
dware
xity of
ting,

t over-
roge-
antics

ms. We
make
ruth of
Thus
this
oject,

s.

mpo-
f this
, the
tion of

ech-
ess.
, long
e-to-

e may
e, and
orrect-
eth-
stem

SAVE Project Report, Dept. of Computer and Information
Science, Linköping University, Sweden, July 2000.
Verification of Heterogeneous Electronic
Systems using Model Checking

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Department of Computer and Information Science

Linköping University
S-581 83 Linköping, Sweden

Abstract

The ever increasing complexity of heterogeneous electronic systems consisting of har
and software components poses a challenge in verifying their correctness. The comple
this kind of systems is such, that traditional validation methods, like simulation and tes
are not enough to verify their correctness. In consequence, new verification methods tha
come the limitations of traditional techniques and, at the same time, are suitable for hete
neous hardware/software systems are needed. In this report we formally define the sem
of PRES+, a Petri net based computational model aimed to represent embedded syste
introduce an approach to formal verification of heterogeneous electronic systems: we
use of model checking to prove the correctness of such systems by determining the t
CTL and TCTL formulas that specify required properties with respect to a PRES+ model.
verification with timing properties is possible. An ATM server illustrates the feasibility of
approach on practical applications. This work has been done in the frame of the SAVE pr
which aims to study the specification and verification of heterogeneous electronic system

1. Introduction

Modern electronic systems are typically constituted of application-specific hardware co
nents and software running on programmable platforms. The inherent heterogeneity o
kind of systems makes them very complex and consequently difficult to verify. Moreover
increasing demand on high-performance products has boosted the levels of sophistica
such systems.

For the levels of complexity typical to modern electronic systems, traditional validation t
niques like simulation and testing are neither sufficient nor viable to verify their correctn
First, these techniques may cover just a small fraction of the system behavior. Second
simulation times and bugs found late in prototyping phases have a negative impact on tim
market. Third, as more applications become dependent on computer systems, a failur
lead to catastrophic situations, e.g. in safety-critical systems like transportation, defens
medical systems. Formal methods are becoming a practical alternative to ensure the c
ness of designs. They might overcome some of the limitations of traditional validation m
ods. At the same time, formal verification can give a better understanding of the sy
1

rdware
tems
stems
stic to
linear

r cer-
rmine
-

uding

to for-
mputa-
. Our
In Sec-
ome

ed sys-
ation
ential
stems
, e.g.

Petri
ents a
resent

odel of
o used

verifi-
overifi-
ing a
Bal-
tate
er to

ties. In
hich
. An

terval
behavior, contributes to uncover ambiguities, and reveals new insights of the system.

Formal methods have been extensively used in software development [Gan94] and ha
verification [Ker99]. However, they are not commonplace in heterogeneous HW/SW sys
design. In this report we present an approach to verification using model checking for sy
represented in PRES+, a notation capable of capturing relevant information characteri
such systems. We introduce a systematic procedure to translate PRES+ models into
hybrid automata in order to use existing model checking tools.

Model checking is an approach to formal verification that lets the designer prove whethe
tain design properties hold in a given model of the system. Our approach allows to dete
the truth of CTL (Computation Tree Logic) [Cla86] and TCTL (Timed CTL) [Alu90] formu
las with respect to a PRES+ model. Thus it is possible to validate design properties incl
timing requirements.

The rest of this report is organized as follows. Section 2 addresses related approaches
mal methods suitable for heterogeneous hardware/software systems. The underlying co
tional model that we use to represent such systems is formally defined in Section 3
approach to verification of heterogeneous electronic systems is presented in Section 4.
tion 5 we illustrate our verification method using a real-life telecom system. Finally, s
conclusions are drawn in Section 6.

2. Related Work

Many computational models have been proposed in the literature to represent embedd
tems [Lav98], [Edw97]. Particularly, Petri nets (PNs) might be an interesting represent
for this sort of systems: PNs, for instance, may fairly represent parallel as well as sequ
activities, and may easily capture non-deterministic constructions. In embedded sy
design, Petri nets have been extended in various ways to fit their most relevant traits
notion of time, and we can find several PN-based models with different flavors: Macielet. al
[Mac99] introduce an intermediate model for hardware/software codesign, extending
nets to analyze certain properties used in the partitioning process; Stoy [Sto94] pres
modeling technique where timed Petri nets with restricted transition rules are used to rep
control flow in both hardware and software; Esseret al. [Ess98] utilize a combination of time
Petri nets and predicate/transition nets augmented with object-oriented concepts as m
computation during the design of embedded systems; Coloured Petri nets have been als
to model embedded systems [Ben92].

