
on a
kell,
enta-
t a set
me of
elec-

logy
-
the
tion,

after
, the
on of
set of

rmed
sence of
. This
m in
there

ed by
s of
n and
lso, at
that

SAVE Project Report, Dept. of Computer and Information
Science, Linköping University, Linköping, April 2001.
From Haskell to PRES+
Basic Translation Procedures

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Department of Computer and Information Science

Linköping University
S-581 83 Linköping, Sweden

Abstract

We define in this report some basic procedures to translate Haskell descriptions (based
library of Skeletons) into PRES+ models. In this way, a system initially described in Has
may be transformed into a representation that might be formally verified. Thus the repres
tion of the system is verified using formal methods by model-checking the model agains
of required properties expressed by temporal logics. This work has been done in the fra
the SAVE project, which aims to study the specification and verification of heterogeneous
tronic systems.

1. Introduction

The SAVE Project is a joint research work by ESDlab at the Royal Institute of Techno
(KTH), Stockholm, and ESLAB at Linköping University (LiU), Linköping, with financial sup
port from NUTEK and in cooperation with Saab Bofors Dynamics. The objective of
project is to devise improved solutions and methods for high level specification, verifica
and refinement of electronic systems by use of formal methods [SAV99].

In the frame of SAVE, the design flow starts with a Haskell description of the system and,
some transformations at this level and initial system validation by means of simulation
Haskell description is translated into the PRES+ formalism. This allows the representati
the system to be verified using formal methods by model-checking the model against a
required properties expressed by temporal logics [Cor00]. The kind of verification perfo
at this stage refers to check safety (no dangerous states are ever reached), liveness (ab
deadlocks, so that the functionality may eventually be completed), and timing properties
formal verification approach does NOT deal with the functional correctness of the syste
terms of the expected output values. From the result of the model checking procedure
could be feedback to the Haskell description. Also the PRES+ model can be simulat
using the tool SimPRES in order to study (validate) the functionality of the system in term
correct output values. In the next step of the design flow, architecture decisions are take
these must be reflected in new details of the system, that is, the mapped PRES+ model. A
this point both formal verification and validation by simulation can be performed. In case
1

r, it is
illus-

s-
ll (a
re
nals as
uctures
ary of

input

ally,
d

the system does not fulfill its required properties or does not have the expected behavio
possible to go back to previous phases of the design process. The SAVE design flow is
trated in Figure 1.

Figure 1. SAVE design flow

2. Haskell→ PRES+ Translation

In this report, we concentrate on the Haskell→ PRES+ translation by defining the basic tran
lation procedures. In the SAVE design flow, the system is initially described in Haske
purely functional language) usingskeletons. Skeletons are higher-order function which a
used to model elementary processes. A skeleton takes elementary functions and sig
input parameters and produces signals as output. We define a set of basic PRES+ str
corresponding to Haskell skeletons as a first step in the translation procedure. The libr
skeletons is appended at the end of this report.

We start with the skeletonmapSwhich applies a functionf to an input signal. This skeleton
may be easily mapped into a PRES+ structure consisting of a single transition with one
place (corresponding to the input signal) and one output place. The functionf is captured as
transition function of the transition in the PRES+ structure as shown in Figure 2. Addition
the lower and upper bounds for the execution time off may be expressed as minimum an
maximum transition delaysa andb.

Haskell

PRES+
(max. concur-

Mapped
PRES+

Further
Synthesis

Haskell→ PRES+
Compiler

Simulation

Verification

Performance
analysis

Mapping
System

Architecture
2

d one
orre-

corre-
Figure 2. a) SkeletonmapS; b) Corresponding PRES+ structure

The skeletonzipWithS , which applies a two-argument functionf to two input signals, is
mapped into a PRES+ structure consisting of a single transition with two input places an
output place.f is captured as transition function. Table 1 shows the PRES+ structures c
sponding to elemental atomic skeletons. Others, likezipWith3S , zipWith4S , scanl2S ,
andscanl3S , can be easily derived from the ones presented in Table 1.

