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ABSTRACT

Design of embedded systems must be based on formal representations so that the sy
process can be carried out systematically. We present PRES, a Petri net based model su
embedded systems. It can represent several levels of detail using the feature of hierar
decomposition. This model also includes an explicit notion of time. In PRES tokens hold
mation and transitions, when fired, perform transformation of data. Concurrency and seq
tial behavior might be naturally represented in PRES. The representation is formally de
and an example explains different concepts and the semantics of the model.

1. INTRODUCTION

Most modern electronic systems consist of dedicated hardware elements and softwa
ning on specific platforms. Such systems are obviously heterogeneous, i.e. are compo
elements with inherent distinct properties. At the same time, such systems are typ
embedded, that is, they are part of larger systems and interact continuously with their en
ment. Design of hardware/software systems is a complex task. We advocate design
based on formal models so that the synthesis from specification to implementation can b
ried out systematically. In order to devise systems that meet the performance, cost and re
ity goals, the design process should be founded upon a clear representation that allo
accomplish the design cycle, based on formal notation. Modeling is an essential issue
systematic design methodology.

In this work, we propose a model suited to embedded systems. The model, called Pe
based Representation for Embedded Systems (PRES), is an extension to classical Petri
explicitly captures time information, allows representation at different levels of granula
and supports hierarchical decomposition. Another feature of this model is its expressiv
since the tokens might carry information. Concurrency and sequential behavior are also
tured by PRES. As any Petri net based model, PRES is inherently asynchronous.

The rest of this paper is structured as follows. Section 2 addresses related work in th
of modeling for embedded systems, emphasizing on the extensions to Petri net
approaches similar to PRES. The model is formally defined in Section 3. The semantics
model is described in Section 4 through a simple example. Finally, some conclusions ar
lined in Section 5.

2. RELATED WORK

Many models have been proposed to represent digital systems. These models encom
broad range of styles, characteristics and application domains. Particularly in the field of
ware/software codesign, a variety of models has been developed and used for system re
tation.
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Many of the computational models used for HW/SW systems are based on extensio
finite-state machines, Petri nets, discrete-event systems, data-flow graphs, commun
processes, among others.

 2.1. Extensions to Petri Nets
Petri nets (PN) have been widely used for system modeling in many fields of science

three decades. We do not address here the basic concepts of PNs, but instead we conce
this subsection on the main extensions proposed. In our discussion we assume that the
has a basic knowledge of PNs. [8], [9] are suggested for further reading on PN theory.

Two important intrinsic features of Petri nets are their concurrency and asynchro
nature. These features together with the generality of PNs and their flexibility have stimu
their applications in different areas. However, several drawbacks of the classical PN m
have been pointed out along the years.

A major weakness of PNs is the so-called state explosion problem. Petri nets te
become large even for relatively small systems. The lack of hierarchical decomposition m
it difficult to specify and understand complex systems using the conventional model. To
come this disadvantage, the classical PN model has been extended introducing the con
hierarchy [13], [1]. Single elements (transitions and places) may represent a more de
structure.

The conventional PN model lacks the notion of time. However in many embedded app
tions time is a critical factor. Several extensions have been proposed in order to capture
aspects: timed Petri nets [10], time Petri nets [7], and timed place-transition nets [11]. I
first approach, timed PNs, an execution time is associated with each transition, repres
the finite duration of a firing. Unlike classical Petri nets, the transition is not instantaneou
the firing rule is modified to make a transition to be fired as soon as it is enabled. In time
two values of time are associated with each transition: the minimum and maximum time (
ing from the moment the transition has been enabled) in which the transition has to fire, u
it is disabled by the firing of another transition. Finally, in timed place-transition nets, un
the former cases, the time information is associated to places instead of transitions. Th
parameter of each place has the meaning of a delay, so that a token must remain in the
certain interval of time before it may be removed.

Classical Petri nets lack expressiveness for formulating computations as long as toke
considered “black dots”. No value is transferred by communications, limiting the mode
power. Allowing tokens to carry information makes it possible to obtain more succinct re
sentations suitable for practical applications. The extensions that include this new dime
to PNs are the so-called high-level Petri nets [4]. High-level PNs include predicate/trans
nets and coloured Petri nets. The former introduce the concept of individuals with chan
properties and relations [3]. Places (predicates) represent variable properties or relati
individuals, and transitions depict changes of those properties. Graphically, places and
tions are labeled with identifiers which define the net characteristics. Coloured Petri nets
been introduced in [5] and a strong mathematical theory has been built up around them.
sitions describe actions and tokens carry data values. The arcs between transitions/plac
attached expressions that describe the behavior of the net. Coloured PNs permit hiera
constructions. Although time is not explicitly defined in the model, computer tools develo
around coloured PNs allow tokens to have time stamps during simulation.

