
SAVE Project Report, Dept. of Computer and Information
Science, Linköping University, Linköping, December 2001.
Modeling and Verification of Embedded
Systems using Petri Net based Methods:

Application to an Industrial Case

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Department of Computer and Information Science

Linköping University
S-581 83 Linköping, Sweden

Abstract

Embedded systems are becoming increasingly common in objects that we use in our
everyday life. Embedded systems are typically characterized by their dedicated
function and real-time behavior. Many of them must fulfill strict requirements in
terms of reliability and correctness. Designing systems with such features, com-
bined with high levels of complexity and tight time-to-market constraints, is a chal-
lenging task. In order to devise systems with such features, a formal design
methodology is necessary to carry out systematically the different tasks along the
design flow. The SAVE project [SAV] aims at the development of a formal approach
to specification, implementation, and verification of heterogeneous electronic sys-
tems. We have developed techniques for modeling and verifying embedded systems.
This document reports the main results that have been obtained within the frame of
SAVE in the fields of modeling and verification. An industrial system is used as
study case in order to demonstrate the feasibility of the approach on practical appli-
cations.

1. Introduction

Embedded systems are becoming pervasive in the electronics industry. Applications include
automotive and aircraft controllers, cellular phones, network switches, household appliances,
medical devices, and consumer electronics, among others. Embedded systems are part of
larger systems and typically interact continuously with their environment. Embedded systems
generally include both software and hardware elements, that is, programmable processors and
hardware components like application specific integrated circuits (ASICs) and field program-
mable gate arrays (FPGAs). Besides their heterogeneity, embedded systems are characterized
by their dedicated function, real-time behavior, and high requirements on reliability and cor-
rectness [Cam96]. Designing systems with such characteristics is a difficult task. Moreover,
the ever increasing complexity of embedded systems combined with tight time-to-market win-
dows poses interesting challenges for the designers.

An essential issue of any systematic methodology aiming at designing embedded systems is
the underlying model of computation. The design process must be based on a model with pre-
cise mathematical meaning so that the different tasks from specification to implementation
can be carried out systematically [Edw97]. A sound representation allows capturing unambig-
uously the functionality of the system, verifying the correctness of the system with respect to
its desired properties, reasoning formally about the refinements and steps in the synthesis
1

process, and using CAD tools in order to assist the designer [Sgr00]. Therefore, the use of a for-
mal representation in embedded systems design is a must.

Correctness plays a key role in many embedded applications. As we become more dependent
on computer systems, the cost of a failure can be extremely high, in terms of loss of both human
lives and money. In safety-critical systems, for instance, reliability and safety are the most
important criteria. Traditional validation techniques like simulation and testing are not suffi-
cient to verify the correctness of such systems. Formal verification is becoming a practical way
to ensure the correctness of designs by complementing simulation and testing.

As pointed out above, the model of computation is the backbone of a design flow. In this
report we present a modeling formalism that can capture relevant characteristics of embedded
systems at different levels of granularity.

Since correctness is becoming increasingly important in embedded systems, we also present
an approach to the problem of formal verification of embedded systems represented in our
modeling formalism.

2. The Design Representation

In order to devise embedded systems the design process must be based upon a sound model of
computation that captures important features of such systems. The notation we use to model
embedded systems is an extension to Petri nets, called PRES+ (Petri Net based Representa-
tion for Embedded Systems). This section presents the formal definition of PRES+.

2.1 Basic Definitions
Definition 2.1. A PRES+ model is a five-tuple where

 is a finite non-empty set of places;
 is a finite non-empty set of transitions;

is a finite non-empty set of input arcs which define the flow relation between places
and transitions;

is a finite non-empty set of output arcs which define the flow relation between tran-
sitions and places;

 is the initial marking of the net (see Definition 2.4).

Figure 1: A PRES+ model

We use the example of Figure 1 in order to illustrate the definitions of the model presented
in this chapter. Like in classical Petri nets, places are graphically represented by circles, tran-
sitions by boxes, and arcs by arrows. For this example, and

.

N = P T I O M 0, , , ,()
P= p1 p2 … pm, , ,{ }
T = t1 t2 … tn, , ,{ }
I P T×⊆

O T P×⊆

M 0

1a+b

t 5
e

t 2

pa pb

cp

c-1

d

pet

p

[d>0]-d

t 4
d+

2
[d

<0
]

< >3,0 < >1,0

3t

a b

d

d

e

c

[1,1.7]

2

[1,2]

[2,4]

[3
,4

]

P= pa pb pc pd pe, , , ,{ }
T = t1 t2 t3 t4 t5, , , ,{ }
2

Definition 4.2. A token is a pair where
 is the token value. The type of this value is referred to as token type;
 is the token time, a non-negative real number representing the time stamp of the token.

The set denotes the set of all possible token types for a given system.

A token value may be of any type, e.g. boolean, integer, etc., or user-defined type of any com-
plexity (for instance a structure, a set, or a record). A token type is defined by the set of possible
values that the token may take. Thus is a set of sets.

For the initial marking of the net shown in Figure 1, for instance, in place there is a token
 with token value and token time .

Definition 2.3. The type function associates every place with a token type.
denotes the set of possible values that tokens may bear in . The set of possible tokens in

place is given by . denotes the set of all tokens.

It is worth pointing out that the token type related to a certain place is fixed, that is, it is an
intrinsic property of that place and will not change during the dynamic behavior of the net. For
the example given in Figure 1, for all , i.e. all places have token type integer.
Thus the set of all possible tokens in the system is .

Definition 2.4. A marking is an assignment of tokens to places of the net. The marking of
a place , denoted , can be represented as a multi-set1 over . For a particular
marking , a place is said to be marked iff .

The initial marking in the net of Figure 1 shows and as the only places initially
marked: and , whereas .

Definition 2.5. The pre-set of a transition is the set of input places
of . Similarly, the post-set of a transition is the set of output places
of . The pre-set and the post-set of a place are given by and

 respectively.

Definition 2.6. All output places of a given transition have the same token type, that is,

2.2 Description of Functionality
Definition 2.7. For every transition , there exists a transition function associated to .
Formally, for all there exists where

 and .

Transition functions are very important when describing the functionality of the system to
be modeled. They allow systems to be modeled at different levels of granularity with transi-
tions representing simple arithmetic operations or complex algorithms. In Figure 1 we
inscribe transition functions inside transition boxes: the transition function associated to ,
for example, is given by . We use inscriptions on the input arcs of a transition in
order to denote the arguments of its transition function.

Definition 2.8. For every transition , there exist a minimum transition delay and a
maximum transition delay , which are non-negative real numbers and represent, respec-
tively, the lower and upper limits for the execution time (delay) of the function associated to
the transition. Formally, for all there exist such that .

Referring again to Figure 1, the minimum transition delay of is , and its maximum

1. A multi-set or bag is a collection of elements over some domain in which, unlike a set, multiple occur-
rences of the same element are allowed. For example, is a multi-set over .

k= v r,〈 〉
v
r

K

K
pa

ka va=3 ra=0

τ : P K→ p P∈
τ p() p

p E p= v r,〈 〉 v τ p() r R0
+∈∧∈{ } E= E p

p P∈
∪

τ p()=Z p P∈
E= v r,〈 〉 v Z r R0

+∈∧∈{ }

M
p P∈ M p() E p

a b b b, , ,{ } a b c, ,{ }

M p M p() ∅≠

M 0 pa pb

M 0 pa()= 3 0,〈 〉{ } M 0 pb()= 1 0,〈 〉{ } M 0 pc()=M 0 pd()=M 0 pe()=∅

°t= p P p t,() I∈∈{ } t T∈
t t°= p P t p,() O∈∈{ } t T∈
t °p p° p P∈ ° p= t T t p,() O∈∈{ }

p°= t T p t,() I∈∈{ }

p q t° τ p()⇒∈, =τ q()

t T∈ f t
t T∈ f : τ p1() τ p2() … τ× pa()×× τ q()→ °t={ p1 p2 …,, ,

pa} q t°∈

t1

f 1 a b,()=a b+

t T∈ d -

d+

t T∈ d - d+, R0
+∈ d - d+≤

t2 d2

-
=1
3

transition delay is time units. Note that when , we just inscribe the value
close to the respective transition, like in the case of the transition delay .

Definition 2.9. A transition may have a guard associated to it. The guard of a tran-
sition is a predicate where .

Note that the guard of a transition is a function of the token values in places of its pre-set
. For instance, in Figure 1, represents the guard .

2.3 Dynamic Behavior
Definition 2.10. A transition is bound, for a given marking , iff all its input places are
marked. A binding of a bound transition , with pre-set , is an ordered
tuple of tokens where for all .

Observe that, for a particular marking , a transition may have different bindings. The
existence of a binding is a necessary condition for the enabling of a transition. For the initial
marking of the net shown in Figure 1, has a binding . Since has no
guard, it is enabled for the initial marking (as formally stated in Definition 2.11).

We introduce the following notation which will be useful in the coming definitions. Given the
binding , the token value of the token is denoted , and the token time of
is denoted .

Definition 2.11. A bound transition with guard is enabled, for a binding
, iff . A transition with no guard is enabled if is bound.

Definition 2.12. The enabling time of an enabled transition , for a binding
, is the time instant at which becomes enabled. is given by the maximum

token time of the tokens in the binding , that is, .

Definition 2.13. The earliest trigger time and the latest trigger time of an
enabled transition , for a binding , are the lower and upper time limits for
the firing of . An enabled transition may not fire before its earliest trigger time and
must fire before or at its latest trigger time , unless becomes disabled by the firing of
another transition.

Definition 2.14. The firing of an enabled transition , for a binding ,
changes a marking into a new marking . As a result of firing the transition , the follow-
ing occurs:
(i) Tokens from its pre-set are removed, that is, for all ;
(ii) One new token is added to each place of its post-set , that is,

for all . The token value of is calculated by evaluating the transi-
tion function with token values of tokens in the binding as arguments, that is,

. The token time of is the instant at which the transition fires, that is,
 where ;

(iii) The marking of places different from input and output places of remain unchanged, that
is, for all .

The execution time of the function of a transition is considered in the time stamp of the new
tokens. Note that, when a transition fires, all the tokens in its output places get the same
token value and token time. The token time of a token represents the instant at which it was
“created”.

In Figure 1, transition is the only one initially enabled (binding) so that its
enabling time is 0. Therefore, may not fire before 1 time units and must fire before or at 2

d2

+
=1.7 d -

=d+
=d d

d5=2

t T∈ G
t G : τ p1() τ p2() … τ× pa()×× 0 1,{ }→ °t= p1 p2 … p, a, ,{ }

t
°t d 0< G4

t T∈ M
b t °t= p1 p2 … p, a, ,{ }

b= k1 k2 … k, a, ,() ki M pi()∈ pi °t∈

M

t1 b= 3 0,〈 〉 1 0,〈 〉,() t1

b= k1 k2 … k, a, ,() ki vi k i

ri

t T∈ G
b= k1 k2 … k, a, ,() G v1 v2 … va, , ,()=1 t T∈ t

et t T∈
b= k1 k2 … k, a, ,() t et

b et=max r1 r2 … r, a, ,()

tt-
=et d -+ tt+

=et d++
t T∈ b= k1 k2 … k, a, ,()

t t T∈ tt-

tt+ t

t T∈ b= k1 k2 … k, a, ,()
M M + t

°t M + pi()=M pi() ki{ }– pi °t∈
k= v r,〈 〉 t°

M + p()=M p() k{ }+ p t°∈ k
f b

v= f v1 v2 … va, , ,() k t
r=tt* tt* tt- tt+

[,]∈
t

M + p()=M p() p P °t– t°–∈

t1 3 0,〈 〉 1 0,〈 〉,()
t1
4

time units. Let us assume that fires at 1 time units: tokens and are removed
from and respectively, and a new token is added to both and . At this
moment, only and are enabled (is bound but not enabled because its guard is not sat-
isfied for the binding). Note that transition has to fire strictly before : according to
the firing rules, must fire no earlier than 2 and no later than 2.7 time units, while is
restricted to fire in the interval . Figure 2 illustrates a possible behavior of the PRES+
model.

