
 Verification of Real-Time Embedded Systems
using Petri Net Models and Timed Automata

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Dept. of Computer and Information Science
Linköping University, Linköping, Sweden

{luico,petel,zebpe}@ida.liu.se

Abstract

There is a lack of new verification methods that over-
come the limitations of traditional validation techniques
and are, at the same time, suitable for real-time embedded
systems. This paper presents an approach to formal verifi-
cation of real-time embedded systems modeled in a timed
Petri net representation. We translate the Petri net model
into timed automata and use model checking to prove
whether certain properties hold with respect to the system
model. We propose two strategies to improve the efficiency
of verification. First, we apply correctness-preserving
transformations to the system model in order to obtain a
simpler, yet semantically equivalent, one. Second, we ex-
ploit the structure of the system model by extracting its the
sequential behavior. Experimental results demonstrate sig-
nificant improvements in the efficiency of verification.

1. Introduction

Embedded systems are typically constituted by heteroge-
neous components including both hardware and software
elements. Besides their heterogeneity, embedded systems
are characterized by dedicated function, real-time behavior,
and high requirements on reliability and correctness [3].

For the levels of complexity typical to modern electronic
systems, traditional validation techniques, like simulation
and testing, are not sufficient to verify their correctness.
Formal methods are becoming a practical alternative to en-
sure the correctness of designs.

In this paper we propose a verification method suitable
for real-time embedded systems. Our approach allows the
formal verification of systems represented in PRES+ [5] by
using model checking. PRES+ is a Petri net based model ex-
tended to capture relevant characteristics of real-time em-
bedded systems. We translate PRES+ models into timed
automata in order to make use of available model checking
tools.

The approach proposed in [5] translates PRES+ models
into a collection of timed automata. One automaton with
one clock variable is obtained for each transition. The main

drawback of such an approach is that the complexity of
model checking of timed automata is exponential in the
number of clocks and thus verification is not feasible for
medium or large-size systems.

We address in this paper two strategies to alleviate the
complexity of verification. First, we present a transforma-
tional approach aimed at reducing the verification cost of
systems modeled in PRES+. It makes use of correctness-
preserving transformations in order to reduce the system
model, so that the resulting one is simpler (still semantically
equivalent to the original model) and therefore cheaper to
verify. Thus if the simplified model is correct, the initial one
is guaranteed to be correct.

Second, we propose a clustering algorithm that extracts
the sequential behavior of the Petri net and thus the number
of automata/clocks resulting after translating the PRES+
model can be reduced. In this manner we improve signifi-
cantly the procedure to translate PRES+ models into timed
automata presented in [5] and consequently the efficiency
of the verification process. We also show how the efficiency
of verification can be further improved by combining the
transformational and clustering approaches.

Several analysis techniques based on time-extensions of
Petri nets have been proposed [15], [13], [16], [10]. These
approaches, though implementing efficient verification al-
gorithms, are not totally suitable for real-time embedded
systems since their modeling formalisms do not capture im-
portant features of such systems, for instance data depen-
dencies as expressed by guards in PRES+.

The rest of this paper is organized as follows. A descrip-
tion of the design representation that we use to model real-
time embedded systems is presented in Section 2. Our ap-
proach to the verification of systems described in PRES+ is
introduced in Section 3, as well as the two strategies we pro-
pose in order to improve the efficiency of verification. Ex-
perimental results are presented in Section 4. Finally, some
conclusions are drawn in Section 5.

2. Model

The notation we have defined for modeling embedded
systems is PRES+ (Petri net based Representation for Em-
bedded Systems). PRES+ overcomes some of the draw-
backs of the classical Petri nets model: it captures explicitlyThis research has been sponsored by the Swedish Agency for Innova-

tion Systems (VINNOVA) in the frame of the SAVE project.

in Proc. RTCSA Conference, 2002, pp. 191-199.

timing information; it is more expressive as tokens might
carry information; systems may be represented at different
levels of granularity; both control and data information may
be captured by a unified design representation. PRES+ has
been also extended by introducing the concept of hierarchy
[7].

In this section we informally present the main character-
istics of PRES+. The reader is referred to [5] for a formal
definition of the model.

A PRES+ model is a five-tuple
where is a set of places, is a set of transitions, is a
set of input (place-transition) arcs, is a set of output
(transition-place) arcs, and is the initial marking of the
net. A marking is an assignment of tokens to the places of
the net.

A token is a pair where is the token value
(may be of any type) and is the token time (a non-negative
real number). Thus tokens carry data and time information
attached to them as stamps. The token type associated to a
place , denoted τ(p), is the type of value that a token may
bear in . For the initial marking in the model shown
in Figure 1, is the only marked place and its token

 has token value and token time .

Figure 1. A PRES+ model

Every transition has one transition function asso-
ciated to it. Such a function takes as arguments the token
values of tokens in the pre-set of the transition. The pre-set

of a transition is the set of input places of . The
post-set is the set of output places of . Correspondingly,
the pre-set and the post-set of a place are the
sets of transitions for which is output and input place re-
spectively. In Figure 1 we inscribe transition functions in-
side transition boxes: the function associated to , for
example, is given by where is the token val-
ue of the token in when marked. We use inscriptions on
the input arcs of a transition in order to denote the argu-
ments of its transition function and/or those of its guard.

