
Verification of Embedded Systems using a Petri Net based Representation

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Dept. of Computer and Information Science
Linköping University, Linköping, Sweden

{luico,petel,zebpe}@ida.liu.se

+, a
c-
ce-
ta

n
er-
al-
e

e-

2
for

del
in

s-
ur
l-

W
ded

ing
n-

ere
to

d-
es

ata
re
on
,

es
al
se-
ies.
v-

p-
rks

in Proc. ISSS, 2000, pp. 149-155.
Abstract

The ever increasing complexity of embedded systems
consisting of hardware and software components poses a
challenge in verifying their correctness. New verification
methods that overcome the limitations of traditional tech-
niques and, at the same time, are suitable for hardware/
software systems are needed. In this work we formally de-
fine the semantics of PRES+, a Petri net based computa-
tional model aimed to represent embedded systems. We
introduce an approach to formal verification of such sys-
tems: we make use of model checking to prove the correct-
ness of embedded systems by determining the truth of CTL
and TCTL formulas that specify required properties with re-
spect to a PRES+ model. An ATM server illustrates the fea-
sibility of our approach on practical applications.

1. Introduction

Modern electronic systems are typically constituted of
application-specific hardware components and software
running on programmable platforms. The inherent hetero-
geneity of this kind of systems makes them very complex
and consequently difficult to verify. Moreover, the increas-
ing demand on high-performance products has boosted the
levels of sophistication of such systems.

For the levels of complexity typical to modern electronic
systems, traditional validation techniques like simulation
and testing are neither sufficient nor viable to verify their
correctness. First, these techniques may cover just a small
fraction of the system behavior. Second, long simulation
times and bugs found late in prototyping phases have a neg-
ative impact on time-to-market. Formal methods are be-
coming a practical alternative to ensure the correctness of
designs. They might overcome some of the limitations of
traditional validation methods. At the same time, formal
verification can give a better understanding of the system
behavior, contributes to uncover ambiguities, and reveals
new insights of the system.

Formal methods have been extensively used in software
development [8] and hardware verification [12]. However,
they are not commonplace in embedded systems design. In
this paper we present an approach to verification using mod-

el checking for embedded systems represented in PRES
notation capable of capturing relevant information chara
teristic to such systems. We introduce a systematic pro
dure to translate PRES+ models into linear hybrid automa
in order to use existing model checking tools.

Model checking is an approach to formal verificatio
that lets the designer prove whether certain design prop
ties hold in a given model of the system. Our approach
lows to determine the truth of CTL (Computation Tre
Logic) [5] and TCTL (Timed CTL) [1] formulas with re-
spect to a PRES+ model. Thus it is possible to validate d
sign properties including timing requirements.

The rest of this paper is organized as follows. Section
addresses related approaches to formal methods suitable
embedded systems. The underlying computational mo
that we use to represent such systems is formally defined
Section 3. Our approach to verification of embedded sy
tems is presented in Section 4. In Section 5 we illustrate o
verification method using a real-life telecom system. Fina
ly, some conclusions are drawn in Section 6.

2. Related Work

Many models have been proposed to represent HW/S
systems. Particularly, Petri nets (PNs) have been exten
to model such systems. Macielet. al[13] introduce an inter-
mediate model for hardware/software codesign, extend
Petri nets to analyze certain properties used in the partitio
ing process. Stoy [15] presents a modeling technique wh
timed Petri nets with restricted transition rules are used
represent control flow in both hardware and software.

Though formal methods are not commonplace in har
ware/software codesign, some coverification approach
have been proposed recently. Using the hybrid autom
model, a coverification method is proposed in [10] whe
complex systems can be analyzed using a simplificati
strategy to verify individually the hardware, the software
and the interface. Balarinet. al [4] introduce a verification
methodology based on Codesign Finite State Machin
(CFSMs) in which CFSMs are translated into tradition
state automata in order to check whether all possible
quences of inputs and outputs satisfy the system propert
In [9], a partitioned system is the input to the proposed co
erification framework in which CTL and TCTL formulas
are evaluated in order to check behavioral and timing pro
erties. An approach to model checking of process netwo

This research is sponsored by the Swedish National Board for Indu-
strial and Technical Development (NUTEK) in the frame of the SAVE
project.



a

s of

.

n
f
en

,
al

se

i-
t

a
t

of
en

e

g
s-
h
or
-

ci-

to
its

ec-
-

is proposed in [16], where IDDs (Interval Decision Dia-
grams) are used to represent multi-valued functions.

Related approaches to formal verification using PNs in-
clude [17], which presents a BDD-based model checker for
safe nets. An interesting approach to analysis and verifica-
tion of bounded Petri nets is presented in [14], where BDDs
are used to represent sets of markings.

