SAVE Project Report, Dept. of Computer and Information
Science, Linkdping University, Sweden, July 2000.

Verification of Heterogeneous Electronic
Systems using Model Checking

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Department of Computer and Information Science
Linkdping University
S-581 83 Linkoping, Sweden

Abstract

The ever increasing complexity of heterogeneous electronic systems consisting of hardware
and software components poses a challenge in verifying their correctness. The complexity of
this kind of systems is such, that traditional validation methods, like simulation and testing,
are not enough to verify their correctness. In consequence, new verification methods that over-
come the limitations of traditional techniques and, at the same time, are suitable for heteroge-
neous hardware/software systems are needed. In this report we formally define the semantics
of PRES+, a Petri net based computational model aimed to represent embedded systems. We
introduce an approach to formal verification of heterogeneous electronic systems: we make
use of model checking to prove the correctness of such systems by determining the truth of
CTL and TCTL formulas that specify required properties with respect to a PRES+ model. Thus
verification with timing properties is possible. An ATM server illustrates the feasibility of this
approach on practical applications. This work has been done in the frame of the SAVE project,
which aims to study the specification and verification of heterogeneous electronic systems.

1. Introduction

Modern electronic systems are typically constituted of application-specific hardware compo-
nents and software running on programmable platforms. The inherent heterogeneity of this
kind of systems makes them very complex and consequently difficult to verify. Moreover, the
increasing demand on high-performance products has boosted the levels of sophistication of
such systems.

For the levels of complexity typical to modern electronic systems, traditional validation tech-
niques like simulation and testing are neither sufficient nor viable to verify their correctness.
First, these techniques may cover just a small fraction of the system behavior. Second, long
simulation times and bugs found late in prototyping phases have a negative impact on time-to-
market. Third, as more applications become dependent on computer systems, a failure may
lead to catastrophic situations, e.g. in safety-critical systems like transportation, defense, and
medical systems. Formal methods are becoming a practical alternative to ensure the correct-
ness of designs. They might overcome some of the limitations of traditional validation meth-
ods. At the same time, formal verification can give a better understanding of the system

1

behavior, contributes to uncover ambiguities, and reveals new insights of the system.

Formal methods have been extensively used in software development [Gan94] and hardware
verification [Ker99]. However, they are not commonplace in heterogeneous HW/SW systems

design. In this report we present an approach to verification using model checking for systems
represented in PRES+, a notation capable of capturing relevant information characteristic to
such systems. We introduce a systematic procedure to translate PRES+ models into linear
hybrid automata in order to use existing model checking tools.

Model checking is an approach to formal verification that lets the designer prove whether cer-
tain design properties hold in a given model of the system. Our approach allows to determine
the truth of CTL (Computation Tree Logic) [Cla86] and TCTL (Timed CTL) [Alu90] formu-

las with respect to a PRES+ model. Thus it is possible to validate design properties including
timing requirements.

The rest of this report is organized as follows. Section 2 addresses related approaches to for-
mal methods suitable for heterogeneous hardware/software systems. The underlying computa-
tional model that we use to represent such systems is formally defined in Section 3. Our
approach to verification of heterogeneous electronic systems is presented in Section 4. In Sec-
tion 5 we illustrate our verification method using a real-life telecom system. Finally, some
conclusions are drawn in Section 6.

2. Related Work

Many computational models have been proposed in the literature to represent embedded sys-
tems [Lav98], [Edw97]. Particularly, Petri nets (PNs) might be an interesting representation
for this sort of systems: PNs, for instance, may fairly represent parallel as well as sequential
activities, and may easily capture non-deterministic constructions. In embedded systems
design, Petri nets have been extended in various ways to fit their most relevant traits, e.g.
notion of time, and we can find several PN-based models with different flavors: Mdcad|
[Mac99] introduce an intermediate model for hardware/software codesign, extending Petri
nets to analyze certain properties used in the partitioning process; Stoy [Sto94] presents a
modeling technique where timed Petri nets with restricted transition rules are used to represent
control flow in both hardware and software; Esseal. [Ess98] utilize a combination of time

Petri nets and predicate/transition nets augmented with object-oriented concepts as model of
computation during the design of embedded systems; Coloured Petri nets have been also used
to model embedded systems [Ben92].

