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Abstract

A flat representation of a realistic embedded system can be too big and complex to handle and
understand. In order to represent efficiently large systems, a mechanism for hierarchical com-
position is needed so that the model may be constructed in a structured manner and composed
of simpler units easily comprehensible by the designer at each description level. In this report
we formally define the notion of hierarchy for a Petri net based representation used for mode-
ling embedded systems. We show how small parts of a large system may be transformed by
using the concept of hierarchy as well as the advantages of a transformational approach in the
verification of embedded systems. A real-life example illustrates the feasibility of our approach
on practical applications. This work has been done in the frame of the SAVE project, which
aims to study the specification and verification of heterogeneous electronic systems.

1. Introduction

Embedded systems are typically constituted of heterogeneous components such as microcon-
trollers, digital signal processors, application specific instruction-set processors, and applica-
tion specific integrated circuits, among others. Besides their heterogeneity, embedded systems
are characterized by their dedicated function, real-time behavior, and high requirements on
reliability and correctness [Cam96].

In order to devise systems with such features, the design process must be based upon a formal
representation that captures the characteristics of embedded systems. Many computational
models have been proposed in the literature to represent embedded systems [Lav99], including
extensions to finite-state machines, data-flow graphs, and communicating processes. Particu-
larly, Petri nets (PNs) are an interesting representation for this sort of systems: PNs, for
instance, may represent parallel as well as sequential activities and easily capture non-deter-
ministic behaviors. In embedded systems design, PNs have been extended in various ways to
fit the most relevant traits of such systems, e.g. notion of time, and we can find several PN-
based models with different flavors [Var01], [Mac99], [Sgr99], [Sto94], [Ess98]. We have
recently introduced PRES+, a novel representation that extends PNs, in which tokens hold
information, transitions perform transformation of data, and timing is captured by associating
lower and upper limits to the duration of activities related to transitions [CorO0Db].

1



However, the lack of hierarchical decomposition makes it difficult to specify and understand
complex systems modeled as PNs. In this report we present an approach to the hierarchical
modeling of embedded systems using PRES+. We formally define the condeptarthical

PRES+ modelintroducingsuper-transitionsas hierarchical blocks, as well as the notions of
abstractionandrefinementThus hierarchical modeling can be applied throughout the whole
design process of embedded systems. Since realistic systems tend to be complex and compli-
cated, a flat representation may become too large to handle as well as error-prone. Hierarchy is
a useful tool that allows the system to be constructed in a structured way by composing a num-
ber of fully understandable entities.

For a large class of embedded systems time-to-market is a very important issue. The use of
hierarchical modeling during the design phases can help to shorten the time-to-market of
embedded applications. Hierarchy permits systems to be designed in a modular way. Thus the
system may be set up by reusing existing elements such as IP blocks and therefore reduce its
design time.

There have been several approaches to the introduction of hierarchy into Petri nets. The
method for stepwise refinement and abstraction of nets presented in [Suz83] is an elegant for-
mulation to cope with the state explosion of PNs by transforming transitions and/or places into
subnets and vice versa. Murata [Mur89] proposes a set of transformation rules used to refine
and abstract PNs, which preserve liveness, safeness, and boundedness. Valette [Val79] defines
the concept oblock which is a refinement net with one initial transition and one final transi-
tion, to represent divisible and non-instantaneous actions. These approaches, though dealing
with the concept of hierarchy through sound formalisms, are not appropriate for embedded
systems since the classical PN model lacks essential notions like timing. An important contri-
bution of our work is the definition of hierarchy for a modeling formalism suitable for the
design and verification of embedded systems. We define a semantic relation bstypeen
transitionsand theirefinementsin our approach timing is explicitly handled in the hierarchy.

We also show how the hierarchical representation supports a transformation based concept and
its advantages during the formal verification process. The notion of hierarchy defined in this
report is the vehicle through which a portion of the entire system can be transformed. Such a
transformational approach allows an important reduction in the verification cost. If a given
model is modified using correctness-preserving transformations and then the resulting one is
proved correct with respect to its specification, the initial model is guaranteed to be correct by
construction and no intermediate steps need to be verified.

The rest of this report is organized as follows. A description of the design representation that
we use to model embedded systems is presented in Section 2. The notions of hierarchy and
abstraction/refinement are formally defined in Section 3. In Section 4 we illustrate the hierar-
chical modeling of a real-life application used in acoustic echo cancellation. Section 5 dis-
cusses transformations on PRES+ models and their benefits in reducing the verification effort.
Finally, some conclusions are drawn in Section 6.

