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Abstract

We present an approach to static priority preemptive
process scheduling for the synthesis of hard real-time
distributed embedded systems where communication plays
an important role. The communication model is based on a
time-triggered protocol. We have developed an analysis for
the communication delays proposing four different message
scheduling policies over a time-triggered communication
channel. Optimization strategies for the synthesis of
communication are developed, and the four approaches to
message scheduling are compared using extensive
experiments.

1. Introduction
Depending on the particular application, an embedded

system has certain requirements on performance, cost, de-
pendability, size, etc. For hard real-time applications the
timing requirements are extremely important.Thus, in order
to function correctly, an embedded system implementing such
an application has to meet its deadlines. One of the typical ap-
plication areas for such systems is that of safety-critical auto-
motive applications (e.g. drive-by-wire, brake-by-wire) [17].

In this paper we concentrate on certain aspects concern-
ing the synthesis of embedded hard real-time systems which
are implemented on distributed architectures consisting of
multiple programmable processors and ASICs. Process
scheduling is based on a static priority preemptive approach
while the bus communication is statically scheduled.

Process scheduling for performance estimation and syn-
thesis of embedded systems has been intensively researched
in the last years. The existing approaches differ in the sched-
uling strategy adopted, system architectures considered, han-
dling of the communication, and process interaction aspects.

Static non-preemptive scheduling of a set of processes on
a multiprocessor system has been discussed in [2, 4, 5, 10].
Preemptive scheduling of independent processes with static
priorities running on single processor architectures has its
roots in [7]. The approach has been later extended to accom-
modate more general computational models and has been
also applied to distributed systems [15]. The reader is re-
ferred to [1] for a survey on this topic.

Although different scheduling strategies have been
adapted to accommodate distributed architectures, research-
ers have often ignored or very much simplified aspects con-
cerning the communication infrastructure. One typical
approach is to consider communication processes as pro-
cesses with a given execution time (depending on the
amount of information exchanged) and to schedule them as

any other process, without considering issues like commu-
nication protocol, bus arbitration, packaging of messages,
clock synchronization, etc.

Currently, more and more real-time systems are used in
physically distributed environments and have to be implement-
ed on distributed architectures in order to meet reliability,
functional, and performance constraints.Thus, in order to
guarantee that real-time characteristics are fulfilled analysis has
been done for different communication protocols. The CAN
bus is analyzed in [13], a 802.5-style token ring and a simple
TDMA protocol are analyzed in [14], in [16] P-NET networks
are investigated, while in [3] the ATM protocol is considered.

In this paper we consider the time-triggered protocol
(TTP) [6] as the communication infrastructure for a distrib-
uted real-time system. Processes are scheduled according to
a static priority preemptive policy. We first perform the
schedulability analysis considering four different ap-
proaches to message scheduling. After this, we go one step
further by showing how the parameters of the communica-
tion protocol can be optimized in order to fit the communi-
cation particularities of a certain application.

TTP has been classically associated with non-preemptive
static scheduling of processes, mainly because of fault tol-
erance reasons [5]. In [10] we have addressed the issue of
non-preemptive static process scheduling and communica-
tion synthesis using TTP.

However, considering preemptive priority based sched-
uling at the process level, with time triggered static sched-
uling at the communication level can be the right solution
under certain circumstances [8]. A communication protocol
like TTP provides a global time base, improves fault-toler-
ance and predictability. At the same time, certain particular-
ities of the application or of the underlying real-time
operating system can impose a priority based scheduling
policy at the process level.

The paper is divided into 7 sections. The next section
presents the architectures considered for system implemen-
tation. The computational model assumed and formulation of
the problem are presented in section 3, and section 4 presents
the schedulability analysis for each of the four approaches
considered for message scheduling. The optimization strate-
gy is presented in section 5, and the four approaches are eval-
uated in section 6. The last section presents our conclusions.