Though formal methods are not commonplace in hardware/software codesign, some coverifi-
cation approaches have been proposed recently. Using the hybrid automata model, a coverifi-
cation method is proposed in [Hsi99] where complex systems can be analyzed using a
simplification strategy to verify individually the hardware, the software, and the interface. Bal-
arin et. al [Bal96] introduce a verification methodology based on Codesign Finite State
Machines (CFSMs) in which CFSMs are translated into traditional state automata in order to
check whether all possible sequences of inputs and outputs satisfy the system properties. In
[Gar98], a partitioned system is the input to the proposed coverification framework in which
CTL and TCTL formulas are evaluated in order to check behavioral and timing properties. An
approach to model checking of process networks is proposed in [Str98], where IDDs (Interval

Decision Diagrams) are used to represent multi-valued functions.

Related approaches to formal verification using PNs include [Wim97], which presents a BDD-
based model checker for safe nets. An interesting approach to analysis and verification of
bounded Petri nets is presented in [Pas94], where BDDs are used to represent sets of mark-
ings.

3. PRES+

The notation we use to model embedded systems is PRES+ (Petri net based Representation for
Embedded Systems). PRES+ is a slightly modified version of the model presented in [Cor99].

It is a computational model based on Petri nets that allows to capture important features of
embedded systems. Figure 1 shows a simple example that will help to illustrate the definition
of this representation. In what follows we introduce the formal definition of PRES+.

[c>3] c+td

[o<d]

3xC t3 4
5 [3.8,4.1]
Pe Pr

Figure 1. A PRES+ model

Definition 1. A PRES+model is a five-tupl&N = (P, T, |, O, M,) where

P ={py Py ... Py} is afinite non-empty set pfaces

T ={t,t, ..., t,} is afinite non-empty set tfansitions

| OP x T is afinite non-empty set afiput arcswhich define the flow relation between places
and transitions;

OO Tx P is a finite non-empty set adutput arcswhich define the flow relation between
transitions and places;

Mg is the initialmarkingof the net (see Definition 3.

Like in classical Petri nets, places are graphically represented by circles, transitions by boxes,
and arcs by arrows. For the example in Figure A,= { p, Py Po Py Per P} and

T ={t,t,t51,}.

Definition 2. A tokenis a pairk = 03, rlJ where
v is thetoken valueThis value may be of any type, e.g. boolean, integer, etc., or user-defined

3

type of any complexity (for instance a structure, a set, or a record). The type of this value is
referred to asoken type

r is thetoken timea non-negative real number representing the time stamp of the token.
The seK denotes the set of all possible token types for a given system.

Definition 3. A markingM : P - {0, 1} is a function that denotes the absence or presence of
tokens in the places of the net. A PRES+ Nas safeor 1-boundedthat is, a place may hold

at most one token for a certain marking(p) = 1 whenever the gasenarked otherwise
M(p) = 0. =

Note that a marking/l implicitly assigns one tokek to each marked place. We introduce the
following notation which will be useful in defining the dynamic behavior of PRES+: when a
place p, is markedk, denotes the token presenp,in . The token value of the kpken s
denotedv, , and the token time of the token is denaoted . The initial makkjig Figure

1 showsp, andp, as places initially marked. The tokgr= [&, O has a zedinel a time
stamp 0. For the sake of simplicity, in the examples we use the short notatadenote the
token valuev,, .

Definition 4. Thetype functiont : P -~ K associates a place with a token typ@) denotes
the token type associated with the plgc@ he token type is the type of value that a token may
bear in that place.

It is worth pointing out that the token type related to a certain place is fixed, that is, it is an
intrinsic property of that place and will not change during the dynamic behavior of the net. For
the example in Figure 1, all places have token tgpé

Definition 5. Thepre-set°t = { p0 P|(p t) U1} of atransitiort is the set ofnput placesof
t. Similarly, thepost-sett® = { p O P|(t, p) 0 O} of a transitiont is the set obutput places
of t. Correspondingly, thepre-set °p and the post-set p° of a placep are given by
°p={tOT|(t p OO} andp® = {tOT|(p,)T 1} .=

Definition 6. All output places of a given transition have the same token type,
if pq0 e O 1(p) = 1(q) =