2.2. Modeling Embedded Systems using Petri Nets
As stated before, many applications in distinct areas have successfully used PNs as a

sentation model. Due to their intrinsic characteristics and particular extensions to the co
tional model, PNs might be an interesting representation for embedded systems. We add



in the
ware
tation
arts:
e and
ormat
le and
ociated
ling
icate/

e con-

edded
detail
time.
data.

s

o

tail in

ned

.

e of

of
ctures
nc-
this section some known approaches to the modeling of such systems using Petri nets
frame of HW/SW codesign. Stoy [12] presents a modeling technique for hardware/soft
systems. This Petri net representation is based on a parallel model with data-control no
and provides timing information. The model consists of two different but closely related p
control unit and computational/data part. This representation allows to capture hardwar
software in a consistent way. Maciel and Barros [6] use timed Petri nets as intermediate f
for the partitioning process: an occam description constitutes the input of the design cyc
is translated into the proposed representation. Timed PNs, in this approach, are ass
with dataflow augmented with time information. The definition of sub-nets permits hand
hierarchies through special places called ports. A combination of time Petri nets and pred
transition nets augmented with object-oriented concepts is utilized by Esseret al. [2]. Tokens
carry data and transitions have associated functions, condition guards, and also tim
straints.

3. PETRI NET BASED REPRESENTATION MODEL

In the following we present PRES, a Petri net based model, aimed to represent emb
systems. As mentioned before, it can be used to model a system at different levels of
using the feature of hierarchical decomposition. The model includes an explicit notion of
In PRES tokens hold information and transitions, when fired, perform transformation of
Concurrency and sequential behavior are also naturally represented in PRES.

3.1. Basic Definitions
Definition 1. A Petri Net based Representation for Embedded Systemsis a five-tuple

 where
 is a finite non-empty set ofplaces;

 is a finite non-empty set oftransitions;
is a finite non-empty set ofinput arcswhich define the flow relation between place

and transitions;
is a finite non-empty set ofoutput arcswhich define the flow relation between

transitions and places;
M0 is the initialmarking of the net (see Definition 3).

Defined in this way, this structure is anordinary Petri net, which means that there exist n
multiple arcs, if any, from a placepi to a transitiontj (or from a transitionti to a placepj). Addi-
tionally, P andT must be disjoint, i.e. .

Properties, characteristics, and behavior of PRES will be introduced and defined in de
what follows.
Definition 2. A token is a pair  where
vk is thetoken value. This value may be of any type, e.g. boolean, integer, etc., or user-defi
type of any complexity (for instance a structure, a set, a record);
rk is thetoken time, a finite positive real number representing the time stamp of the token

Let K be the set of all possible token types for a given system.
Definition 3. A markingis a function that denotes the absence or presenc
tokens in the places of the net.

For our purposes, we will only considerboundedPetri nets, i.e. nets where the number
tokens in each place does not exceed a finite number. Specifically, we aim to use stru
which aresafeor 1-bounded. Since the intended Petri net in this model must be safe, this fu
tion M might also express the number of tokens in each place. We will say that a placep is
markedif . Note that a markingM implicitly assigns one tokenk to each marked
place.

PRES P T I O M0, , , ,( )=
P p1 p2 … pm, , ,{ }=
T t1 t2 … tn, , ,{ }=
I P T×⊆

O T P×⊆

P T∩ ∅=

k vk r k,( )=

M : P 0 1,{ }→

M p( ) 1=
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We introduce the following notation which will be useful in defining the dynamic behav
of PRES: when a placep is marked, denotes the token present inp. Thus, the token value
of the token in a marked placep will be , and the token time of the token inp will be .
Definition 4. The type function is a relation that associates a place with a tok
type. Thus, we will callτ(p) the token type associated with placep.

