
Journal of Systems Architecture 49 (2003) 571–598

www.elsevier.com/locate/sysarc
Modeling and formal verification of embedded
systems based on a Petri net representation

Luis Alejandro Cort�ees *, Petru Eles, Zebo Peng

Department of Computer and Information Science, Link€ooping University, S-581 83 Link€ooping, Sweden
Abstract

In this paper we concentrate on aspects related to modeling and formal verification of embedded systems. First, we

define a formal model of computation for embedded systems based on Petri nets that can capture important features of

such systems and allows their representation at different levels of granularity. Our modeling formalism has a well-

defined semantics so that it supports a precise representation of the system, the use of formal methods to verify its

correctness, and the automation of different tasks along the design process. Second, we propose an approach to the

problem of formal verification of embedded systems represented in our modeling formalism. We make use of model

checking to prove whether certain properties, expressed as temporal logic formulas, hold with respect to the system

model. We introduce a systematic procedure to translate our model into timed automata so that it is possible to use

available model checking tools. We propose two strategies for improving the verification efficiency, the first by applying

correctness-preserving transformations and the second by exploring the degree of parallelism characteristic to the

system. Some examples, including a realistic industrial case, demonstrate the efficiency of our approach on practical

applications.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Embedded systems; Modeling; Formal verification; Petri nets; Model checking
1. Introduction

Embedded systems are becoming pervasive in

our everyday life. These systems have many ap-

plications including automotive and aircraft con-

trollers, cellular phones, network switches,

household appliances, medical devices, and con-

sumer electronics.
* Corresponding author. Tel.: +46-13-284046; fax: +46-13-

284499.

E-mail address: luico@ida.liu.se (L.A. Cort�ees).

1383-7621/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/S1383-7621(03)00096-1
Embedded systems are part of larger systems

and typically interact continuously with their en-
vironment. These systems generally include both

software and hardware elements, that is, pro-

grammable processors and hardware components

like application specific integrated circuits (ASICs)

and field programmable gate arrays (FPGAs).

Besides their heterogeneity, embedded systems are

characterized by their dedicated function, real-

time behavior, and high requirements on reliability
and correctness [4].

Designing systems with such characteristics is a

difficult task. Moreover, the ever increasing com-

plexity of embedded systems combined with small
ed.

mail to: luico@ida.liu.se

572 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
time-to-market windows poses great challenges for

the designers.

We argue for design methodologies based on a

model of computation with a well-defined seman-

tics so that the different tasks from specification to

implementation can systematically be carried out.
A sound representation allows one to unambigu-

ously capture the functionality of the system,

verify its correctness with respect to certain desired

properties, reason formally about the refinement

and steps during the synthesis process, and use

CAD tools in order to assist the designer. There-

fore, the use of a formal representation in em-

bedded systems design is a must.
Many models have been proposed to represent

embedded systems. The reader is referred to [13,27]

for surveys on this topic. These models encompass

a broad range of styles, characteristics, and ap-

plication domains, and include extensions to finite

state machines, data flow graphs, communicating

processes, and Petri nets, among others. The

classical Finite State Machine (FSM) representa-
tion is probably the most well-known model used

for describing control systems. One of the disad-

vantages of FSMs is the exponential growth of the

number of states in the model as the system com-

plexity rises. Hence a number of extensions to the

classical FSM model have been suggested, such as

Codesign Finite State Machines [6], FSM with

datapath [17], Statecharts [20], and the FunState
model [38], just to mention a few. On the other

hand, dataflow graphs are quite popular when

modeling data-dominated systems. Computation-

ally intensive systems might conveniently be rep-

resented by a directed graph where the nodes

describe computations and the arcs represent the

order in which the computations are performed.

However, the conventional dataflow graph model
is inadequate for representing the control aspects

of systems. Extensions aimed at tackling this

problem include Dataflow Process Networks [28]

and Conditional Process Graphs [14].

Petri nets (PN) are an interesting model and

have widely been applied in various areas of sci-

ence [32,33]. The mathematical formalism devel-

oped over the years, which defines its structure and
firing rules, has made Petri nets a well-understood

and powerful model. A large body of theoretical
results and practical tools have been developed

around Petri nets. Several drawbacks, however,

have been pointed out, especially when it comes to

modeling embedded systems: (a) Petri net models

tend to become large even for relatively small

systems. The lack of hierarchical composition
makes it difficult to specify and understand com-

plex systems using the conventional model. (b) The

classical PN model lacks the notion of time.

However in many embedded applications time is a

critical factor. (c) Uninterpreted Petri nets lack

expressiveness for formulating computations as

long as tokens are considered as ‘‘black dots’’.

Several formalisms have been proposed in different
contexts in order to overcome the problems cited

above: timing semantics have been introduced to

the PN model in different flavors, the most sig-

nificant being those described in [31,34,36]; Col-

ored Petri nets (CPN) [23] allow tokens to have

‘‘colors’’, that is, data attached to them. The arcs

between transitions/places have expressions that

describe the behavior of the net. Thus transitions
describe actions and tokens carry values. The

problem with CPN is that timing is not explicitly

defined in the model. It is possible to treat time as

any other value attached to tokens but, since there

is no semantics for the order of firing along the

time horizon, timing inconsistencies can occur.

Petri nets allow us to express concurrency, se-

quential actions, non-determinism, synchroniza-
tion, and other features desirable while designing

digital systems. In this paper we define a model of

computation for embedded systems design.

PRES+, short for Petri net based Representation

for Embedded Systems, is an extension to the

classical Petri nets model that explicitly captures

timing information, allows systems to be repre-

sented at different levels of granularity, and im-
proves expressiveness by allowing tokens to carry

information [11]. Furthermore, PRES+ supports

the concept of hierarchy. Our modeling formalism

has a sound semantics and supports a precise

representation of the system, the use of mathe-

matically-based techniques for verifying the cor-

rectness, and the automation of different tasks

during the design process. Other models that ex-
tend Petri nets and have been used in the design of

embedded systems include the ones presented in

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 573
[16,30,35,37,41]. However, all these models lack

either an explicit notion of time or expressiveness

for formulating computations.

Correctness plays a key role in many embedded

applications. As we become more dependent on

computer systems, the cost of a computer failure
can be extremely high, in terms of loss of both

human lives and money. In safety-critical systems,

for instance, reliability and safety are the most

important criteria. Traditional validation tech-

niques, like simulation and testing, are neither

sufficient nor viable to verify the correctness of

such systems. Formal verification is becoming a

practical way to ensure the correctness of designs
by complementing simulation and testing.

Formal methods are analytical and mathemat-

ical techniques intended to formally prove that the

implementation of a system conforms its specifi-

cation. Formal methods have extensively been

used in software development [18] as well as in

hardware verification [24]. However, formal veri-

fication techniques are not yet commonly used in
embedded systems design. Nonetheless, some ver-

ification approaches have recently been proposed:

systems represented as Codesign Finite State Ma-

chines (CFSMs) are verified by obtaining the state

automaton equivalent to the CFSM and the au-

tomaton whose language is precisely the sequences

that meet the specification [2]. The problem is then

reduced to checking language containment be-
tween two automata, where verification requires

showing that the language of the system automa-

ton is contained in the language of the specifica-

tion automaton. The drawback of the approach is

that it is not possible to check explicit timing

properties, only order of events. Most of the re-

search on continuous-time model checking is

based on the Timed Automata (TA) model [1].
Efficient algorithms have been proposed to verify

systems represented as TA and tools, such as

UPPAALUPPAAL [40] and KRONOSKRONOS [26], have successfully

been developed and tested on realistic examples.

However, TA is a fairly low-level representation.

Another approach is based on the Dual Transi-

tions Petri Net (DTPN) model [42]. The DTPN

model is transformed into a Kripke structure and
then BDD-based symbolic model checking is used

to determine the truth of Linear Temporal Logic
(LTL) and Computation Tree Logic (CTL) for-

mulas. Since there is no explicit notion of time in

DTPN, timing requirements cannot be verified

though.

A second major contribution of this paper is an

approach to the formal verification of real-time
embedded systems. It allows us to formally reason

about embedded systems represented in PRES+.

Model checking is used to automatically determine

whether the system model satisfies its required

properties expressed in temporal logics. A sys-

tematic procedure to translate PRES+ models into

TA is proposed so that it is possible to make use of

existing model checking tools. Though PRES+ is a
very general representation, for the sake of verifi-

cation, we make some assumptions on the system

model that trade expressiveness for analysis effi-

ciency (see Section 4). Yet we deal with quantita-

tive timing properties and the underlying model of

computation supports representations at different

levels of granularity so that verification is possible

at several abstraction levels.
The rest of this paper is organized as follows.

Section 2 presents the formal definition of the

model that we use to represent embedded systems

and describes its main features. In Section 3 we

define several notions of equivalence based on our

modeling formalism and introduce the notion of

hierarchy for such a model. Section 4 describes our

approach to formal verification of embedded sys-
tems and presents a translation procedure from

our Petri net based representation into TA. A

transformational approach aimed at improving

verification efficiency is introduced in Section 5. In

Section 6 we discuss how further improvements

can be achieved by exploiting information on the

concurrency degree of the system. Section 7 pre-

sents results that provide experimental support for
our approach. Finally, some conclusions are

drawn in Section 8.
2. The design representation

In order to devise embedded systems, the design

process must be based upon a sound model of
computation that captures important features of

such systems. The notation we use to model

574 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
embedded systems is an extension to Petri nets,

called PRES+ (Petri Net based Representation for

Embedded Systems). This section presents the

formal definition of PRES+.

2.1. Basic definitions

Definition 2.1. A PRES+ model is a five-tuple

N ¼ ðP ; T ; I ;O;M0Þ where
P ¼ fp1; p2; . . . ; pmg is a finite non-empty set of

places;
T ¼ ft1; t2; . . . ; tng is a finite non-empty set of

transitions;
I � P � T is a finite non-empty set of input arcs
which define the flow relation between places

and transitions;

O � T � P is a finite non-empty set of output
arcs which define the flow relation between

transitions and places;

M0 is the initial marking of the net (see Defini-

tion 2.4).

We use the example of Fig. 1 in order to illus-

trate the definitions of the model presented in this

section. Like in classical Petri nets, places are

graphically represented by circles, transitions by

boxes, and arcs by arrows. For this example, we

have P ¼ fpa; pb; pc; pd ; peg, T ¼ ft1; t2; t3; t4; t5g,
I ¼ fðpa; t1Þ; ðpb; t1Þ; ðpc; t2Þ; ðpd ; t3Þ; ðpd ; t4Þ; ðpe; t5Þg,
and O ¼ fðt1; pcÞ; ðt1; pdÞ; ðt2; paÞ; ðt3; pbÞ; ðt4; peÞ;
ðt5; pbÞg.

Definition 2.2. A token is a pair k ¼ hv; ri where
v is the token value. The type of this value is

referred to as token type;
1a+b

t 5
e

t2

pa pb

cp

c-1

d

pet

p

[d>0]-d

t 4
d+

2
[d

<0
]

< >3,0 < >1,0

3t

a b

d

d

e

c

[1,1.7]

2

[1,2]

[2,4]

[3
,4

]

Fig. 1. A PRES+ model.
r is the token time, a non-negative real number

representing the time stamp of the token.

The set K denotes the set of all possible token

types for a given system.