Though formal methods are not commonplace in hardware/software codesign, some co
cation approaches have been proposed recently. Using the hybrid automata model, a c
cation method is proposed in [Hsi99] where complex systems can be analyzed us
simplification strategy to verify individually the hardware, the software, and the interface.
arin et. al [Bal96] introduce a verification methodology based on Codesign Finite S
Machines (CFSMs) in which CFSMs are translated into traditional state automata in ord
check whether all possible sequences of inputs and outputs satisfy the system proper
[Gar98], a partitioned system is the input to the proposed coverification framework in w
CTL and TCTL formulas are evaluated in order to check behavioral and timing properties
approach to model checking of process networks is proposed in [Str98], where IDDs (In
2

DD-
ion of
f mark-

tion for
or99].
res of
nition

s

oxes,
nd

fined
Decision Diagrams) are used to represent multi-valued functions.

Related approaches to formal verification using PNs include [Wim97], which presents a B
based model checker for safe nets. An interesting approach to analysis and verificat
bounded Petri nets is presented in [Pas94], where BDDs are used to represent sets o
ings.

3. PRES+

The notation we use to model embedded systems is PRES+ (Petri net based Representa
Embedded Systems). PRES+ is a slightly modified version of the model presented in [C
It is a computational model based on Petri nets that allows to capture important featu
embedded systems. Figure 1 shows a simple example that will help to illustrate the defi
of this representation. In what follows we introduce the formal definition of PRES+.

Figure 1. A PRES+ model

Definition 1. A PRES+ model is a five-tuple where
 is a finite non-empty set ofplaces;

 is a finite non-empty set oftransitions;
is a finite non-empty set ofinput arcswhich define the flow relation between place

and transitions;
is a finite non-empty set ofoutput arcswhich define the flow relation between

transitions and places;
M0 is the initialmarking of the net (see Definition 3).

Like in classical Petri nets, places are graphically represented by circles, transitions by b
and arcs by arrows. For the example in Figure 1, a

.

Definition 2. A token is a pair where
v is thetoken value. This value may be of any type, e.g. boolean, integer, etc., or user-de

t 3 t 4

pa

cp pd

t 2t 1

pb

pfpe

c>3[] c<4[]

c

c+d

c

b/2

[3.8,4.1]

a-2

3 c

[1,2.7]

5

[2,3]

d

ba

x

<a,0> <b,0>

N P T I O M0, , , ,()=
P p1 p2 … pm, , ,{ }=
T t1 t2 … tn, , ,{ }=
I P T×⊆

O T P×⊆

P pa pb pc pd pe pf,, , , ,{ }=
T t1 t2 t3 t4, , ,{ }=

k v r,〈 〉=
3

lue is

.

e of

e
n a

is

ay

s an
. For

mod-
rep-
ribe

xam-
der

, the
ansi-
type of any complexity (for instance a structure, a set, or a record). The type of this va
referred to astoken type;
 r is thetoken time, a non-negative real number representing the time stamp of the token
The setK denotes the set of all possible token types for a given system.

Definition 3. A marking is a function that denotes the absence or presenc
tokens in the places of the net. A PRES+ netN is safeor 1-bounded, that is, a place may hold
at most one token for a certain marking. whenever the placep is marked, otherwise

.

Note that a markingM implicitly assigns one tokenk to each marked place. We introduce th
following notation which will be useful in defining the dynamic behavior of PRES+: whe
place is marked, denotes the token present in . The token value of the token
denoted , and the token time of the token is denoted . The initial markingM0 in Figure
1 shows and as places initially marked. The token has a valuea and a time
stamp 0. For the sake of simplicity, in the examples we use the short notationw to denote the
token value .

Definition 4. The type function associates a place with a token type.τ(p) denotes
the token type associated with the placep. The token type is the type of value that a token m
bear in that place.

It is worth pointing out that the token type related to a certain place is fixed, that is, it i
intrinsic property of that place and will not change during the dynamic behavior of the net
the example in Figure 1, all places have token typereal.

Definition 5. Thepre-set of a transitiont is the set ofinput placesof
t. Similarly, thepost-set of a transitiont is the set ofoutput places
of t. Correspondingly, thepre-set and the post-set of a place p are given by

 and .

Definition 6. All output places of a given transition have the same token type,
if

Definition 7. For every transitiont, there exists atransition function associated tot. For-
mally,

where and .

Transition functions are very important when describing the behavior of the system to be
eled. They allow systems to be modeled at different levels of granularity with transitions
resenting simple arithmetic operations or complex algorithms. In Figure 1 we insc
transition functions inside transition boxes: the transition function associated to , for e
ple, is given by . We use inscriptions on the input arcs of a transition in or
to denote the arguments of its transition function and/or its guard.

