state to accept the information. T
processes stall until the message is transmitted. Thomaset al. use a set of independent, interactin
sequential processes, derived from CSP, as a model for representing the behavior of mixed ha
software systems [Tho93]. These processes in the model correspond to hardware or software
tations in the system to be represented. The model is mainly suited for system-level simulatio
synthesis. It provides transformation capabilities that allow generation and evaluation of some d
alternatives. The communication is performed through channels but, unlike in CSP, there exis
tional primitives that permit unbuffered transfer and synchronization without data. Some of
communication primitives capture the interaction of hardware and software processes, and c
the synchronization and data transfer associated with each interaction. The model considers the
memory itself as a process, so other processes can reach it through the channels.

3.6. Synchronous2/Reactive Models

Reactive systemsare those which interact continuously with their environment. The so-calledsyn-
chronous modelfor reactive systems is a representation for real-time systems. In this computat
model, the output responses are produced simultaneously with the input stimuli. From this po
view, there is no observable time delay in the reaction. The advantage of this assumption (cal
synchrony hypothesis) is that such systems are easier to describe and analyze. In [Ben91] an a
to synchronous modeling for reactive real-time systems is presented, and two styles of such a
sentation are stated under the namesmultiple clocked recurrent systems(MCRSs) andstate based for-
malisms. The former style is more convenient for data predominant systems whereas the state
formalism is suitable for systems where flow of control is prevalent. The so-calledsynchronous lan-
guages implement this model in one of the above mentioned styles.

1. Even though actually there exists no restriction that processes must be sequential, the name remains.
2. Note that in this section, and when referring to reactive models, the termsynchronousmeans zero reaction

time, unlike the other computational models where synchronous means clocked.
6
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ESTERELis a language for programming reactive systems under the synchronous model of co
tation [Bou91]. The language permits to describe concurrent and sequential statements in sy
nous systems. In this modeling approach, reactions are instantaneous and outputs are p
simultaneously. The synchronized modules communicate through signals (their status is pre
absent). The communication mechanism is instantaneous broadcast, so all statements see t
value and status for any signal. Other significant feature of ESTEREL is its determinism. The
guage is adequate for systems that react to external stimuli from their environment and have c
orientation.

On the other hand,LUSTRE[Hal91] is a language that adopts a data-oriented style. It is a declara
language which follows a synchronous dataflow approach and consents multirate clocking. T
mantics of the language permits easily to define mathematical equation systems. In LUSTRE
any other synchronous language, interprocess communication is performed by instantaneous
cast.

Another computational model based on the synchrony hypothesis is presented in [San99a]. T
tem is modeled using concurrent processes which are activated by events. In this model a sig
set of events. The response and input signal of a process are synchronous. This means that e
cess has zero execution time. As each event is marked with a tag, events are totally ordered. C
nication is done in terms of a simple data flow mechanism. In this approach, a system is specifie
described in Haskell, a purely functional programming language.

4. Comparison of Models

Table 1 shows the chart which permits to evaluate the characteristics of the computational mod
scribed above. This table summarizes and also complements the various features of those mo
have discussed. One of the most relevant traits a model must hold is its capability to represen
currency as well as sequential behavior. Every model presented in this survey supports both q
and then we omit the respective columns in Table 1.

The characteristics outlined in Table 1 correspond to: main application (which kind of system
fairly represented by the model), timing (what timing aspects are considered in the model),
mechanism (if the model is synchronous or asynchronous), communication method (how the dif
entities of the model communicate with each other), hierarchy (if the representation supports h
chical structures), non-determinism (if the computational model allows a non-deterministic ab
tion of the system behavior), and mathematical formalism (if a formal mathematical theory has
developed defining clearly the semantics of the model of computation).

5. Conclusions

This report describes the features of several codesign representation models. Most of them a
suited for data or control-oriented systems but few representations support widely both. There
dominance of asynchronous computational models in the sense that transitions are not drive
clock signal. Even though timing is an important subject in modern electronic systems, many
related models do not have an explicit notion of time. The majority of representations is based
strong mathematical semantics, which makes them amenable for formal verification. As stated b
all models are capable of handling sequential and concurrent behavior, which is due to the na
such software/hardware systems.
7
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It is worth to point out that many different models coexist in the scenario of hardware/software c
sign. These computational models have distinct features and support diverse kinds of applic
Consequently, the selection of an appropriate model for a given application must be based on th
acteristics of this application.

Table 1.
Computational Models used in Hardware/Software Codesign
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Statecharts
[Har87]
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Synchronous Instantaneous
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Discrete-Event
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Real-time Globally sorted events
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No No Yes
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Large-scale
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mechanism
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