A token value may be of any type, e.g. boolean,
integer, etc., or user-defined type of any complex-

ity (for instance a structure, a set, or a record). A

token type is defined by the set of possible values

that the token may take. Thus K is a set of sets.

For the initial marking of the net shown in Fig.

1, for instance, in place pa there is a token ka with
token value va ¼ 3 and token time ra ¼ 0.
Definition 2.3. The type function s : P ! K asso-

ciates every place p 2 P with a token type. sðpÞ
denotes the set of possible values that tokens may

bear in p. The set of possible tokens in place p is
given by Ep � fhv; rijv 2 sðpÞ and r 2 Rþ

0 g.
E ¼

S
p2P Ep denotes the set of all tokens.

It is worth pointing out that the token type

related to a certain place is fixed, that is, it is an

intrinsic property of that place and will not change

during the dynamic behavior of the net. For the

example given in Fig. 1, sðpÞ ¼ Z for all p 2 P , i.e.
all places have token type integer. Thus the set of
all possible tokens in the system is E � fhv; rij
v 2 Z and r 2 Rþ

0 g.
Definition 2.4. A marking M is an assignment of

tokens to places of the net. The marking of a place

p 2 P , denoted MðpÞ, can be represented as a

multi-set 1 over Ep. For a particular marking M , a

place p is said to be marked iff MðpÞ 6¼ ;.

The initial marking M0 in the net of Fig. 1
shows pa and pb as the only places initially marked:
M0ðpaÞ ¼ fh3; 0ig and M0ðpbÞ ¼ fh1; 0ig, whereas
M0ðpcÞ ¼ M0ðpdÞ ¼ M0ðpeÞ ¼ ;.
1 A multi-set or bag is a collection of elements over some

domain in which, unlike a set, multiple occurrences of the same

element are allowed. For example, fa; b; b; bg is a multi-set over
fa; b; cg.

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 575
Definition 2.5. The pre-set �t ¼ fp 2 P jðp; tÞ 2 Ig
of a transition t 2 T is the set of input places of t.
Similarly, the post-set t� ¼ fp 2 P jðt; pÞ 2 Og of a

transition t 2 T is the set of output places of t. The
pre-set �p and the post-set p� of a place p 2 P are
given by �p ¼ ft 2 T jðt; pÞ 2 Og and p� ¼ ft 2
T jðp; tÞ 2 Ig respectively.

Definition 2.6. All output places of a given tran-

sition have the same token type, that is, p; q 2 t�)
sðpÞ ¼ sðqÞ.

2.2. Description of functionality

Definition 2.7. For every transition t 2 T there

exists a transition function f associated to t, that is,
for all t 2 T there exists f : sðp1Þ � sðp2Þ � � � � �
sðpaÞ ! sðqÞ where �t ¼ fp1; p2; � � � ; pag and q 2 t�.

Transition functions are used to capture the

functionality of the system to be modeled. They
allow systems to be modeled at different levels of

granularity with transitions representing simple

arithmetic operations or complex algorithms. In

Fig. 1 we inscribe transition functions inside tran-

sition boxes: the transition function associated to

t1, for example, is given by f1ða; bÞ ¼ aþ b. We use

inscriptions on the input arcs of a transition in

order to denote the arguments of its transition
function.

Definition 2.8. For every transition t 2 T , there

exist a minimum transition delay d� and a maxi-
mum transition delay dþ, which are non-negative

real numbers such that d� 6 dþ and represent, re-

spectively, the lower and upper limits for the exe-

cution time of the function associated to the
transition.

Referring again to Fig. 1, the minimum transi-

tion delay of t2 is d�2 ¼ 1, and its maximum tran-

sition delay is dþ2 ¼ 1:7 time units. Note that when
d� ¼ dþ ¼ d, we just inscribe the value d close to

the respective transition, like in the case of the

transition delay d5 ¼ 2.

Definition 2.9. A transition t 2 T may have a

guard G associated to it. The guard of a transition t
is a predicate G : sðp1Þ � sðp2Þ � � � � � sðpaÞ !
f0; 1g where �t ¼ fp1; p2; . . . ; pag.

Note that the guard of a transition t is a func-

tion of the token values in places of its pre-set �t.
For instance, in Fig. 1, d < 0 represents the guard

G4.

2.3. Dynamic behavior

Definition 2.10. A transition t 2 T is bound for a

given marking M , iff all its input places are

marked. A binding b of a bound transition t, with
pre-set �t ¼ fp1; p2; . . . ; pag, is an ordered tuple of

tokens b ¼ ðk1; k2; . . . ; kaÞ where ki 2 MðpiÞ for all
pi 2 �t.

Observe that, for a particular marking M , a

transition may have different bindings. The exis-

tence of a binding is a necessary condition for the

enabling of a transition. For the initial marking
of the net shown in Fig. 1, t1 has a binding

b ¼ ðh3; 0i; h1; 0iÞ. Since t1 has no guard, it is en-

abled for the initial marking (as formally stated in

Definition 2.11).

We introduce the following notation which will

be useful in the coming definitions. Given the

binding b ¼ ðk1; k2; . . . ; kaÞ, the token value of the

token ki is denoted vi and the token time of ki is
denoted ri.

Definition 2.11. A bound transition t 2 T with

guard G is enabled, for a binding b ¼ ðk1;
k2; . . . ; kaÞ, iff Gðv1; v2; . . . ; vaÞ ¼ 1. A transition

t 2 T with no guard is enabled if t is bound.

Definition 2.12. The enabling time et of an enabled
transition t 2 T for a binding b ¼ ðk1; k2; . . . ; kaÞ is
the time instant at which t becomes enabled. et is
given by the maximum token time of the tokens in

the binding b, that is, et ¼ maxðr1; r2; . . . ; raÞ.

Definition 2.13. The earliest trigger time tt� ¼
et þ d� and the latest trigger time ttþ ¼ et þ dþ of

an enabled transition t 2 T , for a binding
b ¼ ðk1; k2; . . . ; kaÞ, are the lower and upper time

limits for the firing of t. An enabled transition

t 2 T may not fire before its earliest trigger time

576 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
tt� and must fire before or at its latest trigger time

ttþ, unless t becomes disabled by the firing of an-

other transition.

Definition 2.14. The firing of an enabled transition
t 2 T , for a binding b ¼ ðk1; k2; . . . ; kaÞ, changes a
marking M into a new marking M 0. As a result of

firing the transition t, the following occurs:

(i) Tokens from its pre-set �t are removed, that

is, M 0ðpiÞ ¼ MðpiÞ þ fkig for all pi 2 �t;
(ii) One new token k ¼ hv; ri is added to each

place of its post-set t�, that is, M 0ðpÞ ¼
MðpÞ þ fkg for all p 2 t�. The token value of

k is calculated by evaluating the transition

function f with token values of tokens in

the binding b as arguments, that is, v ¼
f ðv1; v2; . . . ; vaÞ. The token time of k is the in-
stant at which the transition t fires, that is,
r ¼ tt� where tt� 2 ½tt�; ttþ�;

(iii) The marking of places different from input
and output places of t remain unchanged, that
is, M 0ðpÞ ¼ MðpÞ for all p 2 P n �t n t�.

The execution time of the function of a transi-

tion is considered in the time stamp of the new

tokens. Note that, when a transition fires, all the

tokens in its output places get the same token

value and token time. The token time of a token
represents the instant at which it was ‘‘created’’.

In Fig. 1, transition t1 is the only one initially

enabled (binding (h3,0i, h1,0i)) so that its en-

abling time is 0. Therefore, t1 may not fire before

1 time units and must fire before or at 2 time

units. Let us assume that t1 fires at 1 time units:

tokens h3,0i and h1,0i are removed from pa and

pb respectively, and a new token h4,1i is added to
both pc and pd . At this moment, only t2 and t3 are
enabled (t4 is bound but not enabled because its

guard is not satisfied for the binding (h4,1i)).
Note that transition t2 has to fire strictly before

t3: according to the firing rules, t2 must fire no

earlier than 2 and no later than 2.7 time units,

while t3 is restricted to fire in the interval [3,5].

Fig. 2 illustrates a possible behavior of the
PRES+ model.

To sum up, when used to model embedded

systems, PRES+ has several interesting features to
be highlighted, some of them inherited from the

classical Petri net model:

• PRES+ supports representations at different

levels of granularity because transition func-

tions can express from simple operations to
complex algorithms.

• Since tokens carry information, PRES+ over-

comes the lack of expressiveness of classical Pe-

tri nets, where tokens are considered as ‘‘black

dots’’.

• Time is a critical factor in many embedded

applications. Our model captures timing as-

pects by associating lower and upper limits
to the duration of activities related to transi-

tions and keeping time information in token

stamps.

• Non-determinism may naturally be represented

by PRES+. Non-determinism can be used as a

powerful mechanism to succinctly express the

behavior of certain systems and thus reduce

the complexity of the model.
• Sequential as well as concurrent activities may

easily be expressed in terms of Petri nets.

• Both control and data information might be

captured by a unified design representation.

• PRES+ has been also extended by introducing

the concept of hierarchy (see Section 3.2).

• Furthermore, the model is simple, intuitive, and

can easily be handled by the designer.

PRES+ has been used as the intermediate rep-

resentation of the SAVE design methodology [39]

and various CAD tools supporting the design

process have been developed, among them, a

simulator for PRES+ models in which the transi-

tion functions are described in the functional lan-

guage Haskell.
3. Notions of equivalence and hierarchy for PRES+

Several notions of equivalence for systems

modeled in PRES+ are defined in this section.

Such notions constitute the foundations of a

framework to compare PRES+ models. We also
extend PRES+ by introducing the concept of hi-

erarchy. Hierarchy is a convenient way to struc-

t 5
e

t2

p

c-1

bp

d

p

a

t3

pc

-d

t 4

a+b

p

[d
<0

]

< >

e

< >1,0

[d>0]

d+
2

3,0

a b

d

dc

[1,1.7]

2

[1,2]

[2,4]

[3
,4

]
t1a+b

t
e

t2c-1

pa pb

cp pd

pet [d>0]-d
t 4

d+
2

[d
<0

]

< >4,1 < >4,1

e

5

a b

d

d

e

c

[1,1.7]

2

[1,2]

[2,4]

[3
,4

]

t1a+b

t 5
e

t

3

c-1

pa pb

cp pd

pet3 [d>0]-d

t 4
d+

2
[d

<0
]

< >3,2

< >4,1

1

a b

d

d

e

c

[1,1.7]

2

[1,2]

[2,4]

[3
,4

]

t1a+b

t 5
e

t2c-1

pa pb

cp pd

pet3 [d>0]-d

t 4
d+

2
[d

<0
]

< >3,2 < >

t

2

a b

d

d

e

c

[1,1.7]

2

[1,2]

[2,4]

[3
,4

]

Firing of 3t

1tFiring of

Firing of 2t

after becoming enabled)

after becoming enabled)

(1 time units
after becoming enabled)

(4 time units

(1 time units

4,5

Fig. 2. Illustration of the dynamic behavior of a PRES+ model.

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 577
ture the system so modeling can be done in a

comprehensible form. Without hierarchical com-
position it is difficult to specify and understand

large systems.

578 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
3.1. Notions of equivalence

The synthesis process requires a number of re-

finement steps starting from the initial system

model until a more detailed representation is
achieved. Such steps correspond to transforma-

tions in the system model so that design decisions

are included in the representation.