It is worth to point out that the token type related to a certain place is fixed, that is, it i
intrinsic property of that place and will not change during the dynamic behavior of the n

3.2. Description of Systems
Definition 5. Thepre-setof a transition is the set ofinput placesof
t. Similarly, thepost-setof a transition is the set ofoutput placesof
t.
Definition 6. For every place in the post-set of a transitiont, there exists anoutput function
associated tot. Let us consider the transitiont with its pre-set  and post-set . Formally,

with  and .
Output functions are very important when describing the behavior of the system to be

eled. They allow systems to be modeled at different levels of granularity with transitions
resenting simple arithmetic operations or complex algorithms.
Definition 7. For every output function associated to a transitiont, there exists afunction
delay fd, a finite positive real number, which represents the execution time (delay) of
function. Formally,

with the set of positive reals. If no function delay is explicitly defined, it will be assum
0.
Definition 8. The guard Gt of a transitiont is the set of booleanconditionsthat must be
asserted in order to enable that transition, when all its input places hold tokens. Aconditionof
a transition

is function of the token values in the places of the pre-set oft ( ).
The guardGt of t is the conjunction of all conditions of that transition.There is no restr

tion in the number of conditions for a certain transition. Ifall conditions are assertedGt = 1,
otherwiseGt = 0. If no guard is explicitly defined, it will be assumed constantly asserted.
Definition 9. Every transition has afunctionality. The functionality of a transitiont is defined
in terms of:
(i) Its output functions;
(ii) Its function delays;
(iii) Its guard.

Intuitively, this functionality describes the “behavior” of the transition when it is fire
Unlike the classical Petri net model, each token holds a value and a time tag. When a tran
t is fired the markingM will generally change by removing all the tokens from the pre-set ot
and depositing one token into each element of the post-set oft. These tokens added to hav
values and time stamps which depend on the previous tokens in  and the functionalityt.

3.3. Dynamic Behavior
Definition 10. A transitiont is said to beenabledif all places of its pre-set are marked, its ou
put places different from the input ones1 are empty, and its guard is asserted. Formally, fo
given markingM, a transition  isenabled iff (if and only if)

1. A place may be, at the same time, input and output of a transition.

kp

v
kp r

kp

τ : P K→

°t p P p t,( ) I∈∈{ }=
t° p P t p,( ) O∈∈{ }=

t°
°t t°

pj t°∈∀ f j : τ q1( ) τ q2( ) … τ× qa( )×× τ pj( )→∃
°t q1 q2 … q, a, ,{ }= t° p1 p2 … p, b, ,{ }=

f j∀ fd j ℜ+∈∃
ℜ+

condi : τ q1( ) τ q2( ) … τ× qa( )×× 0 1,{ }→
°t q1 q2 … q, a, ,{ }=

t°
°t

t T∈
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If the transitiont is enabled, we will note it ast*. Then, the subset of enable transitions, fo
certain markingM, will be .
Definition 11. Every enabled transitiont* has atrigger time tt* that represents the time instan
at which the transition may fire. Each token in the pre-set of an enabled transition has, in
eral, a different token time. From the point of view of time, the transition could not fire be
the tokens are ready. The concept of trigger time is needed to describe how token tim
handled when the transition is fired. The trigger time of an enabled transition is the maxi
token time of the tokens in its input places,

where the pre-set oft* is .
Note that this trigger time varies during the execution of the net and, if the transition is

enabled, it does not make sense.
Definition 12. Thefiring of an enabled transition changes the markingM into a new marking
M+. As a result of firing the transitiont (with pre-set and post-se

), next events occur simultaneously:
(i) Tokens from its pre-set are removed;

(ii) One token is added to each place of its post-set;

(iii) Each new token deposited in has a token value, which is calculated evaluating
respective output function with the token values of ;

(iv) Each new token added to has a token time, which is the sum of the respective fun
delay and the trigger time of the transition;

Note that only enabled transitions may fire. The execution time of the functionality of
transition is considered in the time tag of the new tokens.

3.4. Hierarchy
Definition 13. A transitiont and its surrounding places (input and output places) can be s
stituted by a Petri net structure with the same functionality. Similarly, a Petri net structure
be abstracted to a single transition keeping the same net functionality.

This feature allows several levels of granularity as long as transitions might be refined
a more detailed representation may be gotten. Higher levels of abstraction can also be
eled through hierarchical composition.

4. EXAMPLE

This example will not show all the power of the model and its capabilities but ra
explain the different definitions aforementioned. The purpose of this very simple net
illustrate the semantics of our model. The net represents a multiplier which takes two po
integers and produces as output the result of multiplying those numbers. It implements a
ple algorithm of iterative sums.