Skeletons that are composed from atomic ones are illustrated in Table 2, as well as their
sponding PRES+ structure. Note that formealyS and mealy2S we introduce transitions
with transition functioncopy(given by) and transition delay0. These are used
to duplicate a token representing a signal that will be used by two different transitions.

Table 1: Translation of Atomic Skeletons

Skeleton PRES+ Structure

mapS

zipWithS

scanlS

f
t [a
,b

]

mapS :: (a -> b) -> Signal a -> Signal b
mapS f NullS = NullS
mapS f (x:-xs) = f x :- (mapS f xs)

(a)

(b)

f
t [a
,b

]

f
t [a
,b

]

f
t [a
,b

]

mem

copy x() x=
3

am-
en
3. Example

We illustrate the basic Haskell→ PRES+ translation procedures by means of a simple ex
ple, the subsystemAudio Filterof theEqualizerpresented in [San01]. The audio filter has be
described in Haskell as shown by the following code.

audioFilter bass treble audioIn = audioOut
 where audioOut = zipWith3S add3 bassPath middlePath treblePath

Table 2: Translation of Skeletons

Skeleton PRES+ Structure

mooreS

moore2S

mealyS

mealy2S

t 2t 1 [a
 ,b

] 1
1

2
2

[a
 ,b

]

ne
xt

St
at

e

ou
tp

ut

initial

t 1

t 2
2

2
[a

 ,b
]

ou
tp

ut

[a
 ,b

] 1
1

ne
xt

St
at

e

initial

inp1

inp2

t 1 [a
 ,b

] 1
1

t 3 0 t 2
2

2
[a

 ,b
]

ne
xt

St
at

e

initial

co
py

ou
tp

ut

signal

t 1 [a
 ,b

] 1
1

t 3 0

co
py

t 4 0

co
py

t 2
2

2
[a

 ,b
]

ou
tp

ut

ne
xt

St
at

e

initial

inp2

inp1
4

given
nd

ES+

by a
y the
 bassPath = product (mapS exp bass) (lp audioIn)
 middlePath = scale 1.0 (bp audioIn)
 treblePath = product (mapS exp treble) (hp audioIn)
 scale k xs = mapS (* k) xs
 product xs ys = zipWithS (*) xs ys
 add3 a b c = a + b + c

lp = fir (vector [0.07749571497126, 0.09623416925141, 0.11114054570064,
 0.12073409187670, 0.12404450149000, 0.12073409187670, 0.11114054570064,
 0.09623416925141, 0.07749571497126])

bp = fir (vector [0.15287650949706, -0.00000000000000, -0.22846192040287,
 -0.00000000000000, 0.25797410154898, -0.00000000000000, -0.22846192040287,
 -0.00000000000000, 0.15287650949706])

hp = fir(vector [0.07749571497126, -0.09623416925141, 0.11114054570064,
 -0.12073409187670, 0.12404450149000, -0.12073409187670, 0.11114054570064,
 -0.09623416925141, 0.07749571497126])

By observing the atomic skeletonszipWith3S , mapS, andzipWithS in the description
above, it is not difficult to obtain the PRES+ representation of the subsystemAudio Filter as
shown in Figure 3. To implement filter activities a parametric functionfir was used in the
code above. Such a function can be mapped into a transition whose transition function is
by the Haskell code offir . Another possibility is to make use of the hierarchy in PRES+ a
set up super-transitions corresponding to the three instances offir used in the description. We
opted for the latter in order to illustrate how the concept of hierarchy is handled in PR
[Cor01] (though the first alternative yields also a correct model).