A transition may have a guard G, a condition that
must be satisfied in order to enable the transition when all

its input places hold tokens. The guard of a transition is a
function of the values of tokens in the places of its pre-set.
For instance, is the guard of in the example of Fi-
gure 1. Note that, for the initial marking, is not enabled
even though its only input place is marked.

For every transition , there exist a minimum tran-
sition delay and a maximum transition delay . The
non-negative real numbers represent the lower and
upper bounds for the execution time (delay) of the function
associated to the transition. Transition delays give the limits
in time for the firing of a transition since it becomes en-
abled, unless it is disabled by the firing of another transition.
Assuming in Figure 1, for instance, that fires at 1 time
units and accordingly the token in is removed and a new
token is deposited in , then and become
enabled at 1 time units. Thus may not fire before 4 time
units and must fire before or at 5 time units, unless it be-
comes disabled by the firing of . When a transition fires,
all tokens in its output places get the same token value and
token time.

3. Verification of Real-Time
Embedded Systems

Model checking is an approach to formal verification
used to determine whether the model of a system satisfies its
specification, that is, certain required properties. The two
inputs to the model checking problem are the system model
and the properties that such a system must satisfy, usually
expressed as temporal logic formulas.

For verification purposes, we restrict ourselves to safe
PRES+ nets, that is, a place may hold at most one to-
ken for a certain marking . Otherwise, the formal analysis
would become more cumbersome. This is a trade-off be-
tween expressiveness and analysis power.

Our approach allows to determine the truth of CTL
(Computation Tree Logic) [4] and TCTL (Timed CTL) [1]
formulas with respect to a (safe) PRES+ model. Formulas in
CTL are composed of atomic propositions, boolean connec-
tors, and temporal operators. Temporal operators consist of
forward-time operators (G globally, F in the future, X next
time, and U until) preceded by a path quantifier (A all com-
putation paths, and E some computation path). TCTL is a
real-time extension of CTL that allows to inscribe sub-
scripts on the temporal operators to limit their scope in time.
For instance, expresses that, along all computation
paths, the property P becomes true within n time units. In
our approach the atomic propositions of CTL/TCTL corre-
spond to the marking of places in the net. Thus the atomic
proposition p holds iff is marked.

There are several types of analysis that can be performed
on PRES+ models: the absence/presence of tokens in places
of the net, time stamps of such tokens, and their token val-
ues. These analyses have been called reachability, time, and
functional analysis respectively. Our approach to verifica-

N= P T I O M 0, , , ,()
P T I

O
M 0

k= v r,〈 〉 v
r

p
p M 0

pa
ka= va ra,〈 〉 va=2 ra=0

t 3
-b

t 6
-d

t 8e+2

pa

pb cp

pd pe

t 1[a>0] a

t 4b t 5c

t 7d

t 2-a [a<0]

[0,1]

[1,1.7]

[2.2,4]

[1
.8

,3
]

b

e

[2,3]

[3
,4

]

[1,4] 5

d

cb

d

a a

<2,0>

t T∈

°t t T∈ t
t° t

°p p° p P∈
p

t8

f 8 e()=e+2 e
pe

t T∈

a 0< t2

t2

t T∈
d - d+

d - d+≤

t1

pa
kb= 2 1,〈 〉 pb t3 t4

t3

t4

p P∈
M

AF<n P

p P∈

tion focuses on the first two, that is, reachability and time
analyses. If the system model does not bear guards, we can
ignore transition functions as reachability and time analyses
will not be affected by token values.

In order to verify the correctness of a real-time embed-
ded system, a systematic procedure to translate PRES+ into
timed automata was proposed in [5] (in the sequel, this pro-
cedure is referred to as naive translation), so that it is possi-
ble to make use of existing model checking tools, namely
HyTech [11], KRONOS [12], and UPPAAL [14]. In such an
approach the resulting representation consists of a collec-
tion of timed automata which operate and coordinate with
each other through shared variables and synchronization la-
bels. One automaton with one clock is obtained for each
transition. Since the complexity of model checking of timed
automata is exponential in the number of clocks, that ap-
proach is not practical for large systems.

In this paper we improve the verification approach intro-
duced in [5] in two different ways: applying a transforma-
tion-based concept in order to simplify the system model;
exploiting the structure of the net by clustering transitions.
These reduce considerably the complexity of the verifica-
tion process.

3.1. Reduction of Verification Complexity
by using Transformations

For the sake of reducing the verification effort, we first
transform the system model into a simpler one, still seman-
tically equivalent, and then verify the simplified model. If a
given model is modified using correctness-preserving trans-
formations and then the resulting one is proved correct with
respect to its specification, the initial model is guaranteed to
be correct, and no intermediate steps need to be verified.
This simple observation allows us to reduce significantly
the complexity of verification.