2. The Design Representation

The notation we use to model embedded systems is PRES+ (Petri net based Representation for
Embedded Systems). PRES+ extends Petri nets to be used as representation in the design pro-



cess of such systems. When modeling embedded systems, PRES+ overcomes some of the
drawbacks of the classical PN model: it captures explicitly timing information; it is more
expressive since tokens might carry information; systems may be represented at different lev-
els of granularity. Furthermore, both control and data information may be captured by a uni-
fied design representation.

In this section we briefly present, in a rather informal manner, the distinguishing features of
PRES+. Figure 1 shows a simple example used to illustrate the main characteristics of this rep-
resentation. A formal definition of the model can be found in [CorO0b].

Figure 1. A PRES+ model

A PRES+ model is a five-tupll = (P, T, I, O, M;) wheRe isasetofplaces, isa setof
transitions,| is a set of input (place-transition) ar®s, is a set of output (transition-place)
arcs, andM, is the initial marking of the net. A marking is an assignment of tokens to the
places of the net. A PRES+ net is 1-bountjetiat is, a placep 0 P may hold at most one
token for a certain markinyl M(p) = 1 whegm is marked, otherwidgp) = O . A'token

is a pairk = [V, rJ wherev is the token value—may be of any type—and is the token
time—a non-negative real number. Thus tokens carry data and time information attached to
them as stamps. The token type associated to a jplace , daifp)ed the type of value that

a token may bear ip . For the initial marking,  shown in the model of Figune,1, s the
only marked place and its tokek, = [V, r,0 has token valye= 2 and token time
r,=0.

Every transitiont 0T has one function, called transition function, associated to it. Such a
function takes as arguments the token values of tokens in the pre-set of the transition
Figure 1 we inscribe transition functions inside transition boxes: the function associdfed to
for example, is given byfg(e) = e+2 where s the token value of the tokemjn  when
marked. We use inscriptions on the input arcs of a transition in order to denote the arguments

1. In order to handle multi-rate systems, the model could be easily extended by allowing unbounded
nets. However, its analysis (for instance, formal verification) would become cumbersome. It is a
trade-off between expressiveness and analysis power.

2. The pre-sett of atransitiond T  is the set of input places ©he post-set® s the set of output
places oft. Correspondingly, the pre-s&  and the postyset  of a ptec® are the sets of tran-
sitions for whichp is output and input place respectively.
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of its transition function and/or those of its guard.

Atransitiont O T may have a guard, a condition that must be satisfied in order to enable the
transition when all its input places hold tokens. The guard of a transition is a function of the
token values of tokens in the places of its pre-set. For instamned) represents the guard of
t,. Note that, for the initial markingt, is not enabled even though its only input place is
marked and its output place is not.

For every transitiont O T , there exist a minimum transition deday =~ and a maximum transi-
tion delayd+ . The non-negative real numbers< d’ represent the lower and upper bounds
for the execution time (delay) of the function associated to the transition. Transition delays
give the limits in time for the firing of a transition since it becomes enabled, unless it is dis-
abled by the firing of another transition. Assuming in Figure 1, for instancetthat fires at 1
time units and accordingly the tokenpy  is removed and a new teken [2, 1] is depos-
ited in p, , thent; and, become enabled at 1 time units. Tlus  may not fire before 4 time
units and must fire before or at 5 time units, unless it becomes disabled by the firipg of
When a transition fires, all tokens in its output places get the same token value and token time.
The token time represents the instant at which the token was “created”. The global time of the
system, for a certain markigd , is given by the maximum token time of all tokens in the net.

3. Hierarchy

Embedded systems are complex structures which require models that allow a sound represen-
tation throughout their design cycle. PRES+ supports systems modeled at different levels of
granularity with transitions representing simple arithmetic operations or complex algorithms.
However, in order to handle efficiently the modeling of large systems, a mechanism of hierar-
chical composition is needed so that the model may be constructed in a structured manner,
composing simple units fully understandable by the designer.

Hierarchical modeling can be conveniently applied along the design process of embedded sys-
tems. Sometimes the specification or requirements may not be complete or thoroughly under-
stood. In a top-down approach, a designer may define the interface to each component and
then gradually refine those components. On the other hand, a system may be constructed reus-
ing existing elements such as IP blocks in a bottom-up approach. A hierarchical PRES+ model
can be devised bottom-up, top-down, or by mixing both approaches. In this section we formal-
ize the concept of hierarchy for PRES+ models. Some trivial examples are used in order to
illustrate the definitions.