2.4 Summary
To sum up, when used to model embedded systems, PRES+ has several interesting features to
be highlighted, some of them inherited from the classical Petri net model:
 • PRES+ allows representations at different levels of granularity.
 • Since tokens carry information in our model, PRES+ overcomes the lack of expressiveness

of classical Petri nets, where tokens are considered as “black dots”.

t1 3 0,〈 〉 1 0,〈 〉
pa pb 4 1,〈 〉 pc pd

t2 t3 t4

4 1,〈 〉() t2 t3

t2 t3

3 5,[]

Figure 2: Illustration of the dynamic behavior of a PRES+ model

t 5
e

t 2

pp b

c-1

d

a

et 3

pc

-d

t 4

a+b

p

[d
<0

]

< >

p

< >1,0

[d>0]

d+
2

3,0

a b

d

dc

[1,1.7]

2

[1,2]

[2,4]

[3
,4

]

1a+b

t 5
e

t 2c-1

pa pb

cp pd

pet [d>0]-d

t 4
d+

2
[d

<0
]

< >4,1 < >4,1

e

t

a b

d

d

e

c

[1,1.7]

2

[1,2]

[2,4]

[3
,4

]

3

1a+b

t 5
e

t 2c-1

pa pb

cp pd

pet 3 [d>0]-d

t 4
d+

2
[d

<0
]

< >3,2

< >4,1

1

a b

d

d

e

c

[1,1.7]
2

[1,2]

[2,4]
[3

,4
]

t 1a+b

t 5
e

t 2c-1

pa pb

cp pd

pet 3 [d>0]-d

t 4
d+

2
[d

<0
]

< >3,2 4,5< >

t

t

a b

d

d

e

c

[1,1.7]

2

[1,2]

[2,4]

[3
,4

]

5

 • Time is a critical factor in many embedded applications. Our model captures timing
aspects by associating lower and upper limits to the duration of activities related to transi-
tions and keeping time information in token stamps.

 • Non-determinism may be naturally represented by PRES+. Non-determinism can be used
as a powerful mechanism to express succinctly the behavior of certain systems and thus
reduce the complexity of the model.

 • Sequential as well as concurrent activities may be easily expressed in terms of Petri nets.
Recall that concurrency is present in most embedded systems.

 • Both control and data information might be captured by a unified design representation.
 • PRES+ has been also extended by introducing the concept of hierarchy (see Section 3).
 • Furthermore, the model is simple, intuitive, and can be easily handled by the designer.

We have developed a software tool, called SimPRES, that allows PRES+ models to be simu-
lated. It has a graphical interface that lets the designer construct, modify, and simulate sys-
tems represented in PRES+. A screen shot of the SimPRES tool is shown in Figure 3. Such a
tool is of great help for the designer because it allows visualizing the model of the system under
design and running it, so that an animation of the dynamic behavior of the net is possible. Sim-
PRES supports full graphical edition of the model of the system and provides methods to store/
recover the net in/from a file.

Figure 3: SimPRES: a simulator for PRES+ models

3. Notions of Equivalence and Hierarchy for PRES+

Several notions of equivalence for embedded systems represented in PRES+ are defined in this
section. Such notions constitute the foundations of a framework to compare PRES+ models.

In this section we also extend PRES+ by introducing the concept of hierarchy. Hierarchy is a
6

convenient way to structure the system so modeling can done in a comprehensible form. With-
out hierarchical composition, it is difficult to specify and understand large systems.

3.1 Notions of Equivalence
The synthesis process requires a number of refinement steps starting from the initial system
model until a more detailed representation is achieved. Such steps correspond to transforma-
tions in the system model so that design decisions are included in the representation.

The validity of a transformation depends on the concept of equivalence in which it is con-
trived. When we claim that two systems are equivalent, it is very important to understand the
meaning of equivalence. Two equivalent systems are not necessarily the same but have prop-
erties that are common to both systems. Thus a clear notion of equivalence allows comparing
systems and pointing out the properties in terms of which the systems are equivalent.

The following three definitions are basic concepts to be used when defining the four notions
of equivalence for systems modeled in PRES+.

Definition 3.1. A marking is immediately reachable from if there exists a transition
 whose firing changes into .

Definition 3.2. The reachability set of a net is the set of all markings reachable from
 and is defined by:

(i) ;
(ii) If and is immediately reachable from , then .

Definition 3.3. A place is said to be an in-port iff for all , that is, there is
no transition for which is output place. Similarly, a place is said to be an out-port iff

 for all , that is, there is no transition for which is input place.

The set of in-ports is denoted while the set of out-ports is denoted .
Before formally presenting the notions of equivalence, we first give an intuitive idea of them.

Such notions rely on the concepts of in-ports and out-ports: the initial condition to establish an
equivalence relation between two nets and is that both have the same number of in-
ports as well as out-ports. In this way, it is possible to define a one-to-one correspondence
between in-ports and out-ports of the nets. Thus we can assume the same initial marking in
corresponding in-ports and then check the tokens obtained in the out-ports after some transi-
tion firings in the nets. It is like an external observer putting in the same data in both nets and
obtaining output information. If such an external observer can not distinguish between
and , based on the output data that he gets, then and are “equivalent”. As defined
later, such a concept is called total-equivalence. We also define weaker concepts of equivalence
in which the external observer may actually distinguish between and , but still there is
some commonality in the data obtained in corresponding out-ports, namely number of tokens,
token values, or token times.

We introduce the following notation to be used in the coming definitions: for a given marking
, denotes the number of tokens in place , i.e. .

Definition 3.4. Two nets and are cardinality-equivalent or N-equivalent iff:
(i) There exist such bijections and that define one-to-one

correspondences between in(out)-ports of and ;
(ii) The initial markings and satisfy

 for all ,
 for all ;

(iii) For every such that
 for all ,

M + M
t T∈ M M +

R N() N
M 0

M 0 R N()∈
M R N()∈ M + M M + R N()∈

p P∈ t p,() O∉ t T∈
t p p P∈

p t,() I∉ t T∈ t p

inP outP

N 1 N 2

N 1

N 2 N 1 N 2

N 1 N 2

M m p() p m p()= M p()

N 1 N 2

f in : inP1 inP2→ f out : outP1 outP2→
N 1 N 2

M 1,0 M 2,0

M 1,0 p()=M 2,0 f in p()() ∅≠ p inP1∈
M 1,0 q()=M 2,0 f out q()()=∅ q outP1∈

M 1 R N 1()∈
m1 p()=0 p inP1∈
7

 for all
there exists such that

 for all ,
 for all ,

 for all
and vice versa.

Figure 4: N-equivalent nets

The above definition expresses that if the same tokens are put in corresponding places of two
N-equivalent nets, then the same number of tokens will be obtained in corresponding out-
ports. Let us consider the nets and shown in Figures 4(a) and 4(b) respectively, in
which we have abstracted away information not relevant for the current discussion like tran-
sition delays and token values. For such nets we have , ,

, , and and are defined by ,
, , , and . Let us assume that and

satisfy condition (ii) in Definition 3.4. A simple reachability analysis shows there exist two
cases in which the first part of condition (iii) in Definition 3.4. is satisfied: a) if

, and otherwise; b) if , and otherwise. For
each of these cases there exist a marking satisfying the second part of condition (iii) in Defini-
tion 3.4, respectively: a) if , and otherwise; b) if

, and otherwise. Hence and are N-equivalent.

Figure 5: N-equivalent nets with different behavior

Before defining the concepts of function-equivalence and time-equivalence, let us study the
simple nets and shown in Figures 5(a) and 5(b) respectively. It is straightforward to see
that and fulfill the conditions established in Definition 3.4 and therefore are N-equiva-
lent. However, note that may produce tokens with different values in its output: when

m1 s()=m1,0 s() s P1 inP1 outP1––∈
M 2 R N 2()∈

m2 p()=0 p inP2∈
m2 s()=m2,0 s() s P2 inP2 outP2––∈
m2 f out q()()=m1 q() q outP1∈

(a)
(b)

paa pbb

pxx

ggp pffeep

d

pa pb

pc

p fe pgp

p

N 1 N 2

inP1= pa pb,{ } outP1= pe p f pg, ,{ }
inP2= paa pbb,{ } outP2= pee pff pgg, ,{ } f in f out f in pa()= paa

f in pb()= pbb f out pe()= pee f out p f()= pff f out pg()= pgg M 1,0 M 2,0

m1

i p()=1

p p f{ }∈ m1

i p()=0 m1

ii p()=1 p pe p, g{ }∈ m1

ii p()=0

m2

i p()=1 p pff pxx,{ }∈ m2

i p()=0 m2

ii p()=1

p pee pgg pxx, ,{ }∈ m2

ii p()=0 N 1 N 2

(a) (b)

1a t 2a +1t

pb

pa

2

2,0< >

a a

[2,3][1,3]

b

pa< >2,0

t 1

p

a

a

[2,4]

N 1 N 2

N 1 N 2

N 1 t1
8

fires the token in will be with , but when fires the token in will be
with . The reason of this behavior is the non-determinism of . On the

other hand, when the only out-port of is marked, the corresponding token value will always
be .

As shown in the example of Figure 5, even if two nets are N-equivalent the tokens in their
outputs may be different. For instance, there is no marking in which the out-port
has a token with value , whereas it does exist in which the out-port is marked
and . Thus the external observer could distinguish between and because of differ-
ent token values—moreover different token times—in their out-ports when marked.

Definition 3.5. Two nets and are function-equivalent or F-equivalent iff:
(i) and are N-equivalent;
(ii) Let and be markings satisfying condition (iii) in Definition 3.4. For every

, where , there exists such that , and vice
versa.

Definition 3.6. Two nets and are time-equivalent or T-equivalent iff:
(i) and are N-equivalent;
(ii) Let and be markings satisfying condition (iii) in Definition 3.4. For every

, where , there exists such that , and vice
versa.

Two nets are F-equivalent if, besides being N-equivalent, the tokens obtained in correspond-
ing out-ports have the same token value. Similarly, if tokens obtained in corresponding out-
ports have the same token time, the nets are T-equivalent.

Definition 3.7. Two nets and are total-equivalent or §-equivalent iff:
(i) and are F-equivalent;
(ii) and are T-equivalent.

Figure 6 shows the relation between the different concepts of equivalence introduced above.
The graph captures the dependence between the notions of equivalence. Thus, for instance, N-
equivalence is necessary for T-equivalence and also for F-equivalence. Similarly, §-equivalence
implies all other equivalences. §-equivalence is the strongest notion of equivalence defined in
this work.

Figure 6: Relation between the notions of equivalence

3.2 Hierarchical PRES+ Model
Embedded systems require sound models along their design cycle. PRES+ supports systems
modeled at different levels of granularity with transitions representing simple arithmetic
operations or complex algorithms. However, in order to handle efficiently the modeling of large
systems, a mechanism of hierarchical composition is needed so that the model may be con-

pb kb= 2 rb
i,〈 〉 rb

i
1 3[,]∈ t2 pb

kb= 5 rb
ii,〈 〉 rb

ii
2 3[,]∈ N 1

N 2

vb=2

M 2 R N 2()∈
vb=5 M 1 R N 1()∈

vb=5 N 1 N 2

N 1 N 2

N 1 N 2

M 1 M 2

v1 r1,〈 〉 M 1 q()∈ q outP1∈ v2 r2,〈 〉 M 2 f out q()()∈ v1=v2

N 1 N 2

N 1 N 2

M 1 M 2

v1 r1,〈 〉 M 1 q()∈ q outP1∈ v2 r2,〈 〉 M 2 f out q()()∈ r1=r2

N 1 N 2

N 1 N 2

N 1 N 2

N-equivalence

F-equivalence T-equivalence

§-equivalence
9

structed in a structured manner, composing simple units fully understandable by the designer.
Hierarchical modeling can be conveniently applied along the design process of embedded

systems. Sometimes the specification or requirements may not be complete or thoroughly
understood. In a top-down approach, a designer may define the interface to each component
and then gradually refine those components. On the other hand, a system may be constructed
reusing existing elements such as IP blocks in a bottom-up approach. A hierarchical PRES+
model can be devised bottom-up, top-down, or by mixing both approaches.