We can define a set of transformation rules that make it
possible to transform only a part of the system model. A
simple but useful transformation is shown in Figure 2. We
do not intend to provide here a comprehensive set of trans-
formations but rather illustrate the transformation of just a
portion of the model (such a set of transformation rules has
been defined in [8]). Assume that two subnets and
are total-equivalent in the sense defined in [6]. The intuitive
idea behind total-equivalence is as follows (the reader is re-
ferred to [6] for a formal definition): (a) there exist bijec-
tions that define one-to-one correspondence between
in(out)-ports1 of and ; (b) having initially tokens
with the same token value and time in corresponding in-
ports of and , there exists a firing sequence which
leads to a marking with the very same token value and time
in corresponding out-ports. It is not difficult to prove that

and are total-equivalent, provided the conditions
given in Figure 2 are satisfied and that neither nor are
in conflict with any other transition. An interesting aspect
for this transformation is that if the part of the system model
represented by the subnet is replaced by , the overall
behavior is the same in both cases. Such a transformation
rule could be used, therefore, to simplify PRES+ models
and accordingly reduce the complexity of the verification
process.

Figure 2. A simple transformation rule

We may take advantage of transformations to reduce the
complexity of verification. The idea is to simplify the sys-
tem model using transformations from a library. In the case
of total-equivalence transformations, since an external ob-
server could not distinguish between two total-equivalent
nets (for the same tokens in corresponding in-ports, the ob-
server would get in both cases the very same tokens in cor-
responding out-ports), the global system properties are
preserved in terms of reachability, time, and functionality.
Therefore such transformations are correctness-preserving:
if a property holds in a net that contains a subnet (into
which a total-equivalent subnet has been transformed),
it does in another that contains ; if does not hold in the
first net, it does not in the second either.

3.2. Reduction of Verification Complexity
by Clustering Transitions

In order to reduce the number of automata/clocks result-
ed from the translation of PRES+ models into timed autom-
ata, we propose an algorithm that extracts the sequential
behavior of the Petri net by clustering transitions. Intuitive-
ly, each cluster consists of a sequence of transitions where
the firing of one of them enables the next one. The input of
the algorithm is a safe Petri net and its output is a set of clus-
ters, each representing a sequential part of the net. Then we
obtain the timed automata, with one automaton and one
clock per cluster (instead of one automaton and one clock
per transition).

A cluster is an ordered tuple of distinct transitions denot-

1 A place is an in-port of the subnet iff
for all . A place is an out-port of iff

 for all .

N ' N ''

N ' N ''

p P∈ N = P T I O M 0, , , ,()
t p,() O∉ t T∈ p P∈ N
p t,() I∉ t T∈

N ' N ''

N ' N ''
t1 t

N ' N ''

t22f

t11f

[a ,b]11

22[a ,b]

pnp1

q1 qm

. . .

p

. . .

’ ’

’ ’

N’

[G]

f = f f2 1o

+a = a a1 2
+b = b b1 2

0M p () = 0

Total-equivalence

1p pn

q1 qm

. . .

f

[a,b]

t

. . .

’’

’’’’

’’N’’

[G]

P N ''
N '

N ' P

ed , such that becomes enabled iff
fires, for . We say that and are, respectively,
the head and the tail of . In Figure 3, a possible cluster is

 with head and tail .

Figure 3. PRES+ model to be clustered

The cluster set of a cluster is the set
of transitions that are components of , that is

. We explicitly make a distinction between
cluster and cluster set because in the former case the order
of the components is relevant whereas the order of elements
in a set is immaterial. The objective of our clustering algo-
rithm is to find a set of clusters such that their cluster sets
form a partition of (the set of transitions of the Petri net).
In other words, we aim at finding a number of clusters such
that each transition is in one and only one cluster.

We define the anterior set of a transition , denoted
, as the set of those transitions that when fired will

deposit a token in some place in the pre-set , that is,
.

Similarly, the posterior set of a transition
is the set of transitions that will get a token in some place of
their pre-set when is fired, that is, .

We define the anterior set of a cluster
as the anterior set of its head , that is,
. The posterior set of a cluster

is the posterior set of its tail , that is,
. Consider, for example, the cluster

in the net shown in Figure 3. Its anterior and
posterior sets are and re-
spectively.

The clustering algorithm we propose tries to add a new
head or tail to an existing cluster . We keep a list of “free”
transitions , i.e. transitions not allocated yet to any
cluster. Let be a cluster with head and tail

and let be the set of free transitions. We may add a

new tail to the cluster if and
. We may add a new head to if

and . Consider again the
example given in Figure 3. Assume this time
and . Given that

and , both and ful-
fill the requirements for new tail stated above, but only one
of them can be added as new tail to the cluster. In our algo-
rithm this choice is made arbitrarily. If, for instance, is
added to the cluster we obtain and

. Note that was removed from
. It is not hard to see that there is no transition to be

added as new head of the cluster.
Our clustering algorithm starts by selecting arbitrarily a

transition from the free list. A new cluster is formed so
that is initially both head and tail of , and is removed
from . The next step is to examine only those transi-
tions in that are also in and check whether
they may be a new tail of . If so, the cluster is enhanced
by adding a new tail. We repeat the process until no new tail
may be added to the cluster. Then, in a similar fashion, we
try to enhance the cluster by adding a new head and repeat
until there is no new head candidate in the free list. When
the cluster can no longer be enhanced, we select another
transition from , form a new cluster, and repeat the
process until all transitions have been allocated to a cluster.
The clustering algorithm is shown in Figure 4.