Figure 3. PRES+ model of theAudio Filter

In Figure 3, thick-line boxes represent super-transitions, each one of which is “refined”
subnet that implements a FIR-filter. Recall that the behavior of FIR-filter is described b
equation

er

eq

1.
0

 mx
o

 p
s

 tx
x

F
IR

(i

n)
t

F
IR

(i

n)
b

F
IR

(i

n)
m

m

o

t

s

in

in

audioIn audioOuta+
b+

cb

a

c

au
di

o

audio

bassPath

middlePath

treblePath

treble

bass

r

q

in

p

yn xn i– hi
i 0=

k

∑=
5

that
f
licitly
an be

tems
nce,

n of
nce,

ro-

uta-
gy,
wherexn andyn are thenth input and output signals respectively, andhi, , are the coef-
ficients of ak-order filter. Such a filter is modeled in PRES+ as illustrated in Figure 4. Note
the super-transitionsFIRb(in), FIRm(in), andFIRt(in) in Figure 3 are different since in each o
them the filter coefficients vary, though the structure is the same. We have not given exp
transition/super-transition delays, nonetheless lower and upper time limits of activities c
expressed in PRES+ in an easy manner.

Figure 4. FIR-filter

References

[Cor00] L. A. Cortés, P. Eles, and Z. Peng, “Verification of Heterogeneous Electronic Sys
using Model Checking,” SAVE Project Report, Dept. of Computer and Information Scie
Linköping University, Linköping, July 2000.

[Cor01] L. A. Cortés, P. Eles, and Z. Peng, “Hierarchies for the Modeling and Verificatio
Embedded Systems,” SAVE Project Report, Dept. of Computer and Information Scie
Linköping University, Linköping, February 2001.

[SAV99] “SAVE: Specification and Verification of Heterogeneous Electronic Systems,” P
ject Plan, March 1999.

[San01] I. Sander, “System Model of an Equalizer,” March 2001.

[Wu00] W. Wu and A. Jantsch, “A System Design Methodology Based on a Formal Comp
tional Model,” SAVE Project Report, Dept. of Electronics, Royal Institute of Technolo
Stockholm, January 2000.

0 i k≤ ≤

h0 anx

b n
a n bn

a n

a n

bn

an

an

an

cn-1

xhk an-k

s n
-k

+
1

c n
-k

+

cn-k

b n
-1

an-1

an-1

bn-1

a n
-1

bn-1

a n
-1

an-1

a n
-1

h1 an-1x

n-1x

c n
-1

sn-k+1

nx n-2x n-kx

an-k

ny
sn

+
s n

. . .

. . .
6

Appendix A. Library of Skeletons (by Ingo Sander)

A.1. Atomic Skeletons

{-
 Module: AtomicSkeletons

 Filename: AtomicSkeleton.hs

 Description: This module provides the atomicSkeletons, that are defined
inside the ForSyDe-methodology.
mapS
zipWithS
scanlS
delayS
whenT

 Revisions:

 Date Version Author Changes

 19/6-00 0.1 Ingo Sander created
 21/8-00 0.2 Ingo Sander Redefinition of datatype Signal
 18/9-00 0.21 Ingo Sander Introduction of zipWith3S, zipWith4S,

scanl2S, scanl3S
 28/9-00 0.22 Ingo Sander uses new internal representation of Signal
 6/10-00 0.23 Ingo Sander zipS, unzipS, groupS, concatS introduced
-}

module AtomicSkeletons(mapS, zipWithS, zipWith3S, zipWith4S, scanlS,
 scanl2S, scanl3S, delayS, whenT, fillT, holdT,
 zipS, unzipS, groupS, concatS) where

import DataTypes
import Vector

-- SKELETONS --

{-
 We use the following convention for Skeletons:
 - Skeletons, which can be used with all Signaltypes are denoted
 by "nameS"
 - Skeletons, which can only be used with timed signals are dentod
 by "nameT"
-}

{-
 The skeleton mapS applies a funktion f on the values of all events
 in a signal.
-}

mapS :: (a -> b) -> Signal a -> Signal b
mapS f NullS = NullS
mapS f (x:-xs) = f x :- (mapS f xs)

{-
 The skeleton ’zipWithS’ applies a ’two-operand-function’ on elementwise
7

 on two input signals.
-}

zipWithS :: (a -> b -> c) -> Signal a -> Signal b -> Signal c
zipWithS f NullS _ = NullS
zipWithS f _ NullS = NullS
zipWithS f (x:-xs) (y:-ys) = f x y :- (zipWithS f xs ys)