Definition 8. For every transitiont, there exist aminimum transition delay and amaximum
transition delay , which are non-negative real numbers and represent, respectively
lower and upper limits for the execution time (delay) of the function associated to the tr

M : P 0 1,{ }→

M p() 1=
M p() 0=

pi ki pi ki
vi ki r i
pa pb ka a 0,〈 〉=

vw

τ : P K→

°t p P p t,() I∈∈{ }=
t° p P t p,() O∈∈{ }=

°p p°
°p t T t p,() O∈∈{ }= p° t T p t,() I∈∈{ }=

p q t° τ p()⇒∈, τ q()=

f

t T∈∀ f : τ p1() τ p2() … τ× pa()×× τ q()→∃
°t p1 p2 … p, a, ,{ }= q t°∈

t4
f 4 c d,() c d+=

d
-

d
+

4

um

in

set

transi-
set

to ,
nality

t-
r a

r at
tion. Formally,
 such that

with being the set of non-negative real numbers.

Referring again to Figure 1, the minimum transition delay of is 1, and its maxim
transition delay is 2.7 time units. Note that whend-=d+=d, we just inscribe the valued
close to the respective transition, like in the case of the transition delay .

Definition 9. Theguard Gof a transitiont is the (necessary) condition that must be satisfied
order to enable that transition, when all its input places hold tokens. The guard

of a transition t is a function of the token values in the places of its pre-
. If the condition holdsG = 1, otherwiseG = 0.

For instance, in Figure 1, represents the guard .

Definition 10. Every transition has afunctionality. The functionality of a transitiont is defined
in terms of:
(i) Its transition function ;
(ii) Its minimumand maximum transition delays d- andd+.

Unlike the classical Petri net model, each token holds a value and a time stamp. When a
tion t is fired, the markingM will generally change by removing all the tokens from the pre-

and depositing one token into each element of the post-set . These tokens, added
have values and time stamps which depend on the previous tokens in and the functio
of t.

Definition 11. A transitiont is said to beenabledif all places of its pre-set are marked, its ou
put places different from the input ones1 are empty, and its guard is asserted. Formally, fo
given markingM, a transition is enablediff
(i)
(ii)
(iii)

Definition 12. Every enabled transitiont has anenabling time etthat represents the time
instant at which the transition becomes enabled. The enabling timeet of a (enabled) transition
is the maximum token time of the tokens in its input places,

where the pre-set oft is .

Definition 13. Theearliest trigger time and thelatest trigger time of an enabled transi-
tion are the lower and upper time bounds for the firing of the transition,

An enabled transitiont may not fire before its earliest trigger time and must fire before o
its latest trigger time , unlesst becomes disabled by the firing of another transition.

Definition 14. Thefiring of an enabled transition changes a markingM into a new marking

1. A place may be, at the same time, input and output of a transition.

t T∈∀ d
-

d
+, ℜ0

+∈∃ d
-

d
+≤

ℜ0
+

d1
-

t1
d1

+

d3 5=

G : τ p1() τ p2() … τ× pa()×× 0 1,{ }→

°t p1 p2 … p, a, ,{ }=

c 4< G4

f

°t t° t°
°t

t
p °t M p()∈∀ 1=
q t° °t–() M q()∈∀ 0=

G 1=

et max r1 r2 … r a, , ,()=
°t p1 p2 … p, a, ,{ }=

tt
-

tt
+

tt
-

et d
-

+=
tt

+
et d

+
+=

tt
-

tt
+

5

g the

ansi-

new
token
ated”.
ral inter-
del:

used
d then

recall

eness

ing
ansi-

e will

ur rep-
acks of
tion;
ssive
n be

l intro-
teroge-

al types
g, i.e.
m in the
tance,
n state
M+. As a result of firing the transitiont, with pre-set , the following
events occur:
(i) Tokens from its pre-set (which are not in its post-set) are removed;

(ii) One token is added to each place of its post-set;

(iii) Each new token deposited in has a token value, which is calculated by evaluatin
transition function with the token values of tokens in as arguments;

(iv) Each new token added to has a token time, that is the time instant at which the tr
tion t fires;

 where

The execution time of the function of a transition is considered in the time stamp of the
tokens. Note that, when a transition fires, all the tokens in its output places get the same
value and token time. The token time of a token represents the time at which it was “cre
When used to model embedded systems, the representation introduced above has seve
esting features to be highlighted, some of them inherited from the classical Petri net mo

• Non-determinism may be naturally represented by PRES+. Non-determinism can be
as a powerful mechanism to express succinctly the behavior of certain systems an
reduce the complexity of the model.

• Parallel or concurrent activities may be easily expressed in terms of Petri nets. We
that concurrency is present in most embedded systems.

• Since tokens carry information in our model, PRES+ overcomes the lack of expressiv
of classical Petri nets, where tokens are considered as “black dots”.

• Time is a critical factor in many embedded applications. Our model captures tim
aspects by associating lower and upper limits to the duration of activities related to tr
tions and keeping time information in token stamps.