3. PRES+

The notation we use to model embedded systems is
PRES+ (Petri net based Representation for Embedded Sys-
tems). PRES+ is a slightly modified version of the model
presented in [6]. It is a computational model based on Petri
nets that allows to capture important features of embedded
systems. Figure 1 shows a simple example that will help to
illustrate the definition of this representation. In what fol-
lows we introduce the formal definition of PRES+.

Figure 1. A PRES+ model

Definition 1. A PRES+model is a five-tuple
 where

 is a finite non-empty set ofplaces;
is a finite non-empty set oftransitions;

is a finite non-empty set ofinput arcswhich de-
fine the flow relation between places and transitions;

is a finite non-empty set ofoutput arcswhich
define the flow relation between transitions and places;
M0 is the initialmarking of the net (see Definition 3).

Like in classical Petri nets, places are graphically repre-
sented by circles, transitions by boxes, and arcs by arrows.
For the example in Figure 1,
and .
Definition 2. A token is a pair  where

v is the token value. This value may be of any type, e.g.
boolean, integer, etc., or user-defined type of any complex-
ity (for instance a structure, a set, or a record). The type of
this value is referred to astoken type;
r is thetoken time, a non-negative real number representing

the time stamp of the token.

The setK denotes the set of all possible token types for
given system.
Definition 3. A marking is a function that
denotes the absence or presence of tokens in the place
the net. A PRES+ netN is safeor 1-bounded, that is, a place
may hold at most one token for a certain marking

whenever the placep is marked, otherwise
.

Note that a markingM implicitly assigns one tokenk to
each marked place. We introduce the following notatio
which will be useful in defining the dynamic behavior o
PRES+: when a place is marked, denotes the tok
present in . The token value of the token is denoted
and the token time of the token is denoted . The initi
markingM0 in Figure 1 shows and as places initially
marked. The token has a valuea and a time
stamp 0. For the sake of simplicity, in the examples we u
the short notationw to denote the token value .
Definition 4. The type function associates a
place with a token type.τ(p) denotes the token type assoc
ated with the placep. The token type is the type of value tha
a token may bear in that place.

It is worth pointing out that the token type related to
certain place is fixed, that is, it is an intrinsic property of tha
place and will not change during the dynamic behavior
the net. For the example in Figure 1, all places have tok
typereal.
Definition 5. The pre-set of a
transitiont is the set ofinput placesof t. Similarly, thepost-
set of a transitiont is the set of
output places of t.

Correspondingly, thepre-set and thepost-set of
a place p are given by and

.
Definition 6. All output places of a given transition have th
same token type,

if
Definition 7. For every transitiont, there exists atransition
function  associated tot. Formally,

where  and .
Transition functions are very important when describin

the behavior of the system to be modeled. They allow sy
tems to be modeled at different levels of granularity wit
transitions representing simple arithmetic operations
complex algorithms. In Figure 1 we inscribe transition func
tions inside transition boxes: the transition function asso
ated to , for example, is given by . We
use inscriptions on the input arcs of a transition in order
denote the arguments of its transition function and/or
guard.
Definition 8. For every transitiont, there exist aminimum
transition delay and amaximum transition delay ,
which are non-negative real numbers and represent, resp
tively, the lower and upper limits for the execution time (de

t 3 t 4

pa

cp pd

t 2t 1

pb

pfpe

c>3[       ] c<4[       ]

c

c+d

c

b/2

[3.8,4.1]

a-2

3  c

[1,2.7]

5

[2,3]

d

ba

x

<a,0> <b,0>

N (P T,,=
I O M0), ,
P p1 p2 … pm, , ,{ }=
T t1 t2 … tn, , ,{ }=
I P T×⊆

O T P×⊆

P pa pb pc pd pe pf,, , , ,{ }=
T t1 t2 t3 t4, , ,{ }=

k v r,〈 〉=

M : P 0 1,{ }→

M p( ) 1=
M p( ) 0=

pi ki
pi ki vi

ki r i
pa pb

ka a 0,〈 〉=

vw
τ : P K→

°t p P p t,( ) I∈∈{ }=

t° p P t p,( ) O∈∈{ }=

°p p°
°p t T t p,( ) O∈∈{ }=

p° t T p t,( ) I∈∈{ }=

p q t° τ p( )⇒∈, τ q( )=

f
t T∈∀ f : τ p1( ) τ p2( ) … τ× pa( )×× τ q( )→∃
°t p1 p2 … p, a, ,{ }= q t°∈

t4 f 4 c d,( ) c d+=

d- d+



re

e,
n

he

-
en
he
en

nta-
be

tri

y
ful
in

ed
is

+
etri

s.
er
o
n

on-
s

ign
ten-
the
ms:

el
n.
s-

s-
he

son
pre-
be
lay) of the function associated to the transition. Formally,
 such that

with  being the set of non-negative real numbers.
Referring again to Figure 1, the minimum transition de-

lay of is 1, and its maximum transition delay is
2.7 time units. Note that whend-=d+=d, we just inscribe the
valued close to the respective transition, like in the case of
the transition delay .
Definition 9. Theguard Gof a transitiont is the (necessary)
condition that must be satisfied in order to enable that tran-
sition, when all its input places hold tokens. The guard

of a transitiont is a function of the token values in the places
of its pre-set . If the condition holds
G = 1, otherwiseG = 0.