2. System Architecture

2.1 Hardware Architecture
We consider architectures consisting of nodes connected



by a broadcast communication channel (Figure 1). Every
node consists of a TTP controller, a CPU, a RAM, a ROM
and an I/O interface to sensors and actuators. A node can also
have an ASIC in order to accelerate parts of its functionality.

Communication between nodes is based on the TTP [6].
TTP was designed for distributed real-time applications that
require predictability and reliability (e.g, drive-by-wire). It in-
tegrates services necessary for fault-tolerant real-time systems.

The communication channel is a broadcast channel, so a
message sent by a node is received by all the other nodes. The
bus access scheme is time-division multiple-access (TDMA)
(Figure 2). Each node Ni can transmit only during a predeter-
mined time interval, the so called TDMA slot Si. In such a slot,
a node can send several messages packaged in a frame. A se-
quence of slots corresponding to all the nodes in the architec-
ture is called a TDMA round. A node can have only one slot
in a TDMA round. Several TDMA rounds can be combined
together in a cycle that is repeated periodically. The sequence
and length of the slots are the same for all the TDMA rounds.
However, the length and contents of the frames may differ.

Every node has a TTP controller that implements the
protocol services, and runs independently of the node’s
CPU. Communication with the CPU is performed through a
so called message base interface (MBI) which is usually im-
plemented as a dual ported RAM (see Figure 3).

The TDMA access scheme is imposed by a so called mes-
sage descriptor list (MEDL) that is located in every TTP con-
troller. The MEDL basically contains: the time when a frame
has to be sent or received, the address of the frame in the
MBI and the length of the frame. MEDL serves as a schedule
table for the TTP controller which has to know when to send
or receive a frame to or from the communication channel.

The TTP controller provides each CPU with a timer in-
terrupt based on a local clock, synchronized with the local
clocks of the other nodes. Theclock synchronization is done
by comparing the a priori known time of arrival of a frame
with the observed arrival time. By applying a clock synchro-
nization algorithm, TTP provides a global time-base of known
precision, without any overhead on the communication.

2.2 Software Architecture
We have designed a software architecture which runs on

the CPU in each node, and which has a real-time kernel as
its main component. We consider a time-triggered system,
which means that there are no other interrupts except for the
timer interrupt. Each kernel has a so called tick scheduler
that is activated periodically by the timer interrupts and de-
cides on activation of processes, based on their priorities.
Several activities, like polling of the I/O or diagnostics, take
also place in the timer interrupt routine.

In order to run a predictable hard real-time application
the overhead of the kernel and the worst case administrative
overhead (WCAO) of every system call has to be deter-
mined. Our schedulability analysis takes into account these
overheads, and also the overheads due to the message passing.

The message passing mechanism is illustrated in Figure 3,
where we have three processes, P1 to P3. P1 and P2 are
mapped to node N0that transmits in slot S0, and P3 is mapped
to node N1 that transmits in slot S1. Message m1 is transmit-
ted between P1 and P2 that are on the same node, while mes-
sage m2 is transmitted from P1 to P3 between the two nodes.

Messages between processes located on the same proces-
sor are passed through shared protected objects. The over-
head for their communication is accounted for by the
blocking factor, computed according to the priority ceiling
protocol [9].

Message m2 has to be sent from node N0 to node N1.
Thus, after m2 is produced by P1, it will be placed into an
outgoing message queue, calledOut. The access to the
queue is guarded by a priority-ceiling semaphore. A so
called transfer process (denoted with T in Figure 3) moves
the message from theOut queue into the MBI.

How the message queue is organized and how the mes-
sage transfer process selects the particular messages and as-
sembles them into a frame, depends on the particular
approach chosen for message scheduling (see Section 4).
The message transfer process is activated at certain a priori
known moments, by the tick scheduler in order to perform
the message transfer. These activation times are stored in a
message handling time table (MHTT) available to the real-
time kernel in each node. Both the MEDL and the MHTT
are generated off-line as result of the schedulability analysis
and optimization which will be discussed later. The MEDL
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imposes the times when the TTP controller of a certain node
has to move frames from the MBI to the communication
channel. The MHTT contains the times when messages have
to be transferred by the message transfer process from theOut
queue into the MBI, in order to further be broadcasted by the
TTP controller. As result of this synchronization, the activa-
tion times in the MHTT are directly related to those in the
MEDL and the first table results directly form the second one.

