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ABSTRACT

Design of embedded systems must be based on formal representations so that the synthesis
process can be carried out systematically. We present PRES, a Petri net based model suited to
embedded systems. It can represent several levels of detail using the feature of hierarchical
decomposition. This model also includes an explicit notion of time. In PRES tokens hold infor-
mation and transitions, when fired, perform transformation of data. Concurrency and sequen-
tial behavior might be naturally represented in PRES. The representation is formally defined
and an example explains different concepts and the semantics of the model.

1. INTRODUCTION

Most modern electronic systems consist of dedicated hardware elements and software run-
ning on specific platforms. Such systems are obviously heterogeneous, i.e. are composed of
elements with inherent distinct properties. At the same time, such systems are typically
embedded, that is, they are part of larger systems and interact continuously with their environ-
ment. Design of hardware/software systems is a complex task. We advocate design cycles
based on formal models so that the synthesis from specification to implementation can be car-
ried out systematically. In order to devise systems that meet the performance, cost and reliabil-
ity goals, the design process should be founded upon a clear representation that allows to
accomplish the design cycle, based on formal notation. Modeling is an essential issue of any
systematic design methodology.

In this work, we propose a model suited to embedded systems. The model, called Petri net
based Representation for Embedded Systems (PRES), is an extension to classical Petri nets. It
explicitly captures time information, allows representation at different levels of granularity,
and supports hierarchical decomposition. Another feature of this model is its expressiveness
since the tokens might carry information. Concurrency and sequential behavior are also cap-
tured by PRES. As any Petri net based model, PRES is inherently asynchronous.

The rest of this paper is structured as follows. Section 2 addresses related work in the area
of modeling for embedded systems, emphasizing on the extensions to Petri nets and
approaches similar to PRES. The model is formally defined in Section 3. The semantics of the
model is described in Section 4 through a simple example. Finally, some conclusions are out-
lined in Section 5.

2. RELATED WORK

Many models have been proposed to represent digital systems. These models encompass a
broad range of styles, characteristics and application domains. Particularly in the field of hard-
ware/software codesign, a variety of models has been developed and used for system represen-
tation.



Many of the computational models used for HW/SW systems are based on extensions to
finite-state machines, Petri nets, discrete-event systems, data-flow graphs, communicating
processes, among others.

2.1. Extensions to Petri Nets

Petri nets (PN) have been widely used for system modeling in many fields of science over
three decades. We do not address here the basic concepts of PNs, but instead we concentrate in
this subsection on the main extensions proposed. In our discussion we assume that the reader
has a basic knowledge of PNs. [8], [9] are suggested for further reading on PN theory.

Two important intrinsic features of Petri nets are their concurrency and asynchronous
nature. These features together with the generality of PNs and their flexibility have stimulated
their applications in different areas. However, several drawbacks of the classical PN model
have been pointed out along the years.

A major weakness of PNs is the so-called state explosion problem. Petri nets tend to
become large even for relatively small systems. The lack of hierarchical decomposition makes
it difficult to specify and understand complex systems using the conventional model. To over-
come this disadvantage, the classical PN model has been extended introducing the concept of
hierarchy [13], [1]. Single elements (transitions and places) may represent a more detailed
structure.

The conventional PN model lacks the notion of time. However in many embedded applica-
tions time is a critical factor. Several extensions have been proposed in order to capture timing
aspects: timed Petri nets [10], time Petri nets [7], and timed place-transition nets [11]. In the
first approach, timed PNs, an execution time is associated with each transition, representing
the finite duration of a firing. Unlike classical Petri nets, the transition is not instantaneous and
the firing rule is modified to make a transition to be fired as soon as it is enabled. In time PNs
two values of time are associated with each transition: the minimum and maximum time (start-
ing from the moment the transition has been enabled) in which the transition has to fire, unless
it is disabled by the firing of another transition. Finally, in timed place-transition nets, unlike
the former cases, the time information is associated to places instead of transitions. The time
parameter of each place has the meaning of a delay, so that a token must remain in the place a
certain interval of time before it may be removed.

