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Abstract el checking for embedded systems represented in PRES+, a
_ ) ) notation capable of capturing relevant information charac-
The ever increasing complexity of embedded systemseristic to such systems. We introduce a systematic proce-
consisting of hardware and software components poses agyre to translate PRES+ models into linear hybrid automata
challenge in verifying their correctness. New verification i order to use existing model checking tools.
methods that overcome the limitations of traditional tech-  podel checking is an approach to formal verification
niques and, at the same time, are suitable for hardware/ ihat |ets the designer prove whether certain design proper-
software systems are needed. In this work we formally de-ties hold in a given model of the system. Our approach al-
fine the semantics of PRES+, a Petri net based computa-jgws to determine the truth of CTL (Computation Tree
tional model aimed to represent embedded systems. W‘?_ogic) [5] and TCTL (Timed CTL) [1] formulas with re-
introduce an approach to formal verification of such sys- spect to a PRES+ model. Thus it is possible to validate de-
tems: we make use of model checking to prove the correct-sign properties including timing requirements.
ness of embedded systems by determining the truth of CTL "The rest of this paper is organized as follows. Section 2
and TCTL formulas that specify required properties with re- 5qgresses related approaches to formal methods suitable for
spect to a PRES+ model. An ATM server illustrates the fea- empedded systems. The underlying computational model

sibility of our approach on practical applications. that we use to represent such systems is formally defined in
. Section 3. Our approach to verification of embedded sys-
1. Introduction tems is presented in Section 4. In Section 5 we illustrate our

Modern electronic systems are typically constituted of verification meth(_)d using a real-l_ife telet_:om system. Final-
application-specific hardware components and software!y, SOme conclusions are drawn in Section 6.
running on programmable platforms. The inherent hetero-
geneity of this kind of systems makes them very complex 2. Related Work
and consequently difficult to verify. Moreover, the increas- ~ Many models have been proposed to represent HW/SW
ing demand on high-performance products has boosted th&ystems. Particularly, Petri nets (PNs) have been extended
levels of sophistication of such systems. to model such systems. Macgdl al[13] introduce an inter-

For the levels of complexity typical to modern electronic mediate model for hardware/software codesign, extending
systems, traditional validation techniques like simulation Petri nets to analyze certain properties used in the partition-
and testing are neither sufficient nor viable to verify their ing process. Stoy [15] presents a modeling technique where
correctness. First, these techniques may cover just a smaltimed Petri nets with restricted transition rules are used to
fraction of the system behavior. Second, long simulation represent control flow in both hardware and software.
times and bugs found late in prototyping phases have aneg- Though formal methods are not commonplace in hard-
ative impact on time-to-market. Formal methods are be- ware/software codesign, some coverification approaches
coming a practical alternative to ensure the correctness ofhave been proposed recently. Using the hybrid automata
designs. They might overcome some of the limitations of model, a coverification method is proposed in [10] where
traditional validation methods. At the same time, formal complex systems can be analyzed using a simplification
verification can give a better understanding of the systemstrategy to verify individually the hardware, the software,
behavior, contributes to uncover ambiguities, and revealsand the interface. Balariet. al [4] introduce a verification
new insights of the system. methodology based on Codesign Finite State Machines

Formal methods have been extensively used in software(CFSMs) in which CFSMs are translated into traditional
development [8] and hardware verification [12]. However, state automata in order to check whether all possible se-
they are not commonplace in embedded systems design. Ifjuences of inputs and outputs satisfy the system properties.
this paper we present an approach to verification using mod-in [9], a partitioned system is the input to the proposed cov-

This research is sponsored by the Swedish National Board for Indu- erification framework in which CTL and TCTL .for.mUIas
strial and Technical Development (NUTEK) in the frame of the SAVE are evaluated in order to check behgworal and timing prop-
project. erties. An approach to model checking of process networks




is proposed in [16], where IDDs (Interval Decision Dia- The seK denotes the set of all possible token types for a
grams) are used to represent multi-valued functions. given systemm

Related approaches to formal verification using PNs in- Definition 3. A markingM : P - {0, 1} is a function that
clude [17], which presents a BDD-based model checker for denotes the absence or presence of tokens in the places of
safe nets. An interesting approach to analysis and verifica-the net. A PRES+ néd is safeor 1-boundedthat is, a place
tion of bounded Petri nets is presented in [14], where BDDs may hold at most one token for a certain marking.