Definition 7. For every transitiort, there exists dransition functionf associated td. For-
mally,

OtOT Of :1(py) xT(py) X ... XT(Py) — T(qQ)
where°t = {py, Py, ..., P} andgOt° w

Transition functions are very important when describing the behavior of the system to be mod-
eled. They allow systems to be modeled at different levels of granularity with transitions rep-
resenting simple arithmetic operations or complex algorithms. In Figure 1 we inscribe
transition functions inside transition boxes: the transition function associatgd to , for exam-
ple, is given byf ,(c, d) = ¢+ d . We use inscriptions on the input arcs of a transition in order
to denote the arguments of its transition function and/or its guard.

Definition 8. For every transition, there exist aninimum transition delay and amaximum
transition delayd , which are non-negative real numbers and represent, respectively, the
lower and upper limits for the execution time (delay) of the function associated to the transi-

tion. Formally, .\ . N
. OtO0T Od,d OO0, suchthad <d
with O, being the set of non-negative real numbers.

Referring again Ero Figure 1, the minimum transition detgy tpf is 1, and its maximum
transition delayd; is 2.7 time units. Note that whérd*=d, we just inscribe the valud
close to the respective transition, like in the case of the transition diglay5

Definition 9. Theguard Gof a transitiort is the (necessary) condition that must be satisfied in
order to enable that transition, when all its input places hold tokens. The guard

G : 1(py) X T(p,) x ... xT(py) — {0, 1}
of a transitiont is a function of the token values in the places of its pre-set
°t = { Py, Py ..., Py} - If the condition hold$ = 1, otherwisés = 0. s

For instance, in Figure £,<4 represents the g@yd

Definition 10. Every transition has functionality The functionality of a transitiohis defined
in terms of:

(i) Its transition functionf;

(ii) Its minimumandmaximum transition delays dndd”.

Unlike the classical Petri net model, each token holds a value and a time stamp. When a transi-
tiontis fired, the markindv will generally change by removing all the tokens from the pre-set

°t and depositing one token into each element of the posteset . These tokens, atfded to
have values and time stamps which depend on the previous tokéhs in and the functionality
of t.

Definition 11. A transitiont is said to besnabledf all places of its pre-set are marked, its out-
put places different from the input orfesre empty, and its guard is asserted. Formally, for a
given markingM, a transitiont is enablatf

) OpO°t M(p) =1

(i) Og U (t°—°t) M(q) =0

i) G=1 =

Definition 12. Every enabled transitioh has anenabling time ethat represents the time
instant at which the transition becomes enabled. The enablingetiofea (enabled) transition
is the maximum token time of the tokens in its input places,

et=maxn,ry...,ry)
where the pre-set ofis °t = { py, Py, ..., P} .=

Definition 13. Theearliest trigger timett and thelatest trigger timett” of an enabled transi-
tion are the lower and upper time bounds for the firing of the transition,

tt; = et+ d+

tt = et+d
An enabled transitiohmay not fire before its earliest trigger time and must fire before or at
its latest trigger timét” , unlesdecomes disabled by the firing of another transiton.

Definition 14. Thefiring of an enabled transition changes a markivignto a new marking

1. A place may be, at the same time, input and output of a transition.

5

M*. As a result of firing the transition with pre-set°t = {p,, p,, ..., p,} , the following
events occur:
(i) Tokens from its pre-set (which are not in its post-set) are removed,;
OpO(°t—t°) M (p) =0

(i) One token is added to each place of its Qost-set;

OgOt> M (q) =1
(iif) Each new token deposited itf has a token value, which is calculated by evaluating the
transition function with the token values of tokenstin as arguments;

Og; Ot° v, = f(vy, Vs, .0, V)
(iv) Each new token added 3 has a token time, that is the time instant at which the transi-
tiont fires;
Og Ot° r; = tt* wherett* O[tt,tt'] =

The execution time of the function of a transition is considered in the time stamp of the new
tokens. Note that, when a transition fires, all the tokens in its output places get the same token
value and token time. The token time of a token represents the time at which it was “created”.
When used to model embedded systems, the representation introduced above has several inter-
esting features to be highlighted, some of them inherited from the classical Petri net model:

* Non-determinism may be naturally represented by PRES+. Non-determinism can be used
as a powerful mechanism to express succinctly the behavior of certain systems and then
reduce the complexity of the model.