A flat representation of a real-life embedded system can be too big and complex to handle
and understand. The concept of hierarchy allows systems to be modeled in a structured way.
Thus the system may be broken down into a set of comprehensible nets structured in a hierar-
chy. Each one of these nets may represent a sub-block of the current design. Such a sub-block
can be a pre-designed IP component as well as a design alternative corresponding to a sub-
system of the system under design.

In this section we formalize the concept of hierarchy for PRES+ models. Some trivial exam-
ples are used in order to illustrate the definitions.

Definition 3.8. A transition is an in-transition of iff . In
a similar manner, a transition is an out-transition of iff .

Note that the existence of non-empty sets and is a necessary condition for the exist-
ence of in- and out-transitions. For the net shown in Figure 7, , ,
and and are in-transition and out-transition respectively.

Figure 7: A simple subnet

Definition 3.9. An abstract PRES+ model is a six-tuple where
 is a finite non-empty set of places;

 is a finite set of transitions;
 is a finite set of super-transitions;

 is a finite set of input arcs;
 is a finite set of output arcs;

 is the initial marking.

Observe that a (non-abstract) PRES+ net is a particular case of an abstract PRES+ net with
. Figure 8 illustrates a hierarchical PRES+ net. Super-transitions are represented by

thick-line boxes.

Definition 3.10. The pre-set and post-set of a super-transition are given by
 and respectively.

Similar to transitions, the pre(post)-set of a super-transition is the set of input(out-
put) places of .

t T∈ N = P T I O M 0, , , ,() p°
p inP∈
∪ = t{ }

t T∈ N °p
p outP∈
∪ = t{ }

inP outP
N 1 inP1= pa pb,{ } outP1= pd{ }

tin tout

intinf

cp

dp

ap bp

in
-

in
+[d ,d]

+
outout

-[d ,d]

t outoutf

N 1

H = P T Λ I O M 0, , , , ,()
P= p1 p2 … pm, , ,{ }
T = t1 t2 … tn, , ,{ }
Λ= S1 S2 … S l, , ,{ }
I P Λ T∪()×⊆
O Λ T∪() P×⊆
M 0

Λ=∅

°S S° S Λ∈
°S= p P p S,() I∈∈{ } S°= p P S p,() O∈∈{ }

S Λ∈
S

10

Definition 3.11. For every super-transition there exists a high-level function
 associated to , where and .

Recall that denotes the type associated with the place , i.e. the type of value that
a token may bear in that place. Observe the usefulness of high-level functions associated to
super-transitions in, for instance, a top-down approach: for a certain component of the system,
the designer may define its interface and a high-level description of its functionality through a
super-transition, and in a later design phase refine the component. In current design method-
ologies it is also very common to reuse predefined elements such as IP blocks. In such cases,
the internal structure of the component is unknown to the designer and therefore the block is
best modeled by a super-transition and its high-level function.

Figure 8: A hierarchical PRES+ model

Definition 3.12. For every super-transition there exist a minimum estimated delay
and a maximum estimated delay , where are non-negative real numbers that repre-
sent the estimated lower and upper limits for the execution time of the high-level function
associated to .

Definition 3.13. A super-transition may not be in conflict with other transitions or super-
transitions, that is:
(i) and for all such that ;
(ii) and for all , .

In other words, a super-transition may not “share” input places with other transitions/
super-transitions, nor output places. In what follows, the input and output places of a super-
transition will be called surrounding places.

Definition 3.14. A super-transition together with its surrounding places in the hierar-
chical net is a semi-abstraction of the (hierarchical) subnet

 (or conversely, is a semi-refinement of and its surrounding places) iff:
(i) There exists a unique in-transition ;
(ii) There exists a unique out-transition ;
(iii) There exists a bijection that maps the input places of onto the in-ports

of ;
(iv) There exists a bijection that maps the output places of onto the out-

ports of ;
(v) and for all ;

S Λ∈
g : τ p1() τ p2() … τ× pa()×× τ q()→ S °S= p1 p2 … p, a, ,{ } q S°∈

τ p() p P∈

3p 4p

2p1p

5p

-
1 1

+[d ,d]

- 2
2+

[d
 ,

d
]

- 3
3+

[d
 ,

d
]

[e ,e]-
1 1

+

t 11f

S11g

t 2
2f

t 3
3f

S Λ∈ e-

e+ e- e+≤

S

°S1 °S2∩ =∅ S1

o S2

o∩ =∅ S1 S2, Λ∈ S1 S2≠
°S °t∩ =∅ S° t°∩ =∅ S Λ∈ t T∈

S i Λ∈
H = P T Λ I O M 0, , , , ,() N i=(Pi T, i Λi,,

I i Oi M i 0,), , N i S i

tin T i∈
tout T i∈

hin : °S i inPi→ S i

N i

hout : S i
o outPi→ S i

N i

M 0 p()=M i 0, hin p()() τ p()=τ hin p()() p °S i∈
11

(vi) and for all ;
(vii) is disabled in the initial marking for all .

A subnet may, in turn, contain super-transitions. It is straightforward to prove that the net
 of Figure 7 is indeed a semi-refinement of in the hierarchical net of Figure 8.

If a net is the semi-refinement of some super-transition , it is possible to characterize
in terms of both function and time by putting tokens in its in-ports and then observing the

value and time stamp of tokens in its out-ports after a certain firing sequence. If the time
stamp of all tokens deposited in the in-ports of is zero, the token time of tokens obtained in
the out-ports is called the execution time of . For example, the net shown in Figure 7 can
be characterized by putting tokens and in its in-ports and observing the
token after firing and . Thus the execution time of is equal to the token
time , bounded in this case by . Note the token value is given by

, where and are the transition functions of and respectively.
The definition of semi-abstraction/refinement is just “syntactic sugar” that allows a complex

design to be constructed in a structured way by composing simpler entities. We have not
defined, so far, a semantic relation between the functionality of super-transitions and their
refinements. Below we define the concepts of strong and weak refinement of a super-transition.

Definition 3.15. A subnet is a strong refinement of the super-transi-
tion together with its surrounding places in the hierarchical net
(or and its surrounding places is a strong abstraction of) iff:
(i) is a semi-refinement of ;
(ii) “implements” , that is, is function-equivalent to and its surrounding places;
(iii) The minimum estimated delay of is equal to the lower bound of the execution time

of ;
(iv) The maximum estimated delay of is equal to the upper bound of the execution time

of .

The subnet shown in Figure 7 is a semi-refinement of in the hierarchical net of
Figure 8. is a strong refinement of the super-transition if, in addition: (a) ;
(b) ; (c) (Definitions 3.15(ii), 3.15(iii), and 3.15(iv) respectively).

Observe that the concept of strong refinement requires the super-transition and its strong
refinement to have the very same time limits. Such a concept could have limited practical use
since the high-level description and the implementation perform the same function but typi-
cally have different timings and therefore their bounds for the execution time do not coincide.
We relax the requirement of exact correspondence of lower and upper bounds on time; this
yields to a weaker notion of refinement, yet more practical.

Definition 3.16. A subnet is a weak refinement of the super-transi-
tion together with its surrounding places in the hierarchical net
(or and its surrounding places is a weak abstraction of) iff:
(i) is a semi-refinement of ;
(ii) “implements” , that is, is function-equivalent to and its surrounding places;
(iii) The minimum estimated delay of is less than or equal to the lower bound of the exe-

cution time of ;
(iv) The maximum estimated delay of is greater than or equal to the upper bound of the

execution time of .

In the sequel whenever we refer to refinement it will mean weak refinement.
Given a hierarchical PRES+ net and refinements of its super-transi-

tions, it is possible to construct an equivalent non-hierarchical net. For the sake of clarity, in
the following discussion we will consider nets with a single super-transition, nonetheless these

M 0 p()=M i 0, hout p()() τ p()=τ hout p()() p S i
o∈

t M i 0, t T i-tin()∈

N 1 S1

N i S i

N i

N i

N i N 1

ka= va 0,〈 〉 kb= vb 0,〈 〉
kd= vd rd,〈 〉 tin tout N 1

rd din
- dout

-+ rd din
+ dout

++≤ ≤ vd

vd= f out f in va vb,()() f in f out tin tout

N i= Pi T, i Λi I i Oi M i 0,, , , ,()
S i Λ∈ H = P T Λ I O M 0, , , , ,()

S i N i

N i S i

N i S i N i S i

ei
- S i

N i

ei
+ S i

N i

N 1 S1

N 1 S1 g1= f out o f in

ei
-
=din

-
+dout

- ei
+
=din

+
+dout

+

N i= Pi T, i Λi I i Oi M i 0,, , , ,()
S i Λ∈ H = P T Λ I O M 0, , , , ,()

S i N i

N i S i

N i S i N i S i

ei
- S i

N i

ei
+ S i

N i

H = P T Λ I O M 0, , , , ,()
12

concepts can be easily extended to the general case.

Definition 3.17. Let us consider the net where , and let the sub-
net be a refinement of and its surrounding places. Let

be unique in-transition and out-transition respectively. Let and be
respectively the sets of in-ports and out-ports of . The equivalent net

, one level lower, is defined as follows:
(i) ;
(ii) ;
(iii) ;
(iv) if ;

 if , or and ;
 if ;

(v) if ;
 if , or and ;

 if ;
(vi) for all ;

 for all .

Figure 9: A non-hierarchical PRES+ model

Given the hierarchical net of Figure 8 and being (Figure 7) a refinement of , we can
construct the equivalent non-hierarchical net as illustrated in Figure 9.

3.2.1 HIERARCHICAL MODELING OF A GMDFα

In this section we model a GMDFα (Generalized Multi-Delay frequency-domain Filter) [Fre97]
using PRES+. GMDFα has been used in acoustic echo cancellation for improving the quality of
hand-free phone and teleconference applications. The GMDFα algorithm is a frequency-
domain block adaptive algorithm: a block of input data is processed at one time, producing a
block of output data. The impulse response of length is segmented into smaller blocks of
size (), thus leading to better performance. new samples are processed at each
iteration and the filter is adapted times per block ().

The filter inputs are the signal and its echo , and the output is the reduced or cancelled
echo . In Figure 10 we show the hierarchical PRES+ model of a GMDFα. The transition

H = P T Λ I O M 0, , , , ,() Λ= S1{ }
N 1= P1 T,

1
Λ1 I 1 O1 M 1 0,, , , ,() S1

tin tout, T 1∈ inP1 outP1

N 1

H '= P' T ' Λ' I ', O' M 0', , , ,()
Λ'=Λ1

P'=P P1-inP1-outP1()∪
T '=T T 1∪
p S,() I '∈ p S,() I 1∈
p t,() I '∈ p t,() I∈ p t,() I 1∈ p inP1∉
p tin,() I '∈ p S1,() I∈

S p,() O'∈ S p,() O1∈
t p,() O'∈ t p,() O∈ t p,() O1∈ p outP1∉
tout p,() O'∈ S1 p,() O∈
M 0' p()=M 0 p() p P∈
M 0' p()=M 1 0, p() p P1-inP1-outP1∈

5p

t 2
t 3

2p1p

3p 4p

t 1

intinf

cp

in
-

in
+[d ,d]

+
outout

-[d ,d]

t outoutf

- 3
3+

[d
 ,

d
]

- 2
2+

[d
 ,

d
]

-
1 1

+[d ,d]

N 1 S1

L K
N K=L/N R

α R=N /α
X E

E' t1
13

transforms the input signal into the frequency domain by a FFT (Fast Fourier Transform).
corresponds to the normalization block. In each one of the basic cells the filter coeffi-

cients are updated. Transitions serve as delay blocks. computes the estimated echo in
the frequency domain by a convolution product and then it is converted into the time domain
by . The difference between the estimated echo and the actual one (signal) is calculated by

and output as . Such a cancelled echo is also transformed into the frequency domain by
to be used in the next iteration when updating the filter coefficients. InFigure 10 we also model
the environment with which the GMDFα interacts: models the echoing of signal , and
represent, respectively, the sending of the signal and the reception of the cancelled echo, and
is the entity that emits .