For instance, in Figure 1, represents the guard .
Definition 10. Every transition has afunctionality. The
functionality of a transitiont is defined in terms of:
(i) Its transition function ;
(ii) Its minimumandmaximum transition delays d- andd+.

Unlike the classical Petri net model, each token holds a
value and a time stamp. When a transitiont is fired, the
markingM will generally change by removing all the tokens
from the pre-set and depositing one token into each ele-
ment of the post-set . These tokens, added to , have val-
ues and time stamps which depend on the previous tokens
in  and the functionality oft.
Definition 11. A transitiont is said to beenabledif all plac-
es of its pre-set are marked, its output places different from
the input ones1 are empty, and its guard is asserted. Formal-
ly, for a given markingM, a transition  is enablediff
(i)
(ii)
(iii)
Definition 12. Every enabled transitiont has anenabling
time etthat represents the time instant at which the transi-
tion becomes enabled. The enabling timeet of a (enabled)
transition is the maximum token time of the tokens in its in-
put places,

where the pre-set oft is .
Definition 13. The earliest trigger time and thelatest
trigger time of an enabled transition are the lower and
upper time bounds for the firing of the transition,

An enabled transitiont may not fire before its earliest
trigger time and must fire before or at its latest trigger
time , unlesst becomes disabled by the firing of another
transition.
Definition 14. Thefiring of an enabled transition changes a
markingM into a new markingM+. As a result of firing the
transitiont, with pre-set , the follow-
ing events occur:

(i) Tokens from its pre-set (which are not in its post-set) a
removed;

(ii) One token is added to each place of its post-set;

(iii) Each new token deposited in has a token valu
which is calculated by evaluating the transition functio
with the token values of tokens in  as arguments;

(iv) Each new token added to has a token time, that is t
time instant at which the transitiont fires;

 where
The execution time of the function of a transition is con

sidered in the time stamp of the new tokens. Note that, wh
a transition fires, all the tokens in its output places get t
same token value and token time. The token time of a tok
represents the time at which it was “created”.

When used to model embedded systems, the represe
tion introduced above has several interesting features to
highlighted, some of them inherited from the classical Pe
net model:
• Non-determinism may be naturally represented b

PRES+. Non-determinism can be used as a power
mechanism to express succinctly the behavior of certa
systems and then reduce the complexity of the model.

• Parallel or concurrent activities may be easily express
in terms of Petri nets. We recall that concurrency
present in most embedded systems.

• Since tokens carry information in our model, PRES
overcomes the lack of expressiveness of classical P
nets, where tokens are considered as “black dots”.

• Time is a critical factor in many embedded application
Our model captures timing aspects by associating low
and upper limits to the duration of activities related t
transitions and keeping time information in toke
stamps.

• PRES+ has been also extended by introducing the c
cept of hierarchy. However, we will not further discus
this particular feature in this paper.
Summarizing, PRES+ is a model to be used in the des

cycle of embedded systems. Our representation is an ex
sion to the classical PN model that overcomes some of
drawbacks of Petri nets when modeling embedded syste
it captures explicitly timing information; PRES+ allows
representations at different levels of granularity; our mod
is more expressive since tokens might carry informatio
Furthermore, the model is simple, intuitive, and can be ea
ily handled by the designer.

4. Verification of Embedded Systems

In this section we present a verification method for sy
tems represented using the model introduced above. T
purpose of the approach presented in this paper is to rea
about embedded systems using PRES+ as underlying re
sentation. There are several types of analysis that can1 A place may be, at the same time, input and output of a transition.

t T∈∀ d- d+, ℜ0
+∈∃ d- d+≤

ℜ0
+

d1
- t1 d1

+

d3 5=

G : τ p1( ) τ p2( ) … τ× pa( )×× 0 1,{ }→

°t p1 p2 … p, a, ,{ }=

c 4< G4

f

°t
t° t°

°t

t
p °t M p( )∈∀ 1=
q t° °t–( ) M q( )∈∀ 0=

G 1=

et max r1 r 2 … r a, , ,( )=
°t p1 p2 … p, a, ,{ }=

tt-

tt+

tt- et d-+=
tt+ et d++=

tt-

tt+

°t p1 p2 … p, a, ,{ }=

p °t t°–( ) M+ p( )∈∀ 0=

q t° M+ q( )∈∀ 1=
t°

°t
qi t°∈∀ vi f v1 v2 … va, , ,( )=

t°

qi t°∈∀ r i tt*= tt* tt- tt+[ , ]∈



le

o-

a

s

to
he
ata
gh
ws

to
to

is
h

ion
s

t
s

-

a
n-

y

the
be
performed on systems represented in PRES+. A given
marking, i.e. absence or presence of tokens in places of the
net, may represent the state of the system in the dynamic be-
havior of the net. Based on this, different properties can be
studied. For instance, the designer could be interested in
proving that the system eventually reaches a certain state
whose marking represents the completion of a task.