The validity of a transformation depends on the

concept of equivalence in which it is contrived.

When we claim that two systems are equivalent, it

is very important to understand the meaning of

equivalence. Two equivalent systems are not nec-
essarily the same but have properties that are

common to both of them [10]. Thus a clear notion

of equivalence allows us to compare systems and

point out the properties in terms of which the

systems are equivalent.

The following three definitions introduce basic

concepts to be used when defining the notions of

equivalence for systems modeled in PRES+.

Definition 3.1. A marking M 0 is immediately
reachable from M if there exists a transition t 2 T
whose firing changes M into M 0.

Definition 3.2. The reachability set RðNÞ of a net N
is the set of all markings reachable from M0 and is

defined by:

i(i) M0 2 RðNÞ;
(ii) If M 2 RðNÞ and M 0 is immediately reachable

from M , then M 0 2 RðNÞ.
Definition 3.3. A place p 2 P is said to be an in-
port iff ðt; pÞ 62 O for all t 2 T , that is, there is no
transition t for which p is output place. Similarly, a
place p 2 P is said to be an out-port iff ðp; tÞ 62 I for
all t 2 T , that is, there is no transition t for which p
is input place. The set of in-ports is denoted inP
while the set of out-ports is denoted outP .

Before formally presenting the notions of

equivalence, we first give an intuitive idea of them.
Such notions rely on the concepts of in-ports and

out-ports: the initial condition to establish an

equivalence relation between two nets N1 and N2 is
that both have the same number of in-ports as well

as out-ports. In this way, it is possible to define a

one-to-one correspondence between in-ports and

out-ports of the nets. Thus we can assume the

same initial marking in corresponding in-ports and

then check the tokens obtained in the out-ports
after some transition firings in the nets. It is like an

external observer putting in the same data in both

nets and obtaining output information. If such an

external observer cannot distinguish between N1

and N2, based on the output data he gets, then N1

and N2 are ‘‘equivalent’’. As defined later, such a

concept is called total-equivalence. We also define

weaker concepts of equivalence in which the ex-
ternal observer may actually distinguish between

N1 and N2, but still there is some commonality in

the data obtained in corresponding out-ports, such

as number of tokens, token values, or token times.

We introduce the following notation to be used

in the coming definitions: for a given marking M ,

mðpÞ denotes the number of tokens in place p, that
is, mðpÞ ¼ jMðpÞj.

Definition 3.4. Two nets N1 and N2 are cardinality-
equivalent or N-equivalent iff:

ii(i) There exist bijections fin : inP1 ! inP2 and

fout : outP1 ! outP2 that define one-to-one cor-
respondences between in(out)-ports of N1 and

N2;
i(ii) The initial markings M1;0 and M2;0 satisfy

M1;0ðpÞ ¼ M2;0ðfinðpÞÞ 6¼ ; for all p 2 inP1;

M1;0ðqÞ ¼ M2;0ðfoutðpÞÞ ¼ ; for all q 2 outP1;

(iii) For every M1 2 RðN1Þ such that

m1ðpÞ ¼ 0 for all p 2 inP1;

m1ðsÞ ¼ m1;0ðsÞ for all s 2 P1 n inP1 n outP1
there exists M2 2 RðN2Þ such that

m2ðpÞ ¼ 0 for all p 2 inP2;

m2ðsÞ ¼ m2;0ðsÞ for all s 2 P2 n inP2 n outP2;

m2ðfoutðqÞÞ ¼ m1ðqÞ for all q 2 outP1
and vice versa.

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 579
The above definition expresses that if the same

tokens are put in corresponding in-ports of two N-

equivalent nets, then the same number of tokens

will be obtained in corresponding out-ports. Let us

consider the nets N1 and N2 shown in Fig. 3(a) and

(b) respectively, in which we have abstracted away
information not relevant for the current discussion

like transition delays and token values. For such

nets we have that inP1 ¼ fpa; pbg, outP1 ¼ fpe;
pf ; pgg, inP2 ¼ fpaa; pbbg, outP2 ¼ fpee; pff ; pggg, and
fin and fout are defined by finðpaÞ ¼ paa,
finðpbÞ ¼ pbb, foutðpeÞ ¼ pee, foutðpf Þ ¼ pff , foutðpgÞ ¼
pgg. Let us assume that M1;0 and M2;0 satisfy con-

dition (ii) in Definition 3.4. A simple reachability
analysis shows that there exist two cases mi1 and m

ii
1

in which the first part of condition (iii) in Defini-

tion 3.4 is satisfied: (a) mi1ðpÞ ¼ 1 if p 2 fpfg, and
mi1ðpÞ ¼ 0 for all other places; (b) mii1ðpÞ ¼ 1 if

p 2 fpe; pgg, and mii1ðpÞ ¼ 0 for all other places.

For each of these cases there exists a marking

satisfying the second part of condition (iii) in

Definition 3.4, respectively: (a) mi2ðpÞ ¼ 1 if
p 2 fpff ; pxxg, and mi2ðpÞ ¼ 0 for all other places;

(b) mii2ðpÞ ¼ 1 if p 2 fpee; pgg; pxxg, and mii2ðpÞ ¼ 0

for all other places. Hence N1 and N2 are N-

equivalent.

Before defining the concepts of function-equiv-

alence and time-equivalence, let us study the sim-

ple nets N1 and N2 shown in Fig. 4(a) and (b)

respectively. It is straightforward to see that N1

and N2 fulfill the conditions established in Defini-

tion 3.4 and therefore are N-equivalent. However,
d

pa pb

pc

p fe pgp

p

(a)

Fig. 3. Cardinality-e
note that N1 may produce tokens with different

values in its output: when t1 fires, the token in pb
will be kb ¼ h2; ribi with rib 2 ½1; 3�, but when t2 fires
the token in pb will be kb ¼ h5; riibi with riib 2 ½2; 3�.
The reason for this behavior is the non-determin-

ism of N1. On the other hand, when the only out-
port of N2 is marked, the corresponding token

value is vb ¼ 2.

As shown in the example of Fig. 4, even if two

nets are N-equivalent the tokens in their outputs

may be different, although their initial marking is

identical. For instance, there is no marking

M2 2 RðN2Þ in which the out-port has a token with

value vb ¼ 5, whereas it does exist a marking
M1 2 RðN1Þ in which the out-port is marked and

vb ¼ 5. Thus the external observer could distin-

guish between N1 and N2 because of different token

values––moreover different token times––in their

out-ports when marked.

Definition 3.5. Two nets N1 and N2 are function-
equivalent or F-equivalent iff:

i(i) N1 and N2 are N-equivalent;

(ii) Let M1 and M2 be markings satisfying condi-

tion (iii) in Definition 3.4. For every

hv1; r1i 2 M1ðqÞ, where q 2 outP1, there exists

hv2; r2i 2 M2ðfoutðqÞÞ such that v1 ¼ v2, and vice
versa.

Definition 3.6. Two nets N1 and N2 are time-
equivalent or T-equivalent iff:
paa pbb

pxx

ggp pffeep

(b)

quivalent nets.

1a t2a +1t

pb

pa

2

2,0< >

a a

[2,3][1,3]

b

pa< >

t1

p

a

a

[2,4]

2,0

(a) (b)

Fig. 4. Cardinality-equivalent nets with different behavior.

(a) (b)

Fig. 6. Total-equivalent nets.

580 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
i(i) N1 and N2 are N-equivalent;

(ii) Let M1 and M2 be markings satisfying condi-

tion (iii) in Definition 3.4. For every

hv1; r1i 2 M1ðqÞ, where q 2 outP1, there exists

hv2; r2i 2 M2ðfoutðqÞÞ such that r1 ¼ r2, and vice
versa.

Two nets are F-equivalent if, besides being N-
equivalent, the tokens obtained in corresponding

out-ports have the same token value. Similarly, if

tokens obtained in corresponding out-ports have

the same token time, the nets are T-equivalent.

Definition 3.7. Two nets N1 and N2 are total-
equivalent or Z-equivalent iff:

i(i) N1 and N2 are F-equivalent;

(ii) N1 and N2 are T-equivalent.

Fig. 5 shows the relation between the different

concepts of equivalence introduced above. The

graph captures the dependence between the no-

tions of equivalence. Thus, for instance, N-equiv-

alence is necessary for T-equivalence and also for
F-equivalence. Similarly, Z-equivalence implies all

other equivalences. Z-equivalence is the strongest
Fig. 5. Relation between the notions of equivalence.
notion of equivalence defined in this work. Note

that two Z-equivalent nets need not be identical

(see Fig. 6).

3.2. Hierarchical PRES+ model

Embedded systems require sound models along

their design cycle. PRES+ supports systems mod-

eled at different levels of granularity with transi-

tions representing simple arithmetic operations or

complex algorithms. However, in order to effi-

ciently handle the modeling of large systems, a

mechanism of hierarchical composition is needed

so that the model may be constructed in a struc-
tured manner, composing simple units fully un-

derstandable by the designer. Hierarchy can

conveniently be used as a form to handle com-

plexity and also to analyze systems at different

abstraction levels.

In this section we formalize the concept of hi-

erarchy for PRES+ models [12]. Some simple ex-

amples are used in order to illustrate the
definitions.

Definition 3.8. A transition t 2 T is an in-transition
of N ¼ ðP ; T ; I ;O;M0Þ iff

S
p2inP p

� ¼ ftg. In a

similar manner, a transition t 2 T is an out-tran-
sition of N iff

S
p2outP

�p ¼ ftg.

Note that the existence of non-empty sets inP
and outP (in- and out-ports) is a necessary condi-

xtxf

cp

dp

ap bp

x
-

x
+[d ,d]

+
yy

-[d ,d]
yf ty

Fig. 7. A simple subnet N1.

Fig. 8. An abstract PRES+ model.

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 581
tion for the existence of in- and out-transitions.

For the net N1 shown in Fig. 7, inP1 ¼ fpa; pbg,
outP1 ¼ fpdg, and tx and ty are in-transition and

out-transition respectively.

Definition 3.9. An abstract PRES+ model is a six-

tuple H ¼ ðP ; T ;K; I ;O;M0Þ where
P ¼ fp1; p2; . . . ; pmg is a finite non-empty set of

places;

T ¼ ft1; t2; . . . ; tng is a finite set of transitions;
K ¼ fS1;S2; . . . ;Slg is a finite set of super-tran-
sitions;
I � P � ðK [T Þ is a finite set of input arcs;

O � ðK [T Þ � P is a finite set of output arcs;

M0 is the initial marking.

Observe that a (non-abstract) PRES+ net is a

particular case of an abstract PRES+ net with
K ¼ ;. Fig. 8 illustrates an abstract PRES+ net.

Super-transitions are represented by thick-line

boxes.

Definition 3.10. The pre-set �S and post-set S� of a

super-transition S 2 K are given by �S ¼ fp 2 P j
ðp;SÞ 2 Ig and S� ¼ fp2 P jðS;pÞ 2Og respectively.

Similar to transitions, the pre(post)-set of a

super-transition S 2 K is the set of input(output)

places of S.