» Parallel or concurrent activities may be easily expressed in terms of Petri nets. We recall
that concurrency is present in most embedded systems.

» Since tokens carry information in our model, PRES+ overcomes the lack of expressiveness
of classical Petri nets, where tokens are considered as “black dots”.

* Time is a critical factor in many embedded applications. Our model captures timing
aspects by associating lower and upper limits to the duration of activities related to transi-
tions and keeping time information in token stamps.

 PRES+ has been also extended by introducing the concept of hierarchy. However, we will
not further discuss this particular feature in this report.

Summarizing, PRES+ is a model to be used in the design cycle of embedded systems. Our rep-
resentation is an extension to the classical PN model that overcomes some of the drawbacks of
Petri nets when modeling embedded systems: it captures explicitly timing information;
PRES+ allows representations at different levels of granularity; our model is more expressive
since tokens might carry information. Furthermore, the model is simple, intuitive, and can be
easily handled by the designer.

4. \ferification of Heterogeneous Electronic Systems

In this section we present a verification method for systems represented using the model intro-
duced above. The purpose of the approach presented in this report is to reason about heteroge-
neous electronic systems using PRES+ as underlying representation. There are several types
of analysis that can be performed on systems represented in PRES+. A given marking, i.e.
absence or presence of tokens in places of the net, may represent the state of the system in the
dynamic behavior of the net. Based on this, different properties can be studied. For instance,
the designer could be interested in proving that the system eventually reaches a certain state

whose marking represents the completion of a task.

The kind of analysis described above, calledchability analysisis very useful but says
nothing about timing aspects nor does it deal with token values. In many embedded applica-
tions, however, time is an essential factor. Moreover, in hard real-time systems, where dead-
lines should not be missed, it is crucial to reason quantitatively about temporal properties in
order to ensure the correctness of the design. Therefore, it is needed not only to check that a
certain state will eventually be reached but also to ensure that this will occur within some
bound on time. In PRES+, time information is attached to tokens so that we can analyze quan-
titative timing properties: we may prove that a given place will be eventually marked and that
its time stamp will be less than a certain time value that represents a temporal constraint. Such
a study will be calletime analysis

A third type of analysis for systems modeled in PRES+ involves reasoning about values of
tokens in marked places. This type of study is caltethavior analysisin this work we

restrict ourselves to reachability and time analyses. In other words, we concentrate on the
absence/presence of tokens in the places of the net and their time stamps. Note, however, that
in some cases reachability and time analyses are influenced by token values. This aspect is dis-
cussed at the end of this section.

To verify the correctness of a heterogeneous electronic system, we first translate its PRES+
model into equivalent linear hybrid automata and then use existing verification tools, namely
HyTech [HyT], to check properties expressed as CTL and TCTL formulas. CTL [Cla86] is
based on propositional logic of branching time. Formulas in CTL are composed of atomic
propositions, boolean connectors and temporal operators. Temporal operators consist of for-
ward-time operatorS3 globally, F in the future X next time, andJ until) preceded by a path
guantifier @ all computation paths, anl some computation path). TCTL [Alu90] is a real-

time extension of CTL that allows to inscribe subscripts on the temporal operators to limit
their scope in time. For instancédF_, p expresses that, along all computation paths, the
propertyp becomes true within time units.

4.1. Hybrid Automata

In what follows we shortly describe theybrid automatamodel. The reader is referred to
[Alu95], [Alu96] for further reading on hybrid automata theory. Informally, a linear hybrid
automaton is a finite automaton enhanced with a set of real-valued variables, where the terms
involved in conditions, assignments, and invariants are required to be linear.

A hybrid automatorH = (X, V, E L syn¢ cond ac¢t inv consists of the following com-
ponents:

» Afinite setX of real-valuedsariables A valuationv is a function that assigns a real-value
U(X) to every variablex 1 X

» Afinite set oflocationsor vertices VA states = (v, v) consists of alocation and a val-
uationuv .

* A finite setE of edges Each edgee = (v, V) consists of a source locatdn V and a
target location/ OV .