are used to represent sets of markings. M(p) = 1 whenever the place is marked otherwise
M(p) = 0.=
3. PRES+ Note that a marking/ implicitly assigns one tokek to

The notation we use to model embedded systems is€ach marked place. We introduce the following notation
PRES+ (Petri net based Representation for Embedded Sys/hich will be useful in defining the dynamic behavior of
tems). PRES+ is a slightly modified version of the model PRES*: when a placg; is markek, ~ denotes the token
presented in [6]. It is a computational model based on PetriPresentinp; . The token value of the token  is denated
nets that allows to capture important features of embedded?nd the token time of the toke  is denoted . The initial
systems. Figure 1 shows a simple example that will help to MarkingMg in Figure 1 showsp, ang, as places initially

iliustrate the definition of this representation. In what fol- Marked. The tokerk, = [& 00 has a valaeand a time
lows we introduce the formal definition of PRES+. stamp 0. For the sake of simplicity, in the examples we use
the short notatiomw to denote the token valug,

Definition 4. The type functiont : P -~ K associates a

@pa @ Po place with a token type(p) denotes the token type associ-
a b ated with the placp. The token type is the type of value that
a token may bear in that plaee.
‘ a2 tl‘ ‘ bi2 tz‘ It is worth pointing out that the token type related to a
1.2.7] 23] certain place is fixed, that s, itis an intrinsic property of that
place and will not change during the dynamic behavior of
P the net. For the example in Figure 1, all places have token
typereal.

Definition 5. The pre-set°t = {pOP|(p )OI} of a
transitiont is the set ofnput placesof t. Similarly, thepost-
sett® = {pOP|(t p) OO} of atransitiont is the set of
output place®oft.

Correspondingly, there-set°p and thepost-setp°® of
a placep are given by°p = {tOT|(t ppO} and

Figure 1. A PRES+ model pe = {tdT|(p )OI} .= _ N

Definition 6. All output places of a given transition have the
Definition 1. A PRES+model is a five-tupleN = (P, T, same token type,
1,0, Mg) where - fpqOt O t©(p) =1(q) = N
P ={p,Pys.... Py} is a finite non-empty set places Definition 7. For every transitiom, there exists &ransition
T = {t,t, ...t} isafinite non-empty set afansitions ~ functionf associated to Formally,
| OP x T is a finite non-empty set dhput arcswhich de- otoT O frt(py) xt(py) % ... xor(pa) - 1(q)
fine the flow relation between places and transitions; where°t = {p;, Py, ..., Pa} andqUt° = N
OO0 Tx P is a finite non-empty set afutput arcswhich Transition functions are very important when describing
define the flow relation between transitions and places; ~ the behavior of the system to be modeled. They allow sys-
My is the initialmarkingof the net (see Definition 3J. tems to be modeled at different levels of granularity with

Like in classical Petri nets, places are graphically repre- transitions representing simple arithmetic operations or
sented by circles, transitions by boxes, and arcs by arrows complex algorithms. In Figure 1 we inscribe transition func-

For the example in Figure B = { p,, Py, Pe Pg» Per Pt} tions inside transition boxes: the transition function associ-
andT = {t;,t,ts t,} . ated tot, , for example, is given bf,(c,d) = c+d .We
Definition 2. A tokenis a pairk = O, r0 where use inscriptions on the input arcs of a transition in order to

v is thetoken value This value may be of any type, e.g. denote the arguments of its transition function and/or its

boolean, integer, etc., or user-defined type of any complex-guard. N . o
ity (for instance a structure, a set, or a record). The type of Definition 8. For every transition, there exist aninimum
this value is referred to asken type transition delayd and amaximum transition delay ",

r is thetoken timea non-negative real number representing Which are non-negative real numbers and represent, respec-
the time stamp of the token. tively, the lower and upper limits for the execution time (de-



lay) of the function associated to the transition. Formally,
OtOT Od,d" 00 such thad <d”

with Dg being the set of non-negative real numbers.