It is easy to observe that we have the most favorable situ-
ation when, at a certain activation, the message transfer pro-
cess finds in theOutqueue all the “expected” messages which
then can be packed into the just following frame to be sent by
the TTP controller. However, application processes are not
statically scheduled and availability of messages in theOut
queue can not be guaranteed at fixed times. Worst case situa-
tions have to be considered as will be shown in Section 4.

Let us come back to Figure 3. There we assumed a con-
text in which the broadcasting of the frame containing mes-
sage m2 is done in the slot S0 of Round 2. The TTP
controller of node N1 knows from its MEDL that it has to
read a frame from slot S0 of Round 2 and to transfer it into
its MBI. In order to synchronize with the TTP controller and
to read the frame from the MBI, the tick scheduler on node
N1 will activate, based its local MHTT, a so called delivery
process, denoted with D in Figure 3. Thedelivery process
takes the frame from the MBI, and extracts the messages from
it. For the case when a message is split into several packets,
sent over several TDMA rounds, we consider that a message
has arrived at the destination node after all its corresponding
packets have arrived. When m2 has arrived, the delivery pro-
cess copies it to process P3 which will be activated. Activation
times for the delivery process are fixed in the MHTT just as
explained earlier for the message transfer process.

The number of activations of the message transfer and de-
livery processes depend on the number of frames transferred,
and they are taken into account in our analysis, as well as the
delay implied by the propagation on the communication bus.

3. Problem Formulation
We model an application as a set of processes. Each process
pi is allocated to a certain processor, has a known worst-case
execution time Ci, a period Ti, a deadline Di and a uniquely
assigned priority. For aperiodic processes, Ti represents the
minimum time between successive arrivals. Weconsider a
preemptive execution environment, which means that high-
er priority processes can interrupt the execution of lower
priority processes. A lower priority process can block a
higher priority process (e.g., it is in its critical section), and
the blocking time is computed according to the priority ceil-
ing protocol. Processes exchange messages, and for each
message mi we know its size Smi. A message is sent once in
every nm invocations of the sending process, and has a
unique destination process. Each process is allocated to a

node of our distributed architecture, and the messages are
transmitted according to the TTP.

We are interested to synthesize the MEDL of the TTP
controllers (and as a direct consequence, also the MHTTs)
so that the process set is schedulable on an as cheap (slow)
as possible processor set.

4. Schedulability Analysis
Under the assumptions presented in the previous section

Tindell et al. [15] integrate processor and communication
schedulability and provide a “holistic” schedulability anal-
ysis in the context of distributed real-time systems with
communication based on a simple TDMA protocol. The ba-
sic idea is that the release jitter of a destination process depends
on the communication delay between sending and receiving a
message. The release jitter of a process is the worst case delay
between the arrival of the process and its release (when it is
placed in the run-queue for the processor). The communica-
tion delay is the worst case time spent between sending a mes-
sage and the message arriving at the destination process.

Thus, for a process d(m) that receives a message m from
a sender process s(m), the release jitter is:

, where rs(m) is the re-
sponse time of the process sending the message, am (worst
case arrival time) is the worst case time needed for message
m to arrive at the communication controller of the destina-
tion node, rdeliveris the response time of the delivery process
(see section 2.2), and Ttick is the jitter due to the operation
of the tick scheduler. The communication delay for a mes-
sage m is . am itself is the sum of the ac-
cess delay and the propagation delay. The access delay is the
time a message queued at the sending processor spends
waiting for the use of the communication channel. In am we
also account for the execution time of the message transfer
process (see section 2.2). The propagation delay is the time
taken for the message to reach the destination processor
once physically sent by the corresponding TTP controller.