* A finite set ofsynchronization labels land a labeling functiolsyncthat assigns to each

edgee] E a synchronization labelL , noted as synd €)

* A labeling functioncondthat assigns to each edge= (v, V) 1 E ce@enditioncond @
that must be satisfied in order to allow the automaido change its location from tg

» A labeling functiomact that assigns to each edgél E a setatifvities

* A labeling functioninv that assigns to each locationl] V @variant inv(v) which
allows the automatoH to stay at locatiow as long as its invariami(v) is satisfied.

4.2. Translating PRES+ into Hybrid Automata

In what follows we describe the systematic procedure to translate PRES+ models into linear
hybrid automata. The resulting representation consists of a collection of automata which oper-
ate and coordinate with each other through shared variables and synchronization labels. Figure
2 shows the result of translating the PRES+ model of Figure 1 into hybrid automata. We will
use this example as reference to illustrate the proposed translation method.

Figure 2. Equivalent hybrid automata

Step 1 Define one variable iX for each placep, of the Petri net, corresponding to the token
valuev, whenp, is marked, and one varialole for each transition , which represents a
clock used to ensure the firing of the transition within the earliest-latest trigger time interval.
ThusX = {Vy, Vs, ...,V Cgy Coy oevy €} 2. m

For the example in Figure 2, using the short notatiom to denote v,, ,
X={abcdefgc,csc,lt.

Step 2 Define the sebL of synchronization labels as the set (of names) of transitions in the
Petri net, thatid = {t;,t,, ..., 1.} =

Step 3 For every transitiont T define a hybrid automatdn withl locations
dis, disy, ..., dis,_,, en, wherezis the number of transitions that, when fired, will deposit a
token in some place in the pre-Sét . The set of such transitions is defined by

pre(= [°p
p; O °t

2. In the linear hybrid automata model, variables may change along the time with a constant rate: for
everyc, O X the change rate musthe= 1 ; for evgryl X the change rate mysthe

8

In the casepre(t) = O , define an automaton with only two locattigg eand

Step 4a Given the automatoh defireedges(dis,, dis;) zedges(dis,, dis,) ,... , and
edges(dis,_4, en) , and then assign to each groug efiges synchronization labels corre-
sponding to the transitions ipre(t) . Define then one e@gr dis) with synchronization
labelt .«

Step 4hb If the transitiont is in conflict with another transitidn t (could be disabled by the

firing of tc):

Let A = pre(t) n pre(tc) andB = pre(t)—pre(tc) . In the automatoh remove all the
edges except(en dig) . Split each one of the locatiodss,, ..., dis,_; into
dis; 5 ..., dis,_; , and dis;, ...,dis,_;, . Then define the edgedis, ,dis,,)
(dis, 5, disz o), ..., (dis,_g 5 €n), (disy dis;), (dis;p, disyp), ..., (dis,_,y,
dis,_,) with synchronization labels corresponding to those transitior8 in . Define edges
(disg, dis; ,), (dis; y, dis, o), ..., (dis,_; p, €n) with synchronization labels correspond-

ing to transitions inA . Define then edgggis, ,, disy) (dis, 5, dis;p) ..., (en dis_;)
with synchronization labdic =

For instance, weré¢, not in conflict with, , the automatign ~ would have the locations
disy, dis;, en and look like the one shown in Figure 3(a). However, because of such a conflict,
Step 4b must be performed: locatidins; has been split into the locatisgs, diapg

Note thatpre(t,) n pre(t;) = {t;} andpre(t,)—pre(t;) = {t,} . The edgdslis, ,, en)

and (disy, dis; ;) with synchronization labdl, are defined. Then the eddes, dislia)

and (dis, ,,, en) with synchronization labe¢, are defined. Finally, the edgss, ,, dis))
and(en dis ,,) with synchronization labé, are defined. After Step 4b, we get the automa-
tont, shown in Figure 3(b).

Figure 3. lllustration of Step 4

Itis easy to observe that isin conflictwith . No locations, however, are split in the autom-
atont; because it has just two locationBg, avml). In this case only the(exipelig)
with synchronization label, must be added.