Figure 4. Clustering algorithm

By applying our clustering algorithm on the system of
Figure 3, we obtain the clusters ,

, , . Note that the output of

C= t1 … tn, ,() ti+1 ti
1 i n<≤ t1 tn

C
C= t1 t3 t5, ,() t1 t5

t 5e t 6ft 4d

t 2b

t 1a-1

t 9j+k

t 8gt 7h-2

t 10l

t 3c+1

pb pc

pd pe pf

ph
pg pi

pj pk

pl

pa

b c

a

d e f

ig

j k

[1,4]

[0,1]5

[2,4]

[1,3]

2

[1,2]

l

[2,3]

[2,5]

[3,4]

h

[h<2]

SC C= t1 … tn, ,()
C

SC= t1 … tn, ,{ }

T

t T∈
t T∈

ant t()
°t

ant t()= ° pi
pi °t∈
∪

post t() t T∈

t post t() pi
o

pi to∈
∪=

ant C()
C= t1 … tn, ,() t1

ant C()=ant t1() post C()
C= t1 … tn, ,() tn
post C()=post tn()
C= t10 t1 t3, ,()

ant C()= t9{ } post C()= t5 t6,{ }

C
freeT
C= th … tt, ,() th

tt freeT

tnt C ant tnt()- tnt{ } = tt{ }
tnt freeT∈ tnh C
tnh freeT∈ ant C()- th{ } = tnh{ }

C= t9 t10 t1, ,()
freeT=T -SC= t2 t3 t4 t5 t6 t7 t8, ,, ,, ,{ } t2,

t3 freeT∈ ant t2()=ant t3()= t1{ } t2 t3

t3

C= t9 t10 t1 t3, , ,()
freeT= t2 t4 t5 t6 t7 t8, ,, ,,{ } t3

freeT

t C
t C t
freeT

post C() freeT
C

freeT

clustering(safePN N)
set
while do

with an arbitrary do
new cluster
set
set true
set true
// try to add a new tail
while do

set false
with an arbitrary
 such that do

add to
set
set true

endwith
endwhile
// try to add a new head
while do

set false
with
 such that do

add to
set
set true

endwith
endwhile

endwith
endwhile

endclustering

freeT := T
freeT ∅≠

t freeT∈
C t()=

freeT := freeT t{ }–
newhead :=
newtail :=

tnt
newtail

newtail :=
tnt post C() freeT∩∈

ant tnt() tnt{ }– tt{ }=
tnt C
freeT := freeT tnt{ }–
newtail :=

tnh
newhead

newhead :=
tnh ant C() freeT∩∈

ant C() th{ }– tnh{ }=
tnh C
freeT := freeT tnh{ }–
newhead :=

C1= t9 t10 t1 t2 t4, , , ,()
C2= t3 t5 t7, ,() C3= t6() C4= t8()

the algorithm is not unique since there might be new-tail
transitions chosen arbitrarily. We could also have got, for
instance, , , ,

. However, in either case, the number of clusters is
the same.

A simple analysis shows that the proposed algorithm has
a (worst-case) time complexity O(n2), where n is the num-
ber of transitions in the net. We have applied the clustering
algorithm to three different examples that can be scaled up.
It is not our intention to discuss them here but rather use
these examples in order to illustrate the performance of the
algorithm in terms of execution time. Figure 5 shows the ex-
ecution times of the clustering algorithm for the three cases
studied.

Figure 5. Performance of the clustering algorithm

3.3. Translating PRES+ into Timed Automata

A timed automaton is a finite automaton augmented with
a finite set of real-valued clocks [2]. Timed automata can be
thought as a collection of automata which operate and coor-
dinate with each other through shared variables and syn-
chronization labels. There is a set of real-valued variables,
named clocks, all of which change along the time with the
same constant rate. There might be conditions over clocks
that express timing constraints.