The worst case time, message m takes to arrive at the com-
munication controller of the destination node is determined in
[15] using the arbitrary deadline analysis, and is given by:

, where the

term is the access delay, is the
propagation delay, and Tm is the period of the message.

In [15] an analysis is given for the end-to-end delay of a
message m in the case of a simple TDMA protocol. For

this case, , where

Pm is the number of packets of message m, SP is the size of
the slot (in number of packets) corresponding to m, and Im
is the interference caused by packets belonging to messages
of a higher priority than m. Although there are many
similarities with the general TDMA protocol, the analysis in
the case of TTP is different in several aspects and also
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differs to a large degree depending on the policy chosen for
message scheduling.

Before going into details for each of the message sched-
uling approaches, we analyze the propagation delay and the
message transfer and delivery processes, as they do not de-
pend on the particular message scheduling policy chosen.
The propagation delay Xm of a message m sent as part of a
slot S, with the TTP protocol, is equal to the time needed for
the slot S to be transferred on the buss. This time depends
on the slot size and on the features of the underlying buss.

The overhead produced by the communication activities
must be accounted for not only as part of the access delay for
a message, but also through its influence on the response time
of processes running on the same processor. We consider this
influence during the schedulability analysis of processes on
each processor. We assume that the worst case computation
time of the transfer process (T in Figure 3) is known, and that
it is different for each of the four message scheduling ap-
proaches. Based on the respective MHTT, the transfer pro-
cess is activated for each frame sent. Its worst case period is
derived form the minimum time between successive frames.

The response time of the delivery process (D in Figure
3), rdeliver, is part of the communication delay. The influence
due to the delivery process must be also included when an-
alyzing the response time of the processes running on the re-
spective processor. We consider the delivery process during
the schedulability analysis in the same way as the message
transfer process.

The response times of the communication and delivery
processes are calculated, as for all other processes, using the
arbitrary deadline analysis from [15].

The four approaches we have considered for scheduling of
messages using TTP differ in the way the messages are allo-
cated to the communication channel (either statically or dy-
namically) and whether they are split or not into packets for
transmission. The next subsections present an analysis for
these approaches as well as the degrees of liberty a designer
has, in each of the cases, when synthesizing the MEDL.

4.1 Static Single Message Allocation (SM)
The first approach to scheduling of messages using TTP is
to statically (off-line) schedule each of the messages into a
slot of the TDMA cycle, corresponding to the node sending
the message. We also consider that the slots can hold each
at maximum one single message. This approach is well
suited for application areas (like automotive electronics)
where the messages are typically short and the ability to
easily diagnose the system is critical.

As each slot carries only one fixed, predetermined

message, there is no interference among messages. If a
message m misses its slot it has to wait for the following slot
assigned to m. The access delay for a message m in this
approach is the maximum time between consecutive slots of
the same node carrying the message m. We denote this time
by Tmmax, illustrated in Figure 4.

In this case, the worst case arrival time am of a message
m becomes Tmmax+ Xm. Therefore, the main aspect influ-
encing the schedulability analysis for the messages is the
way the messages are statically allocated to slots, resulting
different values for Tmmax. Tmmax, as well as Xm, depend
on the slot sizes which in the case of SM are determined by
the size of the largest message sent from the corresponding
node, plus the bits for control and CRC, as imposed by the
protocol.

During the synthesis of the MEDL, the designer has to al-
locate the messages to slots in such a way that the process set
is schedulable. Since the schedulability of the process set can
be influenced by the synthesis of the MEDL only through the
Tmmax parameters, these parameters have to be optimized.