Referring again to Figure 1, the minimum transition de-
lay d; of t; is 1, and its maximum transition delalj s
2.7 time units. Note that wheti=d*=d, we just inscribe the
valued close to the respective transition, like in the case of
the transition delag; = 5
Definition 9. Theguard Gof a transitiort is the (necessary)
condition that must be satisfied in order to enable that tran-
sition, when all its input places hold tokens. The guard

G T(py) XT(Py) X ... XT(py) — {0, 1}

of a transitiort is a function of the token values in the places
of its pre-set’t = {p;, pa ..., Po} - If the condition holds
G =1, otherwis€&s =0.=

For instance, in Figure ;<4  represents the guayd
Definition 10. Every transition has dunctionality The
functionality of a transition is defined in terms of:
(i) Its transition functionf;
(ii) Its minimumandmaximum transition delays dndd*. =

Unlike the classical Petri net model, each token holds a
value and a time stamp. When a transitiois fired, the
markingM will generally change by removing all the tokens
from the pre-seft and depositing one token into each ele-
ment of the post-saf . These tokens, added to

in °t and the functionality of.

Definition 11. A transitiont is said to beenabledf all plac-

es of its pre-set are marked, its output places different from
the input onekare empty, and its guard is asserted. Formal-
ly, for a given markingM, a transitiont is enablatf

() OpO°t M(p) =1

(i) Ogd (t°—°t) M(q) =0

(i) G =1
Definition 12. Every enabled transitionhas anenabling
time etthat represents the time instant at which the transi-
tion becomes enabled. The enabling tietef a (enabled)
transition is the maximum token time of the tokens in its in-
put places,

et= maxug,ry ...,ry)
where the pre-set ofis °t = {py, Po, ..., Pa} - ™
Definition 13. The earliest trigger timett” and thelatest
trigger time tt* of an enabled transition are the lower and
upper time bounds for the firing of the transition,
tt =et+d
tt" = et+d'

An enabled transition may not fire before its earliest
trigger+timett' and must fire before or at its latest trigger
time tt , unless becomes disabled by the firing of another
transition.s
Definition 14. Thefiring of an enabled transition changes a
markingM into a new markingv*. As a result of firing the
transitiont, with pre-set’t = {py, p,, ..., P,} , the follow-
ing events occur:

T A place may be, at the same time, input and output of a transition.

, have val-
ues and time stamps which depend on the previous tokens

(i) Tokens from its pre-set (which are not in its post-set) are
removed;
OpO(°t—t°) M*(p) = 0
(ii) One token is added to each place of its post-set;
OgOt M'(q) = 1
(iii) Each new token deposited it®  has a token value,
which is calculated by evaluating the transition function
with the token values of tokens h ~ as arguments;
Og Ot° v, = f(vy, vy, ..., V)
(iv) Each newtoken added 3  has atokentime, thatis the
time instant at which the transitiofires;
Og; Ot° r, = tt* wherett* O [tt,tt"]

The execution time of the function of a transition is con-
sidered in the time stamp of the new tokens. Note that, when
a transition fires, all the tokens in its output places get the

. same token value and token time. The token time of a token

represents the time at which it was “created”.

When used to model embedded systems, the representa-
tion introduced above has several interesting features to be
highlighted, some of them inherited from the classical Petri
net model:

* Non-determinism may be naturally represented by
PRES+. Non-determinism can be used as a powerful
mechanism to express succinctly the behavior of certain
systems and then reduce the complexity of the model.
Parallel or concurrent activities may be easily expressed
in terms of Petri nets. We recall that concurrency is
present in most embedded systems.

Since tokens carry information in our model, PRES+
overcomes the lack of expressiveness of classical Petri
nets, where tokens are considered as “black dots”.

Time is a critical factor in many embedded applications.
Our model captures timing aspects by associating lower
and upper limits to the duration of activities related to
transitions and keeping time information in token
stamps.

PRES+ has been also extended by introducing the con-
cept of hierarchy. However, we will not further discuss
this particular feature in this paper.

Summarizing, PRES+ is a model to be used in the design
cycle of embedded systems. Our representation is an exten-
sion to the classical PN model that overcomes some of the
drawbacks of Petri nets when modeling embedded systems:
it captures explicitly timing information; PRES+ allows
representations at different levels of granularity; our model
is more expressive since tokens might carry information.
Furthermore, the model is simple, intuitive, and can be eas-
ily handled by the designer.

4. Verification of Embedded Systems

In this section we present a verification method for sys-
tems represented using the model introduced above. The
purpose of the approach presented in this paper is to reason
about embedded systems using PRES+ as underlying repre-
sentation. There are several types of analysis that can be



performed on systems represented in PRES+. A givenact, inv) consists of the following components:

marking, i.e. absence or presence of tokens in places of the A finite setX of real-valuedrariables A valuationv is a
net, may represent the state of the system in the dynamic be- function that assigns a real-valw x) to every variable
havior of the net. Based on this, different properties can be x [ X.

studied. For instance, the designer could be interested ire A finite set oflocationsor vertices VA states = (v, v)
proving that the system eventually reaches a certain state consists of a locatiom and a valuation

whose marking represents the completion of a task. « Afinite setE of edgesEach edgee = (v, V) consists of
The kind of analysis described above, calledchability a source location 0V and a target locationl V

analysis is very useful but says nothing about timing as- < A finite set of synchronization labels land a labeling
pects nor does it deal with token values. In many embedded functionsyncthat assigns to each edgél E  a synchro-
applications, however, time is an essential factor. More- nization labell OL , noted ds= synq @

over, in hard real-time systems, where deadlines should not A labeling function cond that assigns to each edge
be missed, it is crucial to reason quantitatively abouttempo- e = (v, V) O E aconditioncond( 8 that must be satis-
ral properties in order to ensure the correctness of the de- fied in order to allow the automatdhto change its loca-
sign. Therefore, it is needed not only to check that a certain tion fromv tov .

state will eventually be reached but also to ensure that thise A labeling functionactthat assignsto eachedgél E  a
will occur within some bound on time. In PRES+, time in-  set ofactivities

formation is attached to tokens so that we can analyze quan= A labeling functioninv that assigns to each location
titative timing properties: we may prove that a given place vV aninvariant inv(v) which allows the automaton
will be eventually marked and that its time stamp will be  H to stay at locatiorv as long as its invariamtv( v) is
less than a certain time value that represents a temporal con- satisfied.

straint. Such a study will be calléithe analysis . . .
A third type of analysis for systems modeled in PRES+ 4-2- Translating PRES+ into Hybrid Automata

involves reasoning about values of tokens in marked places. |n what follows we describe the systematic procedure to
This type of study is callebehavior analysisin this work  translate PRES+ models into linear hybrid automata. The
we restrict ourselves to reachability and time analyses. Inresulting representation consists of a collection of automata
other words, we concentrate on the absence/presence of tayhich operate and coordinate with each other through
kens in the places of the net and their time stamps. Note,shared variables and synchronization labels. Figure 2 shows
however, that in some cases reachability and time analyseshe result of translating the PRES+ model of Figure 1 into
are influenced by token values. This aspect is discussed ahybrid automata. We will use this example as reference to
the end of this section. illustrate the proposed translation method.

To verify the correctness of an embedded system, westep 1 Define one variable iX for each placep, of the
first translate its PRES+ model into equivalent linear hybrid petri net, corresponding to the token valie ~ whgn is
automata and then use existing verification tools, namely marked, and one variablg  for each transition , which
HyTech [11], to check properties expressed as CTL andrepresents a clock used to ensure the firing of the transition
TCTL formulas. CTL [5] is based on propositional logic of ~ within the earliest-latest trigger time interval. Thus
branching time. Formulas in CTL are composed of atomic x = {Vi, Vs, ...y Vi €, Coy +ony Cr} 2 u
propositions, boolean connectors and temporal operators. For the example in Figure 2, using the short notaticn
Temporal operators consist of forward-time operat@s ( denotev,, X = {a, b G d e f ¢, CsC,} .
globally,F in the future X next time, andJ until) preceded  Step 2 Define the set of synchronization labels as the set
by a path quantifierA all computation paths, anl some  (of names) of transitions in the Petri net, that is
computation path). TCTL [1] is a real-time extension of | = {t, t,, ...,t,} .=
CTL that allows to inscribe subscripts on the temporal op- Step 3 For every transitiot 1 T define a hybrid automa-
erators to limit their scope intime. Forinstanéds ., p eX- tont withz+1 locationsdis,, dis,, ..., dis,_;, en , where
presses that, along all computation paths, the property s the number of transitions that, when fired, will deposit a
becomes true within time units. token in some place in the pre-sét . The set of such tran-

4.1. Hybrid Automata sitions is defined by

In what foll hortly d ibe thgybrid aut t pre(t) = Pg”opi

n what follows we shortly describe rid automata i .
model. The reader is referr)e/zd to [2], [3] for further reading In the paseplre( Y = O, define an automaton with only
on hybrid automata theory. Informally, a linear hybrid au- two Iocathnsd|so anen . . :
tomaton is a finite automaton enhanced with a set of real—Step 4aG|yenthe automaton ,deflacedgeidlso, dis;) .
valued variables, where the terms involved in conditions, 2 €d9es(dis;, dis;) ..., and edges(dis,_,, en) , and
assignments, and invariants are required to be linear. ZIn the linear hybrid automata model, variables may change along the