The refinement of the basic cells is shown inFigure 10(b) where the filter coefficients are
computed and thus the filter is adapted by using FFT-1 and FFT operations. It is worth notic-
ing that instances of the same subnet (Figure 10(b)) are used as refinements of the different
cells . Transition delays in Figure 10 are given in milliseconds.

Mult at

XF
µF EF

FFT dt

Update ct

YF

FFT b
-1 t

Coef

[0.7,0.9]

[0.8,1.1]

[0.4,0.5]

[0.8,1.2]

(b)
Figure 10: GMDFα modeled using PRES+

FFT 1t

N
or

m
2t

Delay t4.1

S 3
.2

C
el

l
S 3

.1
C

el
l

F
F

T
8t

Echo t e

GMDFα
µF.2

µF.1

XF.2

XF.1

YF.2

YF.1

EF.1

EF.2

Se
nd

X
t s

Sender t d

EF.K

µF.K

Delay t4.K-1

XF.K

S 3
.K

C
el

l

YF.K

C
on

v
5t

F
F

T
6

-1
t

D
if

f
7t

R
ec

E
t r E’

[0
.3

,0
.4

]

. .
 .

X

X

[0.8,1.2]

0.1

[0
.8

,1
.2

]

[0
.1

,0
.2

]

8

[0.01,0.05]

. .
 .

. .
 .

0.1
. .

 .

[0
.7

,1
]

[0
.8

,1
.1

]

E

. .
 .

(a)

X
t2 S3.i

t4.i t5

t6 E
t7 E' t8

te X ts tr

td

X
S3.i

S3.i
14

4. Formal Verification of Embedded Systems

As the complexity of electronic systems increases, the likelihood of subtle errors becomes much
greater. A way to cope, to a certain extent, with the issue of correctness is the use of mathe-
matically-based techniques, known as formal methods.

Correctness plays a key role in embedded systems. For the levels of complexity typical to
modern electronic systems, traditional validation techniques like simulation and testing are
not enough to verify the correctness of such systems. First, these methods may cover just a
small fraction of the system behavior. Second, bugs found late in prototyping phases have a
negative impact on time-to-market. Third, as more applications become dependent on com-
puter systems, a failure may lead to catastrophic situations, e.g. in safety-critical systems like
transportation, defense, and medical applications.

In this section we introduce our approach to formal verification of real-time embedded sys-
tems represented in PRES+.

4.1 Analyses of PRES+ Models
There are several types of analysis that can be performed on systems represented in PRES+.
The absence or presence of tokens in places of the net may represent the state of the system at
a certain moment in the dynamic behavior of the net. Based on this, different properties can be
studied. For instance, two places marked simultaneously could represent a dangerous situa-
tion that must be avoided. This sort of safety requirement might be formally proved by check-
ing that such dangerous state is never reached. Also, the designer could be interested in
proving that the system eventually reaches a certain state, in which the presence of tokens in
a particular place represents the completion of a task. This kind of analysis, absence/presence
of tokens in places of the net, is termed reachability analysis.

The type of analysis described above is useful but says nothing about timing aspects nor does
it deal with token values. In many embedded applications, however, time is an essential factor.
Moreover, in hard real-time systems, where deadlines should not be missed, it is crucial to rea-
son quantitatively about temporal properties in order to ensure the correctness of the design.
Therefore, it is needed not only to check that a certain state will eventually be reached but also
to ensure that this will occur within some bound on time. In PRES+, time information is
attached to tokens so that we can analyze quantitative timing properties. We may prove that a
given place will eventually be marked and that its time stamp will be less than a certain time
value that represents a temporal constraint. Such a study is called time analysis.

A third type of analysis for systems modeled in PRES+ involves reasoning about values of
tokens in marked places. Such kind of study is called functionality analysis. In this report we
restrict ourselves to reachability and time analyses. In other words, we concentrate on the
absence/presence of tokens in the places of the net and their time stamps. Note, however, that
in some cases reachability and time analyses are influenced by token values.

4.2 Our Approach to Formal Verification
Model checking is one of the well-established approaches to formal verification: a number of
desired properties (called in this context specification) are checked against a given model of the
system. The two inputs to the model checking problem are the system model and the proper-
ties that such a system must satisfy, usually expressed as temporal logic formulas.

The purpose of our verification approach is to formally reason about real-time embedded sys-
tems represented in PRES+. For verification purposes, we restrict ourselves to safe PRES+
nets, that is, every place holds at most one token for every marking reachable fromp P∈ M
15

. Otherwise, the formal analysis would become more cumbersome. This is a trade-off
between expressiveness and analysis power.

Our approach allows determining the truth of formulas expressed in CTL [Cla86] and TCTL
(Timed CTL) [Alu90] with respect to a (safe) PRES+ model. CTL is based on propositional logic
of branching time, that is, a logic where time may split into more than one possible future
using a discrete model of time. Formulas in CTL are composed of atomic propositions, boolean
connectors, and temporal operators. Temporal operators consist of forward-time operators (G
globally, F in the future, X next time, and U until) preceded by a path quantifier (A all compu-
tation paths, and E some computation path). For instance, holds if for every possible
path there exists at least one state in which is satisfied, that is, will eventually happen.
TCTL is a real-time extension of CTL that allows inscribing subscripts on the temporal opera-
tors to limit their scope in time. For instance, expresses that, along all computation
paths, the property P becomes true within n time units. In our approach the atomic proposi-
tions of CTL/TCTL correspond to the absence/presence of tokens in places in the net. Thus the
atomic proposition holds iff is marked.

In order to verify the correctness of a real-time embedded system, we propose a systematic
procedure to translate PRES+ into timed automata so that it is possible to make use of existing
model checking tools, namely HyTech [HyT], KRONOS [Kro], and UPPAAL [Upp]. Figure 11 sum-
marizes our general approach to formal verification of embedded systems using model check-
ing. The system is described by a PRES+ model and the properties it must satisfy are
expressed by CTL/TCTL formulas. The model checker automatically verifies whether the
required properties hold in the model of the system. In case the CTL/TCTL formulas are not
satisfied, diagnostic information is generated. Given enough resources, the procedure will ter-
minate with a yes/no answer. However, due to the huge state space of practical systems, it
might be the case that it is not feasible to obtain an answer at all, even though in theory the
procedure will “always” terminate (probably after many years and enough memory). That case
corresponds to in Figure 11.

Figure 11: Model checking

The verification of hierarchical PRES+ models is done by constructing the equivalent non-
hierarchical net as stated in Definition 3.17, and then using the translation procedure dis-
cussed in the next section. Note that obtaining the non-hierarchical PRES+ model can be done
automatically so that the designer is not concerned with flattening the net: he just inputs a
hierarchical PRES+ model as well as the properties he is interested in.

M 0

AF p
p p

AF<n P

p p P∈

???

d

EF pe<2

Specification (Req. Properties)

c

f
AG !(p & p)

CTL/TCTL formula

PRES+ model N
System Description

???

yes
PRES+

Translation

Automata

N f
?

Model Checker

no
Diagnostic
Information
16

4.3 Translating PRES+ into Timed Automata
A timed automaton is a finite automaton augmented with a finite set of real-valued clocks
[Alu99]. Timed automata can be thought as a collection of automata which operate and coordi-
nate with each other through shared variables and synchronization labels. There is a set of
real-valued variables, named clocks, all of which change along the time with the same constant
rate. There might be conditions over clocks that express timing constraints.

An extended timed automata model can be expressed as a tuple
, where

 is a finite set of locations;
 is a set of initial locations;

 is a set of edges;
 is a finite set of labels;

 is a mapping that labels each edge in with some label in ;
 is a finite set of real-valued clocks;
 is a finite set of variables;
is a mapping that assigns to each edge a clock condition over that must be

satisfied in order to allow the automaton to change its location from to ;
is a mapping that assigns to each edge a variable condition over that must

be satisfied in order to allow the automaton to change its location from to ;
 is a reset function that gives the clocks to be reset on each edge;

 is the activity mapping that assigns to each edge a set of activities ;
is a mapping that assigns to each location an invariant which allows the automaton

to stay at location as long as its invariant is satisfied.
In order to use existing model checking tools, we first translate the PRES+ model into timed

automata. In the procedure presented in this chapter, the resulting model will consist of one
automaton and one clock for each transition in the Petri net. We use the PRES+ model shown
in Figure 12 in order to illustrate the translation procedure. Figure 13 shows the resulting
timed automata.

Figure 12: PRES+ model to be translated into automata

Step 4.1. Define one clock in for each transition of the Petri net. Define one variable in

M =(L L0 E Σ σ X V Φ,, , , , , , ,
υ R A I), , ,
L
L0 L⊆
E L L×⊆
Σ
σ : E Σ→ E Σ
X
V
Φ e= l l',() Φ e() X

l l'
υ e= l l',() υ e() V

l l'
R : E 2

X→
A e A e()
I l I l()

l

1a t 2b-1

t 3

t 4 [e>1]3*e

c+d

a pb

c

p

pd

gpfp

t 5 [e<1]e

p

p

< >a,0 < >b,0

t

e

a b

dc

e e

[1,3]

[2,4]

[2,5]

1

1

ci X ti
17

for each place of the Petri net, corresponding to the token value when is marked.

The clock is used to ensure the firing of the transition within its earliest-latest trigger
time interval. For the example in Figure 12, using the short notation to denote ,

, .

Step 4.2. Define the set of labels as the set of transitions in the Petri net.

Step 4.3. For every transition in the Petri net, define an automaton with locations
, where is the number of transitions that, when fired, will deposit a token in

some place of the pre-set . The set of such transitions is defined by . In the case
, define an automaton with only two locations and .

The resulting model consists of five automata. The automaton , for instance, has three
locations.

Step 4.4. Given the automaton , corresponding to transition :
a) Transition is not in conflict. Let . Define edges , edges , ,

and edges . Then assign, to each group of edges, synchronization labels correspond-
ing to the transitions in . Define then one edge with synchronization label ;
b) Transition is in conflict with another transition . Let , ,

, , and . Split each one of the locations into and
. Then define edges , edges , , edges , edges

, , and edges , each group with synchronization labels corresponding
to those transitions in . Define edges , edges , and edges ,
each group with synchronization labels corresponding to transitions in . Define then one
edge , one edge , , and one edge , each with synchronization label

. Finally, define one edge with synchronization label .

For example, transition in the model of Figure 12 is not in conflict and, therefore, case a)
applies. Since , for the automaton there are two edges , and two edges

 with labels and as shown in Figure 13. The edge has label .
On the other hand, is in conflict with and case b) applies. Since the

automaton still has two locations as shown in Figure 13. If transition did not exist, the
automaton would not have the edge with synchronization label .

In the following, let be the transition function associated to , the pre-set of , and
and the minimum and maximum transition delays associated to .

Step 4.5. Given the automaton , for every edge define . For any other
edge in define . Define the invariant of location as in order to enforce the
firing of before or at its latest trigger time.