Let us consider the simple example depicted in Figure 5,
where we have three processes, p1, p2, and p3 running each
on different processors. When process p1 finishes executing
it sends message m1 to process p3 and message m2 to pro-
cess p2. In the TDMA configuration presented in Figure 5 a),
only the slot for the CPU running p1 is important for our dis-
cussion and the other slots are represented with light gray.
With this configuration, where the message m1 is allocated
to the rounds 1 and 4 and the message m2 is allocated to
rounds 2 and 3, process p2 misses its deadline because of the
release jitter due to the message m2 in round 2. However, if
we have the TDMA configuration depicted in Figure 5 b),
where m1 is allocated to the rounds 2 and 4 and m2 is allocat-
ed to the rounds 1 and 3, then all the processes meet their
deadlines.

4.2 Static Multiple Message Allocation (MM)
This second approach is an extension of the first one. In this
approach we allow more than one message to be statically
assigned to a slot, and all the messages transmitted in the
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same slot are packaged together in a frame. In this case there
is also no interference, so the access delay for a message m
is the same as for the first approach, namely, the maximum
time between consecutive slots of the same node carrying
the message m, Tmmax.

However, this approach offers more freedom during the
synthesis of the MEDL. We have now to decide also on how
many and which messages should be put in a slot. This al-
lows more flexibility in optimizing the Tmmaxparameter. To
illustrate this, let us consider the same example depicted in
Figure 5. With the MM approach, the TDMA configuration
can be arranged as depicted in Figure 5 c), where the mes-
sages m1 and m2 are put together in the same slot in the
rounds 1 and 2. Thus, the deadline is met, and the release jit-
ter is further reduced compared to the case presented in Fi-
gure 5 b) where the deadlines were also met but the process
p3 was experiencing large release jitter.

4.3 Dynamic Message Allocation (DM)
The previous two approaches have statically allocated one
or more messages to their corresponding slots. This third
approach considers that the messages are dynamically
allocated to frames, as they are produced.

Thus, when a message is produced by a sender process it
is placed in theOutqueue ordered according to the priorities
of the messages. At its activation, the message transfer pro-
cess takes a certain number of messages from the head of
the Out queue and constructs the frame. The number of
messages accepted is decided so that their total size does not
exceed the length of the data field of the frame. This length is
limited by the size of the slot corresponding to the respec-
tive processor. Since the messages are sent dynamically, we
have to identify them in a certain way so that they are rec-
ognized when the frame arrives at the delivery process. We
consider that each message has several identifier bits ap-
pended at the beginning of the message.

Since we dynamically package the messages into frames
in the order they are sorted in the queue, the access delay to
the communication channel for a message m depends on the
number of messages queued ahead of it.

The analysis in [15] bounds the number of queued ahead
packetsof messages of higher priority than message m, as
in their case it is considered that a message can be split into
packets before it is transmitted on the communication chan-
nel. We use the same analysis, but we have to apply it for the
number ofmessagesinstead that of packets. We have to con-
sider that messages can be of different sizes as opposed to
packets which always are of the same size.

Therefore, the totalsize of higher priority messages
queued ahead of a message m in a windoww is:

 where Sj is the size of the

message mj, rs(j) is the response time of the process send-
ing message mj, and Tj is the period of the message mj.

Further, we calculate the worst case time that a message m
spends in theOut queue. The number of TDMA rounds
needed, in the worst case, for a message m placed in the
queue to be removed from the queue for transmission is

 where Sm is the size of the message m and Ss is

the size of the slot transmitting m (we assume, in the case of
DM, that for any message x, ). This means that the
worst case time a message m spends in theOut queue

is given by , where TTDMA is the time

taken for a TDMA round.
To determine the term that gives the access

delay (see Section 4), is determined, using the arbi-
trary deadline analysis, as being:

. Since the size of

the messages is given with the application, the parameter
that will be optimized during the synthesis of the MEDL is
the slot size. To illustrate how the slot size influences the
schedulability, let us consider the example in Figure 6 a),
where we have the same setting as for the example in Figure
5 a). The difference is that we consider message m1 having a
higher priority than message m2, and we schedule dynami-
cally the messages as they are produced. With the TDMA
configuration in Figure 6 a) message m1 will be dynamically
scheduled first in the slot of the first round, while message
m2 will wait in the Out queue until the next round comes,
thus causing the process p2 to miss its deadline. However, if
we enlarge the slot so that it can accommodate both messag-
es, message m2 does not have to wait in the queue and it is
transmitted in the same slot as m1. Therefore p2 will meet its
deadline, as presented in Figure 6 b). However, in general,
increasing the length of slots does not necessarily improve
the schedulability, as it delays the communication of messag-
es generated by other nodes.
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4.4 Dynamic Packets Allocation (DP)
This approach is an extension of the previous one, as we
allow the messages to be split into packets before they are
transmitted on the communication channel. We consider
that each slot has a size that accommodates a frame with the
data field being a multiple of the packet size. This approach
is well suited for the application areas that typically have
large message sizes, and by splitting them into packets we
can obtain a higher utilization of the buss and reduce the
release jitter. However, since each packet has to be identi-
fied as belonging to a message, and messages have to be
split at the sender and reconstructed at the destination, the
overhead becomes higher than in the previous approaches.

For the analysis we use the formula from [15] which is
based on similar assumptions as those for this approach:

, where Pm is the

number of packets of message m, SPis the size of the slot
(in number of packets) corresponding to m, and

, where Pj is the number

of packets of a message mj.
In the previous approach (DM) the optimization param-

eter for the synthesis of the MEDL was the size of the slots.
Within this approach we can also decide on the packet size,
which becomes another optimization parameter. Consider
the example in Figure 6 c) where messages m1 and m2 have
a size of 6 bytes each. The packet size is considered to be 4
bytes and the slot corresponding to the messages has a size
of 12 bytes (3 packets) in the TDMA configuration. Since
message m1 has a higher priority than m2, it will be dynam-
ically scheduled first in the slot of the first round, and it will
need 2 packets. In the remaining packet, the first 4 bytes of
m2 are scheduled. Thus, the rest of 2 bytes from message m2
have to wait for the next round, causing the process p2 to
miss its deadline. However, if we change the packet size to
3 bytes, and keep the same size of 12 bytes for the slot, we
now have 4 packets in the slot corresponding to the CPU
running p1 (Figure 6 d). Message m1 will be dynamically
scheduled first, and will take 2 packets from the slot of the
first round. This will allow us to send m2 in the same round,
therefore meeting the deadline for p2.

In this particular example, with one single sender proces-
sor and the particular message and slot sizes as given, the
problem seems to be simple. This is, however, not the case
in general. For example, the packet size which fits a partic-
ular node can be unsuitable in the context of the messages
and slot size corresponding to another node. At the same
time, reducing the packets size increases the overheads due
to the transfer and delivery processes.

5. Optimization Strategy
Our problem is to analyze the schedulability of a given

process set and to synthesize the MEDL of the TTP control-
lers in a close to optimal way. The MEDL is synthesized ac-
cording to the optimization parameters available for each of
the four approaches to message scheduling discussed be-
fore. In order to guide the optimization process, we need a
cost function that captures the “degree of schedulability” for
a certain MEDL implementation. Our cost function is a
modified version of that in [12]:

where n is the number of processes in the application, Ri
is the response time of a process pi, and Di is the deadline of
a process pi. If the process set is not schedulable, there exists
at least one Ri that is greater than the deadline Di, therefore
the term f1 of the function will be positive. In this case the
cost function is equal to f1. However, if the process set is
schedulable, then all Ri are smaller than the corresponding
deadlines Di. In this case f1 = 0 and we use f2 as the cost
function, as it is able to differentiate between two alterna-
tives, both leading to a schedulable process set. For a given
set of optimization parameters leading to a schedulable pro-
cess set, a smaller f2 means that we have improved the re-
sponse times of the processes, so the application can be
potentially implemented on a cheaper hardware architecture
(with slower processors and/or buss). The release time Ri is
calculated according to the arbitrary deadline analysis [15]
based on the release jitter of the process (see section 4), its
worst-case execution time, the blocking time, and the inter-
ference time due to higher priority processes.For a given ap-
plication, we are interested to synthesize a MEDL such that
the cost function is minimized. We are also interested to
evaluate in different contexts the four approaches to mes-
sage scheduling, thus offering the designer a decision sup-
port in choosing the right approach for his problem.