A hybrid automaton H = (X, V, svnc con time with a constant rate: for everg. 0 X the change rate must be
y ( E L syne d ¢; = 1;foreveryv, 0X the change Irate must\ye= 0 .
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Figure 2. Equivalent hybrid automata

then assign to each group oédges synchronization labels
corresponding to the transitions pre(t) . Define then one
edge(en dig) with synchronization label .
Step 4h If the transitiont is in conflict with another tran-
sitiontc (t could be disabled by the firing tf  ):

Let A = pre(f) n pre(tc) andB = pre(f)—pre(tc) .
In the automatort remove all the edges exdept dig)

Split each one of the locationglis,, ..., dis,_; into
dis; 4 ..., dis,_; , and dis, , ..., dis,_; , . Then define
edgeg(dis, ,, dis, ) (dis, , disg,) ... (dis, ;. en)

(disy, dis; ), (dis; p, dis, ), , (dis,_5 ), dis,_y p)

with synchronization labels corresponding to those transi-

tions in B . Define edgegdis,, dis, ;) (dis; , dis,,)
, (dis,_; p, €n) with synchronization labels correspond-
ing to transitions inA . Define then edggdis, ,, disy)
(dis, 5 dis; ), ..., (en dis_; ) with synchronization
labeltc .m
For instance, werg, notin conflict witty
atont, would have the locationdis,, dis;, en

, the autom-
and look

tionen asg<d. inorderto enforce the firing of before
or at its latest trigger tima. .
In Figure 2, the edgédis,, en) of automatop |, for ex-

ample, has the activitg; :== 0 c; is used to take into ac-
count the time sincé; becomes enabled and ensure the
firing semantics of PRES+. For the sake of clarity, location

. invariants are_not shown in Figure 2.

Step 6 Givent; and its edge = (en dig) ,assignép
the cond|t|ond <¢< d . For everyp; Jt;°  assign to
such an edge; the achww = 1i(vq, Vs, ...kva) .

For example, in the case of the automatgn  the condi-
tion 1<c,<2.7 gives the lower and upper limits for the
firing of t;, while the activity c:=a—2 expresses that
whenever the automaton changes frem  dis, Jt,e.
fires, the valuem—2 is assigned to the variable
Step 7. If t; is a transition with guards; , assign the condi-
tion G, to the edgden dig) of the automaton  (so such
an edge condition becomes< ¢; < d & G; ).Thenaddan
edge(en, en with no synchronlzatlon IabeI conditi@

like the one shown in Figure 3(a). However, because of such(the complement o6; ), and activity ;=0 =.

a conflict, Step 4b must be performed: locatidis; has
been split into the locationdis; , andis;, . Note that
pre(t,) n pre(t;) = {t;} and pre(t4) pre(t3) ={t} .

The edgeddis, ,, en) anddis,, dis; ;)  with synchroni-
zation labelt, are defined. Then the eddess,, dis, ,)

and (dis, , en) with synchronization labé| are defined.
Finally, the edgegdis, ,, disy) anfen dis ) with syn-
chronization labet,
automatort, shown in Figure 3(b).

It is easy to observe tha is in conflict with
cations, however, are split in the automatgn
has just two locationsdis, andn ). In this case only the
edge(en, dig) with synchronization labg] must be add-
ed.

Let f; be the transition function assomated tp
°t; = {9, 0y ..., 4.} the pre-setot; ,and; amit the
minimum and maximum transition delays assomated to
Step 5 Given the automatort; , assign to every edge
(dis;, en) the activityc; := 0 . Deflnethe invariant of loca-

. No lo-

are defined. After Step 4b, we get the every transitiort;

Note the conditiorB.Bs c,<4.1&c<4 inthe autom-
atont, wherec<4 is the guard df, . Observe also the
edge(en en with conditiorc=4 and activity, ;=0 .
Step 8 For every placep O P define a hybrid automaton
with two locationspnandoff, corresponding to the marking
M(p) . The initial location ofp will be eitheon or off de-
pending whether the plage s initially marked or not. For

in the post-s@®  of the plagge , define
an edgee; = (on, off) with synchronization labgl . For
every transitiort; inthe pre-sép  of the plape , define

because itan edgee; = (off on) with synchronlzatlon labtel = .