The kind of analysis described above, calledreachability
analysis, is very useful but says nothing about timing as-
pects nor does it deal with token values. In many embedded
applications, however, time is an essential factor. More-
over, in hard real-time systems, where deadlines should not
be missed, it is crucial to reason quantitatively about tempo-
ral properties in order to ensure the correctness of the de-
sign. Therefore, it is needed not only to check that a certain
state will eventually be reached but also to ensure that this
will occur within some bound on time. In PRES+, time in-
formation is attached to tokens so that we can analyze quan-
titative timing properties: we may prove that a given place
will be eventually marked and that its time stamp will be
less than a certain time value that represents a temporal con-
straint. Such a study will be calledtime analysis.

A third type of analysis for systems modeled in PRES+
involves reasoning about values of tokens in marked places.
This type of study is calledbehavior analysis. In this work
we restrict ourselves to reachability and time analyses. In
other words, we concentrate on the absence/presence of to-
kens in the places of the net and their time stamps. Note,
however, that in some cases reachability and time analyses
are influenced by token values. This aspect is discussed at
the end of this section.

To verify the correctness of an embedded system, we
first translate its PRES+ model into equivalent linear hybrid
automata and then use existing verification tools, namely
HyTech [11], to check properties expressed as CTL and
TCTL formulas. CTL [5] is based on propositional logic of
branching time. Formulas in CTL are composed of atomic
propositions, boolean connectors and temporal operators.
Temporal operators consist of forward-time operators (G
globally,F in the future,X next time, andU until) preceded
by a path quantifier (A all computation paths, andE some
computation path). TCTL [1] is a real-time extension of
CTL that allows to inscribe subscripts on the temporal op-
erators to limit their scope in time. For instance, ex-
presses that, along all computation paths, the propertyp
becomes true withinn time units.

4.1. Hybrid Automata

In what follows we shortly describe thehybrid automata
model. The reader is referred to [2], [3] for further reading
on hybrid automata theory. Informally, a linear hybrid au-
tomaton is a finite automaton enhanced with a set of real-
valued variables, where the terms involved in conditions,
assignments, and invariants are required to be linear.

A hybrid automaton

 consists of the following components:
• A finite setX of real-valuedvariables. A valuation is a

function that assigns a real-value to every variab
.

• A finite set oflocationsor vertices V. A state
consists of a location  and a valuation .

• A finite setE of edges. Each edge consists of
a source location  and a target location .

• A finite set of synchronization labels Land a labeling
functionsyncthat assigns to each edge a synchr
nization label , noted as .

• A labeling function cond that assigns to each edge
a condition that must be satis-

fied in order to allow the automatonH to change its loca-
tion from  to .

• A labeling functionact that assigns to each edge
set ofactivities.

• A labeling function inv that assigns to each location
an invariant which allows the automaton

H to stay at location as long as its invariant i
satisfied.

4.2. Translating PRES+ into Hybrid Automata

In what follows we describe the systematic procedure
translate PRES+ models into linear hybrid automata. T
resulting representation consists of a collection of autom
which operate and coordinate with each other throu
shared variables and synchronization labels. Figure 2 sho
the result of translating the PRES+ model of Figure 1 in
hybrid automata. We will use this example as reference
illustrate the proposed translation method.
Step 1. Define one variable inX for each place of the
Petri net, corresponding to the token value when
marked, and one variable for each transition , whic
represents a clock used to ensure the firing of the transit
within the earliest-latest trigger time interval. Thu

2.
For the example in Figure 2, using the short notationw to

denote , .
Step 2. Define the setL of synchronization labels as the se
(of names) of transitions in the Petri net, that i

.
Step 3. For every transition define a hybrid automa
ton withz+1 locations , wherez
is the number of transitions that, when fired, will deposit
token in some place in the pre-set . The set of such tra
sitions is defined by

In the case , define an automaton with onl
two locations  and .
Step 4a. Given the automaton , definezedges ,
z edges , , andz edges , and

AF<n p

H (X V E L sync cond,, , , , ,=

2 In the linear hybrid automata model, variables may change along
time with a constant rate: for every the change rate must

; for every  the change rate must be .