An extended Timed Automata model (TA) can be ex-
pressed as , where
• is a finite set of locations;
• is a set of initial locations;
• is a set of edges;
• is a finite set of labels;
• is a mapping that labels each edge in with

some label in ;
• is a finite set of real-valued clocks;
• is a finite set of variables;
• is a mapping that assigns to each edge a

clock condition over that must be satisfied in
order to allow the automaton to change its location from

 to ;
• is a mapping that assigns to each edge a vari-

able condition over that must be satisfied in
order to allow the automaton to change its location from

 to ;
• is a reset function that gives the clocks to be

reset on each edge;
• is the activity mapping that assigns to each edge a

set of activities ;
• is a mapping that assigns to each location an invari-

ant which allows the automaton to stay at location
as long as its invariant is satisfied.
In order to verify the correctness of system represented

in PRES+, we translate the system model into timed autom-
ata so that model checking tools can be used. In what fol-
lows we describe the systematic procedure to translate
PRES+ models into TA after clustering has been performed.
The resulting model will consist of one automaton and one
clock per cluster. The translation procedure that we propose
here is correct as long as the underlying untimed Petri net is
safe. We use the example of Figure 3 in order to illustrate
the translation procedure, consisting of the following steps.
Step 1. Define one clock in for each cluster. Define one
variable in for each place of the Petri net, correspond-
ing to the token value when is marked.
Step 2. Define the set of synchronization labels as the set
of transitions in the Petri net.

Steps 3 through 9 must be performed for each one of the
clusters obtained by using the clustering algorithm. Consid-
er a cluster with head and tail . For

(denotes the i-th transition in cluster), let
be the transition function associated to , and let and
be the minimum and maximum transition delays associated
to . Let be the guard associated to the transition . Let

be the value of the token in the place when marked.
The timed automaton corresponding to the cluster is de-
noted . The clock corresponding to is denoted . For
the sake of clarity, we first present the translation steps for
the simplest case: we initially assume that is not in con-
flict with any other transition, for all , and that

. Later we will discuss the gen-
eral case where these assumptions do not hold.
Step 3. Define locations , where

and . These are the locations of
. Define edges , for , with

synchronization labels corresponding to the transitions in
. Define also edges with synchro-

nization labels corresponding to the transitions in
. Then define one edge , for

, with synchronization label . Define one
edge with synchronization label .

Consider the cluster for the model
given in Figure 3. We have for this cluster. Since

we have . Therefore, the automaton
corresponding to the cluster has 7 locations

and its edges are as shown in Figu-
re 6. Note that corresponds to the location in which tran-

C1'= t9 t10 t1 t,
3
t6, , ,() C2'= t2 t4,() C3'= t5 t7,()

C4'= t8()

0

1

2

3

4

5

6

7

0 2000 4000 6000 8000 10000

C
lu

st
er

in
g

T
im

e
[s

]

Number of Transitions

Parallel
Serial

Comm

M = L L0 E Σ σ X V Φ υ R A I, , , , , , , , , , ,()
L
L0 L⊆
E L L×⊆
Σ
σ : E Σ→ E

Σ
X
V
Φ e= l l',()

Φ e() X

l l'
υ e= l l',()

υ e() V

l l'
R : E 2

X→

A e
A e()

I l
I l() l

X
V px

vx px
Σ

C= t1 … tn, ,() t1 tn
ti SC∈ ti C f i

ti di
- di

+

ti Gi ti
vx px

C
C C c

ti
ti SC∈

post C()- tn{ }() SC∩ = ∅

m+n a1 … am b1 … bn, , , , ,
m= ant C()- t1{ } n= SC
C m a j a j+1,() j=1 … m-1, ,

ant C()- t1{ } m am b1,()

ant C()- t1{ } bi bi+1,()
i=1 … n-1, , ti

bn a1,() tn
C1= t9 t10 t1 t2 t4, , , ,()

n=5

ant C1()= t7 t8,{ } m=2

C1 C1

a1 a2 b9 b10 b1 b2 b4, , , , , ,
bk

sition is enabled (if has no guard). The change of
location, for example, from to corresponds to the fir-
ing of transition .
Step 4. For every edge and every edge

, , define . For any
other edge in , define .

This means that on all edges but , ,
and the clock will be reset. In Figure 6, the as-
signment represents the reset of clock .
Step 5. For every location , , define its location
invariant as .

This enforces the firing of before or at its latest trigger
time.
Step 6. To every edge with synchronization label , where

, assign the clock condition .
In Figure 6, for example, the edge (with syn-

chronization label) of the automaton has a clock con-
dition where 2 and 5 are the minimum and
maximum transition delays of .
Step 7. For every edge with synchronization label , where

, and for every assign to such an edge the
activities .

For instance, the activities assigned to the edge
with synchronization label in the automaton are

and , where is the transition function
of .
Step 8. If the transition has a guard , assign the
variable condition to the edge with synchronization la-
bel . Then add an edge with no synchroniza-
tion label, variable condition (the complement of),
and .

Note the variable condition on and the
edge in the automaton . This is due to the guard

 of transition .

Step 9. If the transition is enabled in the initial
marking, make the location the initial location of .
Otherwise, if there are places initially marked in the pre-
set of the head (so that is not enabled),
make the initial location of .

In our example, is the initial location of because
the transition is enabled in the initial marking of
the net. The automaton has as initial location be-
cause none of the transitions of the cluster is initially en-
abled.

Observe that one and only one of the transitions of a giv-
en cluster will be enabled at a time. If two transitions in a
cluster were enabled simultaneously, that would imply that
the (underlying untimed) Petri net is not safe.