Note: When given an automatop , a transitign  is both
input and output of the pIacep , define an edge
e = (on, on) and assign to it a synchronization label

In Figure 2 we only show the automatgn . The other
automatap, P, Py P ,an@; are similar.

The procedure that we have described above is general
enough to translatany PRES+ model in which transition
functions are linear and token types of all places are real.



Some optimizations may be performed to reduce the com-system, modeled using PRES+. The net in Figure 4 repre-
plexity of the resulting hybrid automata. For instance, in sents an ATM-based Virtual Private Network (A-VPN) ser-
most cases, the automata corresponding to places are reduner [7] for a particular implementation. The behavior of the
dant and could be removed. Such optimizations are beyondsystem can be briefly described as follows. Incoming cells
the scope of this paper and therefore not discussed here. are examined byCheckto determine whether they are
faulty. Fault-free cells arrive through thErOPIA_Rxnter-
face and are eventually stored in tBleared Bufferlf the in-
coming cell is faulty, it goes through the mod#aulty and
then is sent out using tRETOPIA_Txinterface without pro-
cessing. The moduldddress Lookughecks thel ookup
Memory and, for each non-defective input cell, a com-
pressed form of the Virtual Channel (VC) identifier in the
cell header is computed. With this compressed form of the
VC identifier, the moduléTraffic checks its internal tables
and decides whether to accept the incoming cell or discard
itin order to avoid congestion. If the cell is acceptédaffic
gives instructions t@Queue Manageidicating where to
store the incoming cell in the buffefraffic also indicates
Figure 3. lllustration of Step 4 to Queue Managet‘ne cell (storeq irshared Buffe)rtq be'
output.Supervisoris the module in charge of updating in-
Once we have the equivalent hybrid automata, we canternal tablgs ofraffic a_md thel__ookup MemoryThe select-
verify properties against the model of the system. For in- €d _outgoing cell is emitted through the module
stance, in the simple system of Figure 1 we could check YTOPIA_Tx The specification of the system includes a
whether, for given values afandb, there exists a reachable  {iMe constraint given by the rate (155 Mbit/s) of the appli-
state in whichp, is marked. This property might be ex- cation: one input cell and one output cell must be processed
pressed as a CTL formulBF p, . An interesting feature of €Very 2./s.
the HyTech tool [11] is its ability to perform parametric
analysis. Then, for example, we can ask the model-checker g
which values o andb make a certain property true. We get N )
that EF p, holds ifa=5 . If we want to check temporal '
properties we can express them as TCTL formulas. Thus,
we could check whethgp;  will be possibly marked and the AT el
time stamp of its token is less than 8.4 time units, expressing n(®)
this property a£F_g 4 p¢
The translation procedure introduced above is valid for
PRES+ models in which transition functions are linear and
token types of all places are real. In this case, we could even
reason about token values. Recall, however, that we want to
focus on reachability and time analyses. From this perspec-
tive we can ignore transition functions if they affect neither
the marking nor time stamps. This is the case of PRES+
models that bear no guards and, therefore, they can be v saup
straightforwardly verified even if their transition functions ®r,
are very complex operations, because we simply ignore
such functions. Those systems that include guards in their
PRES+ model may also be studied if guard dependencies
can be stated by linear expressions. This is the case of the Figure 4. PRES+ model of an A-VPN server
system shown in Figure 1. There are many systems in which
the transition functions are not linear, but their guard depen- 1o verify the correctness of the A-VPN server, we must
dencies are, and then we can inscribe such dependencies ggove that for all possible conditions the system will even-
linear expressions and use our method for system verifica-tyally complete its functionality, and that such a functional-
tion. ity will eventually fit within a cell time-slot. The completion
e of the task of the A-VPN server, modeled by the net in Fi-
5. Verification of an ATM Server gure 4, is represented by the state (marking) in which the
In this section we illustrate the verification of a practical place p; is marked. Then we must prove that for all com-

]
UTOPIA_Tx
P

]
©




putation pathsp; will eventually get a token and its time atively simple manner. An ATM server has been studied to
stamp will be less than 2 {{s. These conditions might be illustrate the applicability of our verification approach to
straightforwardly specified using CTL and TCTL formulas, practical systems.

namelyAF p, andAF_,,p,; . Notice that the first formula The approach presented in this work is not only appropri-
is a necessary condition for the second one. Using the transate to verify the correctness of embedded systems, but may
lation procedure described above and the HyTech tool [11],also be a useful tool for design space exploration.

we found out that the CTL formulAF p, holds while the
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