The PRES model of this multiplier is shown in Figure 1. We also show the C descrip
corresponding to this algorithm. Like in classical Petri nets, places are graphically repres
by circles, transitions by boxes, and arcs by arrows. In this example
and . In this particular case, we consider that the function delays fo
given transition are the same, so we can call it transition timert and it is inscribed to the left of
transition boxes. We have borrowed notation from Coloured Petri nets [5] to graphi

qi °t M qi( )∈∀ 1=[ ] pj t°, pj °t M pj( )∉∈∀ 0=[ ] Gt 1=[ ]∧ ∧

T* t T t*∈{ }=

tt* max r
k

q1
r

k
q2

… r
k

qa
, , ,( )=

°t q1 q2 … q, a, ,{ }=

°t q1 q2 … q, a, ,{ }=
t° p1 p2 … p, b, ,{ }=

qi °t M+ qi( )∈∀ 0=

pj t° M+ pj( )∈∀ 1=
t°

°t
pj t°∈∀ v

k
pj

f j v
k

q1
v

k
q2

… v
k

qa
, , ,( )=

t°

pj t°∈∀ r
k

pj
f d j tt*+=

P A B X Y Z C, , , , ,{ }=
T t1 t2 t3 t4, , ,{ }=



on, its
vari-

tions of

Token
soci-

oken
ume
trigger
me,

see
not

t of
king in
the

,

, for

n

me
nfig-
sys-
express output functions and guards. We use inscriptions on the arcs: given a transiti
output functions (inscribed on output arcs) are captured as expressions in terms of the
ables written on its input arcs. Guards are enclosed in square brackets and are also func
the variables on input arcs.

Figure 1. Multiplier: (a) algorithm; (b) PRES.

Figure 2 shows the behavior of the net for a initial markingM0 (M0(A) = M0(B) = 1).
Marked places are shaded and enabled transitions are highlighted using thicker lines.
information is also shown in marked places. In this particular example, all places are as
ated with a token type integer, which means that, when marked, a place will hold a t
whose value is of type integer. To explain the dynamic behavior of this net, we will ass
that when several transitions are enabled simultaneously, the one that has minimum
time will fire in the next step. If the time trigger of two or more enabled transitions is the sa
any of them may fire (one at each step). Let us assume, for the initial marking,kA = (5, 0) and
kB = (2, 0). Initially, transitionst1 andt2 are enabled and both have trigger timett1* = tt2* = 0.
Then eithert1 or t2 may fire.

Firing t1 produces the marking shown in Fig. 2(b), wherekX = (5, 2),kZ = (0, 2) andkB = (2,
0). Value and time of the new tokens are calculated following Definition 12. It is easy to
that, for this particular system, firing transitions with equal trigger time in any order does
affect the final result.

Fig. 2(c) illustrates some interesting aspects of PRES. Even if each place in the pre-set4
has a token, the transition is not enabled because its guard is not asserted. For the mar
this figure,t3 is the only enabled transition so it will be fired in the next step. Looking at
token time of tokens in , we note that they have different time stamps (

). Hence,t3 may not fire before .
After t3 fires the marking changes into the one shown in Fig. 2(d). Let us analyze

instance, the new token inZ, kZ = (5, 8). The arc (t3, Z) has the inscription “z+x”, so that the
token value in Z is calculated adding the previous token values in placesX and Z
( ). The token time inZ is determined as the sum of transitio
time and trigger time oft3, .

Finally, Fig. 2(f) shows the output result of the multiplication (10) and the token ti
shows the total time needed for the operation (18 time units). The net is not live in this co
uration because it is not possible to fire any transition. If this multiplier is part of a larger
tem, the token in placeC will likely be consumed and new tokens will be added toA andB,
allowing the net to perform its function again.

t1

a

B

t2

b

ba

Y

A

X

t3 t4

y y

y-1

[y=0][y>0]

Z

x x

x

z

zz+x

0

C

z

2 1

6 4

int mult(int a,int b)
{
   int x,y,z;
   x=a;
   y=b;
   z=0;
   while (y>0) {
      z=z+x;
      y=y-1;
   }
   return z;
}

c=mult(a,b);

(a) (b)

°t3 r
kX r

kZ 2= =
r

kY 1= tt3* max r
kX r

kY r
kZ, ,( ) 2= =

v
kZ v

kZ v
kX+ 0 5+ 5= = =

r
kZ rt 3 tt3*+ 6 2+ 8= = =
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Figure 2. Dynamic Behavior of the Multiplier.

The hierarchy concept is shown in Figure 3. The original net may be abstracted to a h
level net with a single transition. These nets are equivalent. Similarly, transitions ma
refined to obtain a more detailed representation of the system.
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Figure 3. Equivalent PRES Structures.

5. CONCLUSIONS AND FUTURE WORK

We have presented a design representation for embedded systems. It allows to captu
vant information characteristic of such systems. We also presented an example in or
illustrate the modeling capabilities of this representation.

The basic concepts and definitions of our representation have been addressed in this
Further applications and design methodologies based on this model will be presented la
the future we will use this representation to develop a formal approach to specification, v
cation and transformation-based synthesis of heterogeneous electronic systems.
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