{-
 The skeleton ’zipWith3S’ applies a ’three-operand-function’ on elementwise
 on three input signals.
-}

zipWith3S :: (a -> b -> c -> d) -> Signal a -> Signal b
 -> Signal c -> Signal d

zipWith3S f NullS _ _ = NullS
zipWith3S f _ NullS _ = NullS
zipWith3S f _ _ NullS = NullS
zipWith3S f (x:-xs) (y:-ys) (z:-zs) = f x y z :- (zipWith3S f xs ys zs)

{-
 The skeleton ’zipWith4S’ applies a ’four-operand-function’ on elementwise
 on four input signals.
-}

zipWith4S :: (a -> b -> c -> d -> e) -> Signal a -> Signal b
 -> Signal c -> Signal d -> Signal e

zipWith4S f NullS _ _ _ = NullS
zipWith4S f _ NullS _ _ = NullS
zipWith4S f _ _ NullS _ = NullS
zipWith4S f _ _ _ NullS = NullS
zipWith4S f (w:-ws) (x:-xs) (y:-ys) (z:-zs)

 = f w x y z :- (zipWith4S f ws xs ys zs)

{-
 The skeleton scanlS applies a function f on the head event of the signal
 and a inner state mem. The result of this function call server as
 output event and as new state mem.
-}

scanlS :: (a -> b -> a) -> a -> Signal b -> Signal a
scanlS f mem NullS = NullS
scanlS f mem (x:-xs) = f mem x :- (scanlS f newmem xs)

 where newmem = f mem x

{-
 The skeleton scanlS applies a function f on the head events of
 two input signals and an inner state mem. The result of this function
 call serves as output event and as new state mem.
-}
scanl2S :: (a -> b -> c -> a) -> a -> Signal b -> Signal c -> Signal a
scanl2S f mem NullS _ = NullS
scanl2S f mem _ NullS = NullS
scanl2S f mem (x:-xs) (y:-ys) = f mem x y :- (scanl2S f newmem xs ys)

 where newmem = f mem x y

{-
 The skeleton scanlS applies a function f on the head events of
 three input signals and an inner state mem. The result of this function
 call serves as output event and as new state mem.
-}
scanl3S :: (a -> b -> c -> d -> a) -> a -> Signal b

 -> Signal c -> Signal d -> Signal a
8

scanl3S f mem NullS _ _ = NullS
scanl3S f mem _ NullS _ = NullS
scanl3S f mem _ _ NullS = NullS
scanl3S f mem (x:-xs) (y:-ys) (z:-zs)

 = f mem x y z :- (scanl3S f newmem xs ys zs)
 where newmem = f mem x y z

{-
 The skeleton ’delayS’ delays the output one event cycle by inserting an
 event e
-}

delayS :: a -> Signal a -> Signal a
delayS e es = e:-es

{-
 The skeleton ’whenT’ synchronizes a signal with another signal.
 The first skeleton gets the value Absent when the second signal
 has the value Absent. Otherwise it keeps its value.
-}

whenT :: TimedSignal a -> TimedSignal b -> TimedSignal a
whenT NullS _ = NullS
whenT _ NullS = NullS
whenT (x:-xs) (Absent:-ys) = Absent :- (whenT xs ys)
whenT (x:-xs) (y:-ys) = x :- (whenT xs ys)

fillT :: TimedValue a -> TimedSignal a -> TimedSignal a
fillT a xs = mapS (replaceAbsent a) xs

 where replaceAbsent a Absent = a
 replaceAbsent a x = x

holdT :: TimedValue a -> TimedSignal a -> TimedSignal a
holdT a xs = scanlS hold a xs

 where hold a Absent = a
 hold a (Present x) = Present x

zipS (x:-xs) (y:-ys) = (x, y) :- zipS xs ys
zipS _ _ = NullS

unzipS NullS = (NullS, NullS)
unzipS ((x, y):-xys) = (x:-xs, y:-ys) where (xs, ys) = unzipS xys

groupS n NullS = NullS
groupS 0 _ = NullS
groupS n xs
 | nullS xs = NullS
 | otherwise = v :- groupS n (dropS n xs)

 where v = takeSV n xs

concatS NullS = NullS
concatS (v:-vs) = appendVS v (concatS vs)