• PRES+ has been also extended by introducing the concept of hierarchy. However, w
not further discuss this particular feature in this report.

Summarizing, PRES+ is a model to be used in the design cycle of embedded systems. O
resentation is an extension to the classical PN model that overcomes some of the drawb
Petri nets when modeling embedded systems: it captures explicitly timing informa
PRES+ allows representations at different levels of granularity; our model is more expre
since tokens might carry information. Furthermore, the model is simple, intuitive, and ca
easily handled by the designer.

4. Verification of Heterogeneous Electronic Systems

In this section we present a verification method for systems represented using the mode
duced above. The purpose of the approach presented in this report is to reason about he
neous electronic systems using PRES+ as underlying representation. There are sever
of analysis that can be performed on systems represented in PRES+. A given markin
absence or presence of tokens in places of the net, may represent the state of the syste
dynamic behavior of the net. Based on this, different properties can be studied. For ins
the designer could be interested in proving that the system eventually reaches a certai

°t p1 p2 … p, a, ,{ }=

p °t t°–() M
+

p()∈∀ 0=

q t° M
+

q()∈∀ 1=
t°

°t
qi t°∈∀ vi f v1 v2 … va, , ,()=

t°

qi t°∈∀ r i tt*= tt* tt
-
tt

+
[,]∈
6

plica-
dead-
ies in
that a
ome
quan-
that

. Such

es of

n the
er, that
t is dis-

RES+
mely
] is

omic
of for-

l-
limit
s, the

rid
terms

-

e

-

d a
whose marking represents the completion of a task.

The kind of analysis described above, calledreachability analysis, is very useful but says
nothing about timing aspects nor does it deal with token values. In many embedded ap
tions, however, time is an essential factor. Moreover, in hard real-time systems, where
lines should not be missed, it is crucial to reason quantitatively about temporal propert
order to ensure the correctness of the design. Therefore, it is needed not only to check
certain state will eventually be reached but also to ensure that this will occur within s
bound on time. In PRES+, time information is attached to tokens so that we can analyze
titative timing properties: we may prove that a given place will be eventually marked and
its time stamp will be less than a certain time value that represents a temporal constraint
a study will be calledtime analysis.

A third type of analysis for systems modeled in PRES+ involves reasoning about valu
tokens in marked places. This type of study is calledbehavior analysis. In this work we
restrict ourselves to reachability and time analyses. In other words, we concentrate o
absence/presence of tokens in the places of the net and their time stamps. Note, howev
in some cases reachability and time analyses are influenced by token values. This aspec
cussed at the end of this section.

To verify the correctness of a heterogeneous electronic system, we first translate its P
model into equivalent linear hybrid automata and then use existing verification tools, na
HyTech [HyT], to check properties expressed as CTL and TCTL formulas. CTL [Cla86
based on propositional logic of branching time. Formulas in CTL are composed of at
propositions, boolean connectors and temporal operators. Temporal operators consist
ward-time operators (G globally,F in the future,X next time, andU until) preceded by a path
quantifier (A all computation paths, andE some computation path). TCTL [Alu90] is a rea
time extension of CTL that allows to inscribe subscripts on the temporal operators to
their scope in time. For instance, expresses that, along all computation path
propertyp becomes true withinn time units.

4.1. Hybrid Automata

In what follows we shortly describe thehybrid automatamodel. The reader is referred to
[Alu95], [Alu96] for further reading on hybrid automata theory. Informally, a linear hyb
automaton is a finite automaton enhanced with a set of real-valued variables, where the
involved in conditions, assignments, and invariants are required to be linear.

A hybrid automaton consists of the following com
ponents:

• A finite setX of real-valuedvariables. A valuation is a function that assigns a real-valu
 to every variable .

• A finite set oflocationsor vertices V. A state consists of a location and a val
uation .

• A finite setE of edges. Each edge consists of a source location an
target location .

• A finite set ofsynchronization labels Land a labeling functionsyncthat assigns to each

AF<n p

H X V E L sync cond act inv, , , , , , ,()=

υ
υ x() x X∈

s v υ,()= v
υ

e v v',()= v V∈
v' V∈
7

linear
oper-
Figure
will

en
nts a
rval.

the

a

edge a synchronization label , noted as .
• A labeling functioncondthat assigns to each edge acondition

that must be satisfied in order to allow the automatonH to change its location from to .
• A labeling functionact that assigns to each edge a set ofactivities.
• A labeling functioninv that assigns to each location aninvariant which

allows the automatonH to stay at location as long as its invariant is satisfied.

4.2. Translating PRES+ into Hybrid Automata

In what follows we describe the systematic procedure to translate PRES+ models into
hybrid automata. The resulting representation consists of a collection of automata which
ate and coordinate with each other through shared variables and synchronization labels.
2 shows the result of translating the PRES+ model of Figure 1 into hybrid automata. We
use this example as reference to illustrate the proposed translation method.