Let f, be the transition function associatedtto°t;, = {q,, q,, ..., d,} the pre-sgt of , and
- +
d; andd, the minimum and maximum transition delays associated to

Step 5 Given the automatoq a55|gn to every e(dgeﬁJ en) the actiyity O . Define
the invariant of locatioren ag; <d; in order to enforce the firingof ~ before or at its latest
trigger time .=

In Figure 2, the edgédis,, en) of automatd;p , for example, has the actiyitr 0 c; . is
used to take into account the time sitge becomes enabled and ensure the firing semantics of
PRES+. For the sake of clarity, location invariants are not shown in Figure 2.

Step G Givent~i and its edge, = (en dig) , assign ® the conditidnc ¢, <d; . For
everyp; [t;° assign to such an edge the activity= f;(v;, v, ..., Vv,) =

For example, in the case of the automat;i)n the conditierc, < 2.7 gives the lower and
upper limits for the firing oft; , while the activite :==a—2 expresses that whenever the
automaton changes froen g, ,ifg. fires, the vadue2 is assigned to the variable

Step 7. If t; is a transition with guards; , assign the condltlﬁh to the eflgr dis) of
the automaton (so such an edge condltlon becothesc, < d & G;). Then add an edge
(en, en with no synchronization label, COI’]dItIOG (the complemean?f), and activity

C = =0.»

Note the conditiorB.8<c,<4.1 &c<4 inthe automatd;m where 4 s the guart), of
Observe also the edgen, er) with conditiom 4 and actigjty= 0

Step 8 For every placep 0 P define a hybrid automatpn with two locatiomsand off,
corresponding to the markingl(p) . The initial locationf will be eitberor off depend-
ing whether the place s initially marked or not. For every transition in the pogtset of

the placep , define an edge = (on, off) with synchronization |ape| . For every transition
t; in the pre-sefp of the placp , define an edgez (off, on) with synchronization label
ti.m

Note: When, given an automatop , a transitign is both input and output of the place
define an edge; = (on, on) and assign to it a synchronization tabel

In Figure 2 we only show the automatcp;g . The other autorﬁgta[;b ,[:;d ,p;e : ;;zpmd are
similar.

The procedure that we have described above is general enough to trangiRRES+ model

in which transition functions are linear and token types of all places are real. Some optimiza-
tions may be performed to reduce the complexity of the resulting hybrid automata. For
instance, in most cases, the automata corresponding to places are redundant and could be
removed. Such optimizations are beyond the scope of this report and therefore not discussed
here.

Once we have the equivalent hybrid automata, we can verify properties against the model of
the system. For instance, in the simple system of Figure 1 we could check whether, for given
values ofa andb, there exists a reachable state in whih is marked. This property might be
expressed as a CTL formulaF p, . An interesting feature of the HyTech tool [HyT] is its
ability to perform parametric analysis. Then, for example, we can ask the model-checker
which values ofa andb make a certain property true. We get tifdt p, holda ¥ 5 . Ifwe

10

want to check temporal properties we can express them as TCTL formulas. Thus, we could
check whethep; will be possibly marked and the time stamp of its token is less than 8.4 time
units, expressing this property B _g 4 p;

The translation procedure introduced above is valid for PRES+ models in which transition
functions are linear and token types of all places are real. In this case, we could even reason
about token values. Recall, however, that we want to focus on reachability and time analyses.
From this perspective we can ignore transition functions if they affect neither the marking nor
time stamps. This is the case of PRES+ models that bear no guards and, therefore, they can be
straightforwardly verified even if their transition functions are very complex operations,
because we simply ignore such functions. Those systems that include guards in their PRES+
model may also be studied if guard dependencies can be stated by linear expressions. This is
the case of the system shown in Figure 1. There are many systems in which the transition func-
tions are not linear, but their guard dependencies are, and then we can inscribe such dependen-
cies as linear expressions and use our method for system verification.