-- Help Functions

appendVS NullV s = s
appendVS (x:>xs) s = x :- appendVS xs s

takeSV k = tk k NullV
9

 where tk 0 v s = v
 tk k v NullS = NullV
 tk k v (x:-xs) = tk (k-1) (v<:x) xs

A.2. Skeletons

{-
 Module: Skeletons

 Filename: Skeletons.hs

 Description: This module provides skeletons, that are composed from
atomic skeletons.

 Revisions:

 Date Version Author Changes

 19/6-00 0.1 Ingo Sander created
 21/8-00 0.2 Ingo Sander Datatype Signal redefined
 18/9-00 0.21 Ingo Sander moore2S, mealy2S introduced

Redifintion of mealyS-skeletons
 28/9-00 0.22 Ingo Sander uses new internal representation of Signal
-}

module Skeletons(mooreS, moore2S, moore3S, mealyS, mealy2S, mealy3S,
 partitionT) where

import ForSyDeCore

{-
 The skeleton ’partitionT’ partitions a signal into two signals depending
 on a predicate function p
-}

partitionT :: (TimedValue a -> Bool) -> TimedSignal a
 -> (TimedSignal a, TimedSignal a)
partitionT p NullS = (NullS, NullS)
partitionT p (x:-xs) = (xTrue (x:-xs), xFalse (x:-xs))

where xTrue NullS = NullS
xTrue (x:-xs) = if p x then

x :- (xTrue xs)
else

Absent :- (xTrue xs)
xFalse NullS = NullS
xFalse (x:-xs)= if p x then

Absent :- (xFalse xs)
else

x :- (xFalse xs)

-- COMPOSED SKELETONS --

mooreS :: (a -> b -> a) -> (a -> c) -> a -> Signal b -> Signal c
mooreS nextState output initial = mapS output . scanlS nextState initial

moore2S :: (a -> b -> c -> a) -> (a -> d) -> a -> Signal b
10

 -> Signal c -> Signal d
moore2S nextState output initial inp1 inp2 =

mapS output (scanl2S nextState initial inp1 inp2)

moore3S :: (a -> b -> c -> d -> a) -> (a -> e) -> a -> Signal b
 -> Signal c -> Signal d -> Signal e

moore3S nextState output initial inp1 inp2 inp3 =
mapS output (scanl3S nextState initial inp1 inp2 inp3)

mealyS :: (a -> b -> a) -> (a -> b -> c) -> a -> Signal b -> Signal c
mealyS nextState output initial signal =
 zipWithS output (scanlS nextState initial signal) signal

mealy2S :: (a -> b -> c -> a) -> (a -> b -> c -> d) -> a
 -> Signal b -> Signal c -> Signal d

mealy2S nextState output initial inp1 inp2 =
zipWith3S output (scanl2S nextState initial inp1 inp2) inp1 inp2

mealy3S :: (a -> b -> c -> d -> a) -> (a -> b -> c -> d -> e) -> a
 -> Signal b -> Signal c -> Signal d -> Signal e

mealy3S nextState output initial inp1 inp2 inp3 =
zipWith4S output (scanl3S nextState initial inp1 inp2 inp3)

 inp1 inp2 inp3
11

	From Haskell to PRES+ Basic Translation Procedures
	Abstract
	1. Introduction
	Haskell
	2. Haskell Æ PRES+ Translation
	Table 1: Translation of Atomic Skeletons
	Table 2: Translation of Skeletons

	3. Example
	References
	Appendix A. Library of Skeletons (by Ingo Sander)
	A.1. Atomic Skeletons
	A.2. Skeletons