This means that in all edges the clock will be reset. In Figure 13, the assignment
represents the reset of . The two edges of automaton , for example, have
inscribed on them. is used to take into account the time since becomes enabled and

ensure the firing semantics of PRES+.

Step 4.6. Given and its edge with synchronization label , assign to the clock
condition . For every assign to such an edge the activity .

For example, in the case of the automaton the condition gives the lower and
upper limits for the firing of , while the activity expresses that whenever the autom-
aton changes from to , i.e. fires, the value is assigned to the variable .

Step 4.7. Given the automaton , if the transition has guard , assign the variable condi-
tion to the edge with synchronization label . Then add an edge with no
synchronization label, condition (the complement of), and .

V px vx px

ci ti

w vw

X = c1 c2 c3 c4 c5, , , ,{ } V = a b c d e f g, , , , , ,{ }

Σ

ti ti z+1

s1 s2 … sz en, , , , z
°ti pr ti()= °p

p °ti∈
∪

pr ti()=∅ s1 en

t3

ti ti

ti z= pr ti() z s1 s2,() z s2 s3,() …
z sz en,() z

pr ti() en s1,() ti

ti tc A=pr ti() pr tc()∩ B=pr ti() pr tc()–
x= A y= B z= pr ti() s2 … sz, , s2 a, … sz a,, ,
s2 b, … sz b,, , y s2,a s3,a,() y s3,a s4,a,() … y sz ,a en,() y
s1 s2,b,() … y sz 1,b– sz ,b,()

B x s1 s2,a,() x s2,b s3,a,() … x sz ,b en,()
A

s2,a s1,() s3,a s2,b,() … en sz ,b,()
tc en s1,() ti

t3

pr t3()= t1 t2,{ } t3 s1 s2,()
s2 en,() t1 t2 en s1,() t3

t4 t5 pr t4()=pr t5()= t3{ }
t4 t5

t4 en s1,() t5

f i ti °ti ti di
-

di
+ ti

ti ek= sz en,() R ek()= ci{ }
e ti R e()=∅ en ci di

+≤
ti

sz en,() ci

ci:=0 ci s2 en,() t3

c3:=0 c3 t3

ti e= en s1,() ti e
di

- c≤ i di
+≤ p j ti°∈ e v j:= f i

t2 1 c≤ 2 3≤
t2 d:=b-1

t2 en s1 t2 b-1 d

ti ti Gi

Gi en s1,() ti e= en en,()
Gi Gi R e()= ci{ }
18

Note the condition assigned to the edge in the automaton , where rep-
resents the guard of . Observe also the edge with condition and .

Step 4.8. If the transition is enabled in the initial marking, make the location the initial
location of . Otherwise, if there are places initially marked in the pre-set of the transi-
tion (so that is not enabled), make the initial location of .

In our example, is the initial location of because the transition is enabled in the ini-
tial marking of the net. Since no place in is initially marked, the automaton has as
initial location.

Once we have the equivalent timed automata, we can verify properties against the model of
the system. For instance, in the simple system of Figure 12 we could check whether, for given
values of and , there exists a reachable state in which is marked. This property can be
expressed as a CTL formula . If we want to check temporal properties we can express
them as TCTL formulas. Thus, we could check whether will possibly be marked and the
time stamp of its token be less than 5 time units, expressing this property as .

Some of the model checking tools, namely HyTech [HyT], are capable of performing paramet-
ric analyses. Then, for the example shown in Figure 12, we can ask the model-checker which
values of and make a certain property hold in the system model. For instance, we obtain
that holds if .

Due to the nature of the model checking tools that we use, the translation procedure intro-
duced above is applicable for PRES+ models in which transition functions are expressed using
arithmetic operations and token types of all places are rational. In this case, we could even rea-
son about token values. Recall, however, that we want to focus on reachability and time anal-
yses. From this perspective we can ignore transition functions if they affect neither the
absence/presence of tokens nor time stamps. This is the case of PRES+ models that bear no
guards and, therefore, they can straightforwardly be verified even if their transition functions
are very complex operations, because we simply ignore such functions. Those systems that
include guards in their PRES+ model may also be studied if guard dependencies can be stated
by linear expressions. This is the case of the system shown in Figure 12. There are many sys-

e 1< en s1,() t5 e 1<
t5 en en,() e 1≥ c5:=0

s1 en

c5<=1

c5==1
e<1

t5
g:=e

t3
c5:=0

t4

e>=1

c5:=0

s1 en

c4<=5

c4>=2,c4<=5
e>=1

t4
f:=3*e

t3
c4:=0

t5

e<1

c4:=0

s1 s2 en

c3<=4

t1 t1
c3:=0

c3>=2,c3<=4

t3

e:=c+d

t2
c3:=0

t2

s1 en

c2<=3

c2>=1,c2<=3
t2

d:=b-1

s1 en

c1<=1

c1==1
t1

c:=a

t1

t2

t5

t4

t3

Figure 13: Timed Automata equivalent to the
PRES+ model of Figure 12

ti en
ti k °ti

ti 0 k °ti<≤ ti sk+1 ti

en t1 t1

°t3 t3 s1

a b p f

EF p f

pg

EF<5 pg

a b
EF pg a+b 2<
19

tems in which the transition functions are not linear, but their guard dependencies are, and
then we can inscribe such dependencies as linear expressions and use our method for system
verification.

5. Reduction of Verification Complexity by using Transformations

The advantages of transformations in the verification of embedded systems are addressed in
this section. We have introduced an approach to the formal verification of systems modeled in
PRES+. The verification efficiency can be improved considerably by using a transformational
approach. The model that we use to represent embedded systems supports a transformation
based concept which is of great benefit in the formal verification process.

For the sake of reducing the verification effort, we first transform the system model into a
simpler one, still semantically equivalent, and then verify the simplified model. If a given
model is modified using correctness-preserving transformations and then the resulting one is
proved correct with respect to its specification, the initial model is guaranteed to be correct by
construction and no intermediate steps need to be verified. This simple observation allows us
to reduce significantly the complexity of verification.

5.1 Transformations
As it was argued in Section 3, the concept of hierarchy makes it possible to model systems in a
structured way. Thus, using the notion of abstraction/refinement, the system may be broken
down into a set of comprehensible nets.

Transformations performed on large and flat systems are, in general, difficult to handle.
Hierarchical modeling permits a structural representation of the system in such a way that the
composing (sub)nets are simple enough to be transformed efficiently.

Figure 14: Transformation rule TR1

We can define a set of transformation rules that make it possible to transform only a part of

- +[e ,e]

q1 qm

pnp1

. . .

. . .

Sg

Transformation

Abs
tra

cti
on

/R
efi

nem
en

t Abstraction/Refinem
ent

t2

t11f

[a ,b]11

22[a ,b]

2f

q’1 q’m

p’n1p’

. . .

. . .

p

N’

p’’1 p’’n

q’’mq’’1

. . .

f

[a,b]

t

. . .

N’’

Total-equivalence

f = f f2 1o

+a = a a1 2
+b = b b1 2

0M p () = φ
20

the system model. A simple but useful transformation is shown in Figure 14. It is not difficult
to formally prove that and are total-equivalent, provided that the conditions given in
Figure 14 are satisfied. It is interesting to observe that if the net is a refinement of a certain
super-transition in the hierarchical net and is transformed into

(so that and are total-equivalent), then is also a refinement of and may be used
instead of . Such a transformation does not change the overall system at all. First, having
tokens with the same token value and time in corresponding in-ports of and will lead to
a marking with the very same token value and time in corresponding out-ports, so that the
external observer (i.e. the rest of the net) can not distinguish between and . Second,
once tokens are put in the in-ports of the subnets, there is nothing that externally “disturbs”
the behavior of the subnets and (for example a transition in conflict with the in-transi-
tion that could take away tokens from the in-ports) because, by definition, super-transitions
may not be in conflict. Thus the overall behavior is the same using either or . Such a
transformation rule could be used, therefore, to simplify PRES+ models and accordingly
reduce the complexity of the verification process.

It is worth clarifying the concept of transformation in the context of verification. Along the
design flow, the system model is refined to include different design decisions, like architecture
selection, partitioning, and scheduling. Such refinements is what we call vertical transforma-
tions. On the other hand, at certain stage of the design flow, the system model can be trans-
formed into another one that preserves certain properties under consideration and, at the
same time, makes easier the verification process. These are called horizontal transformations.

Horizontal transformations are a mathematical tool to deal with the verification complexity.
By simplifying the representation to be model-checked, the verification cost is reduced in a sig-
nificant manner. In this report, we concentrate on horizontal transformations.

Figure 15: Using transformations in order to reduce verification cost

Figure 15(a) depicts how the system model, at a given phase of the design flow, is verified.
The model together with the required properties are input to the model checking tool to find
out whether the model conforms its desired properties. It is possible to do better by trying to
apply horizontal transformations in order to get a simpler model, yet semantically equivalent
with respect to the properties . Our transformational approach to verification is illustrated

N ' N ''

N '

S Λ∈ H = P T Λ I O M 0, , , , ,() N '

N '' N ' N '' N '' S
N '

N ' N ''

H N ' N ''

N ' N ''

N ' N ''

?
Spec P

. .
 .

Model

-preservingP -preservingP
PSpec

?
(1)Model . . . Model (n)(0)Model

. .
 .

(a)

(b)

P

P

21

in Figure 15(b). If the transformations are P-preserving, only the simplest model is verified
and there is no need to model-check intermediate steps, thus saving time in the verification
process.

We may take advantage of transformations to reduce the complexity of verification. The idea
is to simplify the system model using transformations from a library. In the case of total-equiv-
alence transformations, since an external observer could not distinguish between two total-
equivalent nets (for the same tokens in corresponding in-ports, the observer would get in both
cases the very same tokens in corresponding out-ports), the global system properties are pre-
served in terms of reachability, time, and functionality. Therefore such transformations are
correctness-preserving: if a property holds in a net that contains a subnet , it does in
another in which has been transformed into a total-equivalent subnet ; if does not
hold in the first net, it does not in the second either.

If the system model does not have guards, we can ignore transition functions as reachability
and time analyses (which are the focus of our verification approach) will not be affected by
token values. In such a case, we can use time-equivalence transformations to obtain a simpler
model, as they preserve properties related to absence/presence of tokens in the net as well as
time stamps of tokens.

5.2 Verification of the GMDFα
In this section we verify the GMDFα (Generalized Multi-Delay frequency-domain Filter) mod-
eled using PRES+ in Section 3.2.1. We illustrate the benefits of using transformations in the
verification of the filter.

We consider two cases of a GMDFα of length 1024: a) with an overlapping factor of 4, we
have the following parameters: , , , , and ; b) with an overlapping
factor of 2, we have the following parameters: , , , , and . Having
a sampling rate of 8 kHz, the maximum execution time for one iteration is in both cases 8 ms
(64 new samples must be processed at each iteration). The completion of one iteration is deter-
mined by the marking of the place .

We want to prove that the system will eventually complete its functionality. According to the
time constraint of the system, it is not sufficient to finish the filtering iteration but also to do so
with a bound on time (8 ms). This aspect of the specification is captured by the TCTL formula

. At this point, our task is to verify that the model of the GMDFα shown in Figure 10
satisfies the formula .

A straightforward way could be flattening the system model and applying directly the veri-
fication technique discussed in Section 4. However, a wiser approach would be trying to first
simplify the system model by transforming it into an equivalent one, through transformations
from a library. Such transformations are a mathematical tool that allows a significant
improvement in the verification efficiency. The improvement is possible because of the follow-
ing observation: the smaller the model is, the lower the verification cost becomes, in terms of
both time and memory. Therefore we try to reduce the model aiming at obtaining a simpler
one, still semantically equivalent from the point of view of reachability and time analyses, so
that correctness is preserved.