We have assumed that is not in conflict with any tran-
sition, for all , and that .
Now we discuss the cases in which these assumptions do
not hold:
a) In case that (the posterior set of the
cluster tail is the singleton containing the cluster head) the
automaton will have n locations , where

, but no locations. There will be additionally one
edge with synchronization label and clock con-
dition, variable condition, clock reset, and activities similar
to the other edges ;
b) If one of the transitions is in conflict with another
transition , just add to the automaton one edge

 with synchronization label .

4. Experimental Results

This section presents two examples which we use in or-
der to illustrate our verification approach and the proposed
improvement techniques.

tk tk
b1 b2

t1

e j= am b1,()
ei= bi bi+1,() 1 i n<≤ R e j()=R ei()= c{ }

e C R e()=∅
a j a j+1,() 1 j m<≤

bn a1,() c
ck := 0 ck

bi 1 i n≤ ≤
c di

+≤
ti

a1 b6

c4<=1

t3
c4:=0

t6
i:=fa2a1 b8

c3<=4

t6 t4
c3:=0

t4 t6
c3:=0

c3>=2,c3<=4
t8

k:=g

Figure 6. Equivalent timed automata

b4c1<=5

a2a1

b2

c1<=5

b1

c1<=2

b9

c1<=2

b10 c1<=3

t8 t7
c1:=0

c1==2

t9 c1:=0,
l:=j+k

c1>=1,c1<=3
t10

c1:=0,
a:=lc1>=1,c1<=2

t1
c1:=0,
b:=a-1,
c:=a-1

c1>=2,c1<=5

t2
c1:=0,
d:=b

c1==5
t4

g:=d

t7 t8
c1:=0

b3

c2<=4

a1

b7c2<=4 b5

c2<=3

t1
c2:=0

c2>=1,c2<=4

t3
c2:=0,
e:=c+1,
f:=c+1

c2>=2,c2<=3

t5
c2:=0,
h:=e

h<2
c2>=3,c2<=4

t7

j:=h-2

h>=2

c2:=0

C1

C4

C3

C2

ti
ti SC∈ di

- c≤ di
+≤

b2 b4,()
t2 C1

2 c1≤ 5≤
t2

ti
ti SC∈ p j ti°∈

v j := f i
b1 b2,()

t1 C1

b := a-1 c := a-1 a-1

t1

ti SC∈ Gi
Gi

ti e= bi bi,()
Gi Gi

R e()= c{ }
h 2< b7 a1,()

b7 b7,() C2

h 2< t7

ti SC∈
bi C

k
°t1 t1 0 k m<≤ t1

ak+1 C
b1 C1

t1 SC1
∈

C2 a1

C2

ti
ti SC∈ post C()- tn{ }() SC∩ = ∅

post C()- tn{ } = t1{ }

C b1 … bn, ,
n= SC ai

bn b1,() tn

bi bi+1,()
ti SC∈

tc C
bi a1,() tc

4.1. Ring-Configuration Processes

We illustrate our verification approach on a scalable ex-
ample, comparing the technique based on a naive transla-
tion from PRES+ into automata introduced in [5], the
transformational approach presented in Section 3.1, and the
one formulated in Section 3.2 where the structure of the net
is exploited.

Figure 7. Model for one ring-configuration process

The example that we use represents a number n of pro-
cesses arranged in a ring configuration. The model for one
such process is illustrated in Figure 7. Each one of the n pro-
cesses in the system has a bounded response requirement,
namely whenever the process starts it must strictly finish
within a time limit, in this case 25 time units. Referring to
Figure 7, the start of one such process is denoted by the
marking of while the marking of denotes the end
of the process. This requirement is expressed by the TCTL
formula .

We have used UPPAAL [14], running on a Sun Ultra 10
workstation, in order to model-check the timing require-
ments of the processes in the ring-configuration example.
The results are summarized in Table 1.

The second column of Table 1 corresponds to the verifi-
cation time using the approach of [5] (naive translation of
PRES+ into timed automata). Note that only systems up to
5 processes can be handled with such an approach. The third
column in Table 1 gives the results of verification when us-
ing the approach presented in Section 3.1: transformation of
the model into a semantically equivalent and simpler one in
order to reduce complexity, followed by naive translation
into timed automata. The verification time for the example
of processes in a ring configuration using the clustering ap-
proach of Section 3.2 is shown in the fourth column of Ta-
ble 1. These results include the execution time of the
clustering algorithm. By combining the clustering tech-
nique and the transformation-based one, it is possible to fur-
ther improve the efficiency of the verification process as
shown in the last column of Table 1. We have plotted all
these experimental results in Figure 8.

Figure 8. Verification of ring-configuration processes

Observe that for the bounded response requirement
expressed by the formula is not
satisfied, a fact which, at first glance, is not obvious at all.
An informal explanation is that since transition delays are
given in terms of intervals, one process may take longer to
execute than another; thus different processes can execute
“out of phase” and this phase difference may be accumulat-
ed depending on the number of processes, causing one such
process to take eventually longer than 25 time units (for

). It is also worth mentioning that, although the model
has relatively few transitions and places, this example is
rather complex because of its large (untimed) state space
which is due to the high degree of parallelism.