The synthesis of the MEDL is performed off-line, before
implementing the application. This means that it is worth to
explore the design alternatives and to try to derive near-op-
timal solutions. Further more, the comparison of the four
approaches detailed in Section 4 is meaningful only if we
take the near-optimal value for each of them.

Thus, we have developed an optimization procedure
based on a simulated annealing (SA) strategy. The main
characteristic of an SA strategy is that it tries to find the glo-
bal optimum by randomly selecting a new solution from the
neighbors of the current solution. The new solution is ac-
cepted if it is an improved one. However, a worse solution
can also be accepted with a certain probability that depends
on the deterioration of the cost function and on a control pa-
rameter called temperature [11].

In Figure 7 we give a short description of this algorithm.
An essential component of the algorithm is the generation
of a new solution x’ starting from the current one xnow. The
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neighbors of the current solution xnow are obtained depend-
ing on the chosen approach. For SM, x’ is obtained from
xnow by inserting or removing a message in one of its corre-
sponding slots. In the case of MM, we have to take addition-
al care that the slots do not exceed the maximum allowed
size (depends on the controller implementation), as we can
allocate several messages to a slot. For these two static ap-
proaches, we also decide on the number of rounds in a cycle
(e.g., 2, 4, 8, 16; limited by the size of the memory imple-
menting the MEDL). The neighboring solution is obtained
in the case of DM by increasing or decreasing the slots size
within the bounds allowed by the particular TTP controller
implementation, while in the DP approach we also increase
or decrease the packet size.

For the implementation of this algorithm, the parameters
TI (initial temperature), TL (temperature length),α (cooling
ratio), and the stopping criterion have to be determined. They
define the so called cooling schedule and have a strong im-
pact on the quality of the solutions and the CPU time con-
sumed. We were interested to obtain values for TI, TL andα
that will guarantee the finding of good quality solutions in a
short time. In order to tune the parameters we have first per-
formed very long and expensive runs on selected large exam-
ples, and the best ever solution, for each example, has been
considered as the near-optimum. Based on further experi-
ments we have determined the parameters of the SA algo-
rithm, for different sizes of examples, so that the optimization
time is reduced as much as possible but the near-optimal re-
sult is still produced. These parameters have then been used
by the large scale experiments presented in the following sec-
tion. For example, for the graphs with 320 nodes, TI is 300,
TL is 500 andα is 0.95. The algorithm stops if for three con-
secutive temperatures no new solution has been accepted.

6. Experimental Results
For evaluation of our scheduling approaches we first

used sets of processes generated for experimental purpose.
We considered architectures consisting of 2, 4, 6, 8 and 10
nodes. 40 processes were assigned to each node, resulting in
sets of 80, 160, 240, 320 and 400 processes. 30 sets were
generated for each dimension, thus a total of 150 sets of pro-

cesses were used for experimental evaluation. Worst case
computation times, periods, deadlines, and message lengths
were assigned randomly within certain intervals. For the
communication channel we considered a transmission
speed of 256 kbps. The maximum length of the data field in
a slot was 32 bytes, and the frequency of the TTP controller
was chosen to be 20 MHz. All experiments were run on a
Sun Ultra 10 workstation.

For each of the 150 generated examples and each of the
four scheduling approaches we have obtained, using our op-
timization strategy, the near-optimal values for the cost
function. These values, for a given example, might differ
from one approach to another, as they depend on the optimi-
zation parameters and the schedulability analysis deter-
mined for each of the approaches. We were interested to
compare the four approaches to message scheduling based
on the values obtained for the cost function.