act inv),
υ

υ x( )
x X∈

s v υ,( )=
v υ

e v v',( )=
v V∈ v' V∈

e E∈
l L∈ l sync e( )=

e v v',( ) E∈= cond e( )

v v'
e E∈

v V∈ inv v( )
v inv v( )

px
vx px

ci ti

X v1 v2 … v, m c1 c2 … cn, , , , , ,{ }=

ci X∈
ci
˙ 1= vx X∈ vx

˙ 0=

vw X a b c d e f c1 c2 c3 c4, , , , , , , , ,{ }=

L t1 t2 … tn, , ,{ }=
t T∈

t̃ dis0 dis1 … disz 1– en, , , ,

°t

pre t( ) ° pi
pi °t∈
∪=

pre t( ) ∅=
dis0 en

t̃ dis0 dis1,( )
dis1 dis2,( ) … disz 1– en,( )



-
c-
the
n

di-

-
h
n

e

r
e
r
e

th
e

r

ral

al.
then assign to each group ofz edges synchronization labels
corresponding to the transitions in . Define then one
edge  with synchronization label .
Step 4b. If the transition is in conflict with another tran-
sition  (  could be disabled by the firing of ):

Let and .
In the automaton remove all the edges except .
Split each one of the locations into

and . Then define
edges , , , ,

, , ,
with synchronization labels corresponding to those transi-
tions in . Define edges , ,

, with synchronization labels correspond-
ing to transitions in . Define then edges ,

, , with synchronization
label .

For instance, were not in conflict with , the autom-
aton would have the locations and look
like the one shown in Figure 3(a). However, because of such
a conflict, Step 4b must be performed: location has
been split into the locations and . Note that

and .
The edges and with synchroni-
zation label are defined. Then the edges
and with synchronization label are defined.
Finally, the edges and with syn-
chronization label are defined. After Step 4b, we get the
automaton  shown in Figure 3(b).

It is easy to observe that is in conflict with . No lo-
cations, however, are split in the automaton because it
has just two locations ( and ). In this case only the
edge with synchronization label must be add-
ed.

Let be the transition function associated to ,
the pre-set of , and and the

minimum and maximum transition delays associated to .
Step 5. Given the automaton , assign to every edge

the activity . Define the invariant of loca-

tion as in order to enforce the firing of before
or at its latest trigger time.

In Figure 2, the edge of automaton , for ex
ample, has the activity . is used to take into a
count the time since becomes enabled and ensure
firing semantics of PRES+. For the sake of clarity, locatio
invariants are not shown in Figure 2.
Step 6. Given and its edge , assign to
the condition . For every assign to
such an edge  the activity .

For example, in the case of the automaton the con
tion gives the lower and upper limits for the
firing of , while the activity expresses that
whenever the automaton changes from to , i.e.
fires, the value  is assigned to the variablec.
Step 7. If is a transition with guard , assign the condi
tion to the edge of the automaton (so suc
an edge condition becomes ). Then add a
edge with no synchronization label, condition
(the complement of ), and activity .

Note the condition in the autom-
aton where is the guard of . Observe also th
edge  with condition  and activity .
Step 8. For every place define a hybrid automaton
with two locations,onandoff, corresponding to the marking

. The initial location of will be eitheron or off de-
pending whether the place is initially marked or not. Fo
every transition in the post-set of the place , defin
an edge with synchronization label . Fo
every transition in the pre-set of the place , defin
an edge  with synchronization label .
Note:When, given an automaton , a transition is bo
input and output of the place , define an edg

 and assign to it a synchronization label .
In Figure 2 we only show the automaton . The othe

automata , , , , and  are similar.
The procedure that we have described above is gene

enough to translateany PRES+ model in which transition
functions are linear and token types of all places are re

pre t( )
en dis0,( ) t

Figure 2. Equivalent hybrid automata

t 1

dis0

1<c <2.7
1

t 1
~

en

c:=a-2

t 3

t 4

t 1

on off

pc
~

t 2

dis0

2<c <3
2

t 2
~

en

d:=b/2

dis0

dis1,a

dis1,b

ent 3
t 3

t 1

t 2

c :=0
4

c :=04

t 2

t 1

3.
8<

c 
<4

.1
 &

 c
<4

4

c :=04

c>4

t 4

t 4
~

f:=c+d

t 3

dis0

t 3
~

c =5 & c>3

3

t 1
c :=03

c :=03

c<3

t 4 en

e:=3c

t
tc t tc
A pre t( ) pre tc( )∩= B pre t( ) p– re tc( )=

t̃ en dis0,( )
dis1 … disz 1–, ,

dis1,a … disz 1,a–, , dis1,b … disz 1,b–, ,
dis1,a dis2,a,( ) dis2,a dis3,a,( ) … disz 1,a– en,( )

dis0 dis1,b,( ) dis1,b dis2,b,( ) … disz 2,b– disz 1,b–,( )

B dis0 dis1,a,( ) dis1,b dis2,a,( )
… disz 1,b– en,( )