Classical Petri nets lack expressiveness for formulating computations as long as tokens are
considered “black dots”. No value is transferred by communications, limiting the modeling
power. Allowing tokens to carry information makes it possible to obtain more succinct repre-
sentations suitable for practical applications. The extensions that include this new dimension
to PNs are the so-called high-level Petri nets [4]. High-level PNs include predicate/transition
nets and coloured Petri nets. The former introduce the concept of individuals with changing
properties and relations [3]. Places (predicates) represent variable properties or relations of
individuals, and transitions depict changes of those properties. Graphically, places and transi-
tions are labeled with identifiers which define the net characteristics. Coloured Petri nets have
been introduced in [5] and a strong mathematical theory has been built up around them. Tran-
sitions describe actions and tokens carry data values. The arcs between transitions/places have
attached expressions that describe the behavior of the net. Coloured PNs permit hierarchical
constructions. Although time is not explicitly defined in the model, computer tools developed
around coloured PNs allow tokens to have time stamps during simulation.

2.2. Modeling Embedded Systems using Petri Nets

As stated before, many applications in distinct areas have successfully used PNs as a repre-
sentation model. Due to their intrinsic characteristics and particular extensions to the conven-
tional model, PNs might be an interesting representation for embedded systems. We address in



this section some known approaches to the modeling of such systems using Petri nets in the
frame of HW/SW codesign. Stoy [12] presents a modeling technique for hardware/software
systems. This Petri net representation is based on a parallel model with data-control notation
and provides timing information. The model consists of two different but closely related parts:
control unit and computational/data part. This representation allows to capture hardware and
software in a consistent way. Maciel and Barros [6] use timed Petri nets as intermediate format
for the partitioning process: an occam description constitutes the input of the design cycle and
is translated into the proposed representation. Timed PNs, in this approach, are associated
with dataflow augmented with time information. The definition of sub-nets permits handling
hierarchies through special places called ports. A combination of time Petri nets and predicate/
transition nets augmented with object-oriented concepts is utilized by Eisakf2]. Tokens

carry data and transitions have associated functions, condition guards, and also time con-
straints.

3. PETRI NET BASED REPRESENTATION MODEL

In the following we present PRES, a Petri net based model, aimed to represent embedded
systems. As mentioned before, it can be used to model a system at different levels of detail
using the feature of hierarchical decomposition. The model includes an explicit notion of time.
In PRES tokens hold information and transitions, when fired, perform transformation of data.
Concurrency and sequential behavior are also naturally represented in PRES.

3.1. Basic Definitions

Definition 1. A Petri Net based Representation for Embedded Sysienss five-tuple
PRES= (R T )] QO N) where

P ={p, P Pmt IS afinite non-empty set pfaces

T = {t,t, ..., t,} is afinite non-empty set afansitions

| OP x T is afinite non-empty set anput arcswhich define the flow relation between places
and transitions;

OO Tx P is a finite non-empty set afutput arcswhich define the flow relation between
transitions and places;

M, is the initialmarkingof the net (see Definition 3).

Defined in this way, this structure is andinary Petri net which means that there exist no
multiple arcs, if any, from a plagg to a transitiort; (or from a transitiort; to a placep,). Addi-
tionally, P andT must be disjoint, i.eP n T = [

Properties, characteristics, and behavior of PRES will be introduced and defined in detail in
what follows.

Definition 2. A tokenis a pairk = (v, r,) where

v, is thetoken valueThis value may be of any type, e.g. boolean, integer, etc., or user-defined
type of any complexity (for instance a structure, a set, a record);

r. is thetoken timea finite positive real number representing the time stamp of the token.

LetK be the set of all possible token types for a given system.

Definition 3. A markingis a functionM : P - {0, 1} that denotes the absence or presence of
tokens in the places of the net.

For our purposes, we will only considboundedPetri nets, i.e. nets where the number of
tokens in each place does not exceed a finite number. Specifically, we aim to use structures
which aresafeor 1-boundedSince the intended Petri net in this model must be safe, this func-
tion M might also express the number of tokens in each place. We will say that appisce
markedif M(p) = 1. Note that a markingvl implicitly assigns one tokek to each marked
place.



We introduce the following notation which will be useful in defining the dynamic behavior
of PRES: when a placeis marked,k” denotes the token presenp.iiThus, the token value
of the token in a marked plapewill be v,,, and the token time of the tokenginvill be r . .
Definition 4. Thetype functiont : P - K is a relation that associates a place with a token
type. Thus, we will calt(p) the token type associated with plgce

It is worth to point out that the token type related to a certain place is fixed, that is, it is an
intrinsic property of that place and will not change during the dynamic behavior of the net.