Figure 2. Equivalent hybrid automata

Step 1. Define one variable inX for each place of the Petri net, corresponding to the tok
value when is marked, and one variable for each transition , which represe
clock used to ensure the firing of the transition within the earliest-latest trigger time inte
Thus 2.

For the example in Figure 2, using the short notationw to denote ,
.

Step 2. Define the setL of synchronization labels as the set (of names) of transitions in
Petri net, that is .

Step 3. For every transition define a hybrid automaton withz+1 locations
, wherez is the number of transitions that, when fired, will deposit

token in some place in the pre-set . The set of such transitions is defined by

2. In the linear hybrid automata model, variables may change along the time with a constant rate: for
every the change rate must be ; for every the change rate must be .

e E∈ l L∈ l sync e()=
e v v',() E∈= cond e()

v v'
e E∈

v V∈ inv v()
v inv v()

t 1

dis0

1<c <2.7
1

t 1
~

en

c:=a-2

t 3

t 4

t 1

on off

pc
~

t 2

dis0

2<c <3
2

t 2
~

en

d:=b/2

dis0

dis1,a

dis1,b

ent 3
t 3

t 1

t 2

c :=0
4

c :=04

t 2

t 1

3.
8<

c
<4

.1
 &

 c
<4

4

c :=04

c>4

t 4

t 4
~

f:=c+d

t 3

dis0

t 3
~

c =5 & c>3

3

t 1
c :=03

c :=03

c<3

t 4 en

e:=3c

px
vx px ci ti

X v1 v2 … v, m c1 c2 … cn, , , , , ,{ }=

ci X∈ ci
˙ 1= vx X∈ vx

˙ 0=

vw
X a b c d e f c1 c2 c3 c4, , , , , , , , ,{ }=

L t1 t2 … tn, , ,{ }=

t T∈ t̃
dis0 dis1 … disz 1– en, , , ,

°t
pre t() ° pi

pi °t∈
∪=
8

-
tion

the

e
to
,

dges
-

ions
flict,

.

ma-

om-

and
In the case , define an automaton with only two locations and .

Step 4a. Given the automaton , definez edges ,z edges , , andz
edges , and then assign to each group ofz edges synchronization labels corre
sponding to the transitions in . Define then one edge with synchroniza
label .

Step 4b. If the transition is in conflict with another transition (could be disabled by
firing of):
Let and . In the automaton remove all th
edges except . Split each one of the locations in

and . Then define the edges
, , , , , ,

with synchronization labels corresponding to those transitions in . Define e
, , , with synchronization labels correspond

ing to transitions in . Define then edges , , ,
with synchronization label .

For instance, were not in conflict with , the automaton would have the locat
and look like the one shown in Figure 3(a). However, because of such a con

Step 4b must be performed: location has been split into the locations and
Note that and . The edges
and with synchronization label are defined. Then the edges
and with synchronization label are defined. Finally, the edges
and with synchronization label are defined. After Step 4b, we get the auto
ton shown in Figure 3(b).

Figure 3. Illustration of Step 4

It is easy to observe that is in conflict with . No locations, however, are split in the aut
aton because it has just two locations (and). In this case only the edge
with synchronization label must be added.

Let be the transition function associated to , the pre-set of ,
 and the minimum and maximum transition delays associated to .

pre t() ∅= dis0 en

t̃ dis0 dis1,() dis1 dis2,() …
disz 1– en,()

pre t() en dis0,()
t

t tc t
tc

A pre t() pre tc()∩= B pre t() p– re tc()= t̃
en dis0,() dis1 … disz 1–, ,

dis1,a … disz 1,a–, , dis1,b … disz 1,b–, , dis1,a dis2,a,()
dis2,a dis3,a,() … disz 1,a– en,() dis0 dis1,b,() dis1,b dis2,b,() … (disz 2,b– ,

disz 1,b–) B
dis0 dis1,a,() dis1,b dis2,a,() … disz 1,b– en,()

A dis1,a dis0,() dis2,a dis1,b,() … en disz 1,b–,()
tc

t4 t3 t4
˜

dis0 dis1 en, ,
dis1 dis1,a dis1,b

pre t4() pre t3()∩ t1{ }= pre t4() p– re t3() t2{ }= dis1,a en,()
dis0 dis1,b,() t2 dis0 dis1,a,()
dis1,b en,() t1 dis1,a dis0,()
en dis1,b,() t3

t4
˜

dis0

dis1,a

dis1,b

ent 3
t 3

t 1

t 2

t 2

t 1

t 4

t4
~

dis0 en

t4
~

dis1

t 1 t 2

t 1t 2

t 4

(b)

(a)

t3 t4
t3
˜ dis0 en en dis0,()

t4

f i ti °ti q1 q2 … qa, , ,{ }= ti
di

-
di

+
ti
9

fine
test

is
ntics of

or

and
the
le

of
edge
ity

.

of
ition
bel

e ,

are

iza-
For

ould be
ussed

del of
given
t be
its

ecker
e

Step 5. Given the automaton , assign to every edge the activity . De
the invariant of location as in order to enforce the firing of before or at its la
trigger time.