A dis1,a dis0,( )
dis2,a dis1,b,( ) … en disz 1,b–,( )

tc
t4 t3

t4
˜ dis0 dis1 en, ,

dis1
dis1,a dis1,b

pre t4( ) pre t3( )∩ t1{ }= pre t4( ) p– re t3( ) t2{ }=
dis1,a en,( ) dis0 dis1,b,( )
t2 dis0 dis1,a,( )

dis1,b en,( ) t1
dis1,a dis0,( ) en dis1,b,( )
t3

t4
˜

t3 t4
t3
˜

dis0 en
en dis0,( ) t4

f i ti
°ti q1 q2 … qa, , ,{ }= ti di

- di
+

ti
ti
˜

disj en,( ) ci := 0

en ci di
+≤ ti

dis0 en,( ) t3
˜

c3 := 0 c3
t3

ti
˜ ei en dis0,( )= ei
di

- c≤ i di
+≤ pj ti°∈

ei vj := f i v1 v2 … va, , ,( )
t1
˜

1 c≤ 1 2.7≤
t1 c := a 2–

en dis0 t1
a 2–

ti Gi
Gi en dis0,( ) ti

˜

di
- c≤ i di

+ & Gi≤
en en,( ) Gi

Gi ci := 0
3.8 c≤ 4 4.1 & c 4<≤

t4
˜ c 4< t4
en en,( ) c 4≥ c4 := 0

p P∈ p̃

M p( ) p̃
p

t j p° p
ej on off,( )= t j

ti °p p
ej off on,( )= ti

p̃ ti
p

ei on on,( )= ti
pc
˜

pa
˜ pb

˜ pd
˜ pe

˜ pf
˜



re-
r-
e
lls

-
e
he

rd

-

e
a
i-
ed

st
n-
l-

i-
he
-

Some optimizations may be performed to reduce the com-
plexity of the resulting hybrid automata. For instance, in
most cases, the automata corresponding to places are redun-
dant and could be removed. Such optimizations are beyond
the scope of this paper and therefore not discussed here.

Figure 3. Illustration of Step 4

Once we have the equivalent hybrid automata, we can
verify properties against the model of the system. For in-
stance, in the simple system of Figure 1 we could check
whether, for given values ofa andb, there exists a reachable
state in which is marked. This property might be ex-
pressed as a CTL formula . An interesting feature of
the HyTech tool [11] is its ability to perform parametric
analysis. Then, for example, we can ask the model-checker
which values ofaandbmake a certain property true. We get
that holds if . If we want to check temporal
properties we can express them as TCTL formulas. Thus,
we could check whether will be possibly marked and the
time stamp of its token is less than 8.4 time units, expressing
this property as .

The translation procedure introduced above is valid for
PRES+ models in which transition functions are linear and
token types of all places are real. In this case, we could even
reason about token values. Recall, however, that we want to
focus on reachability and time analyses. From this perspec-
tive we can ignore transition functions if they affect neither
the marking nor time stamps. This is the case of PRES+
models that bear no guards and, therefore, they can be
straightforwardly verified even if their transition functions
are very complex operations, because we simply ignore
such functions. Those systems that include guards in their
PRES+ model may also be studied if guard dependencies
can be stated by linear expressions. This is the case of the
system shown in Figure 1. There are many systems in which
the transition functions are not linear, but their guard depen-
dencies are, and then we can inscribe such dependencies as
linear expressions and use our method for system verifica-
tion.

5. Verification of an ATM Server

In this section we illustrate the verification of a practical

system, modeled using PRES+. The net in Figure 4 rep
sents an ATM-based Virtual Private Network (A-VPN) se
ver [7] for a particular implementation. The behavior of th
system can be briefly described as follows. Incoming ce
are examined byCheck to determine whether they are
faulty. Fault-free cells arrive through theUTOPIA_Rxinter-
face and are eventually stored in theShared Buffer. If the in-
coming cell is faulty, it goes through the moduleFaultyand
then is sent out using theUTOPIA_Txinterface without pro-
cessing. The moduleAddress Lookupchecks theLookup
Memory and, for each non-defective input cell, a com
pressed form of the Virtual Channel (VC) identifier in th
cell header is computed. With this compressed form of t
VC identifier, the moduleTraffic checks its internal tables
and decides whether to accept the incoming cell or disca
it in order to avoid congestion. If the cell is accepted,Traffic
gives instructions toQueue Managerindicating where to
store the incoming cell in the buffer.Traffic also indicates
to Queue Managerthe cell (stored inShared Buffer) to be
output.Supervisoris the module in charge of updating in
ternal tables ofTraffic and theLookup Memory. The select-
ed outgoing cell is emitted through the modul
UTOPIA_Tx. The specification of the system includes
time constraint given by the rate (155 Mbit/s) of the appl
cation: one input cell and one output cell must be process
every 2.7µs.