We start by using the transformation rule illustrated in Figure 14 on the refinement of the
basic cell, so that we obtain the subnet of Figure 16(b). Note that in this transformation step,
no time is spent on-line in proving the transformation itself because transformations are
proved off-line (once in a lifetime) and stored in a library. Since the subnets of Figures 16(a)
and 16(b) are total-equivalent, the functionality of the entire GMDFα, so far, remains
unchanged. We may also use time-equivalence transformations because the PRES+ model of
the GMDFα has no guards. Using simple time-equivalence transformations, it is possible to

P N '

N ' N '' P

L=1024 α=4 K=4 N =256 R=64

L=1024 α=2 K=8 N =128 R=64

E'

AF<8 E'

AF<8 E'
22

obtain a simpler representation of the basic cell as shown in Figure 16(c). We continue until
the basic cell refinement is further simplified into the single-transition net of Figure 16(d).
Finally we check the specification against the simplest model of the system, that is, the one in
which the refinement of the basic cells is the net shown in Figure 16(d). We have verified
the formula and the model of the GMDFα indeed satisfies its specification for both

and . The verification times using UPPAAL [Upp] on a Sun Ultra 10 workstation are
shown in the last row of Table 1.

Figure 16: Transformations of the GMDFα basic cell

Since the transformations used along the simplification of the GMDFα model are correct-
ness-preserving, the initial model of Figure 10 is correct, i.e. satisfies the system specification,
and therefore need not be verified. However, in order to illustrate the verification cost (time) at
different stages, we have verified the intermediate steps (models in which the refinements of
the basic cells are given by the nets shown in Figures 16(b) and 16(c)) as well as the initial
model. The results are shown in Table 1. Recall, however, that this is not needed as long as the
transformation rules are preserve the correctness in terms of reachability and time analyses.
Observe how much effort is saved when the basic cells are refined by the simplest net com-
pared to the original model.

Thus verification is carried out at low cost (short time) by first using correctness-preserving
transformations aiming at simplifying the system representation. If the simpler model is cor-
rect (its specification holds), the initial one is guaranteed to be correct and intermediate steps

Table 1: Verification times of the GMDFα

Refinement of
the basic cell

Verification time [s]

α=4, K=4 α=2, K=8

Fig. 16(a) 108 NA*

*. Not available: out of time

Fig. 16(b) 61 8177

Fig. 16(c) 9 1368

Fig. 16(d) 1 9

S3.i

AF<8 E'

K=4 K=8

Mult at

XF
µF EF

FFT dt

Update ct

YF

FFT b
-1 t

Coef

[0.7,0.9]

[0.8,1.1]

[0.4,0.5]

[0.8,1.2]

FFT dt

Update ct

YF

abt

XF
µF EF

[0.4,0.5]

[0.8,1.2]

[1.5,2]

Coef

FFT dt

YF

abct

XF
µF EF

[1.9,2.5]

[0.8,1.2] YF

abcdt

XF
µF EF

[2.7,3.7]

(d)(c)(b)(a)

S3.i

S3.i
23

need not be verified.

6. Reduction of Verification Time by Clustering Transitions

Our approach to verification allows reasoning formally about real-time embedded systems rep-
resented in PRES+. We have proposed in Section 4 a systematic procedure to translate PRES+
into timed automata in order to make use of existing model checking tools. Such a procedure
can be improved by exploiting the structure of the net and, in particular, extracting the
sequential behavior of the system.

In this section we present a clustering algorithm that extracts the sequential behavior of the
Petri net. Then we propose a translation procedure where we obtain one automaton for each
cluster (sequential part of the net). In this manner we improve significantly the procedure to
translate PRES+ models into timed automata presented in Section 4 and consequently the effi-
ciency of the verification process. The example of the GMDFα is revisited in this chapter in
order to illustrate the reduction in verification time when the structure of the net is consid-
ered.

6.1 Clustering
The approach proposed in Section 4 translates PRES+ models into a collection of timed autom-
ata which operate and coordinate with each other through shared variables and synchroniza-
tion labels. One automaton with one clock variable is obtained for each transition. The main
problem of such an approach is that the complexity of model checking of timed automata is
exponential in the number of clocks.

In order to reduce the number of automata/clocks resulting from the translation of PRES+
models into timed automata, we propose an algorithm that extracts the sequential behavior of
the Petri net by clustering transitions. Intuitively, each cluster consists of a sequence of transi-
tions where the firing of one of them enables the next one. The output of the algorithm is a set
of clusters, each representing a sequential part of the net. Then we obtain the timed automata,
with one automaton and one clock per cluster (instead of one automaton and one clock per
transition of the PRES+ model).

Definition 6.1. A cluster is an ordered tuple of distinct transitions denoted , such
that becomes enabled iff fires, for . We say that and are, respectively, the
head and the tail of .

In Figure 17, a possible cluster is with head and tail .

Definition 6.2. The cluster set of a cluster is the set of transitions that are
components of , that is .

We explicitly make a distinction between cluster and cluster set because in the former case
the order of the components is relevant whereas the order of elements in a set is immaterial.
The objective of our clustering algorithm is to find a set of clusters such that their cluster sets
form a partition of (the set of transitions of the Petri net). In other words, we aim at finding
a number of clusters such that each transition is in one and only one cluster.

Definition 6.3. The anterior set of a transition , denoted , is the set of those tran-
sitions that when fired will deposit a token in some place in the pre-set , that is,

. The posterior set of a transition , denoted , is the set of transitions
that will get a token in some place of their pre-set when is fired, that is, .

Definition 6.4. The anterior set of a cluster is the anterior set of its head

C= t1 … tn, ,()
ti+1 ti 1 i n<≤ t1 tn

C

C= t1 t3 t5, ,() t1 t5

SC C= t1 … tn, ,()
C SC= t1 … tn, ,{ }

T
t T∈

t T∈ ant t()
°t

ant t()= ° pipi °t∈∪ t T∈ post t()
t post t() pi

o

pi to∈
∪=

ant C() C= t1 … tn, ,()
24

, that is, . The posterior set of a cluster is the posterior
set of its tail , that is, .

Consider, for example, the cluster in the net shown in Figure 17. Its anterior
and posterior sets are, respectively, and .

Figure 17: PRES+ model to be clustered

The clustering algorithm we propose tries to add a new head or tail to an existing cluster .
We keep a list of “free” transitions , i.e. transitions not allocated yet to any cluster. Let

be a cluster with head and tail and let be the set of free transitions. We
may add a new tail to the cluster if and . We may add a new
head to if and . Consider the example given in Figure 17.
Assume this time and . Since and
also , both and fulfill the requirements for new tail stated above, but
only one of them can be added as new tail to the cluster. In our algorithm this choice is made
arbitrarily. If, for instance, is added to the cluster we obtain and

. Note that was removed from . It is not hard to see that there is
no transition to be added as new head of the cluster.

Our clustering algorithm starts by selecting arbitrarily a transition from the free list. A a
new cluster is formed so that is initially both head and tail of , and is removed from

. The next step is to examine only those transitions in that are also in and
check whether they may be a new tail of . If so, the cluster is enhanced by adding a new tail.
We repeat the process until no new tail may be added to the cluster. Then, in a similar fashion,
we try to enhance the cluster by adding a new head and repeat until there is no new head can-
didate in the free list. When the cluster can no longer be enhanced, we select another transi-
tion from , form a new cluster, and repeat the process until all transitions have been
allocated to a cluster. The clustering algorithm is shown in Figure 18.

By applying our clustering algorithm on the system shown in Figure 17, we obtain the fol-
lowing clusters: , , , . Note that the output of
the algorithm is not unique since there might be new-tail transitions chosen arbitrarily. We
could also have got, for instance, , , , . How-

t1 ant C()=ant t1() post C() C= t1 … tn, ,()
tn post C()=post tn()

C= t10 t1 t3, ,()
ant C()= t9{ } post C()= t5 t6,{ }

t 5e t 6ft 4d

t 2b

t 1a-1

t 9j+k

t 8gt 7h-2

t 10l

t 3c+1

pb pc

pd pe pf

ph
pg pi

pj pk

pl

pa

b c

a

d e f

igh

j k

[1,4]

[0,1]5

[2,4]

[1,3]

2

[1,2]

l

[2,3]

[2,5]

[3,4]

[h<2]

C
freeT

C= th … tt, ,() th tt freeT
tnt C ant tnt()- tnt{ } = tt{ } tnt freeT∈

tnh C tnh freeT∈ ant C()- th{ } = tnh{ }
C= t9 t10 t1, ,() freeT=T -SC= t2 t3 t4 t5 t6 t7 t8, ,, ,, ,{ } t2 t3, freeT∈

ant t2()=ant t3()= t1{ } t2 t3

t3 C= t9 t10 t1 t3, , ,()
freeT= t2 t4 t5 t6 t7 t8, ,, ,,{ } t3 freeT

t
C t C t

freeT post C() freeT
C

freeT

C1= t9 t10 t1 t2 t4, , , ,() C2= t3 t5 t7, ,() C3= t6() C4= t8()

C1'= t9 t10 t1 t,
3

t6, , ,() C2'= t2 t4,() C3'= t5 t7,() C4'= t8()
25

ever, in either case, the number of clusters is the same. Recall that we will obtain one autom-
aton and one clock per cluster.

Figure 18: Clustering algorithm

A simple analysis shows that the proposed algorithm has a (worst-case) time complexity
O(n2), where n is the number of transitions in the net. We have applied the clustering algo-
rithm to three different examples that can be scaled up. It is not our intention to discuss them
here but rather use these examples in order to illustrate the performance of the algorithm in
terms of execution time. Figure 19 shows the execution times of the clustering algorithm, run-
ning on a Sun Ultra 10 workstation, for the three cases studied.

Figure 19: Performance of the clustering algorithm

clustering(safePN N)
set
while do

with an arbitrary do
new cluster
set
set true
set true
// try to add a new tail
while do

set false
with an arbitrary
 such that do

add to
set
set true

endwith
endwhile
// try to add a new head
while do

set false
with such
 that do

add to
set
set true

endwith
endwhile

endwith
endwhile

endclustering

freeT := T
freeT ∅≠

t freeT∈
C= t()

freeT := freeT- t{ }
newhead :=
newtail :=

tnt
newtail

newtail :=
tnt post C() freeT∩∈

ant tnt()- tnt{ } = tt{ }
tnt C
freeT := freeT- tnt{ }
newtail :=

tnh
newhead

newhead :=
tnh ant C() freeT∩∈

ant C()- th{ } = tnh{ }
tnh C
freeT := freeT- tnh{ }
newhead :=

0

1

2

3

4

5

6

7

0 2000 4000 6000 8000 10000

C
lu

st
er

in
g

T
im

e
[s

]

Number of Transitions

Parallel
Serial

Comm
26

6.2 Improved Translation Procedure
As discussed previously, in order to verify the correctness of a real-time embedded system rep-
resented in PRES+, we translate the system model into timed automata so that model check-
ing tools can be used. In what follows we describe the systematic procedure to translate PRES+
models into timed automata after clustering has been performed. The resulting model will con-
sist of one automaton and one clock per cluster. We use the example of Figure 17 in order to
illustrate the translation procedure.

Step 6.1. Define one clock in for each cluster. Define one variable in for each place of
the Petri net, corresponding to the token value when is marked.

Step 6.2. Define the set of synchronization labels as the set of transitions in the Petri net.

Steps 6.3 through 6.9 must be performed for each one of the clusters obtained by using the
clustering algorithm. Consider a cluster with head and tail . For (
denotes the i-th transition in cluster), let be the transition function associated to , and
let and be the minimum and maximum transition delays associated to . Let be the
guard associated to the transition . Let be the value of the token in the place when
marked. The timed automaton corresponding to the cluster will be denoted . The clock
corresponding to is denoted . For the sake of clarity, we first present the translation steps
for the simplest case: we initially assume that and that is not in con-
flict for all . Recall that a transition is in conflict if it can be disabled by the firing of a
different transition. Later we will discuss the general case where these assumptions do not
hold.

