
System
Specification

System
Synthesis

Hardware Software

Testability
Analysis

Hierarchical Test
Generation

System Implementation
&

Integration

Test
Vectors

A Uniform Test Generation Technique for Hardware/Software Systems

Gert Jervan, Petru Eles, Zebo Peng
Dept. of Computer and Information Science, Linköping University, Sweden

e-mail: {gerje, petel, zebpe}@ida.liu.se

Abstract

A novel hierarchical test generation technique for embedded
systems containing hardware and software is proposed.
Different from the traditional approaches, hardware and
software parts of an embedded system are handled in a uniform
way. We will in particular show how the proposed technique
can be applied at the high levels of abstraction and how the
software domain of the specification can also be successfully
covered with experimental results.

1. Introduction
The increasing design complexity, combined with very tight

time-to-market schedules, has generated very tough require-
ments for the productivity of embedded systems designers.
Traditional design methods have been replaced by concurrent
design of hardware and software and more work has been done
at higher levels of abstraction. However the testing of the
hardware and software parts of the system are still considered as
totally different problems and solved with very different
methods. There has been some work done in [1, 5, 11] to close
the gap between these two different domains, but the area is not
yet very well investigated.

In our approach, testability evaluation and test generation at
the level of an implementation independent system specification
are based on hierarchical test generation (HTG), a technique
which has been successfully used until now for hardware test
generation at the gate, logical and register-transfer (RT) levels.
We apply HTG, using a decision diagram (DD) [10] based
representation, and show that it can be used for both the
hardware and software domains as well as for different levels of
abstraction.

2. HTG for Hardware/Software Systems
Hierarchical test generation has been proposed in [2, 7, 8]. It

has been used to generate tests for large sequential circuits. The
main idea of the HTG technique is to use information from
higher abstraction levels while generating tests for the lower
levels. One of the main principles is to use a modular design
style, which allows to divide a larger problem into several
smaller subproblems and to solve them separately.

On the system level, the functionality of embedded system is
described in the form of co-operating processes. Such a
specification forms the basis for concurrent hardware/software
design. To give the designer an opportunity to perform design
for testability already in the early design stages, testability
evaluation should be applied directly to the system specification.
And a testability metric should be part of the cost function
considered during system level synthesis, and in particular for
hardware/software partitioning. Figure 1 shows how testability
evaluation and test generation fit into such a system synthesis
concept.

3. HTG for Specifications to be Implemented
in Software

In our approach, decision diagrams are used for design
modelling. In the general case, a DD is a directed, acyclic graph

 This work has partially been supported by the Swedish National Board for
Industrial and Technical Development (NUTEK).

with nodes labelled by algebraic expressions. The main
advantage of modelling with DDs lies in the fact that a uniform
concept can be applied on different abstraction levels. An
extended overview of DDs is presented in [10].

In a DD, non-terminal nodes represent logical conditions,
terminal nodes represent operations, while branches hold the
subset of condition values for which the successor node
corresponding to the branch will be chosen.

One of our main objectives is to show how DDs can be used
for test generation at the behavioural level. We concentrate on
analysing how tests, generated from such a representation, can
be used for testing the part of the system which finally will be
implemented as software. At this level, for every internal
variable and primary output of the design a data-flow DD will
be generated. Terminal nodes of the data-flow DD represent
arithmetic expressions. Further, an additional DD which
describes the control-flow has to be generated. The control-flow
DD describes the succession of statements and branch activation
conditions. The DDs, extracted from a specification, will be
used as a computational model in HTG for symbolic path
activation.

3.1. Test Generation Algorithm
There are two types of tests which we consider in the current

approach. One set targets nonterminal nodes of the control-flow
DD (conditions for branch activation) and the second set aims at
testing operators, depicted in terminal nodes of the data-flow DD.

The whole test generation task is performed in the
following way. Tests are generated sequentially for each
nonterminal node of the control-flow DD. Symbolic path
activation is performed and functional constraints are extracted.
Solving the constraints gives us the path activation conditions to
reach a particular segment of the specification. In order to test
the operations present in the terminal nodes of the data-flow
DD, different approaches can be used. In this paper, we use
mutation testing [4] for test generation for the operations at the
terminal nodes. For path activation, a slightly modified version
of the algorithm described in [7] is used.

3.2. Conformity Test
For the nonterminal nodes of the control-flow DD, conformity
tests will be applied. The conformity tests target errors in branch
activation. In order to test nonterminal node IN1 (Figure 2), one
of the output branches of this node should be activated.

Figure 1. Test generation and testability analysis in a
hardware/software co-design environment

Activation of the output branch means activation of a certain set
of program statements. In our example, activation of the branch
IN1<0 will activate the branches in the data-flow DD where
q=1 (A:=X). For observability the values of the variables calcu-
lated in all the other branches of IN1 have to be distinguished
from the value of the variables calculated by the activated
branch. In our example, node IN1 is tested, in the case of IN1<0,
if X≠Y. The path from the root node of the control-flow DD to
the node IN1 has to be activated to ensure the execution of this
particular specification segment and the conditions, generated
here, should be justified to the primary inputs of the module.
This process will be repeated for each output branch of the node.
In the general case there will be n(n-1) tests, for every node,
where n is the number of output branches.

q

...