4.2. Verification of a GMDFα

In this section we model and verify a realistic system: a
GMDFα (Generalized Multi-Delay frequency-domain Fil-
ter) [9]. GMDFα has been used in acoustic echo cancella-
tion for improving the quality of hand-free phone and
teleconference applications. The GMDFα algorithm is a

Table 1. Verification of the ring-configuration example

Numberof
processes

(n)

Verification Time [s]

Naive [5] Transfor-
mations

Clustering Transf. +
Clustering

2 1 <1 <1 <1

3 29 5 2 1

4 704 85 31 17

5 8700 1275 453 205

6 NA*

* Not available: out of time

13260 5771 2295

7†

† Specification does not hold

NA* NA* NA* 16200

t 0

t 1

t 5

pstart

pend

t 2

t 3

t 4

qi+1

pi+1pi

qi

1

1

[1,2]

1
[1,2]

[0,1]

. . .

.

. . .

pstart pend

AG pstart AF<25 pend⇒()

1

10

100

1000

10000

2 3 4 5 6 7

V
er

ifi
ca

tio
n

T
im

e
[s

]

Number of Processes

Naive
Transf.

Clustering
Transf. + Clustering

n=7

AG pstart AF<25 pend⇒()

n=7

frequency-domain block adaptive algorithm: a block of in-
put data is processed at a time, producing a block of output
data. The impulse response of length L is segmented into K
smaller blocks of size N (K=L/N), thus leading to better per-
formance. R new samples are processed at each iteration
and the filter is adapted α times per block (R=N/α).

The filter inputs are the signal X and its echo E, and the
output is the reduced or cancelled echo . In Figure 9 we
show the PRES+ model of the GMDFα. The transition
transforms the input signal X into the frequency domain by
a FFT (Fast Fourier Transform). corresponds to the nor-
malization block. Transitions , , , and consti-
tute a basic cell, where a filter coefficient is updated and
thus the filter is adapted by using FFT-1 and FFT operations.
There are K instances of such a basic cell. Transitions
serve as delay blocks. computes the estimated echo in the
frequency domain by a convolution product and then it is
converted into the time domain by . The difference be-
tween the estimated echo and the actual one (signal E) is
calculated by and output as . Such a cancelled echo is
also transformed into the frequency domain by to be used
in the next iteration when updating the filter coefficients. In
Figure 9 we also model the environment with which the
GMDFα interacts: models the echoing of signal X,
and represent, respectively, the sending of the signal and
the reception of the cancelled echo, and is the entity that
emits X. Transition delays in Figure 9 are given in ms.

We consider two cases of a GMDFα of length 1024: a)
with an overlapping factor α=4, we have the following pa-

rameters: L=1024, K=4, N=256, and R=64; b) with an over-
lapping factor α=2, we have the following parameters:
L=1024, K=8, N=128, and R=64.

As seen in Figure 9, K affects directly the dimension of
the model and, therefore, the complexity of verification.
Having a sampling rate of 8 kHz, the maximum execution
time for one iteration is in both cases 8 ms (64 new samples
must be processed at each iteration). The completion of one
iteration is determined by the marking of the place .

We want to prove that the system will eventually com-
plete its functionality. According to the time constraint of
the system, it is not sufficient to finish the filtering iteration
but also to do so with a bound on time (8 ms). This aspect
of the specification is captured by the TCTL formula

.

By running UPPAAL on a Sun Ultra 10 workstation, we
have verified that in both cases the specification formula

indeed holds. Table 2 shows the verification time

E'
t1

t2

ta .i tb .i tc .i td .i

t4.i
t5

t6

t7 E'
t8

te ts
tr

t p

Figure 9. GMDFα modeled using PRES+

FFT 1t

N
or

m
2t

µF.2

µF.1

XF.1

Se
nd

X
t s

µF.K

Delay t4.1

M
ul

t

F
F

T
-1

F
F

T

a.
1

t b.
1

t c.
1

t d.
1

t

U
pd

at
e

C
oe

f 1

[0
.7

,0
.9

]

[0
.8

,1
.1

]

[0
.4

,0
.5

]

[0
.8

,1
.2

]

Delay t4.K-1

XF.K

XF.2
M

ul
t

M
ul

t

F
F

T
-1

F
F

T

a.
2

t b.
2

t c.
2

t d.
2

t

U
pd

at
e

C
oe

f 2

[0
.7

,0
.9

]

[0
.8

,1
.1

]

[0
.4

,0
.5

]

[0
.8

,1
.2

]

R
ec

E
t r

Sender t p

8

YF.1

YF.K

YF.2

C
on

v
5t

F
F

T
6

-1
t

D
if

f
7t

[0
.7

,1
]

[0
.8

,1
.1

]

E

[0
.1

,0
.2

]

F
F

T
8t

EF.2

EF.K

EF.1

e

F
F

T
-1

F
F

T

a.
K

t b.
K

t c.
K

t d.
K

t

U
pd

at
e

C
oe

f K

[0
.7

,0
.9

]

[0
.8

,1
.1

]

[0
.4

,0
.5

]

[0
.8

,1
.2

]

Echo t

GMDFα

[0.01,0.05]

. .
 .