5. Verification of an ATM Server

In this section we illustrate the verification of a practical system, modeled using PRES+. The
net in Figure 4 represents an ATM-based Virtual Private Network (A-VPN) server [Fil98] for a
particular implementation. The behavior of the system can be briefly described as follows.
Incoming cells are examined Wyheckto determine whether they are faulty. Fault-free cells
arrive through th&JTOPIA_Rxinterface and are eventually stored in thieared Bufferlf the
incoming cell is faulty, it goes through the modutaulty and then is sent out using the
UTOPIA_Txinterface without processing. The moduleldress Lookughecks theLookup
Memoryand, for each non-defective input cell, a compressed form of the Virtual Channel
(VC) identifier in the cell header is computed. With this compressed form of the VC identifier,
the moduléTraffic checks its internal tables and decides whether to accept the incoming cell or
discard it in order to avoid congestion. If the cell is acceptEdffic gives instructions to
Queue Manageindicating where to store the incoming cell in the buffeaffic also indicates

to Queue Managethe cell (stored irBhared Bufférto be outputSupervisolis the module in
charge of updating internal tables dfaffic and theLookup MemoryThe selected outgoing

cell is emitted through the moduldTOPIA_Tx The specification of the system includes a
time constraint given by the rate (155 Mbit/s) of the application: one input cell and one output
cell must be processed every </

To verify the correctness of the A-VPN server, we must prove that for all possible conditions
the system will eventually complete its functionality, and that such a functionality will eventu-
ally fit within a cell time-slot. The completion of the task of the A-VPN server, modeled by the
net in Figure 4, is represented by the state (marking) in which the gace is marked. Then
we must prove that for all computation patipg, will eventually get a token and its time stamp
will be less than 2.71s. These conditions might be straightforwardly specified using CTL and
TCTL formulas, namelyAF p; and\F_,,p; . Notice that the first formula is a necessary
condition for the second one. Using the translation procedure described above and the HyTech
tool [HyT], we found out that the CTL formulaAF p; holds while the TCTL formula
AF _, ; p, does not. Moreover, we have checked the fornttifa,, ; p; that turned out to be
true, which means that it is possible to get a tokerpjn with a time stamp less thas.2.7
However, recall thaAF _, ; p; does not hold and therefore this implementation does not ful-

11

fill the system specification because it is not guaranteed that the time constraint will be satis-
fied.

ATM Cell (Out)

[0.1,0.3]

UTOPIA_Tx

[0.3,0.5]

Figure 4. PRES+ model of an A-VPN server

We must consider an alternative solution. To do so, suppose we want to rodglifig, keep-

ing its functional behavior but seeking superior performance: we want to explore the allowed
interval of delays fofrafficin order to fulfill the constraints. We can define the minimum and
maximum transition delays dfraffic as parameterd’ and’ , and then perform parametric
analysis to find out the values for whidkF_, , p; is satisfied. We get thaf i 0.57 and,
by definition,d < d”* then the propertpAF _, - p; holds. This indicates that the worst case
execution time of the function associatedltaffic must be less than 0.5 to fulfill the sys-

tem specification.

Running the HyTech tool on a Sun Ultra 10 workstation, both the verification of the TCTL for-
mula AF _, , p, for the model given in Figure 4, and the parametric analysis described in the
paragraph above take roughly 1 second.

The example of the ATM server described above has shown that our approach is not only suit-
able to verify the correctness of embedded systems but also that this technique can be a useful
tool during design space exploration. Information, like the one obtained through parametric
analysis, can guide the designer when exploring design alternatives. Thus, at the same time
that we check the correctness of designs, we get valuable information that serves as guideline
along the design process.

12

6. Conclusions

We have formally defined PRES+, a Petri net based model aimed to represent embedded sys-
tems. The model is simple, intuitive, and can be easily handled by the designer. It is a compu-
tational model with extensions to capture important characteristics of embedded systems.

We presented a practical approach to verification of embedded systems represented by
PRES+. We use symbolic model checking to prove the correctness of such systems in respect
to reachability and time, specifying design properties as CTL and TCTL formulas. Thus veri-
fication with timing properties is possible.

In order to use existing verification tools, we introduced a systematic procedure to translate
PRES+ models into linear hybrid automata. This method can be automated in a relatively sim-
ple manner. An ATM server has been studied to illustrate the applicability of our verification
approach to practical systems.

The approach presented in this work is not only appropriate to verify the correctness of
embedded systems, but may also be a useful tool for design space exploration.

References

[Alu90] R. Alur, C. Courcoubetis and D. L. Dill, “Model Checking for Real-Time SystemsPiac. Symposium

on Logic in Computer Scienc&990, pp. 414-425.