Definition 1. A place pJ P is anin-port of the netN = (P, T, I, O, M,) iff(t, p) DO for
alltdT.Aplacepd P is amut-portof N iff (p, )01 forall tOT. =

We denote bynP andutP the set of in-ports and out-ports respectively.

Definition 2. A transitiont 0 T is ann-transitionof N = (P, T, I, O, M,) iff

[1 p°={t}
pUinP
A transitiont O T is arout-transitionof N iff
[] °p={t} =
p U outP



Note that the existence of non-empty st andP is a necessary condition for the exist-
ence of in- and out-transitions. For the nhblt shown in FigureinB,; = {p,, pp} ,
outP;, = {py},andt,, and,, arein-transition and out-transition respectively.

Figure 2. Simple subnéy

Definition 3. A Hierarchical PRES+ Modeis a six-tupleH = (P, T, A, 1,0, M;) where
P ={py Py .... Py} is afinite non-empty set of places;

T ={t,t, ...t} is afinite set of transitions;

N ={S,S, ..., §} is afinite set oSuper-transitions

| OPx (A OT) is a finite set of input arcs;

OO (AOT)xP is afinite set of output arcs;

Mg is the initial markings

Observe that a (non-hierarchical) PRES+ net is a particular case of a hierarchical PRES+ net
with A = 0. Figure 3 illustrates a hierarchical PRES+ net. Super-transitions are represented
by thick-line boxes.

Figure 3. A hierarchical PRES+ model

Definition 4. The pre-set°S and post-set S’ of a super-transitionrSO A  are given by
°S={pUOP|(pS)0I} andS°® = { pOP|(S, p) U O} respectively

Similar to transitions, the pre(post)-set of a super-transi8an/\ is the set of input(output)
places ofS .

Definition 5. For every super-transitidd ] A there existagh-level function



g:T(Ppy) X T(Pp) X ... xT(P,) ~ T(Q)
associated t& , wheres = {p;, py, ..., P;} agdlS® w .

Recall thatt(p) denotes thgpeassociated with the plage] P, i.e. the type of value that a
token may bear in that place. Observe the usefulness of high-level functions associated to
super-transitions in, for instance, a top-down approach: for a certain component of the system,
the designer may define its interface and a high-level description of its functionality through a
super-transition, and in a later design phase refine the component. In current design methodol-
ogies it is also very common to reuse predefined elements such as IP blocks. In such cases, the
internal structure of the component is unknown to the designer and therefore the block is best
modeled by a super-transition and its high-level function.

Definition 6. For every super- -transitio8 D A there exighinimum estimated delay and a
maximum estimated delay wheree <€’ are non- negative real numbers that represent the
estimated lower and upper limits for the execution time of the high-level function associated to
S.»

Definition 7. A super-transition may not be onflictwith other transitions or super-transi-
tions, that is:

() °S;n°S, = 0 andS{ns, = 0 forallS;, S,0A suchthas #S, ;

(i) °Sn°t=0andS°nt° = 0 forallSOA ,tOT =

In other words, a super-transition may not “share” input places with other transitions/super-
transitions, nor output places. In what follows, the input and output places of a super-transition
will be calledsurroundingplaces.

Definition 8. A super-transitior§, J A together with its surrounding places in the hierarchi-
cal net H = (P T,A1,0,M,) is a semi-abstractionof the (hierarchical) subnet
N; = (P, T, Aiy 13, 04, M; o) (or converselyN;  is aemi-refinemerdf S; and its surround-
ing places) |ff

(i) There exists a unique in-transition O T;

(i) There exists a unique out-transitiog),, 0 T; ;

(iii) There exists a bijectiom;, : °S; — inP; that maps the input placeSof  onto the in-ports
of N;;

(iv) There exists a bijectioi , : S’ - outP, that maps the output placeS,of  onto the out-
ports ofN; ;

(v) Mo(p) = M olfin(P)) andt(p) = t(ho(p)) for allp 0°

(V) Mo(P) = My oo, (P) andT(p) = t(hyu(p) for allp 3 5

(vii) t is disabled in the initial markinyl; , for allll (T; —t;,) =

Note that in the above definition the concept of super-transition is similar to the notion of
block defined by Valette [Val79], where the refinement net has one initial transition and one
final transition. A subnet may, in turn, contain super-transitions. It is straightforward to prove
that the netN, of Figure 2 is indeed a semi-refinemer8pf  in the hierarchical net of Figure
3.