Step 6.3. Define locations , where and . These
are the locations of . Define edges , for , with synchronization labels
corresponding to the transitions in . Define also edges with synchroni-
zation labels corresponding to the transitions in . Then define one edge ,
for , with synchronization label . Define one edge with synchronization
label .

Consider the cluster for the model given in Figure 17. We have for
this cluster. Since we have . Therefore, the automaton corresponding
to the cluster has 7 locations and its edges are as shown in Figure 20.
Note that corresponds to the location in which transition is bound (or enabled if has no
guard). The change of location, for example, from to corresponds to the firing of transi-
tion .

Step 6.4. For every edge and every edge , , define
. For any other edge in , define .

This means that on all edges but , , and the clock will be reset. In
Figure 20, the assignment represents the reset of clock .

Step 6.5. For every location , , define its location invariant as .

This enforces the firing of before or at its latest trigger time.

Step 6.6. To every edge with synchronization label , where , assign the clock condition
.

In Figure 20, for example, the edge (with synchronization label) of the automaton
has a clock condition where 2 and 5 are the minimum and maximum transition

delays of .

X V px

vx px

Σ

C= t1 … tn, ,() t1 tn ti SC∈ ti

C f i ti

di
- di

+ ti Gi

ti vx px

C C
C c

post C()- tn{ }() SC∩ = ∅ ti

ti SC∈

m+n a1 … am b1 … bn, , , , , m= ant C()- t1{ } n= SC

C m a j a j+1,() j=1 … m-1, ,
ant C()- t1{ } m am b1,()

ant C()- t1{ } bi bi+1,()
i=1 … n-1, , ti bn a1,()

tn

C1= t9 t10 t1 t2 t4, , , ,() n=5

ant C1()= t7 t8,{ } m=2 C1

C1 a1 a2 b9 b10 b1 b2 b4, , , , , ,
bk tk tk

b1 b2

t1

e j= am b1,() ei= bi bi+1,() 1 i n<≤
R e j()=R ei()= c{ } e C R e()=∅

a j a j+1,() 1 j m<≤ bn a1,() c
ck := 0 ck

bi 1 i n≤ ≤ c di
+≤

ti

ti ti SC∈
di

- c≤ di
+≤

b2 b4,() t2

C1 2 c1≤ 5≤
t2
27

Step 6.7. For every edge with synchronization label , where , and for every
assign to such an edge the activities .

For instance, the activities assigned to the edge with synchronization label in the
automaton are and , where is the transition function of .

Step 6.8. If the transition has a guard , assign the variable condition to the edge
with synchronization label . Then add an edge with no synchronization label, vari-
able condition (the complement of), and .

Note the variable condition on and the edge in the automaton . This
is due to the guard of transition .

Step 6.9. If the transition is enabled in the initial marking, make the location the
initial location of . Otherwise, if there are places initially marked in the pre-set of the
head (so that is not enabled), make the initial location of .

In our example, is the initial location of because the transition is enabled in
the initial marking of the net. The automaton has as initial location because none of the
transitions of the cluster is initially enabled.

Observe that one and only one of the transitions of a given cluster will be enabled at a time.
If two transitions in a cluster were enabled simultaneously, that would imply that the (under-
lying untimed) Petri net is not safe. The translation procedure we propose here is correct as

a2a1 b8

c3<=4

t6 t4
c3:=0

t4 t6
c3:=0

c3>=2,c3<=4
t8

k:=g

a1 b6

c4<=1

t3
c4:=0

t6
i:=f

C3

b3

c2<=4

a1

b7c2<=4 b5

c2<=3

t1
c2:=0

c2>=1,c2<=4

t3
c2:=0,
e:=c+1,
f:=c+1

c2>=2,c2<=3

t5
c2:=0,
h:=e

h<2
c2>=3,c2<=4

t7

j:=h-2

h>=2

c2:=0

b4c1<=5

a2a1

b2

c1<=5

b1

c1<=2

b9

c1<=2

b10 c1<=3

t8 t7
c1:=0

c1==2

t9 c1:=0,
l:=j+k

c1>=1,c1<=3
t10

c1:=0,
a:=lc1>=1,c1<=2

t1
c1:=0,
b:=a-1,
c:=a-1

c1>=2,c1<=5

t2
c1:=0,
d:=b

c1==5
t4

g:=d

t7 t8
c1:=0

Figure 20: Automata equivalent to the model of Figure 17

C4

C2

C1

ti ti SC∈ p j ti°∈
v j := f i

b1 b2,() t1

C1 b := a-1 c := a-1 a-1 t1

ti SC∈ Gi Gi

ti e= bi bi,()
Gi Gi R e()= c{ }

h 2< b7 a1,() b7 b7,() C2

h 2< t7

ti SC∈ bi

C k °t1

t1 0 k m<≤ t1 ak+1 C

b1 C1 t1 SC1
∈

C2 a1

C2
28

long as the untimed Petri net is safe.
We have assumed, so far, that is not in conflict, for all , and .

Now we discuss the cases in which these assumptions do not hold:
a) In case that (the posterior set of the cluster tail is the singleton contain-

ing the cluster head) the automaton will have n locations , where , but no
locations. There will be additionally one edge with synchronization label and clock
condition, variable condition, clock reset, and activities similar to the other edges ;
b) If one of the transitions is in conflict with another transition , just add to the

automaton one edge with synchronization label .

6.3 Revisiting the GMDFα
In Section 3.2.1 we have modeled a Generalized Multi-Delay frequency-domain Filter
(GMDFα). In Section 5.2 such an application has been verified by transforming the system
model and using the “naive” translation procedure described in Section 4.3.

In this section we revisit the verification of the GMDFα and compare it with the results
shown previously in Section 5.2. We also consider here the two cases of a GMDFα of length
1024: a) with an overlapping factor , ; b) with an overlapping factor , . Recall
that having a sampling rate of 8 kHz, the maximum execution time for one iteration is in both
cases 8 ms. What we want to prove is that the filter eventually completes its functionality and
it does so within a bound on time (8 time units). This is captured by the TCTL formula .
As seen in Figure 10, affects directly the dimension of the model and, therefore, the com-
plexity of verification.

We have used UPPAAL, running on a Sun Ultra 10 workstation, in order to model-check the
formula against the model of the filter. For both cases (and), indeed
holds (this fact was known beforehand from Section 5.2). The results are shown in Table 2. The
second column corresponds to the verification time using the approach described in Section 4
(naive translation of PRES+ into timed automata). The third column in Table 2 shows the
results of verification when using the approach discussed in Section 5 (transformation of the
model into a semantically equivalent and simpler one in order to reduce complexity, followed
by naive translation into timed automata). The verification time for the GMDFα using the
clustering method presented in this section is shown in the fourth column of Table 2. These
results include the execution time of the clustering algorithm. By combining the transforma-
tional approach with the clustering one, it is possible to further improve the efficiency of the
verification process as shown in the last column of Table 2.

Table 2: Verification of the GMDFα

GMDFα
L=1024

Verification time [s]

Naive Transfor-
mations

Clustering Transf. +
Clustering

α=4, K=4 108 1 2 <1

α=2, K=8 NA*

*. Not available: out of time

9 540 1

ti ti SC∈ post C()- tn{ }() SC∩ = ∅

post C()- tn{ } = t1{ }
C b1 … bn, , n= SC ai

bn b1,() tn

bi bi+1,()
ti SC∈ tc

C bi a1,() tc

α=4 K=4 α=2 K=8

AF<8 E'

K

AF<8 E' K=4 K=8 AF<8 E'
29

7. Experimental Results

In this section we illustrate the verification approach on a scalable example, comparing the
technique based on a naive translation from PRES+ into automata discussed in Section 4, the
transformational approach presented in Section 5, and the one formulated in Section 6 where
the structure of the net is exploited to achieve higher efficiency.

The example that we use represents a number n of processes arranged in a ring configura-
tion. The model for one such process is illustrated in Figure 21. Each one of the n processes in
the system has a bounded response requirement, namely whenever the process starts it must
strictly finish within a time limit, in this case 25 time units. Referring to Figure 21, the start of
one such process is denoted by the marking of while the marking of denotes the end
of the process. This requirement is expressed by the TCTL formula .

Figure 21: PRES+ model for one ring-process

We have used UPPAAL in order to model-check the timing requirements of the processes in
the ring-configuration example. The results are summarized in Table 3.

The second column of Table 3 shows the verification time using the naive translation proce-
dure of Section 4. The third column corresponds to the transformational approach discussed in
Section 5. The fourth column of Table 3 shows the verification time of the method based on
transition clustering (Section 6). The results of combining the transformation-based technique

Table 3: Verification of the ring-configuration example

Number
of

Processes
(n)

Verification time [s]

Naive Transfor-
mations

Clustering Transf. +
Clustering

2 1 <1 <1 <1

3 29 5 2 1

4 704 85 31 17

5 8700 1275 453 205

6 NA*

*. Not available: out of time

13260 5771 2295

7†

†. Specification does not hold

NA* NA* NA* 16200

pstart pend

AG pstart AF<25 pend⇒()

t 0

t 1

t 5

pstart

pend

t 2

t 3

t 4

qi+1

pi+1pi

qi

[1,2]

1
[1,2]

[0,1]

. . .

.

. . .

1

1

30

with clustering are shown in the last column. We have plotted all these experimental results in
Figure 22.

Observe that for the bounded response requirement expressed by the formula
is not satisfied, a fact which, at first glance, is not obvious at all. An

informal explanation is that since transition delays are given in terms of intervals, one process
may take longer to execute than another; thus different processes can execute “out of phase”
and this phase difference may be accumulated depending on the number of processes, causing
one such process to take eventually longer than 25 time units (for). It is also worth men-
tioning that, although the model has relatively few transitions and places, this example is very
complex because of its large (untimed) state space which is due to the high degree of parallel-
ism.

Figure 22: Verification of ring-configuration processes

8. Radar Jammer: The Industrial Case

The example that we describe in this section corresponds to a real-life application used in the
military industry [Lin01]. The function of such a system is to deceive a radar apparatus by
jamming signals.

Figure 23: Radar jammer and its environment

n=7

AG pstart AF<25 pend⇒()

n=7

1

10

100

1000

10000

2 3 4 5 6 7

V
er

ifi
ca

tio
n

T
im

e
[s

]

Number of Processes

Naive
Transf.

Clustering
Transf. + Clustering
31

The jammer is a subsystem placed on an object (target), typically an aircraft, moving in the
area observed by a radar. The radar sends out pulses and some of them are reflected back to
the radar by the objects in the area. When a radar receives pulses, it might determine the dis-
tance and direction of the object, and even its velocity and the type of object. The distance is
calculated by measuring the time the pulse has travelled from its emission until it returns to
the radar. By rotating the radar antenna lobe, it is possible to find the direction returning max-
imum energy, that is, the direction of the object. The velocity of the object is found out based on
the doppler shift of the returning pulse. The type of object can be determined by comparing the
shape of the returning pulse with a library of radar signatures for different objects.

The basic function of the jammer is to deceive a radar scanning the area in which the object
is moving. The jammer receives a radar pulse, modifies it, and then sends it back to the radar
after a certain delay. Based on input parameters, the jammer can create pulses that contain
specific doppler and signature information as well as the desired space and time data. Thus the
radar will see a false target. A view of the jammer and its environment is shown in Figure 23.

The jammer example has been used as a test case for the SAVE design methodology. The sys-
tem is described using Haskell as specification language. The Haskell description is based on
skeletons, which are higher-order functions used to model elementary processes.

The radar jammer has been specified in Haskell using a number of skeletons. Based on a
basic procedure to translate Haskell descriptions (using skeletons) into PRES+ [Cor01] and
assisted by a software tool developed by our research group, we may get the PRES+ model of
the jammer from its Haskell description. The obtained model contains no timing information
which can later be annotated as transition delays. The PRES+ model of the radar jammer,
obtained from its Haskell description, is shown in Figure 24.