Definition 3.11. For every super-transition S 2 K
there exists a high-level function g : sðp1Þ�
sðp2Þ � � � � � sðpaÞ ! sðqÞ associated to S, where
�S ¼ fp1; p2; . . . ; pag and q 2 S�.
Recall that sðpÞ denotes the type associated with
the place p 2 P , i.e. the type of value that a token
may bear in that place. Observe the usefulness of

high-level functions associated to super-transitions

in, for instance, a top–down approach: for a cer-
tain component of the system, the designer may

define its interface and a high-level description of

its functionality through a super-transition, and in

a later design phase refine the component. In

current design methodologies it is also very com-

mon to reuse predefined elements such as IP

blocks. In such cases, the internal structure of the

component is unknown to the designer and
therefore the block is best modeled by a super-

transition and its high-level function.

Definition 3.12. For every super-transition S 2 K
there exist a minimum estimated delay e� and a

maximum estimated delay eþ, where e� 6 eþ are

non-negative real numbers that represent the

estimated lower and upper limits for the exe-
cution time of the high-level function associated

to S.

Definition 3.13. A super-transition may not be in

conflict with other transitions or super-transitions,

that is:

i(i) �S1 \ �S2 ¼ ; and S�
1 \ S�

2 ¼ ; for all
S1;S2 2 K such that S1 6¼ S2;

582 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
(ii) �S \ �t ¼ ; and S� \ t� ¼ ; for all S 2 K,
t 2 T .

In other words, a super-transition may not

‘‘share’’ input places with other transitions/super-
transitions, nor output places. In what follows, the

input and output places of a super-transition will

be called surrounding places.

Definition 3.14. A super-transition Si 2 K together

with its surrounding places in the net

H ¼ ðP ; T ;K; I ;O;M0Þ is a semi-abstraction of the

subnet Ni ¼ ðPi; Ti;Ki; Ii;Oi;Mi;0Þ (or conversely, Ni
is a semi-refinement of S and its surrounding pla-

ces) iff:

ii (i) There exists a unique in-transition tin 2 Ti;
i (ii) There exists a unique out-transition tout 2 Ti;
(iii) There exists a bijection hin : �Si ! inPi that

maps the input places of Si onto the in-ports

of Ni;
(iv) There exists a bijection hout : S

�
i ! outPi that

maps the output places of Si onto the out-

ports of Ni;
i (v) M0ðpÞ ¼ Mi;0ðhinðpÞÞ and sðpÞ ¼ sðhinðpÞÞ for

all p 2 �Si;
(vi) M0ðpÞ ¼ Mi;0ðhoutðpÞÞ and sðpÞ ¼ sðhoutðpÞÞ for

all p 2 S�
i ;

(vii) t is disabled in the initial marking Mi;0 for all
t 2 Ti n fting.

A subnet may, in turn, contain super-transi-

tions. It is simple to prove that the net N1 of Fig. 7

is indeed a semi-refinement of S1 in the net of

Fig. 8.

If a net Ni is the semi-refinement of some super-
transition S i, it is possible to characterize Ni in
terms of both function and time by putting tokens

in its in-ports and then observing the value and

time stamp of tokens in its out-ports after a certain

firing sequence. If the time stamp of all tokens

deposited in the in-ports of Ni is zero, the token

time of tokens obtained in the out-ports is called

the execution time of Ni. For example, the net N1

shown in Fig. 7 can be characterized by putting
tokens ka ¼ hva; 0i and kb ¼ hvb; 0i in its in-ports

and observing the token kd ¼ hvd ; rdi after firing

tx and ty . Thus the execution time of N1 is equal
to the token time rd , in this case bounded by

d�x þ d�y 6 rd 6 dþx þ dþy . Note the token value vd
is given by vd ¼ fyðfxðva; vbÞÞ, where fx and fy
are the transition functions of tx and ty respec-

tively.

The definition of semi-abstraction/refinement is
just ‘‘syntactic sugar’’ that allows a complex design

to be constructed in a structured way by com-

posing simpler entities. We have not defined, so

far, a semantic relation between the functionality

of super-transitions and their refinements. Below

we define the concepts of strong and weak refine-

ment of a super-transition.

Definition 3.15. A subnet Ni ¼ ðPi; Ti;Ki; Ii;Oi;
Mi;0Þ is a strong refinement of the super-transition
S i 2 K together with its surrounding places in the

net H ¼ ðP ; T ;K; I ;O;M0Þ (or S i and its sur-

rounding places is a strong abstraction of Ni)
iff:

ii(i) Ni is a semi-refinement of Si;
i(ii) Ni implements Si, that is, Ni is function-equiva-

lent to Si and its surrounding places;

(iii) The minimum estimated delay e�i of Si is

equal to the lower bound of the execution

time of Ni;
(iv) The maximum estimated delay eþi of S i is

equal to the upper bound of the execution

time of Ni.

The subnet N1 shown in Fig. 7 is a semi-re-

finement of S1 in the net of Fig. 8. N1 is a strong

refinement of the super-transition S1 if, in addi-

tion: (a) g1 ¼ fy � fx; (b) e�1 ¼ d�x þ d�y ; (c)

eþ1 ¼ dþx þ dþy (Definition 3.15(ii), (iii), and (iv)

respectively).

Observe that the concept of strong refinement
requires the super-transition and its strong refine-

ment to have the very same time limits. Such a

concept could have limited practical use, from the

point of view of a design environment, since the

high-level description and the implementation per-

form the same function but typically have different

timings and therefore their bounds for the execution

time do not coincide. Nonetheless, the notion of
strong refinement can be very useful for abstraction

purposes. We relax the requirement of exact corre-

t 3 - 3
3+

[d
 ,

d
]

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 583
spondence of lower and upper bounds on time; this

yields to a weaker notion of refinement.
5p

t 2

2p1p

3p 4p

t1

cp

- 2
2+

[d
 ,

d
]

-
1 1

+[d ,d]

xtxf

x
-

x
+[d ,d]

+
yy

-[d ,d]
yf ty

Fig. 9. A non-hierarchical PRES+ model.
Definition 3.16. A subnet Ni ¼ ðPi;Ti;Ki; Ii;Oi;Mi;0Þ
is a weak refinement of the super-transition S i 2 K
together with its surrounding places in the net

H ¼ ðP ;T ;K; I ;O;M0Þ (or Si and its surrounding

places is a weak abstraction of Ni) iff:

ii(i) Ni is a semi-refinement of S i;
i(ii) Ni implements Si;
(iii) The minimum estimated delay e�i of Si is less

than or equal to the lower bound of the execu-

tion time of Ni;
(iv) The maximum estimated delay eþi of Si is

greater than equal to the upper bound of the

execution time of Ni.

In the sequel whenever we refer to refinement

we will mean weak refinement.

Given a hierarchical PRES+ net H ¼ ðP ; T ;K;
I ;O;M0Þ and refinements of its super-transitions, it
is possible to construct an equivalent non-hierar-

chical net. For the sake of clarity, in the following

definition we will consider nets with a single super-

transition, nonetheless these concepts can be easily
extended to the general case.
Definition 3.17. Let us consider the net H ¼ ðP ; T ;
K; I ;O;M0Þ where K ¼ fS1g, and let the subnet

N1 ¼ ðP1; T1;K1; I1;O1;M1;0Þ be a refinement of S1

and its surrounding places. Let tin; tout 2 T1 be un-
ique in-transition and out-transition respectively.

Let inP1 and outP1 be respectively the sets of in-
ports and out-ports of N1. The equivalent net H 0 ¼
ðP 0; T 0;K0; I 0;O0;M 0

0Þ, one level lower in the hierar-
chy, is defined as follows:

(i) K0 ¼ K1;

(ii) P 0 ¼ P [ðP1 n inP1 n outP1Þ;
(iii) T 0 ¼ T [T1;
(iv) ðp;SÞ 2 I 0 if ðp;SÞ 2 I1;

ðp; tÞ 2 I 0 if ðp; tÞ 2 I , or ðp; tÞ 2 I1 and

p 62 inP1;
ðp; tinÞ 2 I 0 if ðp;S1Þ 2 I ;

(v) ðS; pÞ 2 O0 if ðS; pÞ 2 O1;

ðt; pÞ 2 O0 if ðt; pÞ 2 O, or ðt; pÞ 2 O1 and
p 62 outP1;
ðtout; pÞ 2 O0 if ðS1; pÞ 2 O;

(vi) M 0
0ðpÞ ¼ M0ðpÞ for all p 2 P ;

M 0
0ðpÞ ¼ M1;0ðpÞ for all p 2 P1 n inP1 n outP1.

We can make use of Definition 3.17 in order to

flatten a hierarchical PRES+ model. Given the net

of Fig. 8 and being N1 (Fig. 7) a refinement of S1,

we can construct the equivalent non-hierarchical

net as illustrated in Fig. 9.
4. Formal verification of PRES+ models

As the complexity of electronic systems in-

creases, the likelihood of subtle errors becomes

much greater. A way to cope, to a certain extent,

with the issue of correctness is the use of mathe-

matically-based techniques, known as formal
methods.

The weaknesses of traditional validation tech-

niques have stimulated research towards solutions

that attempt to prove a system correct. Formal

methods are analytical and mathematical tech-

niques intended to prove formally that the imple-

mentation of a system conforms its specification.

Model checking [8] is an automatic approach to

formal verification used to determine whether the
model of a system satisfies a set of required

584 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
properties. In principle, a model checker exhaus-

tively searches the state space. Model checking is

fully automatic and can produce counterexamples

for diagnostic purposes. The main disadvantage of

model checking is the state explosion problem.

Thus key challenges are the algorithms and data
structures for handling large search spaces.

4.1. Analyses of PRES+ models

There are several types of analyses that can be

performed on systems represented in PRES+. The

absence or presence of tokens in places of the net

may represent the state of the system at a certain
moment in the dynamic behavior of the net. Based

on this, different properties can be studied. For in-

stance, two places marked simultaneously could

represent a dangerous situation that must be avoi-

ded. This sort of safety requirement might formally

be proved by checking that such a dangerous state is

never reached. Also, the designer could be inter-

ested in proving that the system eventually reaches a
certain state, in which the presence of tokens in a

particular place represents the completion of a task.

This kind of analysis, absence/presence of tokens in

places of the net, is termed reachability analysis.
Reachability analysis is useful but says nothing

about timing aspects nor does it deal with token

values. In many embedded applications, however,

time is an essential factor. Moreover, in hard real-
time systems, where deadlines should not be mis-

sed, it is crucial to quantitatively reason about

temporal properties in order to ensure the cor-

rectness of the design. Therefore, it is needed not

only to check that a certain state will eventually be

reached but also to ensure that this will occur

within some bound on time. In PRES+, time in-

formation is attached to tokens so that we can
analyze quantitative timing properties. We may

prove that a given place will eventually be marked

and that its time stamp will be less than a certain

time value that represents a temporal constraint.

Such a study is called time analysis.
A third type of analysis for systems modeled in

PRES+ involves reasoning about values of tokens

in marked places. Such kind of study is called
functionality analysis. In this paper we restrict

ourselves to reachability and time analyses. In
other words, we concentrate on the absence/pres-

ence of tokens in the places of the net and their

time stamps. Note that in some cases reachability

and time analyses are influenced by token values.

4.2. Our approach to formal verification

In model checking a number of desired prop-

erties (called in this context specification) are

checked against a given model of the system. The

two inputs to the model checking problem are the

system model and the properties that such a sys-

tem must satisfy, usually expressed as temporal

logic formulas.
The purpose of our verification approach is to

formally reason about embedded systems repre-

sented in PRES+. For verification purposes, we

restrict ourselves to safe PRES+ nets, that is, every

place p 2 P holds at most one token for every

marking M reachable from M0. This is a trade-off

between expressiveness and analysis complexity,

and avoids excessive verification times for appli-
cations of realistic size.