In Figure 2, the edge of automaton , for example, has the activity .
used to take into account the time since becomes enabled and ensure the firing sema
PRES+. For the sake of clarity, location invariants are not shown in Figure 2.

Step 6. Given and its edge , assign to the condition . F
every assign to such an edge the activity .

For example, in the case of the automaton the condition gives the lower
upper limits for the firing of , while the activity expresses that whenever
automaton changes from to , i.e. fires, the value is assigned to the variabc.

Step 7. If is a transition with guard , assign the condition to the edge
the automaton (so such an edge condition becomes). Then add an

with no synchronization label, condition (the complement of), and activ
.

Note the condition in the automaton where is the guard of
Observe also the edge with condition and activity .

Step 8. For every place define a hybrid automaton with two locations,on andoff,
corresponding to the marking . The initial location of will be eitheron or off depend-
ing whether the place is initially marked or not. For every transition in the post-set
the place , define an edge with synchronization label . For every trans

in the pre-set of the place , define an edge with synchronization la
.

Note: When, given an automaton , a transition is both input and output of the plac
define an edge and assign to it a synchronization label .

In Figure 2 we only show the automaton . The other automata , , , , and
similar.

The procedure that we have described above is general enough to translateanyPRES+ model
in which transition functions are linear and token types of all places are real. Some optim
tions may be performed to reduce the complexity of the resulting hybrid automata.
instance, in most cases, the automata corresponding to places are redundant and c
removed. Such optimizations are beyond the scope of this report and therefore not disc
here.

Once we have the equivalent hybrid automata, we can verify properties against the mo
the system. For instance, in the simple system of Figure 1 we could check whether, for
values ofa andb, there exists a reachable state in which is marked. This property migh
expressed as a CTL formula . An interesting feature of the HyTech tool [HyT] is
ability to perform parametric analysis. Then, for example, we can ask the model-ch
which values ofa andb make a certain property true. We get that holds if . If w

ti
˜ disj en,() ci := 0

en ci di
+≤ ti

dis0 en,() t3
˜ c3 := 0 c3

t3

ti
˜ ei en dis0,()= ei di

-
c≤ i di

+≤
pj ti°∈ ei vj := f i v1 v2 … va, , ,()

t1
˜ 1 c≤ 1 2.7≤

t1 c := a 2–
en dis0 t1 a 2–

ti Gi Gi en dis0,()
ti
˜ di

-
c≤ i di

+
& Gi≤

en en,() Gi Gi
ci := 0

3.8 c≤ 4 4.1 & c 4<≤ t4
˜ c 4< t4

en en,() c 4≥ c4 := 0

p P∈ p̃
M p() p̃

p t j p°
p ej on off,()= t j

ti °p p ej off on,()=
ti

p̃ ti p
ei on on,()= ti

pc
˜ pa

˜ pb
˜ pd

˜ pe
˜ pf

˜

pe
EF pe

EF pe a 5≥
10

could
time

ition
eason
lyses.
nor

can be
ns,
RES+
This is
func-
enden-

. The
or a
lows.
lls

e

nnel
ifier,
ell or

a
tput

tions
ntu-
the
Then
amp
nd
ary
yTech
a
o be
7
t ful-
want to check temporal properties we can express them as TCTL formulas. Thus, we
check whether will be possibly marked and the time stamp of its token is less than 8.4
units, expressing this property as .

The translation procedure introduced above is valid for PRES+ models in which trans
functions are linear and token types of all places are real. In this case, we could even r
about token values. Recall, however, that we want to focus on reachability and time ana
From this perspective we can ignore transition functions if they affect neither the marking
time stamps. This is the case of PRES+ models that bear no guards and, therefore, they
straightforwardly verified even if their transition functions are very complex operatio
because we simply ignore such functions. Those systems that include guards in their P
model may also be studied if guard dependencies can be stated by linear expressions.
the case of the system shown in Figure 1. There are many systems in which the transition
tions are not linear, but their guard dependencies are, and then we can inscribe such dep
cies as linear expressions and use our method for system verification.