[Alu95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine, “The Algorithmic Analysis of Hybrid Systems, Tiheoretical Computer Sciencel. 138, pp. 3-

34, February 1995.

[Alu96] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic Symbolic Verification of Embedded Systems,” in
IEEE Trans. Software Engineeringpl. 22, pp. 181-201, March 1996.

[Bal96] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli, “Formal Verification of
Embedded Systems based on CFSM Network$rat. DAG 1996, pp. 568-571.

[Ben92] L. P. M. Benders and M. P. J. Stevens, “Petri Net Modelling in Embedded System Designgcin
European Computer Conferend®92, pp. 612-617.

[Cla86] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-State Concurrent Sys-
tems Using Temporal Logic Specifications,”ACM Trans. on Programming Languages and Systewis8, pp.
244-263, April 1986.

[Cor99] L. A. Cortés, P. Eles, and Z. Peng, “A Petri Net based Model for Heterogeneous Embedded Systems,” in
Proc. NORCHIP Conferenc&999, pp. 248-255.

[Edw97] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, “Design of Embedded Systems:
Formal Models, Validation, and Synthesis,Hroc. IEEE vol. 85, pp. 366-390, March 1997.

[Ess98] R. Esser, J. Teich, and L. Thiele, “CodeSign: An embedded system design environmi&ift, Piroc.
Computers and Digital Techniquesl. 145, pp. 171-180, May 1998.

[Fil98] E. Filippi, L. Lavagno, L. Licciardi, A. Montanaro, M. Paolini, R. Passerone, M. Sgroi, and A. Sangio-
vanni-Vincentelli, “Intellectual Property Re-use in Embedded System Co-design: an Industrial Case Study,” in
Proc. ISS$S1998, pp. 37-42.

[Gan94] J. D. Gannon, J. M. Purtilo, and M. V. Zelkowioftware Specification: A Comparison of Formal
Methods Norwood, NJ: Ablex Publishing, 1994.

[Gar98] E. H. A. Garcez and W. Rosenstiel, “CVF - Coverification FrameworkProc. Brazilian Symposium

on Integrated Circuit Desigri1998, pp. 103-106.

[Hsi99] P.-A. Hsiung, “Hardware-Software Coverification of Concurrent Embedded Real-Time Systems,” in
Proc. Euromicro RTS1999, pp. 216-223.

[HyT] HyTech: The HYbrid TECHnology Toohttp://www-cad.eecs.berkeley.edu/~tah/HyTech/

[Ker99] C. Kern and M. R. Greenstreet, “Formal Verification in Hardware Design: A Survep\CiM Trans. on
Design Automation of Electronic Systewr. 4, pp. 123-193, April 1999.

13

[Lav98] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich, “Models of Computation for Embedded Sys-
tem Design,” ilNATO ASI Proc. on System Synthek@98, pp. 1-57.

[Mac99] P. Maciel, E. Barros, and W. Rosenstiel, “A Petri Net Model for Hardware/Software Codesign,” in
Design Automation for Embedded Systerot 4, pp. 243-310, Oct. 1999.

[Pas94] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia, “Petri Net Analysis Using Boolean Manipulation,” in
Application and Theory of Petri Nets 199R. Valette, EQLNCS 815 Berlin: Springer-Verlag, 1994, pp. 416-
435.

[Sto94] E. Stoy and Z. Peng, “An Integrated Modelling Technique for Hardware/Software SysterRsgcin
ISCAS 1994, pp. 399-402.

[Str98] K. Strehl and L. Thiele, “Symbolic Model Checking of Process Networks Using Interval Diagrams Tech-
nigues,” inProc. ICCAD 1998, pp. 686-692.

[Wim97] G. Wimmel, “A BDD-based Model Checker for the PEP Tool,” Major Individual Project Report, Dept.
of Computing Science, University of Newcastle, May 1997.

14

	Verification of Heterogeneous Electronic Systems using Model Checking
	Abstract
	1. Introduction
	2. Related Work
	3. PRES+
	4. Verification of Heterogeneous Electronic Systems
	4.1. Hybrid Automata
	4.2. Translating PRES+ into Hybrid Automata

	5. Verification of an ATM Server
	6. Conclusions
	References