Thus, Figure 8 a) presents the averagepercentage devia-
tions of the cost function obtained by our optimization strat-
egies in each of the four approaches, from the minimal value
among them. The DP approach is generally the most perfor-
mant, and the reason for this is that dynamic scheduling of
messages is able to reduce release jitter because no space is
waisted in the slots if the packet size is properly selected.
However, by using the MM approach we can obtain almost
the same result if the messages are carefully allocated to
slots by our optimization strategy. Moreover, in the case of
bigger sets of processes (e.g., 400) MM outperforms DP, as
DP suffers form large overhead due to the handling of the
packets. DM performs worse than DP because it does not
split the messages into packets, and this results in a mis-
match between the size of the messages dynamically
queued and the slot size, leading to unused slot space that
increases the jitter. SMperforms the worst as its optimization
strategy has not much room for improvement, leading to large
amounts of unused slot space. Also, DP has produced a
MEDL that resulted in schedulable process sets for 1.33 times
more cases than the MM and DM. MM, in its turn, produced
two times more schedulable results than the SM approach.

Together with the four approaches to message schedul-
ing, a so called ad-hoc approach is presented. The ad-hoc
approach performs scheduling of messages without trying
to optimize the access to the communication channel. The
ad-hoc solutions are based on the MM approach and consid-
er a design with the TDMA configuration consisting of a
simple, straightforward, allocation of messages to slots. The
lengths of the slots were selected to accommodate the larg-
est message sent from the respective node. Figure 8 a)
shows that the ad-hoc alternative is constantly outperformed
by any of the optimized solutions. This shows that by opti-
mizing the access to the communication channel, significant
improvements can be produced.

We were also interested to compare the four approaches

Figure 7. The Optimization Strategy

simulated annealing
construct an initial TDMA round xnow

temperature = initial temperature TI
repeat

for  i = 1 to  temperature length TL
generate randomly a neighboring solution x’ of xnow

delta = cost function for x’ - cost function  for xnow

if  delta < 0 then  xnow = x’
else

generate q = random (0, 1)
if  q < e-delta / temperature then  xnow = x’ end if

end if
end for
temperature = α * temperature;

until  stopping criterion is met
return  solution corresponding to the best schedule



with respect to the number of messages exchanged between
different nodes and the maximum message size allowed.
For the results depicted in Figure 8 b) and c) we have as-
sumed sets of 80 processes allocated to 4 nodes. Figure 8 b)
shows that as the number of messages increases, the differ-
ences between the approaches grow while the ranking
among them remains the same. The same holds for the case
when we increase the maximum allowed message size, with
a notable exception. We can observe that for large message
sizes MM becomes better than DP, since DP suffers from
the overhead due to packet handling.

We have also considered a real-life example implement-
ing an aircraft control system adapted from [15] where the
ad-hoc solution and the SM approach failed to find a sched-
ulable solution. However, the other approaches found
schedulable solutions, DP having the smallest cost function
followed in this order by MM and DM.

The above comparison between the four message sched-
uling alternatives is mainly based on the issue of schedula-
bility. However, when choosing among the different
policies, several other parameters can be of importance.
Thus, a static allocation of messages can be beneficial from
the point of view of testing and debugging and has the ad-
vantage of simplicity. Similar considerations can lead to the
decision not to split messages. In any case, however, optimi-
zation of the communication structure is desirable.

7. Conclusions
We have presented an approach to static priority preemp-

tive process scheduling for synthesis of hard real-time dis-
tributed embedded systems. The communication model was
based on a time-triggered protocol. We have developed an
analysis for the communication delays and optimization
strategies for four different message scheduling policies.
The four approaches to message scheduling were compared
using extensive experiments.
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Figure 8: Comparison of the Four Approaches to Message Scheduling