If a netN; is the semi-refinement of some super-transipn , itis possible to charadterize
in terms of both function and time by putting tokens in its in-ports and then observing the
value and time stamp of tokens in its out-ports after a certain firing sequence. If the time stamp



of all tokens deposited in the in-ports bf is zero, the token time of tokens obtained in the
out-ports is called thexecution timef N, . For example, the nél;  of Figure 2 is character-
ized by putting tokenk, = [V, 00 ank, = [V, 00 initsin-ports and observing the token
kg = [V, rqlafter firing tj, andt,,, . Thus the execution time N, is equal to the token
time ry, bounded by dip +dg STy s d + dout . Note that the token value
Vq = foulfin(Va vp)) where £, andf are the transition functions of ang,
respectively.

The definition of semi-abstraction/refinement is just “syntactic sugar” that allows a complex
design to be constructed in a structured way by composing simpler entities. We have not
defined, so far, a semantic relation between the functionality of super-transitions and their
refinements. Below we define the conceptstabngandweak refinemerdf a super-transition.

Definition 9. A (hierarchical) subneN; = (P;, T, A;, 1, O;, M; o) is strong refinementf

the super-transitionS, DA together with its surrounding places in the hierarchical net
H = (P, T,A 10, My (orS, and its surrounding places isteong abstractiorof N; ) iff:

(i) N, is a semi-refinement &, ;

(i) N “‘implements”S; , i.e.N; andS; arknction- equwaler?l;

(i) The minimum estimated delay, d is equal to the lower bound of the execution time
of N;;

(iv) The maximum estimated delag( § is equal to the upper bound of the execution time
of N;.

The netN; shown in Figure 2 is a semi-refinemenSpf  in the hierarchical net of Figure 3.
N, is a strong refinement of;, if, in addition, gDeflnltlons 9(||) 9(iii), and 9(iv) respec-
tively): (@) 9, = foyiofin; (b)e =d,+d,; (©e =d,+dg,

Observe that the concept of strong refinement requires the super-transition and its strong
refinement to have the very same time limits. Such a concept could have limited practical use
since the high-level description and the implementation have typically different timings and
therefore their bounds for the execution time do not coincide. We relax the requirement of
exact correspondence of lower and upper bounds on time; this yields to a weaker notion of
refinement, yet more practical.

Definition 10. A (hierarchical) subneN; = (P, T;, Aj, I;, O, M, o)  is weak refinemerf

the super-transitionS, DA together with its surrounding places in the hierarchical net
H = (P, T,A 1,0, M) (S andits surrounding places isvaak abstractioof N, ) iff:

(i) N, is a semi-refinement &, ;

(i) N; “implements”S; , i.e.N; and5, arnction-equivalent

(i) The minimum estimated delag, &, s less than or equal to the lower bound of the exe-
cution time ofN; ;

(iv) The maX|mum estimated delag( § is greater than or equal to the upper bound of the
execution time oN; =

In the sequel whenever we referédinementit will meanweak refinement

3. Several notions of equivalence have been defined for PRES+ models in [Cor00a]. Intuitively, two
nets ardunction-equivalenif they perform the same function, that is to say, whenever tokens in cor-
responding in-ports have the same value, there exists a firing sequence that leads to the same token
values in corresponding out-ports.



Given a hierarchical PRES+ net = (P, T, A, 1,0, M)  and refinements of its super-transi-
tions, it is possible to construct an equivalent non-hierarchical net. For the sake of clarity, in
the following discussion we will consider nets with a single super-transition, nonetheless these
concepts can be easily extended to the general case.