We use model checking in order to verify the

correctness of systems modeled in PRES+. In our

approach we can determine the truth of formulas

expressed in the temporal logics CTL (Computa-

tion Tree Logic) [7] and TCTL (Timed CTL) [1]

with respect to a (safe) PRES+ model. CTL is

based on propositional logic of branching time,
that is, a logic where time may split into more than

one possible future using a discrete model of time.

Formulas in CTL are composed of atomic propo-

sitions, boolean connectors, and temporal opera-

tors. Temporal operators consist of forward-time

operators (G globally, F in the future, X next time,

and U until) preceded by a path quantifier (A all

computation paths, and E some computation
path). For instance, AFQ holds if for every possible

path there exists at least one state in which property

Q is satisfied, that is, Q will eventually happen.

TCTL is a real-time extension of CTL that allows

the inscription of subscripts on the temporal op-

erators to limit their scope in time. For instance,

AF<nQ expresses that, along all computation paths,

the property Q becomes true within n time units. In
our approach the atomic propositions of CTL/

TCTL correspond to the absence/presence of to-

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 585
kens in places in the net. Thus the atomic propo-

sition p holds iff p 2 P is marked.

In order to verify the correctness of an embed-

ded system, we propose a systematic procedure to

translate PRES+ into TA so that it is possible to

make use of available model checking tools, such
as HyTech [22], KRONOSKRONOS [26], and UPPAALUPPAAL [40].

Fig. 10 depicts our general approach to formal

verification of embedded systems using model

checking. The system is described by a PRES+

model and the properties it must satisfy are ex-

pressed by CTL/TCTL formulas. The model

checker automatically verifies whether the required

properties hold in the model of the system. In case
the CTL/TCTL formulas are not satisfied, diag-

nostic information is generated. Given enough

resources, the procedure will terminate with a yes/
no answer. However, due to the huge state space of
practical systems, it might be the case that it is not

feasible to obtain an answer at all, even though in

theory the procedure will terminate (probably af-

ter a very long time and enough memory).
The verification of hierarchical PRES+ models

is done by constructing the equivalent non-hier-

archical net as stated in Definition 3.17, and then

using the translation procedure discussed in the

next section. Note that obtaining the non-hierar-

chical PRES+ model can be done automatically so

that the designer is not concerned with flattening

the net: he just inputs a hierarchical PRES+ model
as well as the properties he is interested in.
Fig. 10. Model
4.3. Translating PRES+ into timed automata

A timed automaton is a finite automaton aug-

mented with a finite set of real-valued clocks [1].

TA can be thought as a collection of automata
which operate and coordinate with each other

through shared variables and synchronization la-

bels. There is a set of real-valued variables, named

clocks, all of which change along the time with the

same constant rate. There might be conditions

over clocks that express timing constraints.

An extended TA model can be expressed as a

tuple ~MM ¼ ðL; L0;E;R; r;X ; V ;U; t;R;A; IÞ, where
L is a finite set of locations;
L0 � L is a set of initial locations;
E � L� L is a set of edges;
R is a finite set of labels;
r : E! R is a mapping that labels each edge in

E with some label in R;
X is a finite set of real-valued clocks;
V is a finite set of variables;
U is a mapping that assigns to each edge

e ¼ ðl; l0Þ a clock condition UðeÞ over X that

must be satisfied in order to allow the automa-

ton to change its location from l to l0;
t is a mapping that assigns to each edge

e ¼ ðl; l0Þ a variable condition tðeÞ over V that

must be satisfied in order to allow the automa-

ton to change its location from l to l0;
R : E! 2X is a reset function that gives the

clocks to be reset on each edge;
checking.

586 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
A is the activity mapping that assigns to each

edge e a set of activities AðeÞ;
I is a mapping that assigns to each location l an
invariant IðlÞ which allows the automaton to

stay at location l as long as its invariant is sat-
isfied.

In order to use existing model checking tools,

we first translate the PRES+ model into TA [11].

In the procedure presented in this section, the re-
1a t2b-1

t3

t4 [e>1]3*e

c+d

a pb

c

p

pd

gpfp

t5 [e<1]e

p

p

< >a,0 < >b,0

t

e

a b

dc

e e

[1,3]

[2,4]

[2,5]

1

1

Fig. 11. PRES+ model to be translated into automata.

s0 en

c1<=1

c1==1
t1

c:=a

s0 s1
t1

t3

e:=c+d

t2

s0 en

c4<=5

c4>=2,c4<=5
e>=1

t4
f:=3*e

t3
c4:=0

t5

e<1

c4:=0

Fig. 12. TA equivalent to the P
sulting model will consist of one automaton and

one clock for each transition in the Petri net. We

use the PRES+ model shown in Fig. 11 in order to

illustrate the translation procedure. Fig. 12 shows

the resulting TA.

The translation procedure consists of the fol-
lowing steps.

Step 1: Define one clock ci in X for each tran-

sition ti of the Petri net. Define one variable in V
for each place px of the Petri net, corresponding to
the token value vx when px is marked.

The clock ci is used to ensure the firing of the

transition ti within its earliest-latest trigger time
interval. For the example in Fig. 11, using the

short notation w to denote vw, X ¼ fc1; c2; c3;
c4; c5g, V ¼ fa; b; c; d; e; f ; gg.

Step 2: Define the set R of labels as the set of

transitions in the Petri net.

Step 3: For every transition ti in the Petri net,
define an automaton ti

!
with zþ 1 locations

s0; s1; . . . ; sz�1; en, where z ¼ j�tij is number of input

places of ti.
The resulting model consists of five automata.

The automaton t3
!
, for instance, has three loca-

tions.

Step 4: Let preðtiÞ ¼ ft 2 T n ftigjt� \ �ti 6¼ ;g be
the set of transitions different from ti that, when
s0 en

c2<=3

c2>=1,c2<=3t2
d:=b-1

en

c3<=4

t1
c3:=0

c3>=2,c3<=4

c3:=0
t2

s0 en

c5<=1

c5==1
e<1

t5
g:=e

t3
c5:=0

t4

e>=1

c5:=0

RES+ model of Fig. 11.

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 587
fired, will put a token in some place of the pre-set

of ti. Let conf ðtiÞ ¼ ft 2 T n ftigj�t \ �ti 6¼ ;g be

the set of transitions that are in conflict with ti.
Given the automaton ti

!
, corresponding to tran-

sition ti, for every tx 2 preðtiÞ [conf ðtiÞ:
(a) if m ¼ jt�x \ �tij � j�tx \ �tij > 0, define edges

ðs0; s0þmÞ; ðs1; s1þmÞ; . . . ; ðsz�m; enÞ with synchro-
nization label tx;

(b) if m ¼ jt�x \ �tij � j�tx \ �tij < 0, define edges

ðen; szþmÞ; ðsz�1; sz�1þmÞ; . . . ; ðs0�m; s0Þ with syn-

chronization label tx;
(c) if m ¼ jt�x \ �tij � j�tx \ �tij ¼ 0, define edges

ðs0; s0Þ; ðs1; s1Þ; . . . ; ðen; enÞ with synchroniza-

tion label tx;
Then define one edge ðen; snÞ with synchroni-

zation label ti, where n ¼ jt�i \ �tij.
The change of location through an edge labeled

ti in an automaton corresponds to the firing of

transition ti in the Petri net.

Take, for example, transition t3 in the model of

Fig. 11. We have preðt3Þ ¼ ft1; t2g and

conf ðt3Þ ¼ ;. Since jt�1 \ �t3j � j�t1 \ �t3j ¼ 1, for
the automaton t3

!
, there are two edges ðs0; s1Þ and

ðs1; enÞ with label t1. Since jt�2 \ �t3j � j�t2 \ �t3j ¼ 1,

there are also two edges ðs0; s1Þ and ðs1; enÞ but

with synchronization label t2 as shown in Fig. 12.

The one edge that has label t3 is ðen; s0Þ because
jt�3 \ �t3j ¼ 0.

Consider as another example the automaton t4
!

corresponding to transition t4. Here preðt4Þ ¼ ft3g
and conf ðt4Þ ¼ ft5g. Corresponding to t3, since

jt�3 \ �t4j � j�t3 \ �t4j ¼ 1, there is an edge ðs0; enÞ
with synchronization label t3. Corresponding to t5,
since jt�5 \ �t4j � j�t5 \ �t4j ¼ �1, there is an edge

ðen; s0Þ with synchronization label t5. The autom-
aton t4

!
must have another edge ðen; s0Þ, this one

labeled t4.
In the following, let fi be the transition function

associated to ti, �ti the pre-set of ti, and d�i and dþi
the minimum and maximum transition delays as-

sociated to ti.

Step 5: Given the automaton ti
!
, for every

edge ek ¼ ðsz�1; enÞ define RðekÞ ¼ fcig. For any

other edge e in ti
!

define RðeÞ ¼ ;. Define the

invariant of location en as ci6 dþi in order to
enforce the firing of ti before or at its latest

trigger time.
This means that the clock ci will be reset in all

edges coming into location en. In Fig. 12, the as-

signment ci :¼ 0 represents the reset of ci. The two
edges (s1; en) of automaton t3

!
, for example, have

c3 :¼ 0 inscribed on them. c3 is used to take into

account the time since becomes enabled and ensure
the firing semantics of PRES+.

Step 6: Given ti
!

and its edge e ¼ ðen; s0Þ with
synchronization label ti, assign to e the clock

condition d�i 6 ci6 dþi . For every pj 2 �ti assign to

such an edge the activity vj :¼ fi.
For example, in the case of the automaton t2

!
the condition 16 c2 6 3 gives the lower and upper
limits for the firing of t2, while the activity

d :¼ b� 1 expresses that whenever the automaton

t2
!

changes from en to s0, i.e. t2 fires, the value

b� 1 is assigned to the variable d.

Step 7: Given the automaton ti
!
, if the transi-

tion ti has guard Gi, assign the variable condition

Gi to the edge (en; s0) with synchronization label ti.
Then add an edge e ¼ ðen; enÞ with no synchroni-

zation label, condition Gi (the complement of Gi),
and RðeÞ ¼ fcig.

Note the condition e < 1 assigned to the edge

ðen; s0Þ with synchronization label t5 in the au-

tomaton t5
!
, where e < 1 represents the guard of t5.

Observe also the edge ðen; enÞ with condition eP 1

and c5 :¼ 0.

Step 8: If the transition ti is enabled in the initial
marking, make the location en the initial location
of ti

!
. Otherwise, if there are k places initially

marked in the pre-set �ti of the transition ti
(06 k6 j�tij so that ti is not enabled), make sk the
initial location of ti

!
.

In our example, en is the initial location of ti
!

because the transition t1 is enabled in the initial

marking of the net. Since no place in �t3 is initially
marked, the automaton t3

!
has s0 as initial loca-

tion.

Once we have the equivalent TA, we can

verify properties against the model of the system.

For instance, in the simple system of Fig. 11 we
could check whether, for given values of a and b,
there exists a reachable state in which pf is

588 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
marked. This property can be expressed as a

CTL formula EFpf . If we want to check tem-

poral properties we can express them as TCTL

formulas. Thus, we could check whether pg will

possibly be marked and the time stamp of its

token be less than 5 time units, expressing this
property as EF<5pg.