<0

2

1IN1
0

q’

A q
1

2

X

Y

Figure 2. Conformity test

3.3. Testing Arithmetic Operators
As mentioned earlier, test vectors for the terminal nodes can

be generated based on different approaches, and our HTG tech-
nique does not impose a specific one. Currently we use a muta-
tion based fault model [4] for testing terminal nodes of the data-
flow DD. We are using a library of operator mutations, which
describes for each operator a set of corresponding mutants and
conditions, which can distinguish between the mutant and the
original operator. For example, if we have the expression:

x:=(a+b)-c;
To rule out the fault that the first “+” is changed to “-”, b

must not be 0 (because a+0=a-0). Additionally, to rule out the
fault that instead of “+” there is “∗”, we have to assure that
a+b≠a∗b. For more details about operator mutants, we refer the
reader to [6].

4. Experimental Results
Experiments were conducted in the environment consisting

of our hierarchical test generator, the library of mutants for
different arithmetic operators, and the Generic Coverage Tool
(GCT) [9] which measures the quality of the generated test
cases. Conversion between different representations (VHDL, C,
Fortran and DD) is performed by the corresponding translation
tools. In order to evaluate our results we compare them with
those produced by the software test generation tool Mothra [3].

Experiments were carried out on three embedded software
examples, which have different structures. Table 1 presents the
experimental results of our approach in comparison with the
results achieved by Mothra. The fault coverage presented in
Table 1 is computed by GCT and reflects synthetically several
different coverage criteria (statement coverage, branch
coverage, loop coverage etc.). As observed, the mutation based

testing tool Mothra generates a much larger set of test vectors,
which, at the same time, produce a weaker coverage.

5. Conclusions
This paper describes a novel hierarchical framework for test

generation in hardware/software systems. Hardware and
software parts of an embedded system can be handled in a
uniform way. The same DD representation can be used for
describing systems at different abstraction levels, including the
system level. Based on this representation reasoning about
testability in the early design phases and test generation for both
the hardware and the software domain is possible.

6. Acknowledgements
The authors would like to thank Prof. Raimund Ubar from

Tallinn Technical University for his helpful discussions
concerning the Decision Diagrams.

7. References
[1] G.Al-Hayek, C.Robach, “An Enhancement Process for

High-Level Hardware Testing Using Software Methods,”
IEEE European Test Workshop (ETW98), Barcelona,
Spain, 1998, pp. 215-219

[2] J. D. Calhoun, F. Brglez, “A Framework and Method for
Hierarchical Test Generation,” IEEE Transactions on
Computer-Aided Design, Vol. 11, No. 1, January 1992

[3] R. DeMillo, D. Guindi, K. King, M. M. McCracken, J. Offutt.
“An Extended Overview of the Mothra Software Testing
Environment,” 2nd Workshop on Software Testing, Verifica-
tion, and Analysis, Banff, Canada, July 1988, pp. 142-151

[4] R. A. DeMillo, R. J. Lipton, F. G. Sayward, “Hints on Test
Data Selection: Help for the Practical Programmer,” IEEE
Computer, Vol.11, No.4, Apr. 1978

[5] O.P.Diaz, I.C.Teixeira, J.P.Teixeira, “Metrics for Quality
Assessment of Testable Hw/Sw Systems Architectures,”
IEEE European Test Workshop (ETW98), Barcelona,
Spain, 1998, pp. 205-209

[6] W. E. Howden, “Weak Mutation Testing and Completeness
of Test Sets,” IEEE Transactions on Software Engineering,”
Vol. SE-8, No.4, July 1982

[7] G. Jervan, A. Markus, J. Raik, R. Ubar, “Hierarchical Test
Generation with Multi-Level Decision Diagram Models,” 7-
th IEEE North Atlantic Test Workshop, West Greenwich, RI,
USA, 1998, pp. 26-33.

[8] J. Lee, J. H. Patel, “ARTEST: An Architectural Level Test
Generator for Data Path Faults and Control Faults,” IEEE
International Test Conference (ITC’91), 1991, pp.729-738

[9] B. Marick, “Using Weak Mutation Coverage with GCT,”
Testing Foundations, 1992

[10] R. Ubar, “Test Synthesis with Alternative Graphs,” IEEE
Design and Test of Computers, Vol. 13, No. 1, pp. 48-57,
Spring 1996

[11] H.P.E.Vranken, M.F.Witteman, R.C.Van Wuijtswinkel,
“Design for testability in hardware software systems”
IEEE Design & Test of Computers Vol. 13, No. 3, pp. 79-
86, Fall 1996

Mothra Our approach
Design
module

Number of
lines in the

specification

Number of
branches

Number of
mutants

Number of
generated test

cases

Number of
optimised test

cases

Fault
coverage

Number of
generated test

cases

Fault
coverage

Square 38 12 813 707 5 77.65% 10 94.12%
Mult 20 6 478 449 3 84.00% 6 90.00%
FFT 31 4 1682 1639 4 83.91% 6 86.21%

Table 1 Experimental results

 ≠

 ≠

Control-
flow DD:

Data-flow DD:

