Formal Verification in a Component-based Reuse
Methodology

Daniel Karlsson, Petru Eles, Zebo Peng
IDA, Link6pings universitet, 581 83 Linkdping, Sweden

{danka, petel, zebpe}@ida.liu.se
ABSTRACT correctness of the system can be formally verified. The verification
There is an important trend towards design processes based on tifebased on the interface properties of the interconnected compo-
reuse of predesigned components. We propose a formal verificatiohents and on abstract models of their functionality, without assum-
approach which smoothly integrates with a component based sysag any knowledge regarding their implementation. We have
tem-level design methodology. Once a timed Petri Net model corredeveloped both the theoretical framework underlying the methodol-
sponding to the interface logic has been produced the correctness gfy and implemented an experimental environment for its applica-
the sfystem can be forrfnaklly verified. 'I;jhe verification is l:aased obn theion, using model checking techniques. Our approach represents a
interface properties of the connected components and on abstragh i tion towards increasing both design and verification effi-

models of their functionality, without assuming any knowledge _. -
regarding their implementation. We have both developed the thed=€MCY in the context of a methodology based on component reuse.
Section 2 of the paper introduces the design representation, fol-

retical framework underlying the methodology and implemented an S . Y A g
experimental environment using model checking techniques. Iowed_ by a prellmlnary_ dlscu§5|on in Section 3. The verification
Categories and Subject Descriptors technique is presented in Section 4 where we both develop the theo-

C.0 [Computer Systems Organizatiof General -Systems specifi- retical framework and discuss some examples. Experiments are pre-
cation methodologyB.7.2 [integrated Circuits]: Design Alds - sented in Section 5 and the conclusions are given in Section 6.

Verification 1.6.4 [Simulation and Modeling]: Model Validation
and Analysis; J.6 Computer-Aided Engineering: Computer-
aided design (CAD)

General Terms

2. PRES+: THE DESIGN REPRESENTATION

In order to support our modeling approach, we have defined a Petri
Net based representation called PRES+ [4]. The following exten-
sions to classical Petri Nets are the most important in the context of

Performance, Design, Verification

Keywords
Formal Verification, IP, Reuse, Model Checking, Timed Petri-Nets 2

1. INTRODUCTION
One of the important current trends is towards a design process
based on the reuse of predesigned blocks [1]. Such blocks can be
both hardware and software components. With such a design pro-
cess, also called "interface based design” [2], the focus is on the
interaction of components and, in particular, on interfaces, proto-3
cols and glue logics which interconnect independent blocks. '
Once a design alternative has been produced, one crucial aspect
is the verification of interfaces and of the global system functional-
ity. There are several aspects which make this task very difficult.4-
One is the complexity of the systems, which makes simulation
based techniques very time consuming. On the other hand, formab.
verification of such systems suffers from state explosion. Another
problem is the lack of information about the internals of prede-
signed blocks. However, it can often be assumed that the design of
each individual component has been verified and can be supposed

1.

this paper (see Figure 1):

A tokenk has values and timestamgs, Gy, 10 where is the
value andr is the timestamp.

A transition has a function and a time delay interval associated
to it. When a transition fires, the value of the new token is com-
puted by the function, using the values of the tokehgh ena-
bled the transition as guments. Thémestamp is increased by an
arbitrary value from the time delay interval. In Figure 1, the
functions are marked on the outgoing edges from the transitions.
The PRES+ net is forced to be safe, i.e. one place can at most
accommodate one token. A token in an output place of a transi-
tion disables the transition.

The transitions may have guards. A transition can only be ena-
bled if the value of its guard is true (see transitigns tand).
The presett (postset) of atransition is the set of all places
from which there are arcs to (from) transition . Similar defini-
tions can be formulated for the preset (postset) of places. In
Figure 1,°t,={p, ps} and,’={pg}

We will now define three concepts which are critical to our

to be correct [3]. What remains to be verified is the interface logicmethodology, in the context of the PRES+ notation.

(hardware or software). Such an approach can handle both the com-

plexity aspects (by a divide and conquer strategy) and the lack ofraph of the whole system=POT P(
is the set of transitions) such that:

information concerning the internals of predefined components.

Although several approaches have been proposed tackling
aspects of component based design, there exists, to our knowledge,
no work concerning the integration of such a design process with
formal verification.

As a main contribution, in this paper we propose a formal veri-
fication approach which smoothly integrates with a component
based system-level design methodology for embedded system
The approach is based on a timed Petri Net notation. Once th
model corresponding to the interface logic has been produced, the

2.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear

Definition 1. Component. A component is a subgraph of the
is the set of places and

Two componentg€,,C,0r ¢,;#C, may only overlap with their

ports (Definition 2), CinCy=Pinnect where
Peonnec= { POP(p°OC,0°p0OC,) O(p°OC, O0°pOC,)} .
The pre- and postset%(attd) of all transition< must be

entirely contained within the component °t,t°0C

Definition 2. Port. A placep is an out-port of componeat if

p°n C=0)0(°pOC) oran in-portofC if(°pn C=0)0O(p°OC) .p
a port ofC if it is either an in-port or an out-port©f

Definition 3. Interface. An interface of componegt s a set of
ports| ={p;,p,...} Wherep,0C .
3, 4)|t.
X+5 . 4 X
t 3.7 g 2] Pg
y out-ports

this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific P1
permission and/or a fee.

ISSS’02 October 2-4, 2002, Kyoto, Japan.

Copyright 2002 ACM 1-58113-562-9/02/0010...$5.00.

3, 4|’

X
\ [2, 5]

in-port

P3 P p7

. . P5 [x<=3]
Figure 1. A simple PRES+ net

iy _ |<con, <MCC:radar_in, MCC>>

Protoco|
in

senoQ
] out

reoo

D) —> g;ﬁ)O

@ n (b) Rada
Figure 2. Component substitution

PRES+ can model the behaviour of a component at different | target
levels of granularity. A component can be drawn as a box sur- | updats
rounded by its ports, as illustrated in Figure 2(a). Modelled in this
way, it can be replaced with a PRES+ net as indicated by Figure 2(b).

3. PRELIMINARIES
Our verification methodology, presented in Section 4, can be used
when the system is composed of preverified components con-
nected by a soalled glue logic, as indicated in Figure 3. Such a glue
logic is sometimes called a wrapper. All boxes which represent . . .
components are abstractions of PRES+ nets in the way described ~ Figure 4. A glue logic interconnecting two components
above. The glue logics connecting the components are also mod-thatq holds untilp becomes true or, if never becomes trye,
elled in PRES+. will hold globally. It is possible to explicitly include time in the
An example of a glue logic is provided in Figure 4. The glue formulas in which case the logic is called timed CTL or TCTL [7].
logic connects a componeRtadarto a component which imple- A TCTL formula could look likeAF p , which means that must
ments a connection-based communication protocol. Componentalways hold in the future within 5 time units. For the sake of sim-
Radaremits a token containing radar information at regular rate. plicity we will use CTL formulas in our examples throughout the
Since we use a connection-based protocol, a fact which com- paper. However, the theoretical discussion as well as the verifica-
ponentRadaris not aware of, the functionality related to establish- tion methodology are valid for both CTL and TCTL.
ing and maintaining a connection has to be implemented by the The (T)CTL formulas associated to components impose con-
glue logic. In this and the following examples, the time delay inter- straints on the environment in which the component is placed.
vals on the transitions are not shown for the sake of readability of These constraints are expressed only in terms of the in- and out-
figures. The transition connected to both the parget_update ports of the component.
and the portn cannot be enabled until the protocol reported that it Review the example introduced in Section 3. The connection-
successfully has been connected. In this case, the token valughased protocol component (Figure 4) comes together with (T)CTL
<sd, <MCC, m>> will be passed to the protocol component. The formulas which describe the expected input on each interface of
first element of the tuple is a command to the protocol ("sd” is a the component. Two of these formulas are:

status

[s=rejected]
[s=otherg

shorthand for "send”) and the second element is an argument to the AG ((status= [isconnectecplTinit) — (eq. 1)
command. Here the argument is a tuple of the destination and the A [status= [tonnectedp(R -in = 3end [p,_[M])

message itself. If, however, the connection failed, the glue logic AG (status= [tonnectegpll- A [status= [disconnectedR (eq. 2)
will continue to attempt to connect, at most five tines (=in=Ceonnectlp, _[M-in=[isten p, _)])

(eq. 1) states that the protocol can never receive a send com-
mand when it is disconnected at a certain protocol-port . (eq. 2)
requires that, as long as the protocol is already connected at proto-

4. VERIFICATION

When all glue logics are constructed and all components are in

place, it is time to verify that the components are assembled and " L i .

interconnected correctly. Since the model is built with reusable col port%, It |s.]Er0h.|b|ted to connfecht aglaln.l ic. th f

components, we assume that they have been verified by the provid- For the verification process of the glue logic, the (T)CTL for-

ers. What remains to be verified is the glue logic and the way it has Mulas define the requirements on the input ports of the connected

adapted the various interfaces to work together. In our methodol- components. However, information regarding the output produced

ogy, formal verification is performed using model checking [5]. by these components is also needed for the verification process.

4.1 Formulas and stubs For this purpose, the concept of a stub is introduced. Before defin-

According to our methodology, the user acquires a verified compo- ing @ stub, some auxiliary concepts have to be defined.

nent with a well-defined interface. For each such component, itis ~ Definition 4. Interface compatibility. Interfaces, and are

supposed that the following tasks have been previously performedcompatible iff there exists a bijectiorf:l, -1, such that if

1. Verify the component. f(p)=q, thenp andq are both either in-ports or out-ports.

2. Provide (T)CTL [5] formulas as constraints on the inputs. Definition 5. Event. Anappearing evenis a tuplee* = [p, kJ ,

3. Provide stubs as description of the characteristics of outputs. Wherep is a place ankl= 0,0 is a token. Appearing events rep-
CTL (Computation Tree Logic) [5] is a logic language in resent the fact that a token with valuye is putin place attime

which the possibility of events happening in different computation Momentr . Adisappearing everis a tuplee = tp, 0 wherey isa
paths (futures) can be expressed. There are two computation pat lace andr S a timestamp. Dlsappea_rlng events represent the_fact
quantifiers, A (universal) and E (existential), and four operators on hata tpken in place is fe”‘.o"e‘j attime . Observe that for dis-
time, G (globally, in every computation step), F (some time in the 2PP€aring events we are not interested in the token valuevént
future), U (until), R (releases)AG p has the meaning that is © is either an appearing event or a disappearing event.

always true in all possible computation patEes. p means that in Definition 6. Observation. An observation is a set of events

at least one computation pagh holds at some point in the future. O:t{ 'elieﬁmt}) ' G'\fn ob_servalzlmo]no . IanDd an D']nterféllce ,Athe
A[pUd] denotes that in all computation paths, holds ugtil restricted observationo|, ={p,Kojp01} D{Cp, ro[pl1} . An
inputobservationin is an observation which only contains appear-

becomes true at some point in the future, whilép R q] means . . h . . -
ing events defined on in-ports and disappearing events defined on
Comp. m [out-ports. Anoutputobservationout is an observation which only
go C%omp. — Ports contains appearing events defined on out-ports and disappearing
events defined on in-ports.

Glue Logié Definition 7. Operation. Consider an arbitrary input observa-

Figure 3. A system constructed from predesigned component tion in of componeniC . If events occur in the way described by
1 inhibitor arcs are drawn with a circle instead of an arrow in one end. The in, we can obtain the output observationt by executing the
function of inhibitor arcs is to disable otherwise enabled transitions. In PRES+ net. For eacin , several different observatians are pos-

PRES+, inhibitor arcs are only syntactic sugar for amore complex structure. Sible. The set of all possible output observatiang ~ @f being

<cmd, arg> random
in } [cmd=con or cmd=lis] [cmd=disc] [cmd:sdi ‘\ [0' °°] [O’ oo]

arg ~send (a) Uin (b) Uour
Figure 7. The models of the empty stubs
sumes any token at any point in time. Similarly, the empty stub,
rec Oour - denotes the stub that generates tokens with random values

out

O Tej] co%
O

at any point in time. The models of these stubs are presented in
N~
et Figure 7. It is useful to introduce the notatian, to denote the
st disc] empty stub at porp . Whethen,, is equal tq or iyt
| depends on whethgr is an in-port or an out-port. We further elab-

<
-t

orate on the use of empty stubs in Section 4.3. Betwegn and
0, stubs of different levels of generality can be found.
On level 1, stubs for one-port interfaces can be found. If the

Figure 5. A stub of a connection based protocol
the result of applying the input observation to comporent |, is
called the operation of component from and is labelled . ; . - . .
Opc(in) . Given an operatio@p.(in) ={o,0, } and an interface interface only contains an in-port, the fu_nctlonallty of the stub is to
| ¢ of component C ¢ the 1‘rezs"t'r'icted operation consume the token at random times which, however, correspond to
Ope(in) = {04 ,0 } ’ times when the full component could be able to consume the
CD fi"niti nl‘b gtb L ; nsider two componenss. and token, if it would be consumed at all. If it only contains an out-

| is ?he inct)erfaice li)fs ?:o%steﬁgins ;” o(r)tsC(ZS pone is’an inter- port, the functionality is to issue a new token with random value at
fasce ofc S is astub of ith rgs erét 0 'nterfh o .ff_y random occasions. The value and time are random to the extent

> u wi p ! ag I that the issued values could, in some circumstance, be issued by

1. Interfacels is compatible with interfacg . the full component at the time in question (note the difference
2. For any possible input observatioin of componeht , between these stubs ang, angyr , respectively).
Opc(in)] =0pg(in},) - If higher level (level > 1) stubs contain both in-ports and out-
C

Note that it is not important what happens on other interfaces ports, a certain degree of c_ausality is introduced. The out-ports can
thanl,. . Figure 5 gives an example of a stub of a connection-basedn© longer produce any arbitrary value on the tokens, but rather any
protocol component with respect to the interface value still consistent with the token values arriving at the in-ports
I = {in,out, statup . Since not all ports are part of the interface, the diven the beha\k/lour of the full component. Hen::e, fOL'nStancﬁ' in
stub cannot avoid to express a non-deterministic behaviour. ForFigure 5 no token on porut can be issued unless the stub has
instance, if the stub receivescannectrequest, it can issue non- '€ceived a connection or listen request at jioeind accepted it. If
deterministically either aej (rejected) ocon(connected) message ~ there are other in-ports of the component, not represented in the
as an answer to this request. However, in the full component this Interface of the stub, the output is considered non-deterministic
choice is deterministic, depending on the data exchange on thelTom the point of view of the absent in-port, as in the case with the
portssendandrec with the rest of the system. The degree of non- Non-deterministic issuing G[FJ andconas an answer to ennect
determinism of a stub depends on the number of component ports'@duest described previously in Figure 5.
which are not included in the interface of the stub. 4.2 The verification process

Definition 9. Top-level interface. The top-level interface of a Our verification approach is illustrated in Figure 8. To verify the
componentC , with respectto a glue logic , is the set of ports of the glue logic we need to integrate its model with stubs of the compo-
component to which the glue logic is connecte,ﬁfxz cnG _We nents itis connected to. These stubs capture the characteristics of
will use the simple notation, ., if it is either not important or itis e outputs of the components and, by this, they provide the envi-

clear from the context, to which component and glue logic we refer. (r)(l)’nnrqnoergt ;?Jég%ggjfhf%'ﬁjéol ggig?tggﬁdié-mgnnSggggjpg)sfﬁeor;ggeeI
The ports of a componert , connected to the glue Ia8ic , checker together with (T)CTL formulas corresponding to the

can be divided into interfaces in many different ways. More pre- jnyolved interfaces of the components. It should be mentioned that,
cisely, every subset of ., can be considered an interface for in order to perform the model checking, PRES+ has to be trans-
which a stub can be constructed. Figure 6 presents a partial ordeflated into the input language of the particular model checker used.
(lattice) of interfaces and hence also of stubs of a component con-We have discussed the problems related to such a translation into
nected to a glue logic through two in-ports énd b) and two out- timed automata [5] for the UPPAAL model checking environment
ports (Q and Q). The lattice induces distinct levels of generality 6] in [4]- |rt1 at?]dltg)n to the forméltlja]:s prO\flde,d t09tetgebr V‘;]',th th?ft
of the stubs. The top-level stub (the stub for the top-level inter- fr?emfeor'i}ﬁ:gt?bn Sroggls%ner can add formuias invented by himseilr to
Lacﬁ)’ W'th |nte_rtface max_{'l'('jz' 0,05} eXh'tb'tf' exactly t?he s_am?) In order to illustrate the verification process, a small example

ehaviour as 1ts corresponding component. FOWEVEr, The IMPIe-;q 1, q\ided in Figure 9Doubler accepts a token with an integer
mentation is not bound to be the same. In the bottom of the lattice, | /o at in-portarg. In response, it will issue a token at out-port
we have thg empty interface, f(_)r W.h'Ch there does not exist any outputwith the value two times the value it received. Component
stub and which is only of theoretical interest. If, for a certain verifi- Strangewill issue one token on out-pcactionas an answer to each
cation, no stubs situated at level 1 or higher are applied at a certain

t th led tv stub i ted 1o that port. In th token it receives on in-porhput. These two components are con-
port, fe'n a S(: cetlhe em[t) Y f IS corzjnecte t(;1 at ?)Otrh. tn € nected through the glue logic in the figure. The glue logic will pro-
case of In-ports, the empty stub,y ., denotes the stub that con-y;qe the Doubler with an argument, starting with value 0 and

increasing each time by one. The reply of beubleris given to
Strangewhich will acknowledge by issuing a token on out-port

level 4:

level 3:

level 2:

level 1:

(T)CTL Formula: (T)CTL Formulas
level O: E'N {Jovy Interface 1 /lnterface 2
: -~ &) — Model CheckeT=——"— ves/No

Figure 6. A partial order of interfaces Figure 8. The verification procedure

action O et
|<_(arg) actio |<—(*) arg action
Strange input 2 fa”domc output 0
action input
(b)

input g output (a)

X
Figure 9. Example ar
action which in turn will cause a new integer to eventually be pro- o output ' input
vided to theDoubler i e O > ©
Figure 10 shows the stubs corresponding to the example in Figure 11. A few environments for the example in Figure 9
Figure 9. Let us elaborate on how different levels of stubs can be ~ Because of lack of space, we have omitted the relatively

used for verification considering the following formulas: straight-forward proofs of the following two theorems:

i DUE . Theorem 1.The partition precedence relation is a partial order.
AG (input - input=0 (mod 2) - (€q. 3) AG (arg - arg20) (€. 5) Theorem 2.The partition precedence relation is a lattice with

AG (arg - A [outputR -arg]) (eq.4) AGEFinput<0 (eq. 6) top elementP,,, , including the top-level interfaces of all con-
To check (eq. 3) (if there is a token in plaogut, then the value nected components, and bottom elenfept =0 .

of that token must be an even number), only the stubs for the inter- Definition 12. Environment. The environment corresponding to a
faces putpu} and {inpuf} are needed. (eq. 4) (if one argument is partition P={1,,1,,...} with respect to a set of ports where
received byDoubler, another argument may not arrive until the Ports(P0J, is defined as
result of the first one is produced), requires top-level stubs at both Env(P. 3 = (L], . $)O([] ons-poggpl,) Where eachs is the
sides. (eq. 5) (if there is a token in plagey, then the value of that stub for interface , and, " is the'empty stub attached topdort
token is positive) can be checked with only empty stubs. Letus look ~ Let us consider the example in Figure 9 with the stubs of the

at (eq. 6) (there is always a possibility that a negative value may components in Figure 10. Withi ={arg, output action inpyt ,

arrive at portinpuf) which obviously is not satisfied. However, if ~ Figure 11(a) shows the environment
empty stubs are used, the verification will indicate that the formulais En«({{ arg.{action input},J) . Since portoutputis not included
satisfied. But if the stubdrg, output is used, the verification will in the partition, the empty stubl,,,, (see Figure 7) has been

point out that the property is not true, which is the correct conclusion. added. Figure 11(b) shows a similar example for
It is obvious that using top-level stubs for all components we Env({{ arg,{outpu$},J). In Figure 11(c), no empty stub needs to
will get a correct verification for properties specified by any for- be added forEnv({{ arg outpu},{actior},{input}},J) , since all
mula. However, we have a whole lattice of stubs for each compo- ports inJ are included in the partition.
nent. Thus, the following question has to be answered: Do we [fallthe individual stubsirEnv(P.) together are viewed as one
always have to use the top-level stubs in order to verify a certain single component, we obtain the environment corresponding to
formula? If the answer is "no”, then which stub or combination of partition P with respect to the set of pods . The name stems from
stubs to use for verification? These questions are of both theoreti-the fact that such a component acts as the environment of the glue
cal and practical importance. From the practical point of view, logic, connected to the ports ia , in the verification process.
selecting a certain combination of stubs can reduce the complexityBased on Theorem 2, it is possible to construct a lattice of parti-
of the verification process and, by this, the verification time. On the tions, i.e. environments, similar to that done with individual stubs
other hand, it can happen that certain stubs, possibly the top-leveland their interfaces (Figure 6). Figure 12 introduces a very simple
ones, are not available. Thus, it is important to provide a theoreti- €xample consisting of two interconnected components-igare
cal platform which allows to decide if it is possible to perform a 12(b), we show the interface (stub) lattice corresponding to each of the
correct verification with a certain combination of available stubs. components. Figure 12(c) depicts the partition (environment) lattice.
This theoretical framework will be developed in Section 4.3. Theorem 3.Given an input observatiom , two partitiomg

4.3 Properties and relationships of stubs andr, F’)EP1DP2 (;n‘"’)‘%doap:m of Py whepert{ R),Ports(R)0J
Definition 10. Interface partition. An interface partitioP iSa proof. Aseuria an obseraton OF;Env(P ,(in) . This means tat
set of non-empty interfaceB={P,,P,...} such thgin P;=0 is a possible output observation given the input observation . By
foranyi and jz# . definition of partition precedenceélp, OP,0p,0P,:p,0p, . Hence
It should be pointed out that each port can at most belong to tne restriction operator impc(i”)\l =0pg(in,) (see Definition 8)
S

one interface in every partition. As a consequence of Definition 3, filters out more elements from“the unrestricted operation when
all ports in the same interface must belong to the same component.lsz lc=p, than whenig=I.=p, . Consequently must also

By convenience, the set of all ports belonging to the interfaces in . ~)
partition P is denotedorts P = | |._i pass the fllte_r ofp, and can be an output Biv(P,J) , l.e.
ODOpEnV(PrJ)(ln) .0

ioOP '
Definition 11. Partition precedence. Partitich recedes par- s . . .
b P P Definition 13. Generalized operation. The generalized opera-
tion Op; for componentC is the union of all operations for every

tition Q, POQ, iff OpOPOqO QpOq.
For everypOP , there exists at most o8 Q that satisfies the Z M h !
possible input observatiomp. = [], Opc(in)

subset relation. This is due to the fact that every port can at most

belong to one interface in the partition. 10 [Lolh{21
Returning to the example in Figure 9, some possible partitions Comp.ljl Comp. 2 (r.on2))

are:P ={{arg},{outpud} ,Q={{arg,{outpud,{action inpu}} and ol i2 - - -

R={{argoutpuf,{action inpu}} . POQ, since all interfaces i (@) Components and glue |ogic{{'l’°1}} i) {o1) (i2)}

are subsets of an interface @ . It is also true tRatR and \

QUR. However, it isnotthe case thaRO Q . Intuitively, the inter-
faces inR are more accurate than thos@in Qor , since they cap-

{2}
@) inrdizn) (fo1pdiz)

ture more of the causalities and dependencies between their ports. D
Oafg {arg} X arg {{i1h {{o1}} {{i2}}
output {arg, output}
. tput ’
2*random {outputy 200\ outeut Component1 Component 2 (0)
. Q<—{ {action} action (b) Interface lattices (c) Partition (efivironment) lattice
actiol

C finput} input {action, input} Figure 12. Component, interface and partition relationships
inpu

) . N 1 The union of two PRES+ nets can be reduced to the union of the places
Figure 10. Stubs used in the example in Figure 9 and transitions, respectively.

According to Definition 7, an operation is the set of all possible portsinJ and a (T)ACTL formula, e.gAF ¢ , also expressed only
outputs given a certain input. The generalized operation is the set ofon the ports inJ . IfM0|=AF ¢ for componerinyP,J) ,thenitis
all possible outputs no matter what the input is. The generalized oper-alSo true thaMg=AF ¢ for componeahyp,,J) . _
ation allows us to generalize Theorem 3 into the following corollary. PT0Of. Ml=AF ¢ = Do0Opgp, 50i0IN [20:0(00iM)[jlF ¢,

Corollary 1. Given partitionsP, and®, P,0P, ,and a set of whereIN is the set of all input observations on ports in the parti-

portsd wherePorts(P),Ports(P) U3, the®pey s 5 10Penpy) - tions. As a consequence of Corollary 1 and the fact¢hat iand are

Proof. Follows directly from Theorem 3 and Definition 3. ° universally — quantified, it is possible to conclude
Definition 14. State sequence generator. A state, in this con- J00O0Penyp, DI OIN [G20:0(00i,Mg)[jl}=¢. O o

text, is a marking of ports. A state sequenceegator is a function The key point in the proof is the universal quantifiers of the

a(0,M) , Whereo is an observation and, is an initial state. The observation and . For this reason the theorem only applies to

observatioro may only contain appearing events and disappearing{)ACTL formulas, since they are exactly those formulas which

events on ports. The result of the function is a sequence of statesc@n guarantee the universal quantifier.

obtained by iteratively applying the eventsdn to the previously 4.4 Discussion

obtained state (initiallj},) in the order indicated by their timestamps. Section 4.3, in particular Theorem 4, provides the answer to the
Let r, denote the timestamp of an eveatio . Assume (questions identified at the end of Section 4.2. Let us assume that we

e=[p Oy r,0 or e= [0, depending on whether it is an appear- have a se€ of two or more components which have been intercon-

ing or disappearing event, aril={ g-0e0o:(ry<r)} , i.e. the set nected by a glue logic. It has to be verified that a certain property,

of events with the lowest timestamp in . Then Definition 14 can €xPressed as a (T)CTL formula , holds. The following situations

; can occur:
be recursively reformulated asi(o,M,)=[My:0(0—E My(E , . . .
Y (0. Mg) = [Mg:0(0 oENI 1. Formulag is nota (T)ACTL formula. In this case the verifica-

where [h:T] denotes the heall, , and the tail, , of a sequence, ion h b ‘ d with level stubs f I d
and My(E) denotes the resulting state (marking) after applying all tion has to be performed with top-level stubs for all connecte
events inE on the initial state (markingYl, . The basis of the components. . . .
recursion iss(0,Mg) =[] . 2. Formulag is a (T)ACTL formula. In this case, if the formula is

The definitions given so far provide the necessary means to satisﬁed usi_ng_ stub_s at any level, the property can be considered as
express the semantics of CTL formulas in the context of the theo- satisfied (this is a direct consequence of Theorem 4 and of the fact

retical framework we have introduced. First, recall the classical that, according to Theorem 2, for any partitien and top-level

definitions [5] for the two example formulasF ¢ amES e for partition Prnay , POPpay). _ _ _

any CTL formulag $|= @ means that formulp holds in state Case 2 abo_ve is important, as it offers a certain degree of liberty

andg- denotes equivalence between two formulas): for the verlfllcatlon with (T)ACTL formulas. If some top-level stubs
S|=AF 0o I:IOI:IPM(S)DjEO:G[j”:(p (eq. 7) are not available, but the property can be verified with lower-level

. i stubs, this is sufficient for validation of the system. On the other
SEEG ¢~ Lo0OPy(s)C] 20:0[il=¢ (eq. 8) ~ hand, for reasons of complexity, the designer can choose to perform
Py(s) denotes the set of all possible sequences of states inthe verification with simpler low-level stubs. If the property is satis-
model M where the first state i . It should be noted that in fied, such a verification is sufficient. If not, however, the verifica-
these equations does not refer to the state sequence generator intréqpn using high-level stubs can still satisfy the property and thus
duced in Definition 14, but is a quantified variable. From these demonstrate that the system is correct.
sample equations it is possible to extract how the state path quanti-
fiers (A, E) and the time quantifiers (G, F) translate into the seman- S. EXPERI,MENTA_L RESULTS L
tics of our theoretical framework. The difference between this The following experiments concemn the verification of systems
model and ours, is that all definitions in our model are based on resulted after the interconnection of components. In the first set of
events, not states. The link between these two views of the world, is €xPeriments we have verified the glue logic in Figure 4, which
based on the state sequence generator in Definition 14. (eq. 9) andtérconnects thRadarandProtocolcomponents of a General avi-
(eq. 10), whereN is the set of all possible input observations of ONics p_Iatform (GAP) _[8]. We llustrate the verlflc_atlon of four
componeniC , express the same semantics as (eq. 7) and (eq. 8) iRTOPErties. Property A I8GAF ~update (the tokens in popdate
terms of observations and operations. portautwil ahiays be consUMed). Properies 8 and C are dentical
. s . . utwill alway u . i i i
MOI:AF ¢~ HolOpcL DIND_JZO'O(OD_"M(’)[_J]F“’ (€. 9) to (eq. 1) and (eq. 2). Consequently, all these formulas are ACTL.
Mof=EG ¢~ [b0Opc[DINDj20:0(00iMg)[jlIF@ (€d.10) Three possible partitions were used whose relationships are shown
The union is taken of both all possible input observations, in the lattice in Figure 13(a). The results of the verification are
i0IN , and all possible output observations]Op. , and passed to shown in Table 1. It can be observed that all four properties
the state sequence generator to be used as in the classical definimposed by the interconnected components are satisfied with the
tions. The observations are quantified in the same way as the stateactual glue logic. For property D, the verification can be done using
sequences would have been done in (eg. 7) and (eq. 8). the lowest level of the three partitions (as the property is expressed
In [7] equivalent formulas to (eq. 7) and (eq. 8) are given for by an ACTL formula, point 2 in Section 4.4 applies).
TCTL. Based on the discussion above, they can be trivially The second example refers to a split transaction bus (STB) in a
extended to formulas similar to (eq. 9) and (eq. 10). multiprocessor DSP [9]. An overview of the system is shown in
Before presenting Theorem 4, it is necessary to introduce a Figure 14. Each processing element contains one 32-b V8 SPARC
subcategory of CTL formulas, namely ACTL. ACTL formulas are RISC Core with a co-processor and reconfigurable L-1 cache mem-
formulas which only contain universal path quantifiers. Moreover, ory. The STB consists of two buses, the address bus and the data
the use of negations is restricted to only be allowed in front of bus. When the protocol wants to send data, on request from the pro-
atomic propositionjs For example, AG (p- AFq) and
AG (p - AF -q) are ACTL formulas while AG (p--AFq) and {update},{in,out,status}}
AG (p - EFq) are not. ACTL formulas can be extended with time
in a similar way as for CTL formulas, whereby TACTL formulas update},fin} fout,status}}
are obtained.
Theorem 4.Assume the partition®, a P,0P, ,asetof
portsJ wherePortq B),Portg(R,)0J , aninitial markingl, onthe {{update} {out,status}}
1 Anatomic proposition is the lowest level of a formula which does not con- (a) GAP (b) STB
tain any subformula. Figure 13. Partition lattices for the GAP and STB examples

/[STB Address Bus—~__| Table 1: Experimental results for GAP example

7o ‘ Processing H Processmg‘

Element Element / Partition/Property 1 2 3
Interface -
and 128-b Split trans. bus__| ~ A F1.97 FZ4T T0.24
memory - B F 0.39 F 0.69 T0.12
controller | .

Processing |I[Processing | Processing—| Verified c F 0.43 F0.75 T0.13

Element || Element glue logic D T0.21 T 0.36 T0.12

Figure 14. Schématic view of the STB example also expressed as an ACTL formula, is also satisfied. This can be

cessing element, it must first request access to the address busserified by using the top-level environment, but also by verifying
After acknowledgment of the address bus, the protocol suggests arwith environment 2. According to point 2 in Section 4.4, the verifi-
identifier for the message transfer and associates it with the addresgation performed with environment 2 also guarantees that the prop-
of the recipient. This identifier is broadcast to all protocol compo- erty is satisfied with environments 4, 5, 6, 7, 8, 9, 10, 11 and 12,
nents connected to the bus in order to notify them about used iden-which means the complete system. This is, of course, not the case
tifiers. The next step is to request access to the data bus. When thevith properties H and K which are expressed by non-(T)ACTL for-
data bus has acknowledged the request, the identifier is sent fol-mulas. Verification with low-level environments is not relevant.
lowed by some portion (restricted in size by the bus) of the data. The only valid verification is using the top-level environment.
Then, the data bus is again requested and the same procedure con- Let us have a look at verification times. For the different prop-
tinues until the whole block of data has been transmitted. One erties and environments they are in the range 0.12-689 seconds.
functionality of the glue logic being verified is to deliver messages For a given property the verification times are small for the very
from the protocol to the correct bus. Another aspect is to processlow-level stubs and for the top-level stubs. This is due to the sim-
the results and acknowledgments so that they can correctly beplicity of the low-level stubs, on the one side, and the high degree
treated by the protocol. For instance, in the case of an identifier of determinism of the top-level stubs (which reduces the state
broadcast, the protocol component expects two different com- space) on the other side. Between these two limits we can observe
mands from the address bus, depending on which of the following a, sometimes very sharp, increase of verification times for the stubs
two situations occurred: (1) the protocol component currently in which are at a level close to the top. If they are available, one can
hold of the address bus is the component connected to this particuperform the verification using the top-level stubs. For non-
lar glue logic or (2) the broadcast is the result of another compo- (T)ACTL formulas, this is the only alternative. However, (T)ACTL
nent proposing an identifier. formulas could be verified even if the top-level stubs are not at
Table 2 shows the verification results with the STB example. hand. In this case, a good strategy could be to start with the lowest
The high number of ports yields a large lattice of partitions. In level stubs, going upwards until the property is satisfied.
Figure 13(b) only those which are involved in this particular exper- 6. CONCLUSIONS

iment are included. Partition 12 consists of the top-level stubs for We have introduced a methodoloav to perform formal verification
all three connected components. Partition 1 consists of interfacesof embedded systems in the con'[ge);(t ofpcomponent reuse. A timed
containing only out-ports.)) . Petri Net based design representation is used.

In order to give a better understanding of the properties, we will -~ The verification technique smoothly integrates with communi-
have a closer look at two of them. Property B concerns with the fact cation based design and component reuse. The verification is per-
that the glue logic must issue different commands to the protocol formed aginst a set of (T)CTL formulas associated to the
component when the address bus broadcasts the identifiers, depengsomponents and is based on abstract models of the interconnected
ing on the source causing this event to happen. It is formulated ascomponents, without assuming any knowledge regarding their
AG (rec - rec# [TRAN, a[Tla#this_component where TRAN (tfran- jmplementation. The theoretical framework underlying the meth-
saction) is the command to be received by the protocol componentadology has been presented together with examples and experi-
when the source causing the event is the one connected to the glughental results.
logic under verification. It should not be possible to receive such an
event when the address is different from the one of the current compo-7' REFERI?N(_:ES]
nent. Property | includes also timing aspects (it is a TCTL formula): [1] _J. Haase, "Design Methodology for IP ProviderBtoc. DATE 1999

. ; 728-732.
AG ((addr.out=[ACK,allla=thisComp - AR ,addr.in=DRVADD) [21 J.A. Rowson, A. Sangiovanni-Vincentelli, "Interface-Based Design”,
. When the address bus has sent an acknowledgment, it expects theroc. DAC 1997178-183.
command DRVADD to arrive within 10 time units. [3] R.Seepold, N. Martinez Madrid, et al., "A Qualification Platform for

Properties A to G are expressed as ACTL formulas, while prop- De3|g|2 A?eéz?tgsr?%.IE%E,Dzz.ogezzg,-%(\)/‘erification of Embedded Systems

erty H is not (it is a general CTL formula). The last three properties using a Petri Net based Representatiendg. 1SSS 20Q0L49-155.
include timing aspects. | and J are TACTL formulas while K also [5] “E.M. Clarke Jr, O. Grumberg, D.A. Peled, "Model Checking”, MIT
includes existential quantifiers. It can be noticed that property C is I[:ZiliessullglngL h it/ |

; ; ; ; omepage: http://www.uppaal.com.
not lsatlsﬁed in the S%/.Stﬁm' 'I'he verlﬁc_atlon result fr(])r thﬁt property [7] R.Alur, C. Courcoubetis, et al., "Model-checking for Real-time Sys-
is false, no matter which environment is used. On the other extremetems” proc. Logic in Computer Science 1994-425.
we find properties B, E and J which are satisfied even with the low- [8] ~ C.D. Locke, D.R. Vogel, et al., "Building a Predictable Avionics Plat-
est level environment. Hence, being expressed as (T)ACTL formu- form in Ada: A Case StudyProc. RTSS 1991181-189.

; ; ; ; [9] B. Ackland, A. Anesko, et al., "A Single-Chip, 1.6-Bill., 16-b
las, the properties are satisfied with any environment. Property G, MAC/s Multiprocessor DSPJourn. of Solid-State Gircas, 3. 2000.

Table 2: Experimental results for STB example

Partition/Property 1 2 3 4 5 6 7 1 8 | 9 10 11 12

A FO0.4T F3.28 F0.34 F 162 T156 F 345 F330 F68[2 TI1.7 F6B6 T304 T12.6
B T0.14 T 0.41 T0.16 T17.6 T 2438 T16.9 T 23. T 1.6 T1.38 T 26.9 T 154 T 1.29
C F0.23 F0.74 F0.23 F19.7 F 29.7 F18.p F 28|8 F3.p5 F 327 F32.7 F .09 Fl4.01
D F0.38 F 0.89 F0.37 F 129 F 459 FO7.7 F 31B F20.1 T 3[32 F 492 T10.2 T .04
E T0.20 T0.58 T0.21 T28.1 T54.2 T 29.7 T48.9 T2.40 T1.20 T53.3 T 448 T4.39
F F0.34 F0.68 F0.31 T18.7 T 26.7 T 16. T 250 F6.51 F 285 T 2B.8 T1.76 T1.36
G F 0.41 T 0.43 F 0.44 T185 T 26.3 T17. T 26 T 2.47 T0.94 T 30.0 T 2,36 T1.94
H T0.21 T 1.30 T0.22 F 167 F 438 F 344 F 32 F 66[4 F11.9 F 689 Fd7.2 F B8.0
| Fl4 F17 F15 F25 F12 F3.2 F 2.6 F23 T 148 F1j8 T 93.6 T15
J T9.4 T12.4 T 10.0 T125 T7.0 T8.0 T 19. T17J]7 T 107 T11.4 T97 T4.0
K T05 T0.7 T0.4 T0.4 F54.8 T0.4 T0.3 T 0.4 F24.p T0.8 F 261 F 51

F - property is unsatisfied in the corresponding environment, T - property is satisfied in the corresponding environmetibn\erisaare given in seconds.