Some of the model checking tools, namely

HyTech [22], are capable of performing parametric

analyses. Then, for the example shown in Fig. 11,

we can ask the model-checker which values of a
and b make a certain property hold in the system

model. For instance, we obtain that EFpg holds if
aþ b < 2.

Due to the nature of the model checking tools

that we use, the translation procedure introduced

above is applicable for PRES+ models in which

transition functions are expressed using arithmetic

operations and token types of all places are ratio-

nal. In this case, we could even reason about token

values. Recall, however, that we want to focus on

reachability and time analyses. From this per-
spective we can ignore transition functions if they

affect neither the absence/presence of tokens nor

time stamps. This is the case of PRES+models that

bear no guards and, therefore, they can straight-

forwardly be verified even if their transition func-

tions are very complex operations, because we

simply ignore such functions. Those systems that

do include guards in their PRES+ model may also
be studied if guard dependencies can be stated by

linear expressions. This is the case of the system

shown in Fig. 11. There are many systems in which

the transition functions are not linear, but their

guard dependencies are, and then we can inscribe

such dependencies as linear expressions and use our

method for system verification.
5. Improvement of verification efficiency by using

transformations

In Section 4 we have introduced an approach to

the formal verification of systems modeled in

PRES+. The verification efficiency can consider-

ably be improved by using a transformational
approach. The model that we use to represent

embedded systems supports a transformation
process which is of great benefit in the formal

verification process.

For the sake of reducing the verification effort,

we first transform the system model into a simpler

one, still semantically equivalent, and then verify

the simplified model. If a given model is modified
using correctness-preserving transformations and

then the resulting one is proved correct with re-

spect to its specification, the initial model is

guaranteed to be correct as well and no interme-

diate steps need to be verified. This simple obser-

vation allows us to significantly reduce the

complexity of verification.

We can define a set of transformation rules that
make it possible to transform only a part of the

system model. A simple yet useful transformation

is shown in Fig. 13. It is not difficult to prove that

N and N 0 are total-equivalent (see Section 3.1),

provided that the conditions given in Fig. 13 are

satisfied. It is interesting to observe that if the net

N 0 is a refinement of a certain super-transition

S 2 K in the hierarchical net H ¼ ðP ; T ;K;
I ;O;M0Þ (see Section 3.2) and N 0 is transformed

into N 00 (so that N 0 and N 00 are total-equivalent),

then N 00 is also a refinement of S and may be used

instead of N 0. Such a transformation does not

change the overall system at all. First, having to-

kens with the same token value and time in cor-

responding in-ports of N 0 and N 00 will lead to a

marking with the very same token value and time
in corresponding out-ports, so that the external

observer (i.e. the rest of the net H) cannot distin-
guish between N 0 and N 00. Second, once tokens are

put in the in-ports of the subnets, there is nothing

that externally ‘‘disturbs’’ the behavior of the

subnets N 0 and N 00 (for example a transition in

conflict with the in-transition that could take away

tokens from the in-ports) because, by definition,
super-transitions may not be in conflict. Thus the

overall behavior is the same using either N 0 or N 00.

Such a transformation rule could be used, there-

fore, to simplify PRES+ models and accordingly

improve the efficiency of the verification process.

It is not our intention to provide here a com-

prehensive set of transformations but rather illus-

trate the transformation-based concept (such a set
of transformation rules has been defined in [9]).

Other transformations include, for instance, the

Fig. 13. A simple transformation rule.

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 589
elimination of places initially marked that are both

input and output of a single transition (in models

with no guards), and the combination of parallel

paths with the same entry and exit points.
We may take advantage of transformations to

improve verification efficiency. The idea is to get a

simpler system model using transformations from

a library. In the case of total-equivalence trans-

formations, since an external observer cannot

distinguish between two total-equivalent nets (for

the same tokens in corresponding in-ports, the

observer would get in both cases the very same
tokens in corresponding out-ports), the global

system properties are preserved in terms of

reachability, time, and functionality. Therefore

such transformations are correctness-preserving: if
a property Q holds in a net that contains a subnet

N 00 into which a total-equivalent subnet N 0 has

been transformed, Q is also satisfied in the net that

contains N 0; if Q does not hold in the second net, it
does not in the first either.

If the system model does not have guards, we

can ignore transition functions since reachability
and time analyses (which are the focus of our

verification approach) will not be affected by token

values. In such a case, we can even use time-

equivalence (instead of total-equivalence) trans-
formations to obtain a simpler model, as they

preserve properties related to absence/presence of

tokens in the net as well as time stamps of tokens.

Once the system model has been transformed

into a simpler one, still semantically equivalent, we

can formally verify the latter by applying the

procedure described in Section 4. The benefits of

the transformational approach for verification are
illustrated by the experimental results shown in

Section 7.
6. Improvement of verification efficiency by coloring

the concurrency relation

Since the time-complexity of model checking of
TA is exponential in the number of clocks, the

translation into TA is crucial for our verifica-

tion approach and must therefore try to find an

t1

t3 t4

t2 t5

Fig. 15. Concurrency relation of the Petri net of Fig. 14.

590 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
optimal or near-optimal solution in terms of

number of resulting clocks/automata. This section

introduces a technique called coloring that exploits
information on the concurrency degree of the

system, aiming at obtaining the smallest collection

of automata resulting from the translation proce-
dure.

The first step of this method is to find out the

pairs of transitions in the Petri net that may occur

concurrently, i.e. those transitions that may fire at

the same time for some reachable marking. Thus,

for example, if we know that there is no reachable

marking for which two given transitions may fire in

parallel, then we can use one clock for accounting
for the firing time semantics of both transitions

because they cannot fire simultaneously.

6.1. Computing the concurrency relation

The concurrency relation k � T � T of an un-

interpreted Petri net is the set of pairs ðt; t0Þ such
that t and t0 can fire concurrently for some reach-
able marking.

In order to find those transitions in the PRES+

model that may fire in parallel, we take the un-

derlying untimed Petri net corresponding to the

PRES+ model and compute its concurrency rela-

tion. We use the algorithm presented in [25] for

computing the concurrency relation of live and

extended free-choice Petri nets. Such an algorithm
has a worst-case complexity Oðx3Þ, where x is the
number of places and transitions in the net. The

reader is referred to [25] for a complete theoretical

background and proofs of the correctness of the

algorithm.

Consider the Petri net model of a concurrent

buffer of capacity 4 in model and compute its

concurrency relation. For instance, in Fig. 14. Its
concurrency relation is represented as a graph in

Fig. 15. The vertices of the graph are the transi-
t1 t t2 3 t t4 5[1,2] [1,2] [1,2] 11

Fig. 14. Buffer of capacity 4.
tions ti 2 T and an edge joining two vertices indi-

cates that there exists a reachable marking for

which the corresponding transitions can fire si-

multaneously. If the pair (tx, ty) does not belong to
the concurrency relation k it is guaranteed that tx
and ty will never fire simultaneously, which can be
exploited for improving verification efficiency.

The problem of deciding whether two given

transitions of a Petri net may concurrently fire can

be solved in polynomial time for live and extended
free-choice nets [25]. It is important to note that

extended-free choice is a structural property of the

net and therefore easy to check, and that liveness

of safe and extended-free choice nets is decidable
in polynomial time [5]. If the Petri net is not live

but extended-free choice, the problem of comput-

ing its concurrency relation is also decidable in

polynomial time [43]. In case the net is not ex-

tended-free choice, the concurrency relation

problem is still decidable, though it can take ex-

ponential time in the worst case [15]. As illustrated

by the experimental results in Section 7, when the
net under consideration is extended-free choice,

the cost of computing the set of transitions that

may fire concurrently is significantly smaller than

the cost of the model checking problem itself.

6.2. Grouping transitions

Applying the translation procedure from
PRES+ into TA described in Section 4.3 (in the

sequel this method will be referred to as naive
translation), we obtain one automaton with one

clock for each transition. However, we can do

better by exploiting the information given by the

concurrency relation. In Fig. 15, for instance, we

see that t2 and t3 cannot fire concurrently and

therefore can be grouped together. This means

c4<=2t5 t5 c4:=0

t3 t3
c4:=0

c4>=1, c4<=2
t4

c5<=1

t4
c5:=0

c5==1t5

c3<=2t4 t4 c3:=0

t2 t2
c3:=0

c3>=1, c3<=2
t3

c1<=1

t2
c1:=0

c1==1t1

c2<=2t3 t3 c2:=0

t1 t1
c2:=0

c2>=1, c2<=2
t2

Fig. 16. TA equivalent to the Petri net of Fig. 14 using the naive translation.

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 591
that the two TA corresponding to these transitions

may share the same clock variable. Furthermore, it

is possible to construct a single automaton (with
one clock) equivalent to the behavior of both

transitions.

We aim at obtaining as few groups of transi-

tions as possible so that the automata equivalent

to the PRES+ model have the minimum number

of clocks. This problem can be defined as MINI-MINI-

MUM GRAPH COLORINGMUM GRAPH COLORING (MGC): given the con-

currency relation as a graph G ¼ ðT ;EÞ, find a
coloring of T , that is, a partitioning of T into dis-

joint sets T1; T2; . . . ; Tk, such that each Ti is an in-

dependent set 2 for G and the size k of the coloring
is minimum. This is known to be an NP-complete

problem [19].

For the example shown in Figs. 14 and 15, the

minimum number of colors is 3 and one such op-

timal coloring is T1 ¼ ft1; t2g, T2 ¼ ft3; t4g,
2 An independent set is a subset Ti � T such that no two

vertices in Ti are joined by an edge in E.
T3 ¼ ft5g. This means we can get TA with three

clocks (instead of five when using the naive

translation).
Though there is no known polynomial-time al-

gorithm that solves MGC, this problem is very

well-known and many approximation algorithms

have been proposed as well as different heuristics

that find reasonably good near-optimal solutions.

Note that even a near-optimal solution to MGC

implies an improvement in our verification ap-

proach because the number of clocks in the re-
sulting TA is reduced. There are also algorithms

that find the optimal coloring in reasonable time

for some instances of the problem. For the exam-

ples we present in Section 7, we are able to find the

optimal solution in short time by using an algo-

rithm based on Br�eelaz�s DSATUR [3].

6.3. Composing automata

After the concurrency relation has been col-

ored, we can reduce the number of resulting au-

tomata by composing those that correspond to

592 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
transitions with the same color. Thus we obtain

one automaton with one clock for each color.

Automata are composed by applying the stan-

dard product construction method [21]. In the

general case, the product construction suffers from

the so-called state-explosion problem, that is the
number of locations of the product automaton is

an exponential function of the number of com-

ponents. However, in our approach we do not

incur a explosion in the number of states because

the automata are tightly linked through synchro-

nization labels and, most importantly, the com-

posing automata are not concurrent. Recall that

we do not construct the product automaton of the
whole system. We construct one automaton for

each color, so that the composing automata (cor-

responding to that color) cannot occur in parallel.

Fig. 17 depicts the resulting time automata

corresponding to the net shown in Fig. 14 when

following the translation procedure proposed in

this section. Observe and compare with the auto-
c12<=1

c12<=2

c12<=1

c12==1

c12:=0

t1

c12>=1,c12<=2

t2

c12:=0

c12==1

t1

t3

c12:=0
t3

c5<=1

t4
c5:=0

c5==1t5

c34>=

c34>=

t5

Fig. 17. TA equivalent to the Petri net of F
mata in Fig. 16 obtained by applying the naive

translation method proposed in Section 4.3.