[0
.3

,0
.4

]

. .
 .

. .
 .

[0
.8

,1
.2

]

X

[0.8,1.2]

0.1

0.1
. .

 .

E’

X

. .
 .

Table 2. Verification of the GMDFα

GMDFα
L=1024

Verification Time [s]

Naive [5] Transfor-
mations

Clustering Transf. +
Clustering

α=4, K=4 108 1 2 <1

α=2, K=8 NA*

* Not available: out of time

9 540 1

E'

AF<8 E'

AF<8 E'

for both cases (K=4 and K=8) comparing the techniques
proposed in this paper with previous work. Observe how
significant is the improvement, especially when the trans-
formational and clustering approaches are combined.

5. Conclusions

We have presented an approach to formal verification of
real-time embedded systems represented in PRES+. We
make use of model checking to prove the correctness of
such systems with respect to reachability and time, specify-
ing design properties as temporal logic formulas. In order to
use available model checking tools the Petri net model is
translated into timed automata.

We have proposed two techniques aimed at improving
the efficiency of verification. The first is an approach that
makes use of correctness-preserving transformations in or-
der to simplify the system model and, therefore, facilitate
verification. The second one improves the translation proce-
dure from PRES+ into time automata: we have proposed an
algorithm of complexity O(n2) that extracts the sequential
behavior of the net by clustering transitions; thus we obtain
one automaton with one clock per cluster, instead of one au-
tomaton with one clock per transition.

Experimental results have demonstrated the worthiness
of such improvement techniques, and that by combining the
clustering strategy and the transformational approach the
efficiency of verification is improved considerably.

References

[1] R. Alur, C. Courcoubetis and D. L. Dill, “Model Checking for
Real-Time Systems,” in Proc. Symposium on Logic in Computer
Science, 1990, pp. 414-425.
[2] R. Alur, “Timed Automata,” in Computer-Aided Verification,
D. Peled and N. Halbwachs, Eds. LNCS 1633, Berlin: Springer-
Verlag, 1999, pp. 8-22.

[3] R. Camposano and J. Wilberg, “Embedded System Design,”
in Design Automation for Embedded Systems, vol. 1, pp. 5-50, Jan.
1996.
[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
Verification of Finite-State Concurrent Systems Using Temporal
Logic Specifications,” in ACM Trans. on Programming Languag-
es and Systems, vol. 8, pp. 244-263, April 1986.
[5] L. A. Cortés, P. Eles, and Z. Peng, “Verification of Embedded
Systems using a Petri Net based Representation,” in Proc. ISSS,
2000, pp. 149-155.
[6] L. A. Cortés, P. Eles, and Z. Peng, “Definitions of Equiva-
lence for Transformational Synthesis of Embedded Systems,” in
Proc. ICECCS, 2000.
[7] L. A. Cortés, P. Eles, and Z. Peng, “Hierarchical Modeling
and Verification of Embedded Systems,” in Proc. Euromicro Sym-
posium on Digital System Design, 2001.
[8] L. A. Cortés, “A Petri Net based Modeling and Verification
Technique for Real-Time Embedded Systems,” Licentiate Thesis,
Dept. of Computer and Information Science, Linköping Universi-
ty, Linköping, Sweden, 2001.
[9] L. Freund, M. Israel, F. Rousseau, J. M. Bergé, M. Auguin, C.
Belleudy, and G. Gogniat, “A Codesign Experiment in Acoustic
Echo Cancellation: GMDFα,” in ACM Trans. on Design Automa-
tion of Electronic Systems, vol. 4, pp. 365-383, Oct. 1997.
[10] H. Hulgaard and S. M. Burns, “Efficient Timing Analysis of
a Class of Petri Nets,” in Computer-Aided Verification, P. Wolper,
Ed. LNCS 939, Berlin: Springer-Verlag, 1995.
[11] HyTech: The HYbrid TECHnology Tool, http://www-
cad.eecs.berkeley.edu/~tah/HyTech/

[12] KRONOS, http://www-verimag.imag.fr/TEMPORISE/
kronos/

[13] T. G. Rokicki and C. J. Myers, “Automatic Verification of
Timed Circuits,” in Computer-Aided Verification, D. L. Dill, Ed.
LNCS 818, Berlin: Springer-Verlag, 1994, pp. 468-480.
[14] UPPAAL, http://www.uppaal.com/
[15] E. Verlind, G. de Jong, and B. Lin, “Efficient Enumeration for
Timing Analysis of Asynchronous Systems,” in Proc. DAC, 1996,
pp. 55-58.
[16] T. Yoneda and B.-H. Schlingloff, “Efficient Verification of
Parallel Real-Time Systems,” in Formal Methods in System De-
sign, vol. 11, pp. 187-215, Aug. 1997.