3.2. Description of Systems

Definition 5. Thepre-setof a transition°t = {pO P|(p t) O 1} is the set ofput placesof
t. Similarly, thepost-sebf a transitiont® = { p O P|(t, p) O O} is the set afutput place®f
t.

Definition 6. For every place in the post-s&t  of a transitipthere exists anutput function
associated tb Let us consider the transitiomvith its pre-seft and post-s&t . Formally,
Op; Ot° Of  T(dy) X T() X .. X T(Ga) — T(P))

with °t = {0, 0z, ..., 0} andt® = {py, Py, ..., Py} -

Output functions are very important when describing the behavior of the system to be mod-
eled. They allow systems to be modeled at different levels of granularity with transitions rep-
resenting simple arithmetic operations or complex algorithms.

Definition 7. For every output function associated to a transitiothere exists dunction
delay fd a finite positive real number, which represents the execution time (delay) of that
function. Formally,
Of;, Ofd, 00"

with O the set of positive reals. If no function delay is explicitly defined, it will be assumed
0.
Definition 8. The guard G of a transitiont is the set of booleaconditionsthat must be
asserted in order to enable that transition, when all its input places hold tokensdAionof
a transition

cond : T(qy) X T(dp) * ... x1(da) - {0, 1}
is function of the token values in the places of the pre-ggtdf= {q;, Oy, ..., 0.} )-

The guardG, of t is the conjunction of all conditions of that transition.There is no restric-
tion in the number of conditions for a certain transitionallf conditions are assertesg| = 1,
otherwiseG, = 0. If no guard is explicitly defined, it will be assumed constantly asserted.
Definition 9. Every transition has functionality The functionality of a transitiohis defined
in terms of:

(i) Its output functions
(ii) Its function delays
(iii) Its guard

Intuitively, this functionality describes the “behavior” of the transition when it is fired.
Unlike the classical Petri net model, each token holds a value and a time tag. When a transition
tis fired the markingv will generally change by removing all the tokens from the pre-sét of
and depositing one token into each element of the post-4eTbEse tokens added td  have
values and time stamps which depend on the previous tokéhs in  and the functionality of

3.3. Dynamic Behavior

Definition 10. A transitiont is said to beenabledf all places of its pre-set are marked, its out-
put places different from the input orlesre empty, and its guard is asserted. Formally, for a
given markingM, a transitiont O T i®nabled iff(if and only if)

1. A place may be, at the same time, input and output of a transition.



[Oo O°t M(q;) = 1] O[Op; Ot°, p; 0°t M(py) = 0] O[G, = 1]

If the transitiont is enabled, we will note it a8. Then, the subset of enable transitions, for
certain markingv, willbe T* = {tOT|t*} .
Definition 11. Every enabled transitiori has atrigger time tt that represents the time instant
at which the transition may fire. Each token in the pre-set of an enabled transition has, in gen-
eral, a different token time. From the point of view of time, the transition could not fire before
the tokens are ready. The concept of trigger time is needed to describe how token times are
handled when the transition is fired. The trigger time of an enabled transition is the maximum
token time of the tokens in its input places,

tt* = maxro,r g, ...l q)

where the pre-set ¢fis °t = {qy, Gy, ..., 9. * “

Note that this trigger time varies during the execution of the net and, if the transition is not
enabled, it does not make sense.
Definition 12. Thefiring of an enabled transition changes the markihgto a new marking
M*. As a result of firing the transition (with pre-set °t = {q;,q,, ...,d,} and post-set
t° = {py P2 ---» Po} ), NEXL €VENtS OCcur simultaneously:
(i) Tokens from its pre-set are removed,

Og 0°t M*(q;) = 0
(i) One token is added to each place of its post-set;
Up; O t° M+(pj) =
(i) Each new token deposited itf  has a token value, which is calculated evaluating the
respective output function with the token valuesStof
Op; Ot° Vo, = f(vql,qu,..., 0,)
(iv) Each new token added 1td has & token tifne, which |§ the sum of the respective function
delay and the trigger time of the transition;
Op;0t° 1, = fd;+tt*

Note that only enabled transmons maykflre The execution time of the functionality of that

transition is considered in the time tag of the new tokens.

3.4. Hierarchy

Definition 13. A transitiont and its surrounding places (input and output places) can be sub-
stituted by a Petri net structure with the same functionality. Similarly, a Petri net structure can
be abstracted to a single transition keeping the same net functionality.