Definition 11. Let us consider the hierarchical ned = (P, T,A, 1,0, M) where
N = {S;},andletthe subne¥, = (P}, T, Ay, 15,04, M; o) bearefinemenf  andits
surrounding places. Lt , t, ;0 T, be unique in-transition and out-transition respectively.
Let inP, andoutP; be respectively the sets of in-ports and out-porfd of . The equivalent
netH' = (P, T, \',1', 0", My') ,one level lower in the hierarchy treges defined as follows:
i N =N\
(i) P = PO(P,—=inP;—o0utP))
(i) T =TOT,
(iv) (p,S) 01" if  (p, S)Oly;
(p,)al it (p,t)dl, or
(p,t)Ol, andpOinPy ;
(p. ) O if (p,Sp Ol
(v) (S p)TO"if (S p)0O;;
(t,ppuoif (t,p)doO,or
(t, p) 1O, andp O outP, ;
(toup PY OO if (S, p) IO
(Vi) My'(p) = My(p) forall pO P;
Mqy'(pP) = My o(p) forall pO (P, —inP; —outP))

Figure 4. A non-hierarchical PRES+ model

Given the hierarchical net of Figure 3 and beiNg (Figure 2) a refineme8 of , we can
construct the equivalent non-hierarchical net as illustrated in Figure 4.

4. Hierarchical Modeling of a GMDFa

In this section we model a GMQRF (Generalized Multi-Delay frequency-domain Filter)



{0.01,0.05

|cen S Jcen S [cen S Jcen S

(@) (b)

Figure 5. Hierarchical modeling of a GMDBF
(super-transitions are represented by thick-line boxes)

[Fre97], [EIH95] using PRES+. GMD¥F has been used in acoustic echo cancellation for
improving the quality of hand-free phone and teleconference applications. The GID6-

rithm is a frequency-domain block adaptive algorithm: a block of input data is processed at
one time, producing a block of output data. The impulse response of lenigtsegmented

into K smaller blocks of siz&l (K=L/N), thus leading to better performandeénew samples

are processed at each iteration and the filter is adepgiates per blockR=N/a).

The filter inputs are the signXland its echdg, and the output is the reduced or cancelled echo

E’. In Figure 5 we show the hierarchical PRES+ model of a GMD#th K=4. The transition

t, transforms the input signinto the frequency domain by a FFT (Fast Fourier Transform).

t, corresponds to the normalization block. In each one of the basic®glls the filter coeffi-
cients are updated. Transitioh, serve as delay bldgks.  computes the estimated echo in
the frequency domain by a convolution product and then it is converted into the time domain
by t5 . The difference between the estimated echo and the actual one Ejgnaalculated by

t, and output a&’. Such a cancelled echo is also transformed into the frequency domain by
tg to be used in the next iteration when updating the filter coefficients. In Figure 5 we also
model the environment with which the GMHRnteracts:t, models the echoing of signal

t, andt, represent, respectively, the sending of the signal and the reception of the cancelled
echo, and, is the entity that emXs

The refinement of the basic cel;;  is shown in Figure 5(b) where the filter coefficients are
computed and thus the filter is adapted by using EBfid FFT operations. It is worth noticing

that instances of the same net (Figure 5(b)) are used as refinements of the differe®{ cells
Transition delays as well as estimated delays of super-transitions in Figure 5 are given in mil-
liseconds.



5. Design Verification

For the levels of complexity typical to modern electronic systems, traditional validation tech-
nigues like simulation and testing are neither sufficient nor viable to verify their correctness.
Formal methods are becoming an alternative to ensure the correctness of designs. In [Cor0O0b]
we have proposed a method to formally verify embedded systems represented in PRES+ by
using model checking. There are several types of analysis that can be performed on PRES+
models: the absence/presence of tokens in places of the net, time stamps of such tokens, and
their token values. These analyses have been called reachability, time, and functional analysis
respectively. Our approach to verification focuses on the first two, that is, reachability and time
analyses. We do consider transition functions whenever they affect the marking or time stamps
associated to tokens.

Model checking is an approach to formal verification used to determine whether the model of
a system satisfies itspecification that is, certain required properties. The two inputs to the
model checking problem are the system model and the properties that such a system must sat-
isfy, usually expressed as temporal logic formulas. Our approach allows to determine the truth
of CTL (Computation Tree Logic) [Cla86] and TCTL (Timed CTL) [Alu90] formulas with
respect to a PRES+ model. Formulas in CTL are composed of atomic propositions, boolean
connectors, and temporal operators. Temporal operators consist of forward-time op&ators (
globally, F in the future X next time, andJ until) preceded by a path quantifiex @ll compu-

tation paths, an& some computation path). TCTL is a real-time extension of CTL that allows

to inscribe subscripts on the temporal operators to limit their scope in time. For instance,
AF _, p expresses that, along all computation paths, the propdrégomes true within time

units.