5. Verification of an ATM Server

In this section we illustrate the verification of a practical system, modeled using PRES+
net in Figure 4 represents an ATM-based Virtual Private Network (A-VPN) server [Fil98] f
particular implementation. The behavior of the system can be briefly described as fol
Incoming cells are examined byCheckto determine whether they are faulty. Fault-free ce
arrive through theUTOPIA_Rxinterface and are eventually stored in theShared Buffer. If the
incoming cell is faulty, it goes through the moduleFaulty and then is sent out using th
UTOPIA_Txinterface without processing. The moduleAddress Lookupchecks theLookup
Memoryand, for each non-defective input cell, a compressed form of the Virtual Cha
(VC) identifier in the cell header is computed. With this compressed form of the VC ident
the moduleTrafficchecks its internal tables and decides whether to accept the incoming c
discard it in order to avoid congestion. If the cell is accepted,Traffic gives instructions to
Queue Managerindicating where to store the incoming cell in the buffer.Trafficalso indicates
to Queue Managerthe cell (stored inShared Buffer) to be output.Supervisoris the module in
charge of updating internal tables ofTraffic and theLookup Memory. The selected outgoing
cell is emitted through the moduleUTOPIA_Tx. The specification of the system includes
time constraint given by the rate (155 Mbit/s) of the application: one input cell and one ou
cell must be processed every 2.7µs.

To verify the correctness of the A-VPN server, we must prove that for all possible condi
the system will eventually complete its functionality, and that such a functionality will eve
ally fit within a cell time-slot. The completion of the task of the A-VPN server, modeled by
net in Figure 4, is represented by the state (marking) in which the place is marked.
we must prove that for all computation paths, will eventually get a token and its time st
will be less than 2.7µs. These conditions might be straightforwardly specified using CTL a
TCTL formulas, namely and . Notice that the first formula is a necess
condition for the second one. Using the translation procedure described above and the H
tool [HyT], we found out that the CTL formula holds while the TCTL formul

does not. Moreover, we have checked the formula that turned out t
true, which means that it is possible to get a token in with a time stamp less than 2.µs.
However, recall that does not hold and therefore this implementation does no

pf
EF<8.4 pf

p1
p1

AF p1 AF<2.7 p1

AF p1
AF<2.7 p1 EF<2.7 p1

p1
AF<2.7 p1
11

satis-

wed
nd
tric
nd,
ase

for-
the

y suit-
useful
etric
e time
ideline
fill the system specification because it is not guaranteed that the time constraint will be
fied.

Figure 4. PRES+ model of an A-VPN server

We must consider an alternative solution. To do so, suppose we want to modifyTraffic, keep-
ing its functional behavior but seeking superior performance: we want to explore the allo
interval of delays forTraffic in order to fulfill the constraints. We can define the minimum a
maximum transition delays ofTraffic as parameters and , and then perform parame
analysis to find out the values for which is satisfied. We get that if a
by definition, then the property holds. This indicates that the worst c
execution time of the function associated toTraffic must be less than 0.57µs to fulfill the sys-
tem specification.

Running the HyTech tool on a Sun Ultra 10 workstation, both the verification of the TCTL
mula for the model given in Figure 4, and the parametric analysis described in
paragraph above take roughly 1 second.

The example of the ATM server described above has shown that our approach is not onl
able to verify the correctness of embedded systems but also that this technique can be a
tool during design space exploration. Information, like the one obtained through param
analysis, can guide the designer when exploring design alternatives. Thus, at the sam
that we check the correctness of designs, we get valuable information that serves as gu
along the design process.

Shared Buffer

Queue ManagerUTOPIA_Rx

Address Lookup

Lookup Memory

Traffic

Supervisor

p
2

p
5

p
6

p
8

p
9 p

11

p
12

p
10

p
7

p
4Fa

ul
ty

C
he

ck
p

3

p
1

U
T

O
PI

A
_T

x

p
13

VC Setup

[0.1,0.25]

[0.3,0.5]

[fault]

[0.15,0.2]

[0.53,0.86]

[0.1,0.22][0.45,0.58]

[0.14,0.25]

[f
au

lt
]

[0
.1

,0
.2

5]

ATM Cell (In)

ATM Cell (Out)

[0
.1

,0
.3

]
0.

05

d
-

d
+

AF<2.7 p1 d
+

0.57<
d

-
d

+≤ AF<2.7 p1

AF<2.7 p1
12

ed sys-
mpu-
s.

ted by
espect
veri-

slate
sim-

tion

ss of

is,

” in

n of

Sys-

ms,” in

tems:

gio-
dy,” in

l

s,” in
6. Conclusions

We have formally defined PRES+, a Petri net based model aimed to represent embedd
tems. The model is simple, intuitive, and can be easily handled by the designer. It is a co
tational model with extensions to capture important characteristics of embedded system

We presented a practical approach to verification of embedded systems represen
PRES+. We use symbolic model checking to prove the correctness of such systems in r
to reachability and time, specifying design properties as CTL and TCTL formulas. Thus
fication with timing properties is possible.
In order to use existing verification tools, we introduced a systematic procedure to tran
PRES+ models into linear hybrid automata. This method can be automated in a relatively
ple manner. An ATM server has been studied to illustrate the applicability of our verifica
approach to practical systems.