We briefly discuss the structure of the PRES+ model of the jammer. We do not intend to pro-

pwPriCnt

getT

f

head

getScenario

adjustDelay

copy

detectAmp

co
py

de
te

ct
E

nv

co
py

ke
ep

V
al

ge
tT

yp
e

ge
tP

er

FF
T

ge
tK

PS

keepVal copy

extractN

co
py

co
py

ke
ep

V
al

ke
ep

V
al

threshold

trigSelect

modParLib

opMode

modfdelayf

delayParLib

ke
ep

V
al

co
py

extractN

getAmp

doMod

sumSig

out in

Figure 24: PRES+ model of a jammer
32

vide here a detailed description of each one of the transitions of the model of the radar jammer
given in Figure 24 but rather present an intuitive idea about it. When a pulse arrives, it is ini-
tially detected and some of its characteristics are calculated by processing the samples taken
from the pulse. Such processing is performed by the initial transitions, e.g. ,

, , , , and based on internal parameters like and .
Different scenarios are handled by the middle transitions, e.g. , , and

. The final transitions and are the ones that actually alter the pulse
to be returned to the radar.

Figure 25: Higher-level abstraction of the radar jammer

Using the concept of hierarchy, it is possible to obtain a higher-level view of the radar jam-
mer represented in PRES+ as depicted in Figure 25. The super-transitions abstract parts of
the model given in Figure 24. For example, super-transition corresponds to the abstraction
of the subnet shown in Figure 26. Such a subnet (Figure 26) can easily be identified as a por-
tion of the model depicted in Figure 24.

Figure 26: Refinement of in the model of Figure 25

Also, many of the transitions presented in the model of Figure 24 could be refined (for exam-
ple, during the design process). To illustrate this, we show how transition , for instance,
can be refined according to our concept of hierarchy. Its refinement is presented in Figure 27.
In this form, hierarchy can conveniently be used to structure the design in a comprehensible
manner.

Figure 27: Refinement corresponding to transition
 in the model of Figure 24

detectEnv
detectAmp … getPer getType threshold trigSelect

getScenario extractN
adjustDelay doMod sumSig

S
1

S2

S4

S8S7

S9

S3

S
5

S6

inout

S5

ge
tP

er
io

d

FF
T

ge
tK

PS

f

S5

doMod

x
ny

n

do
D

el
ay

FI
R

delayf

modf

doMod
33

We aim at verifying a pipe-lined version of the jammer where the stages correspond pre-
cisely to the super-transitions of the model shown in Figure 25. In order to represent a pipe-
lined structure it is necessary to add a number of places and arcs to the model as follows. For
every place such that , , and : a) add a place initially
marked; b) add an input arc ; c) add an output arc . In this way, all places but
and will hold at most one token, and still several of them might be marked simultaneously,
representing the progress of activities along the pipeline.

The model of the pipe-lined jammer is shown in Figure 28. The minimum and maximum
transition delays are given in ns. The timing information is discussed later in this section. We
have included in this model a few more places and transitions that represent the environment.
The input to the jammer is a radar pulse (actually, a number of samples taken from it). Tran-
sition will fire times (where is the number of samples), every (where is
the pulse width), depositing the samples in the place which are later buffered in the place

. In this form, we model the input of the incoming radar pulse. A token in means that
the input is being sampled.

Figure 28: Pipe-lined model of the jammer

Regarding the emission of the pulse produced by the jammer, the data obtained is buffered in
place before being transmitted. After some delay, it is sent out by transition so that the
marking of place represents a part of the outgoing pulse being transmitted back to the
radar.

We have applied our verification technique to the PRES+ model of the jammer shown in
Figure 28. We have performed what we call “time budget verification”. At this point, we have
no accurate estimates of the execution time of the function associated to each one of the tran-
sitions of the model. However, we do know the constraints of the system. The idea is to assign
values to the minimum and maximum transition delays based on the designer’s experience.
Having such values, we perform verification of the required properties. If such properties are
satisfied, the transition intervals constitute the time budget for the different functions to be

p P∈ ta p,() O∈ p tb,() I∈ ta tb≠ p'

p' ta,() tb p',() in
out

sample n n PW/n PW
inSig

in inSig

S
1

S2

S4

S8S7

S9

S3

S
5

S6

inout

inSigoutSig

emit

sample

[80,90]

[40,50]

[70,80]

[100,110]

2500

[60,70]

[1
00

,1
20

]

[3
0,

40
]

1

100

[60,70]

[60,70]

1

30

out emit
outSig
34

implemented.
The time budget information can be used by the designer to guide the design process. It is

possible that some of the intended implementations of a certain function do not fit in the time
budget obtained previously. Then, it is necessary to modify the timing information of the model
based on more accurate data and verify again the desired properties. Thus the process is
repeated so that the designer gets valuable information from the very early stages of the
design flow.

There are two properties that are important for the jammer. The first is that there cannot be
output while sampling the input. The second requirement is that the whole outgoing pulse
must be transmitted before another pulse arrives. The minimum Pulse Repetition Interval
(PRI), i.e. the separation in time of two consecutive incoming pulses, for our system is 10 µs, so
this is the value we will use for verifying the second property. For a PRI of 10 µs, the Pulse
Width (PW) can vary from 100 ns up to 3 µs. Therefore, we will consider the most critical case,
that is, when the pulse width is 3 µs. We assume that the number of samples is (so that
the delay of transition in Figure 28 is 100 ns).

The properties described above can be expressed, respectively, by the formulas
and . The first formula states that the places and

are never marked at the same time, while the second says that there is no computation
path for which is marked after 10000 ns.

In order to verify the model of the jammer shown in Figure 28, we have translated it into
timed automata. We have used the systematic translation procedure for the part of the net that
is safe. The rest of the model (for example, transitions and) has been translated in
an ad hoc manner. We have verified that the required properties are indeed satisfied in the
model of Figure 28. Using UPPAAL, the verification of takes 115 s while
the verification of the formula takes 384 s.

The radar jammer is a realistic example that has illustrated how our modeling and verifica-
tion approach can be used for practical applications. The concept of hierarchy has proved to be
very convenient to handle this example in an understandable way. The verified requirements
are very interesting as not only they impose an upper bound for the completion of the activities
but also a lower one, since the emission and sampling of pulses cannot overlap. Though there
are few transitions in the model, the state space is very large because of the pipeline. Despite
the large space, the verification of the two studied properties takes relatively short time.

9. Conclusions

This document has presented an approach to modeling and formal verification of embedded
systems. The research addressed in this report has been performed within the frame of the
SAVE Project.

The design flow must be based upon an unambiguous formalism that can represent relevant
characteristics of the system and capture design decisions. A sound model of computation sup-
ports a precise representation of the system, the use of formal methods to verify its correct-
ness, and the automation of different tasks along the design process.

We have presented a formal model of computation for embedded systems. PRES+ is a model
based on Petri nets with a well-defined semantics. It has been extended in order to capture
essential characteristics of real-time embedded systems: tokens carry information and transi-
tions perform transformation of data when fired; timing is explicitly included by associating
lower and upper limits to the duration of activities related to transitions; both sequential and
concurrent activities may be easily expressed; PRES+ supports the concept of hierarchy.

A military industry application has been studied in order to demonstrate the applicability of

n=30

sample

AG inSig outSig∧()¬ EF>10000 outSig¬ inSig
outSig

outSig

sample emit

AG inSig outSig∧()¬
EF>10000 outSig¬
35

our modeling technique to different systems.
We have proposed an approach to the formal verification of systems represented in PRES+.

We make use of model checking to prove whether certain properties, expressed as CTL and
TCTL formulas, hold with respect to the system model. We have introduced a systematic pro-
cedure to translate PRES+ models into timed automata so that it is possible to use existing
model checking tools.

Two strategies have been addressed in order to reduce the complexity of the verification pro-
cess. First, we apply transformations to the initial system model, aiming at simplifying it, still
preserving the properties under consideration. This is a transformational approach that tries
to reduce the model, and therefore improve the efficiency of verification, by using correctness-
preserving transformations. Thus if the simpler model is correct, the initial one is guaranteed
to be correct.

Second, we have shown that verification complexity can further be reduced by improving the
translation procedure from PRES+ into automata. We proposed an algorithm that extracts the
sequential behavior of the net by clustering transitions. Thus we obtain one automaton with
one clock per cluster, instead of one automaton with one clock per transition. Moreover, exper-
imental results have shown that by combining the clustering strategy and the transforma-
tional approach the efficiency of verification is improved considerably.

10. References

[Alu90] R. Alur, C. Courcoubetis and D. L. Dill, “Model Checking for Real-Time Systems,”
in Proc. Symposium on Logic in Computer Science, 1990, pp. 414-425.

[Alu99] R. Alur, “Timed Automata,” in Computer-Aided Verification, D. Peled and N. Halb-
wachs, Eds. LNCS 1633, Berlin: Springer-Verlag, 1999, pp. 8-22.

[Cam96] R. Camposano and J. Wilberg, “Embedded System Design,” in Design Automation
for Embedded Systems, vol. 1, pp. 5-50, Jan. 1996.

[Cla86] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications,” in ACM Trans. on
Programming Languages and Systems, vol. 8, pp. 244-263, April 1986.

[Cor01] L. A. Cortés, P. Eles, and Z. Peng, “From Haskell to PRES+: Basic Translation Pro-
cedures,” SAVE Project Report, Dept. of Computer and Information Science,
Linköping University, Linköping, April 2001.

[Edw97] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, “Design of
Embedded Systems: Formal Models, Validation, and Synthesis,” in Proc. IEEE, vol.
85, pp. 366-390, March 1997.

[Fre97] L. Freund, M. Israel, F. Rousseau, J. M. Bergé, M. Auguin, C. Belleudy, and G.
Gogniat, “A Codesign Experiment in Acoustic Echo Cancellation: GMDFα,” in ACM
Trans. on Design Automation of Electronic Systems, vol. 4, pp. 365-383, Oct. 1997.

[HyT] HyTech: The HYbrid TECHnology Tool, http://www-cad.eecs.berkeley.edu/~tah/
HyTech/

[Kro] KRONOS, http://www-verimag.imag.fr/TEMPORISE/kronos/

[Lin01] P. Lind and S. Kvist, “Jammer Model Description,” Technical Report, Saab Bofors
Dynamics AB, April 2001.

[SAV] SAVE Project, http://www.ida.liu.se/~eslab/SAVE.html
36

[Sgr00] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli, “Formal Models for Embed-
ded System Design,” in IEEE Design & Test of Computers, vol. 17, pp. 14-27, April-
June 2000.

[Upp] UPPAAL, http://www.uppaal.com/
37

	Modeling and Verification of Embedded Systems using Petri Net based Methods: Application to an In...
	1. Introduction
	2. The Design Representation
	2.1 Basic Definitions
	2.2 Description of Functionality
	2.3 Dynamic Behavior
	2.4 Summary

	3. Notions of Equivalence and Hierarchy for PRES+
	3.1 Notions of Equivalence
	3.2 Hierarchical PRES+ Model
	3.2.1 Hierarchical Modeling of a GMDFa

	4. Formal Verification of Embedded Systems
	4.1 Analyses of PRES+ Models
	4.2 Our Approach to Formal Verification
	4.3 Translating PRES+ into Timed Automata

	5. Reduction of Verification Complexity by using Transformations
	5.1 Transformations
	5.2 Verification of the GMDFa

	6. Reduction of Verification Time by Clustering Transitions
	6.1 Clustering
	6.2 Improved Translation Procedure
	6.3 Revisiting the GMDFa

	7. Experimental Results
	8. Radar Jammer: The Industrial Case
	9. Conclusions
	10. References