In [CorO0Ob] we have proposed a systematic procedure to translate PRES+ models into timed
automata. This allows us to use various model checking tools, namely HyTech [Hg®], K

NOS [Kro], UPPAAL [Upp], in order to verify properties of embedded systems modeled in
PRES+. The verification of hierarchical PRES+ models is done by constructing the equivalent
non-hierarchical net as stated in Definition 11, and then using the verification approach dis-
cussed in [CorO0b]. Note that obtaining the non-hierarchical PRES+ model can be done auto-
matically so that the designer is not concerned with flattening the net: he inputs to the model
checker a hierarchical PRES+ model as well as the properties he is interested in, and then he
obtains an answer to the question “does the specification hold in the model of the system?”. In
case of a negative answer, diagnostic information is generated in order to explore the cases
that make the specification fail.

The verification techniqgue may be improved by transforming the system model into a simpler
one, yet semantically equivalent. In the next section we will show how transformations can be
conveniently used to simplify the system model for the sake of verification. Thus the verifica-
tion effort along the design process may be reduced significantly.

5.1. Transformations on PRES+ Models

A flat representation of a real-life embedded system can be too big and complex to handle and
understand. The concept of hierarchy defined above allows systems to be modeled in a struc-
tured way. Thus, using the notion of abstraction/refinement, the system may be broken down
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into a set of comprehensible nets structured in a hierarchy. Each one of these nets may repre-
sent a sub-block of the current design. Such a sub-block can be a pre-designed IP component
as well as a design alternative corresponding to a subsystem of the system under design.

Transformations performed on large and flat systems are, in general, difficult to prove. Hierar-
chical modeling permits a structural representation of the system in such a way that the com-
posing (sub)nets are simple enough to be transformed efficiently. The concept of hierarchy
defined above is the vehicle through which a portion of the whole system may be transformed.
ConsideraneH = (P, T,A,1,0,M,;) andIl&@0OA be a super-transition; suppose\that
andN'" are refinements & , that is, both fulfill the conditions stated in Definition 19" If
andN'’ are “equivalent”, then eithé&’ &'  may be usedhasefinement ofS without
changing the overall system at all.

Moreover, if (8)N' is a refinement & ; (b) there exists a transformation rule that allows to
transformN’ intoN'' ; (c) the transformation conserves the conditions of refinement (Defini-
tion 10) for N'' ; then such a transformation rule may be stored in a library of transformations
and used during verification in order to alleviate the computational effort of the model check-
ing process.

Therefore we can define a set of transformation rules that make it possible to transform only a
part of the system model. A simple transformation is shown in Figure 6. We do not intend to
provide here a comprehensive set of transformations but rather illustrate the transformation of
just a portion of the model taking advantage of the definition of hierarchy for PRES+ models.
Assume thatN’ andN'’ anmetal-equivalentin the sense defined in [Cor00a]. The intuitive
idea behindotal-equivalences as follows (the reader is referred to [Cor00a] for a formal def-
inition): (a) there exist bijections that define one-to-one correspondence between in(out)-ports
of N andN'’" ; (b) having initially tokens with the same token value/time in corresponding in-
ports, there exists a firing sequence which leads to the same marking and the very same token
values and times in corresponding out-ports. The ZNéts  Nihd totleequivalentf the

above requirements hold. It is not difficult to formally prove thét  &fid are total-equiva-
lent, provided the conditions given in Figure 6 are satisfied. The most interesting part for this
particular transformation is that N’  is a refinement of a given super-transgtion  (see Defini-
tion 10), thenN'’ is also a refinement 8f , and consequently such a transformation rule can
be used to ease the verification of PRES+ models.

The kind of transformations worth using during verification are those that transform a net into
another total-equivalent. Since an external observer could not distinguish between two total-
equivalent nets (for the same tokens in corresponding in-ports, the observer would get in both
cases the very same tokens in corresponding out-ports), the global system properties remain in
terms of reachability, time, and functionality. Therefore such transformatiornsamectness-
preservingif a propertyp holds in a net, it does in the other (a total-equivalent ong)dibes

not hold in the first net, it does not either in the second.