In the example we used throughout this sec-

tion we have abstracted away, for the sake of

clarity, the transition functions and token values

as these do not influence the method described
above.
7. Experimental results

In order to illustrate our modeling and verifi-

cation approach as well as the proposed im-

provement techniques, we present a scalable
example and a real-life industrial design in this

section.

7.1. Ring-configuration system

This example represents a number n of pro-

cessing subsystems arranged in a ring configura-
c34<=2 c34<=2

c34<=2c34<=2

c34:=0

t2

c34:=0

1,c34<=2

t3

1,c34<=2

t4

c34:=0

t5

c34:=0

c34>=1,c34<=2

t4

c34>=1,c34<=2

t3

t2

c34:=0

t5

c34:=0

t2

t5 t2

ig. 14 using the coloring translation.

Fig. 18. Model for one ring-configuration subsystem.

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 593
tion. The model for one such subsystem is illus-

trated in Fig. 18.

Each one of the n subsystems has a bounded

response requirement, namely whenever the sub-

system gets started it must strictly finish within a
time limit, in this case 25 time units. Referring to

Fig. 18, the start of processing for one such sub-

system is denoted by the marking of pstart while the
marking of pend denotes its end. This requirement
is expressed by the TCTL formula AGðpstart)
AF<25pendÞ.

We have used the UPPAALUPPAAL tool [40], running on

a Sun Ultra 10 workstation, in order to model-
check the timing requirements of the ring-config-
Table 1

Verification of the ring-configuration example

Num. sub-

system (n)
Verification time [s]

Naive Transforma-

tions

Coloring

Comp. conc.

relation

Colorin

conc. re

2 0.124 0.078 0.002 0.002

3 2.429 0.595 0.006 0.004

4 47.348 8.252 0.015 0.014

5 787.91 114.07 0.026 0.076

6 13481.2 1200.6 0.046 0.342

7a NAb 18702.5 0.076 0.449

8a NAb NAb 0.156 0.545

9a NAb NAb 0.259 0.698

a Specification does not hold.
bNot available: out of time.
uration system. The results are summarized in

Table 1. The second column corresponds to the

verification time using the approach described in

Section 4.3 (naive translation of PRES+ into TA).

The third column in Table 1 shows the verification

time when using the technique discussed in Section
5: transformation of the model into a semantically

equivalent and simpler one, followed by the naive

translation into TA. The fourth, fifth, sixth, and

seventh columns correspond, respectively, to the

time spent in computing the concurrency relation,

finding the optimal coloring of the concurrency

relation, constructing the product automata, and

model-checking the resulting TA. The total verifi-
cation time, when applying the approach proposed

in Section 6, is given in the eighth column of Table

1. By combining the transformation-based tech-

nique and the coloring one, it is possible to further

improve verification efficiency as shown in the last

column of Table 1 we first apply correctness-pre-

serving transformations in order to simplify the

PRES+ model and then translate it into TA by
using the coloring method. These results have been

plotted in Fig. 19. As can be seen in Fig. 19, the

combination of transformations and coloring

outperforms the naive approach by up to two or-

ders of magnitude. Combining such strategies

makes it possible to handle ring-configuration

systems composed of up to 9 subsystems (whereas

with the naive approach we can only verify up to 6
subsystems).
Transf. and

coloring
g

lation

Product

automata

Model

checking

Total verifi-

cation

0.114 0.051 0.169 0.122

0.153 0.129 0.292 0.199

0.199 1.178 1.406 0.646

0.249 18.225 18.576 5.983

0.297 217.85 218.53 55.462

0.349 2402.7 2403.6 465.06

0.405 24705.4 24706.5 3721.7

0.512 NAb NAb 28192.7

Fig. 19. Verification of ring-configuration subsystems.

594 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
It is interesting to observe that when nP 7 the

bounded response requirement expressed by the

formula AGðpstart) AF<25pendÞ is not satisfied, a

fact not obvious at all. An informal explanation is

that since transition delays are given in terms of

intervals, one subsystem may take longer to exe-

cute than another; thus different subsystems can

execute ‘‘out of phase’’ and this phase difference
may be accumulated depending on the number of

subsystems, causing one such subsystem to take

eventually longer than 25 time units (for nP 7). It

is also worth mentioning that, although the model

has relatively few transitions and places, this ex-

ample is rather complex because of its large state

space which is due to the high degree of parallel-

ism.

7.2. Radar jammer

This example corresponds to a real-life appli-

cation used in the military industry [29]. The

jammer is a system placed on an object (target),

typically an aircraft, moving in the area observed

by a radar. The radar sends out pulses and some of
them are reflected back to the radar by the objects

in the area. When a radar receives pulses, it makes

use of the received information to determine the

distance and direction of the object, and even its

velocity and the type of object. The distance is

calculated by measuring the time the pulse has

traveled from its emission until it returns to the

radar. By rotating the radar antenna lobe, it is
possible to find the direction returning maximum

energy, that is, the direction of the object. The
velocity of the object is found out based on the

Doppler shift of the returning pulse.

The basic function of the jammer is to deceive a

radar scanning the area in which the object is

moving. The jammer receives a radar pulse, mod-

ifies it, and then sends it back to the radar after a
certain delay. Based on input parameters, the

jammer can create pulses that contain specific

Doppler and signature information as well as the

desired space and time data. Thus the radar will

see a false target.

A model of the radar, obtained from a de-

scription of the system written in the functional

programming language Haskell [29], is shown in
Fig. 20. We do not intend to provide here a de-

tailed description of each one of the transitions of

the model of the radar jammer given in Fig. 20 but

rather present an intuitive idea about it. When a

pulse arrives, it is initially detected and some of its

characteristics are calculated by processing the

samples taken from the pulse. Such processing is

performed by the initial transitions, e.g. detectEnv,
detectAmp, . . ., getPer, and getType, and based on

internal parameters like threshold and trigSelect.
Different scenarios are handled by the middle

transitions, e.g. getScenario, extractN, and ad-
justDelay. The final transitions doMod and sumSig
are the ones that actually alter the pulse to be re-

turned to the radar.

We aim at verifying a pipe-lined version of the
jammer where the stages correspond to abstrac-

tions of groups of transitions in the model of Fig.

20. For instance, the transitions f , getKPS, FFT,
and getPeriod in Fig. 20 are abstracted by the su-

per-transition S5 in Fig. 21. Besides such abstrac-

tions (represented by super-transitions), in order

to represent a pipe-lined structure, it is necessary

to add a number of places and arcs (for every place
p 2 P such that ðSi; pÞ 2 O, ðp;SjÞ 2 I , and

S i 6¼ Sj, add a place p0 initially marked and arcs

(p0;Si) and (Sj; p0Þ). The model of the pipe-lined

jammer, annotated with timing information, is

shown in Fig. 21. The minimum and maximum

transition delays are given in ns. We have included

in this model a few more places and transitions

that represent the environment, e.g. transitions
sample and emit, and places inSig and outSig. The
input to the jammer is a radar pulse (actually, a

pwPriCnt

getT

f

head

getScenario

adjustDelay

copy

detectAmp

co
py

de
te

ct
E

nv

co
py

ke
ep

V
al

ge
tT

yp
e

ge
tP

er

FF
T

ge
tK

PS

keepVal copy

extractN

co
py

co
py

ke
ep

V
al

ke
ep

V
al

threshol d

trigSelect

modParLib

opMode

modfdelayf

delayParLib

ke
ep

V
al

co
py

extractN

getAmp

doMod

sumSig

out in

Fig. 20. A PRES+ model of a jammer.

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 595
number of samples taken from it). Transition

sample will fire n times (where n is the number of
samples), every PW =n (where PW is the pulse

width), depositing the samples in the place inSig
which are later buffered in the place in. In this

form, we model the input of the incoming radar

pulse. A token in inSig means that the input is
being sampled. Regarding the emission of the

pulse produced by the jammer, the data obtained
is buffered in place out before being transmitted.

After some delay, it is sent out by transition emit
so that the marking of place outSig represents a

part of the outgoing pulse being transmitted back

to the radar.

S
1

S2

S4

S8S7

S9

S3

S
5

S6

inout

inSigoutSig

emit

sample

[80,90]

[40,50]

[70,80]

[100,110]

2500

[60,70]

[1
00

,1
20

]

[3
0,

40
]

1

100

[60,70]

[60,70]

1

30

Fig. 21. Pipe-lined model of the jammer.

596 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
We have applied our verification technique to

the PRES+ model of the jammer shown in Fig. 21.

There are two properties that are important for the

jammer. The first is that there cannot be output

while sampling the input. The second requirement

is that the whole outgoing pulse must be trans-
mitted before another pulse arrives. These are due

to the fact that there is only one physical device for

reception and transmission of signals. The mini-

mum Pulse Repetition Interval (PRI), i.e. the

separation in time of two consecutive incoming

pulses, for our system is 10 ls, so this is the value

we will use for verifying the second property. For a

PRI of 10 ls, the Pulse Width PW can vary from
100 ns up to 3 ls. Therefore, we will consider the
most critical case, that is, when the pulse width is 3
Table 2

Verification of the radar jammer

Property Verification time [s]

Naive Transformat

AG:ðinSig ^ outSigÞ 262.845 68.661

:EF>10000outSig 338.294 89.883
ls. We assume that the number of samples is

n ¼ 30 (so that the delay of transition sample is 100
ns).

The properties described above can be ex-

pressed, respectively, by the formulas

AG:ðinSig ^ outSigÞ and :EF>10000outSig, where
inSig and outSig are places in the Petri net repre-

senting the input and output of the jammer re-

spectively. The first formula states that the places

inSig and outSig are never marked at the same

time, while the second says that there is no com-

putation path for which outSig is marked after

10000 ns. We have verified that both formulas

indeed hold in the model of the system. The veri-
fication time is given in Table 2. Verifying these

two formulas takes roughly 20 s when combining

the transformational approach and the coloring

translation, whereas the naive verification takes

almost 10 min.

The radar jammer is a realistic example that

illustrates how our modeling and verification ap-

proach can be used for practical applications. The
verified requirements are very interesting as not

only do they impose an upper bound for the

completion of the activities but also a lower one,

since the emission and sampling of pulses cannot

overlap. Though there are few transitions in the

model, the state space is very large (5.24 · 107
states in the untimed model) because of the pipe-

line. Despite such a large state space, the verifica-
tion of the two studied properties takes relatively

short time when applying the techniques addressed

in this paper.
8. Conclusions

We have presented an approach to modeling
and verification of embedded systems. We have

introduced PRES+, a model of computation that
ions Coloring Transf. and coloring

12.372 7.546

23.775 13.606

L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598 597
extends Petri nets in order to capture important

characteristics of embedded systems: tokens carry

information and transitions perform transforma-

tion of data when fired; timing is explicitly in-

cluded by associating lower and upper limits to the

duration of activities related to transitions; both
sequential and concurrent activities may easily be

expressed; hierarchical composition as well as

representation of systems is possible at different

levels of granularity. The model is simple, intu-

itive, and can easily be handled by the designer.