Figure 4. PRES+ model of an A-VPN server

To verify the correctness of the A-VPN server, we mu
prove that for all possible conditions the system will eve
tually complete its functionality, and that such a functiona
ity will eventually fit within a cell time-slot. The completion
of the task of the A-VPN server, modeled by the net in F
gure 4, is represented by the state (marking) in which t
place is marked. Then we must prove that for all com

dis0

dis1,a

dis1,b

ent 3
t 3

t 1

t 2

t 2

t 1

t 4

t4
~

dis0 en

t4
~

dis1

t 1 t 2

t 1t 2

t 4

(b)

(a)

pe
EF pe

EF pe a 5≥

pf

EF<8.4 pf

Shared Buffer

Queue ManagerUTOPIA_Rx

Address Lookup

Lookup Memory

Traffic

Supervisor

p
2

p
5

p
6

p
8

p
9 p

11

p
12

p
10

p
7

p
4Fa

ul
ty

C
he

ck

p
3

p
1

U
T

O
PI

A
_T

x

p
13

VC Setup

[0.1,0.25]

[0.3,0.5]

[fault]

[0.15,0.2]

[0.53,0.86]

[0.1,0.22][0.45,0.58]

[0.14,0.25]

[f
au

lt
]

[0
.1

,0
.2

5]

ATM Cell (In)

ATM Cell (Out)

[0
.1

,0
.3

]
0.

05

p1



to

ri-
ay

r

.-

o-
s

c
al

el

l-
an

t

-

-

l

et

r

-

-

putation paths, will eventually get a token and its time
stamp will be less than 2.7µs. These conditions might be
straightforwardly specified using CTL and TCTL formulas,
namely and . Notice that the first formula
is a necessary condition for the second one. Using the trans-
lation procedure described above and the HyTech tool [11],
we found out that the CTL formula holds while the
TCTL formula does not. Moreover, we have
checked the formula that turned out to be true,
which means that it is possible to get a token in with a
time stamp less than 2.7µs. However, recall that
does not hold and therefore this implementation does not
fulfill the system specification because it is not guaranteed
that the time constraint will be satisfied.

We must consider an alternative solution. To do so, sup-
pose we want to modifyTraffic, keeping its functional be-
havior but seeking superior performance: we want to
explore the allowed interval of delays forTraffic in order to
fulfill the constraints. We can define the minimum and max-
imum transition delays ofTraffic as parameters and ,
and then perform parametric analysis to find out the values
for which is satisfied. We get that if
and, by definition, then the property
holds. This indicates that the worst case execution time of
the function associated toTraffic must be less than 0.57µs
to fulfill the system specification.

Running the HyTech tool on a Sun Ultra 10 workstation,
both the verification of the TCTL formula for the
model given in Figure 4, and the parametric analysis de-
scribed in the paragraph above take roughly 1 second.

The example of the ATM server described above has
shown that our approach is not only suitable to verify the
correctness of embedded systems but also that this tech-
nique can be a useful tool during design space exploration.
Information, like the one obtained through parametric anal-
ysis, can guide the designer when exploring design alterna-
tives. Thus, at the same time that we check the correctness
of designs, we get valuable information that serves as guide-
line along the design process.

6. Conclusions

We have formally defined PRES+, a Petri net based
model aimed to represent embedded systems. The model is
simple, intuitive, and can be easily handled by the designer.
It is a computational model with extensions to capture im-
portant characteristics of embedded systems.

We presented a practical approach to verification of em-
bedded systems represented by PRES+. We use symbolic
model checking to prove the correctness of such systems in
respect to reachability and time, specifying design proper-
ties as CTL and TCTL formulas. Thus verification with tim-
ing properties is possible.

In order to use existing verification tools, we introduced
a systematic procedure to translate PRES+ models into lin-
ear hybrid automata. This method can be automated in a rel-

atively simple manner. An ATM server has been studied
illustrate the applicability of our verification approach to
practical systems.

The approach presented in this work is not only approp
ate to verify the correctness of embedded systems, but m
also be a useful tool for design space exploration.

References
[1] R. Alur, C. Courcoubetis and D. L. Dill, “Model Checking for
Real-Time Systems,” inProc. Symposium on Logic in Compute
Science, 1990, pp. 414-425.
[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P
H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The Al-
gorithmic Analysis of Hybrid Systems,” inTheoretical Computer
Science, vol. 138, pp. 3-34, February 1995.
[3] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic Symbol-
ic Verification of Embedded Systems,” inIEEE Trans. Software
Engineering, vol. 22, pp. 181-201, March 1996.
[4] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangi
vanni-Vincentelli, “Formal Verification of Embedded System
based on CFSM Networks,” inProc. DAC, 1996, pp. 568-571.
[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automati
Verification of Finite-State Concurrent Systems Using Tempor
Logic Specifications,” inACM Trans. on Programming Languag-
es and Systems, vol. 8, pp. 244-263, April 1986.
[6] L. A. Cortés, P. Eles, and Z. Peng, “A Petri Net based Mod
for Heterogeneous Embedded Systems,” inProc. NORCHIP Con-
ference, 1999, pp. 248-255.
[7] E. Filippi, L. Lavagno, L. Licciardi, A. Montanaro, M. Paoli-
ni, R. Passerone, M. Sgroi, and A. Sangiovanni-Vincentelli, “Inte
lectual Property Re-use in Embedded System Co-design:
Industrial Case Study,” inProc. ISSS, 1998, pp. 37-42.
[8] J. D. Gannon, J. M. Purtilo, and M. V. Zelkowitz,Software
Specification: A Comparison of Formal Methods. Norwood, NJ:
Ablex Publishing, 1994.
[9] E. H. A. Garcez and W. Rosenstiel, “CVF - Coverification
Framework,” inProc. Brazilian Symposium on Integrated Circui
Design, 1998, pp. 103-106.
[10] P.-A. Hsiung, “Hardware-Software Coverification of Concur
rent Embedded Real-Time Systems,” inProc. Euromicro RTS,
1999, pp. 216-223.
[11] HyTech: The HYbrid TECHnology Tool,http://www-
cad.eecs.berkeley.edu/~tah/HyTech/