We will illustrate the benefits of using transformations, which are in turn possible due to the
concept of hierarchy, in the verification of the GM®HREiscussed in Section 4. Considering a
filter of length 1024 and an overlapping factor of 4, we have the following parameters:
L=1024, a=4,K=4,N=256, andR=64. Having a sampling rate of 8 kHz, the maximum execu-
tion time for one iteration is 8 ms (64 new samples must be processed at each iteration). The
completion of one iteration is determined by the marking of the pace
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Figure 6. A simple transformation rule

First we want to prove that the system will eventually complete its functionality which can be
expressed as a CTL formuksE E' . Second, according to the time constraint of the system, it
is not sufficient to finish the filtering iteration but also to do so with a bound on time. This
aspect of the specification is captured by the TCTL fornAfa.g E' . At this point, our task is
to formally verify that the model of the GMDOF shown in Figure 5 satisfies the formulas

AF E' andAF gE' .

A straightforward way could be flattening the system model and applying directly the verifica-
tion technique discussed in [Cor00b]. However, a wiser approach would be trying to simplify
first the system model by transforming it into a total-equivalent one, through transformations
from a library already proved to be correctness-preserving. Such transformations are a mathe-
matical tool that allows a significant improvement in the verification cost. The improvement is
possible because of a simple observation: the smaller the model is, the lower the verification
cost becomes, in terms of both time and memory. Therefore we try to reduce the model aiming
to obtain a simpler one, still semantically equivalent, so that the correctness is preserved.

We start by using the transformation rule illustrated in Figure 6 on the refinement of the basic
cell, so that we obtain the subnet of Figure 7(b). Note that in this transformation step, no time
is spent in proving the transformation itself because it is part of a library. Since these two sub-
nets (Figures 7(a) and 7(b)) are total-equivalent, the functionality of the entire GMDF
remains unchanged. Using other simple transformation rules (not discussed in this report), it is
possible to obtain a simpler, still total-equivalent, representation of the basic cell as shown in
Figure 7(c). Applying again the transformation rule of Figure 6, the basic cell refinement is
further simplified into the single-transition net of Figure 7(d). Finally we check the specifica-
tion against the simplest model of the system, that is, the one in which the refinement of the
basic cellsS;; is the net shown in Figure 7(d). We have verified the above two formulas and
such a model of the GMDdrindeed satisfies its specification. The verification usimgpAAL
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(b) () (d)

Figure 7. Transformations of the basic cell

[Upp] on a Sun Ultra 10 workstation takes less than 1 second (see last row of Table 1).

Since the transformations used along the simplification of the GiviBBdel are total-equiv-

alence transformations, the initial model of Figure 5 is correct by construction, i.e. satisfies the
system specification, and therefore need not be verified. However, in order to illustrate the ver-
ification cost (time) at different stages, we have verified the intermediate steps (models in
which the refinements of the basic ce8g; are given by the nets shown in Figures 7(b) and
7(c)) as well as the initial model. The results are shown in Table 1. Recall, however, that this is
not needed as long as the transformation rules are correctness-preserving. Observe how much
effort is saved when the basic celly;  are refined by the simplest net compared to the origi-
nal model.

Table 1: Verification times of the GMDFu
(obtained on a Sun Ultra 10 workstation)

Refinement of Verification time [s]

the basic cell ™y rech KRONOS UPPAAL
Fig. 7(a) 1953 NAT 108
Fig. 7(b) 241 NAD 61
Fig. 7(c) 27 NAD 9
Fig. 7(d) 8 19 <1

t. Not available: out of memory

Thus verification is carried out at low cost (short time) by first using correctness-preserving
transformations aiming to simplify the system representation. If the simpler model is correct
(its specification holds), the initial one is guaranteed to be correct by construction and interme-
diate steps need not be verified.
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6. Conclusions

We have formally defined the concepts of hierarchy and abstraction/refinement for a Petri net
based representation aimed to model embedded systems. In our approach it is feasible to rep-
resent large systems as a set of comprehensible nets structured in a hierarchy and, at the same
time, the essential characteristics of the system may be captured by the model. Our notion of
hierarchy handles explicitly timing.

We showed how hierarchy can be used as the vehicle that permits the transformation of parts
(blocks) of the system and we illustrated how such a transformational approach may be

extremely useful to reduce the verification cost. By using correctness-preserving transforma-
tions, a system model is guaranteed to be correct by construction and verification is performed
only on a simplified, still semantically equivalent, one.

A GMDFa (Generalized Multi-Delay frequency-domain Filter) has been studied in order to
illustrate the hierarchical modeling of a practical system. This application has also been used
during the experiments we carried out to show the worthiness of transformations to reduce the
time spent in verification.
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