The approach presented in this work is not only appropriate to verify the correctne
embedded systems, but may also be a useful tool for design space exploration.

References

[Alu90] R. Alur, C. Courcoubetis and D. L. Dill, “Model Checking for Real-Time Systems,” inProc. Symposium
on Logic in Computer Science, 1990, pp. 414-425.
[Alu95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifak
and S. Yovine, “The Algorithmic Analysis of Hybrid Systems,” inTheoretical Computer Science, vol. 138, pp. 3-
34, February 1995.
[Alu96] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic Symbolic Verification of Embedded Systems,
IEEE Trans. Software Engineering, vol. 22, pp. 181-201, March 1996.
[Bal96] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli, “Formal Verificatio
Embedded Systems based on CFSM Networks,” inProc. DAC, 1996, pp. 568-571.
[Ben92] L. P. M. Benders and M. P. J. Stevens, “Petri Net Modelling in Embedded System Design,” inProc.
European Computer Conference, 1992, pp. 612-617.
[Cla86] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-State Concurrent
tems Using Temporal Logic Specifications,” inACM Trans. on Programming Languages and Systems, vol. 8, pp.
244-263, April 1986.
[Cor99] L. A. Cortés, P. Eles, and Z. Peng, “A Petri Net based Model for Heterogeneous Embedded Syste
Proc. NORCHIP Conference, 1999, pp. 248-255.
[Edw97] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, “Design of Embedded Sys
Formal Models, Validation, and Synthesis,” inProc. IEEE, vol. 85, pp. 366-390, March 1997.
[Ess98] R. Esser, J. Teich, and L. Thiele, “CodeSign: An embedded system design environment,” inIEE Proc.
Computers and Digital Techniques, vol. 145, pp. 171-180, May 1998.
[Fil98] E. Filippi, L. Lavagno, L. Licciardi, A. Montanaro, M. Paolini, R. Passerone, M. Sgroi, and A. San
vanni-Vincentelli, “Intellectual Property Re-use in Embedded System Co-design: an Industrial Case Stu
Proc. ISSS, 1998, pp. 37-42.
[Gan94] J. D. Gannon, J. M. Purtilo, and M. V. Zelkowitz,Software Specification: A Comparison of Forma
Methods. Norwood, NJ: Ablex Publishing, 1994.
[Gar98] E. H. A. Garcez and W. Rosenstiel, “CVF - Coverification Framework,” inProc. Brazilian Symposium
on Integrated Circuit Design, 1998, pp. 103-106.
[Hsi99] P.-A. Hsiung, “Hardware-Software Coverification of Concurrent Embedded Real-Time System
Proc. Euromicro RTS, 1999, pp. 216-223.
[HyT] HyTech: The HYbrid TECHnology Tool,http://www-cad.eecs.berkeley.edu/~tah/HyTech/

[Ker99] C. Kern and M. R. Greenstreet, “Formal Verification in Hardware Design: A Survey,” inACM Trans. on
Design Automation of Electronic Systems, vol. 4, pp. 123-193, April 1999.
13

Sys-

,” in

n,” in

ech-

pt.
[Lav98] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich, “Models of Computation for Embedded
tem Design,” inNATO ASI Proc. on System Synthesis, 1998, pp. 1-57.
[Mac99] P. Maciel, E. Barros, and W. Rosenstiel, “A Petri Net Model for Hardware/Software Codesign
Design Automation for Embedded Systems, vol. 4, pp. 243-310, Oct. 1999.
[Pas94] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia, “Petri Net Analysis Using Boolean Manipulatio
Application and Theory of Petri Nets 1994, R. Valette, Ed.LNCS 815, Berlin: Springer-Verlag, 1994, pp. 416-
435.
[Sto94] E. Stoy and Z. Peng, “An Integrated Modelling Technique for Hardware/Software Systems,” inProc.
ISCAS, 1994, pp. 399-402.
[Str98] K. Strehl and L. Thiele, “Symbolic Model Checking of Process Networks Using Interval Diagrams T
niques,” inProc. ICCAD, 1998, pp. 686-692.
[Wim97] G. Wimmel, “A BDD-based Model Checker for the PEP Tool,” Major Individual Project Report, De
of Computing Science, University of Newcastle, May 1997.
14

	Verification of Heterogeneous Electronic Systems using Model Checking
	Abstract
	1. Introduction
	2. Related Work
	3. PRES+
	4. Verification of Heterogeneous Electronic Systems
	4.1. Hybrid Automata
	4.2. Translating PRES+ into Hybrid Automata

	5. Verification of an ATM Server
	6. Conclusions
	References