[12] C. Kern and M. R. Greenstreet, “Formal Verification in Hard
ware Design: A Survey,” inACM Trans. on Design Automation of
Electronic Systems, vol. 4, pp. 123-193, April 1999.
[13] P. Maciel, E. Barros, and W. Rosenstiel, “A Petri Net Mode
for Hardware/Software Codesign,” inDesign Automation for Em-
bedded Systems, vol. 4, pp. 243-310, Oct. 1999.
[14] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia, “Petri N
Analysis Using Boolean Manipulation,” inApplication and Theo-
ry of Petri Nets 1994, R. Valette, Ed.LNCS 815, Berlin: Springer-
Verlag, 1994, pp. 416-435.
[15] E. Stoy and Z. Peng, “An Integrated Modelling Technique fo
Hardware/Software Systems,” inProc. ISCAS, 1994, pp. 399-402.
[16] K. Strehl and L. Thiele, “Symbolic Model Checking of Pro
cess Networks Using Interval Diagrams Techniques,” inProc. IC-
CAD, 1998, pp. 686-692.
[17] G. Wimmel, “A BDD-based Model Checker for the PEP
Tool,” Major Individual Project Report, Dept. of Computing Sci
ence, University of Newcastle, May 1997.

p1

AF p1 AF<2.7 p1

AF p1
AF<2.7 p1

EF<2.7 p1
p1
AF<2.7 p1

d- d+

AF<2.7 p1 d+ 0.57<
d- d+≤ AF<2.7 p1

AF<2.7 p1


	Abstract
	1. Introduction
	2. Related Work
	3. PRES+
	Figure 1. A PRES+ model

	4. Verification of Embedded Systems
	4.1. Hybrid Automata
	4.2. Translating PRES+ into Hybrid Automata
	Figure 2. Equivalent hybrid automata
	Figure 3. Illustration of Step 4


	5. Verification of an ATM Server
	Figure 4. PRES+ model of an A-VPN server

	6. Conclusions
	[1] R. Alur, C. Courcoubetis and D. L. Dill, “Model Checking for Real-Time Systems,” in Proc. Sym...
	[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.- H. Ho, X. Nicollin, A. Olivero, ...
	[3] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic Symbolic Verification of Embedded Systems,...
	[4] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli, “Formal Verifi...
	[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-State Concur...
	[6] L. A. Cortés, P. Eles, and Z. Peng, “A Petri Net based Model for Heterogeneous Embedded Syste...
	[7] E. Filippi, L. Lavagno, L. Licciardi, A. Montanaro, M. Paolini, R. Passerone, M. Sgroi, and A...
	[8] J. D. Gannon, J. M. Purtilo, and M. V. Zelkowitz, Software Specification: A Comparison of For...
	[9] E. H. A. Garcez and W. Rosenstiel, “CVF - Coverification Framework,” in Proc. Brazilian Sympo...
	[10] P.-A. Hsiung, “Hardware-Software Coverification of Concurrent Embedded Real-Time Systems,” i...
	[11] HyTech: The HYbrid TECHnology Tool, http://www- cad.eecs.berkeley.edu/~tah/HyTech/
	[12] C. Kern and M. R. Greenstreet, “Formal Verification in Hardware Design: A Survey,” in ACM Tr...
	[13] P. Maciel, E. Barros, and W. Rosenstiel, “A Petri Net Model for Hardware/Software Codesign,”...
	[14] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia, “Petri Net Analysis Using Boolean Manipu...
	[15] E. Stoy and Z. Peng, “An Integrated Modelling Technique for Hardware/Software Systems,” in P...
	[16] K. Strehl and L. Thiele, “Symbolic Model Checking of Process Networks Using Interval Diagram...
	[17] G. Wimmel, “A BDD-based Model Checker for the PEP Tool,” Major Individual Project Report, De...