This feature allows several levels of granularity as long as transitions might be refined and
a more detailed representation may be gotten. Higher levels of abstraction can also be mod-
eled through hierarchical composition.

4. EXAMPLE

This example will not show all the power of the model and its capabilities but rather
explain the different definitions aforementioned. The purpose of this very simple net is to
illustrate the semantics of our model. The net represents a multiplier which takes two positive
integers and produces as output the result of multiplying those numbers. It implements a sim-
ple algorithm of iterative sums.

The PRES model of this multiplier is shown in Figure 1. We also show the C description
corresponding to this algorithm. Like in classical Petri nets, places are graphically represented
by circles, transitions by boxes, and arcs by arrows. In this exampte{ A B X Y, Z G
and T = {t;,t,,ts t,} . In this particular case, we consider that the function delays for a
given transition are the same, so we can call it transition tina@d it is inscribed to the left of
transition boxes. We have borrowed notation from Coloured Petri nets [5] to graphically



express output functions and guards. We use inscriptions on the arcs: given a transition, its
output functions (inscribed on output arcs) are captured as expressions in terms of the vari-
ables written on its input arcs. Guards are enclosed in square brackets and are also functions of
the variables on input arcs.

int mult(int a,int b) Q e
{
int x,y,z;
X=a;
y=b; a b

z2=0;
while (y>0) { @
2=7+X; A

=y-1;
}yy 0

return z;

c=mult(a,b); =

(@) (b)
Figure 1. Multiplier: (a) algorithm; (b) PRES.

Figure 2 shows the behavior of the net for a initial markig (My(A) = My(B) = 1).
Marked places are shaded and enabled transitions are highlighted using thicker lines. Token
information is also shown in marked places. In this particular example, all places are associ-
ated with a token type integer, which means that, when marked, a place will hold a token
whose value is of type integer. To explain the dynamic behavior of this net, we will assume
that when several transitions are enabled simultaneously, the one that has minimum trigger
time will fire in the next step. If the time trigger of two or more enabled transitions is the same,
any of them may fire (one at each step). Let us assume, for the initial makRind5, 0) and
kB = (2, 0). Initially, transitiond, andt, are enabled and both have trigger tith& = tt,* = 0.

Then eithet, ort, may fire.

Firing t; produces the marking shown in Fig. 2(b), whigfe= (5, 2),k? = (0, 2) anck® = (2,

0). Value and time of the new tokens are calculated following Definition 12. It is easy to see
that, for this particular system, firing transitions with equal trigger time in any order does not
affect the final result.

Fig. 2(c) illustrates some interesting aspects of PRES. Even if each place in the prégset of
has a token, the transition is not enabled because its guard is not asserted. For the marking in
this figure,t; is the only enabled transition so it will be fired in the next step. Looking at the
token time of tokens irft; , we note that they have different time stamps<(r . = 2 ,
ro = 1). Hencet; may not fire beforét;* = max(r.r.rz) =2 .

After t; fires the marking changes into the one shown in Fig. 2(d). Let us analyze, for
instance, the new token iy k* = (5, 8). The arctg, Z) has the inscription “z+x”, so that the
token value inZ is calculated adding the previous token values in plagesnd Z
(Vz = V+Vx = 0+5 =5). The token time inZ is determined as the sum of transition
time and trigger time af, r . = rt;+ttg* = 6+2 = 8.

Finally, Fig. 2(f) shows the output result of the multiplication (10) and the token time
shows the total time needed for the operation (18 time units). The net is not live in this config-
uration because it is not possible to fire any transition. If this multiplier is part of a larger sys-
tem, the token in plac€ will likely be consumed and new tokens will be addeddandB,
allowing the net to perform its function again.
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Figure 2. Dynamic Behavior of the Multiplier.

The hierarchy concept is shown in Figure 3. The original net may be abstracted to a higher
level net with a single transition. These nets are equivalent. Similarly, transitions may be
refined to obtain a more detailed representation of the system.



Figure 3. Equivalent PRES Structures.

5. CONCLUSIONS AND FUTURE WORK

We have presented a design representation for embedded systems. It allows to capture rele-
vant information characteristic of such systems. We also presented an example in order to
illustrate the modeling capabilities of this representation.

The basic concepts and definitions of our representation have been addressed in this work.
Further applications and design methodologies based on this model will be presented later. In
the future we will use this representation to develop a formal approach to specification, verifi-
cation and transformation-based synthesis of heterogeneous electronic systems.
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