We have also proposed a technique for verify-

ing systems represented in our modeling formal-

ism. We make use of model checking to prove
whether certain desired properties, expressed as

CTL and TCTL formulas, hold with respect to the

system model. We have introduced a systematic

procedure to translate PRES+ models into TA so

that it is possible to use available model checking

tools.

In order to improve verification efficiency, we

have presented two different methods: the first is
an approach that uses a transformation-based

concept for simplifying the system model and

therefore facilitate verification. The second im-

proves the translation from PRES+ into TA by

exploiting information about the degree of con-

currency of the system. By combining the trans-

formational strategy and the coloring translation,

verification efficiency can considerably be im-
proved such that complex systems can be handled.
References

[1] R. Alur, C. Courcoubetis, D.L. Dill, Model checking for

real-time systems, in: Proc. Symposium on Logic in

Computer Science, 1990, pp. 414–425.

[2] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, A.

Sangiovanni-Vincentelli, Formal verification of embedded

systems based on CFSM networks, in: Proc. DAC, 1996,

pp. 568–571.

[3] D. Br�eelaz, New methods to color the vertices of a graph,

Communications of the ACM 22 (4) (1979) 251–256.

[4] R. Camposano, J. Wilberg, Embedded system design,

Design Automation for Embedded Systems 1 (January)

(1996) 5–50.

[5] A. Cheng, J. Esparza, J. Palsberg, Complexity results for 1-

safe nets, Theoretical Computer Science 147 (August)

(1995) 117–136.
[6] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,

A. Sangiovanni-Vincentelli, A formal specification model

for hardware/software codesign, Technical Report UCB/

ERL M93/48, Dept. EECS, University of California,

Berkeley, June 1993.

[7] E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic

verification of finite-state concurrent systems using tempo-

ral logic specifications, ACM Transactions on Program-

ming Languages and Systems 8 (2) (1986) 244–263.

[8] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking,

MIT Press, Cambridge, MA, 1999.

[9] L.A. Cort�ees, A Petri net based modeling and verification

technique for real-time embedded systems, Licentiate

Thesis, Dept. of Computer and Information Science,

Link€ooping University, Link€ooping, 2001.

[10] L.A. Cort�ees, P. Eles, Z. Peng, Definitions of equivalence

for transformational synthesis of embedded systems, in:

Proc. ICECCS, 2000, pp. 134–142.

[11] L.A. Cort�ees, P. Eles, Z. Peng, Verification of embedded

systems using a Petri net based representation, in: Proc.

ISSS, 2000, pp. 149–155.

[12] L.A. Cort�ees, P. Eles, Z. Peng, Hierarchical modeling and

verification of embedded systems, in: Proc. Euromicro

Symposium on Digital System Design, 2001, pp. 63–70.

[13] S. Edwards, L. Lavagno, E.A. Lee, A. Sangiovanni-

Vicentelli, Design of embedded systems: formal models,

validation, and synthesis, Proc. IEEE 85 (1997) 366–390.

[14] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, P. Pop,

Scheduling of conditional process graphs for the synthesis

of embedded systems, in: Proc. DATE Conference, 1998,

pp. 132–138.

[15] J. Esparza, Decidability and complexity of Petri net

problems––an introduction, in: P. Wolper, G. Rozenberg

(Eds.), Lectures on Petri Nets: Basic Models, LNCS 1491,

Springer-Verlag, Berlin, 1998, pp. 374–428.

[16] R. Esser, J. Teich, L. Thiele, CodeSign: An embedded

system design environment, IEE Proc. Computers and

Digital Techniques 145 (3) (1998) 171–180.

[17] D.D. Gajski, L. Ramachandran, Introduction to high-level

synthesis, IEEE Design & Test of Computers 11 (4) (1994)

44–54.

[18] J.D. Gannon, J.M. Purtilo, M.V. Zelkowitz, Software

Specification: A Comparison of Formal Methods, Ablex

Publishing, Norwood, NJ, 1994.

[19] M.R. Garey, D.S. Johnson, Computers and Intractability:

A Guide to the Theory of NP-Completeness, W.H.

Freeman, San Francisco, CA, 1979.

[20] D. Harel, Statecharts: A visual formalism for complex

systems, Science of Computer Programming 8 (3) (1987)

231–274.

[21] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to

Automata Theory, Languages, Computation, Addison-

Wesley, Boston, MA, 2001.

[22] HyTech. Available from <http://www-cad.eecs.berke-

ley.edu/~tah/HyTech>.

[23] K. Jensen, Coloured Petri Nets, Springer-Verlag, Berlin,

1992.

598 L.A. Cort�ees et al. / Journal of Systems Architecture 49 (2003) 571–598
[24] C. Kern, M.R. Greenstreet, Formal verification in hard-

ware design: A survey, ACM Trans. on Design Automa-

tion of Electronic Systems 4 (2) (1999) 123–193.

[25] A. Kovalyov, J. Esparza, A polynomial algorithm to

compute the concurrency relation of free-choice Signal

Transition Graphs, in: Proc. Intl. Workshop on Discrete

Event Systems, 1996, pp. 1–6.

[26] KRONOSKRONOS. Available from <http://www-verimag.imag.fr/

TEMPORISE/kronos>.

[27] L. Lavagno, A. Sangiovanni-Vincentelli, E. Sentovich,

Models of computation for embedded system design, in:

A.A. Jerraya, J. Mermet (Eds.), System-Level Synthesis,

Kluwer, Dordrecht, 1999, pp. 45–102.

[28] E.A. Lee, T.M. Parks, Dataflow process networks, Proc.

IEEE 83 (5) (1995) 773–799.

[29] P. Lind, S. Kvist, Jammer model description, Technical

report, Saab Bofors Dynamics AB, Link€ooping, April 2001.

[30] P. Maciel, E. Barros, W. Rosenstiel, A Petri net model for

hardware/software codesign, Design Automation for Em-

bedded Systems 4 (4) (1999) 243–310.

[31] P.M. Merlin, D.J. Farber, Recoverability of communica-

tion protocols––implications of a theoretical study, IEEE

Trans. Communications, COM 24 (9) (1976) 1036–1042.

[32] T. Murata, Petri nets: analysis and applications, Proc.

IEEE 77 (4) (1989) 541–580.

[33] J.L. Peterson, Petri Net Theory and the Modeling of

Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[34] C. Ramchandani, Analysis of asynchronous concurrent

systems by timed Petri nets, Technical Report Project

MAC 120, Massachusetts Institute of Technology, Cam-

bridge, February 1974.

[35] M. Sgroi, L. Lavagno, Y. Watanabe, A. Sangiovanni-

Vincentelli, Synthesis of embedded software using free-

choice Petri nets, in: Proc. DAC, 1999, pp. 805–810.

[36] J. Sifakis, Performance evaluation of systems using nets, in:

W. Brauer (Ed.), Net Theory and Applications, LNCS 84,

Springer-Verlag, Berlin, 1980, pp. 307–319.

[37] E. Stoy, A Petri net based unified representation for

hardware/software co-design, Licentiate Thesis, Dept. of

Computer and Information Science, Link€ooping University,
Link€ooping, 1995.

[38] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, J.

Teich, FunState––An internal design representation for

codesign, IEEE Trans. VLSI Systems 9 (4) (2001) 524–544.

[39] The SAVE Project. Available from <http://www.ida.liu.se/

~eslab/save.shtml>.

[40] UPPAALUPPAAL. Available from <http://www.uppaal.com>.

[41] M. Varea, B. Al-Hashimi, Dual transitions Petri net based

modelling technique for embedded systems specification,

in: Proc. DATE Conference, 2001, pp. 566–571.

[42] M. Varea, B. Al-Hashimi, L.A. Cort�ees, P. Eles, Z. Peng,
Symbolic model checking of dual transition Petri nets, in:

Proc. CODES, 2002, pp. 43–48.

[43] H.-C. Yen, A polynomial time algorithm to decide pairwise

concurrency of transitions for 1-bounded conflict-free Petri

nets, Information Processing Letters 38 (1991) 71–76.
Luis Alejandro Cortes received his
B.Sc. and M.Sc. degrees in Electrical
Engineering from the National Uni-
versity of Colombia in 1995 and Uni-
versity of Los Andes in 1998,
respectively. He is currently pursuing
the Ph.D. degree in computer science
at Link€ooping University, Sweden.His
research interests include modeling
and verification of embedded systems,
formal methods, and real-time sys-
tems.
Petru Eles received his Ph.D. degree in
Computer Science from the ‘‘Politeh-
nica’’ University Bucuresti, Romania,
in 1993.He is currently a Professor
with the Department of Computer and
Information Science at Link€ooping
University, Sweden. His research in-
terests include design of embedded
systems, hardware/software co-design,
real-time systems, system specification
and testing, CAD for digital systems.
He has published extensively in these
areas and has coauthored several
books among which ‘‘System Synthesis
with VHDL’’ (Kluwer Academic, 1997).Prof. Eles was a core-
cipient of best paper awards at the 1992 and 1994 European
Design Automation Conference (EURO-DAC). He has served
on the program committee of several technical conferences and
workshops, including DATE, ICCAD, ISSS, CASES, and
CODES. Prof. Eles is an Associate Editor of the IEE Pro-
ceedings––Computers and Digital Techniques. He has co-edited
a special issue on ‘‘Design Methodologies and Tools for Real-
Time Embedded Systems’’ in the Journal on Design Automa-
tion for Embedded Systems. He is a member of the IEEE and
ACM.
Zebo Peng is Professor of the chair in
Computer Systems, Director of the
Embedded Systems Laboratory, and
Chairman of the Division for Software
and Systems at Link€ooping University.
He received his Ph.D. degree in Com-
puter Science from Link€ooping Uni-
versity in 1987.Prof. Peng�s current
research interests include design and
test of embedded systems, electronic
design automation, design for test-
ability, hardware/software co-design,
and real-time systems. He has pub-
lished over 140 journal and conference
papers in these areas and coauthored the book ‘‘System Syn-
thesis with VHDL’’ (Kluwer Academic, 1997). He was core-
cipient of two best paper awards at the European Design
Automation Conferences (EURO-DAC) in 1992 and 1994.Prof.
Peng has served on the program committee of several technical
conferences and workshops, including DATE, DDECS, DFT,
ECS, ETW, ITSW, FDL and MEMOCODE, and was the
General Chair of the 6th IEEE European Test Workshop
(ETW�01). He has recently co-edited a special issue on ‘‘Design
Methodologies and Tools for Real-Time Embedded Systems’’
in the Journal on Design Automation for Embedded Systems.
He is a senior member of IEEE and a member of ACM.

http://www.ida.liu.se/~eslab/save.shtml
http://www.ida.liu.se/~eslab/save.shtml
http://www.uppaal.com

	Modeling and formal verification of embedded systems based on a Petri net representation
	Introduction
	The design representation
	Basic definitions
	Description of functionality
	Dynamic behavior

	Notions of equivalence and hierarchy for PRES+
	Notions of equivalence
	Hierarchical PRES+ model

	Formal verification of PRES+ models
	Analyses of PRES+ models
	Our approach to formal verification
	Translating PRES+ into timed automata

	Improvement of verification efficiency by using transformations
	Improvement of verification efficiency by coloring the concurrency relation
	Computing the concurrency relation
	Grouping transitions
	Composing automata

	Experimental results
	Ring-configuration system
	Radar jammer

	Conclusions
	References

