A Hybrid BIST Architecture and its Optimization for SoC Testing

Gert Jervan, Zebo Peng Raimund Ubar, Helena Kruus
Link6ping University, Sweden Tallinn Technical University, Estonia
{gerje, zebpe}@ida.liu.se raiub@pld.ttu.ee, helen.kruus@ttu.ee
Abstract designers’ perspective. Testing of SoC, on the other hand,

This paper presents a hybnd BIST architecture and shares all the prOblemS related to teSting modern deep
methods for optimizing it to test systems-on-chip in a cost submicron chips, and introduces also some additional
effective way. The proposed self-test architecture can be challenges due to the protection of intellectual property as
implemented either only in software or by using some test Well as the increased complexity and higher density [1].

related hardware. In our approach we combine To test the individual cores of the system the test pattern
pseudorandom test patterns with stored deterministic test source and sink have to be available together with an
patterns to perform core test with minimum time and appropriate test access mechanism (TAM) [2] as depicted in
memory, without losing test quality. We propose two Figure 1. A traditional approach implements both source and
algorithms to calculate the cost of the test process. To Sink off-chip and requires therefore the use of external
Speed up the optimization procedure, a Tabu search Automatic Test Equipment (ATE) But, as the requirements
based method is employed for finding the global cost for the ATE speed and memory size are continuously
minimum. Experimental results have demonstrated the increasing, the ATE solution can be unacceptably expensive

feasibility and efficiency of the approach and the and inaccurate. Therefore, in order to apply.at—speed t_ests
significant decreases in overall test cost. and to keep the test costs under control, on-chip test solutions

are becoming more and more popular. Such a solution is

usually referred to as built-in self-test (BIST).
1. Introduction A typical BIST architecture consists of a test pattern

generator (TPG), a test response analyzer (TRA) and a BIST

The rapid advances of the microelectronics technology in control unit (BCU), all implemented on the chip. This

recent years have brought new possibilities to integrated approach allows at-speed tests and eliminates the need for an
circuits (ICs) design and manufacturing. Many systems are external tester. It can be used not only for manufacturing test
nowadays designed by embedding predesigned and but also for periodical field maintenance tests.
preverified complex functional blocks, usually referred as The classical way to implement the TPG for logic BIST
cores, into one single die (Figure 1). Such a design style (LBIST) is to use linear feedback shift registers (LFSR). But
allows designers to reuse previous designs and will lead as the test patterns generated by the LFSR are pseudorandom
therefore to shorter time to market and reduced cost. Such apy their nature [3], the LFSR-based approach often does not
System-on-Chip (SoC) approach is very attractive from the guarantee a sufficiently high fault coverage (especially in the
NENRNRENENRNNRNRRRNRNNNRNRRRRNNNNRRRREEN case of large and complex designs) and demands very long
peripheria test application times in addition to high area overheadg.
Comporent Therefore, several proposals have been made to combine
Wrapper

pseudorandom test patterns, generated by LFSRs, with
deterministic patterns [4-8], to form a hybrid BIST solution.
The main concern of the hybrid BIST approaches has
been to improve the fault coverage by mixing pseudorandom
vectors with deterministic ones, while the issue of cost
Test Access minimization has not been addressed directly.
Mechanism To reduce the hardware overhead in the LBIST
architectures the hardware LFSR implementation can be
replaced by software, which is especially attractive to test
SoCs, because of the availability of computing resources
directly in the system (a typical SoC usually contains at least
one processor core). On the other hand, the software based
Figure 1. Testing a system-on-chip approach, is criticized because of the large memory

Test Access
Mechanism

DRAM

i

requirements (to store the test program and test patterns).
Similar work has been reported in [7]. However, the

approach presented there has no direct cost considerations

and can therefore lead to very long test application times |

because of the unlimited number of pseudorandom test |

patterns. |

In our approach we propose to use a hybrid test set, which |

contains a limited number of pseudorandom and |

|

|

|

|

|

|

|

|

deterministic test vectors. The pseudorandom test vectors
can be generated either by hardware or by software and later
complemented by the stored deterministic test set which is
specially designed to shorten the pseudorandom test cycle |
and to target the random resistant faults. The basic idea of Lo e -
Hybrid BIST was discussed in [13].

The main objective of the current work is to propose a test
architecture that supports the combination of pseudorandom Well to the hardware based as to the software based hybrid
and deterministic vectors and to find the optimal balance BIST optimization.
between those two test sets with minimum cost of time and In case of software based solution, the test program,
memory, without losing test quality. We propose two together with test data (LFSR polynomials, initial states,
different algorithms to calculate the total cost of the hybrid pseudorandom test length, signatures), is kept in a ROM.
BIST soluton and a fast method to find the optimal The deterministic test vectors are generated during the
switching moment from the pseudorandom test to the stored development process and are stored in the same place. For
deterministic test patterns. transporting the test patterns, we assume that some form of

A similar problem has been addressed in [8], where an TAM is available.
approach to minimize testing time has been presented. It has In test mode the test program is executed in the processor
shown that hybrid BIST (or CBET in their terminology) can ~ core. The test program proceeds in two successive stages. In
achieve shorter testing time than pseudorandom or the first stage the pseudorandom test pattern generator,
deterministic test alone. However, the proposed algorithm Which emulates the LFSR, is executed. In the second stage
does not address total cost minimization (time and memory). the test program will apply precomputed deterministic test

The rest of this paper is organized as follows. In section 2 Vvectors to the core under test.
we introduce the target architecture to implement our The pseudorandom TPG software is the same for all cores
approach, section 3 gives an overview of the concepts of in the system and is stored as one single copy. All
hybrid BIST. In sections 4 and 5 we discuss the concepts of characteristics of the LFSR needed for emulation are specific
calculating the test cost for different solutions, including to each core and are stored in the ROM. They will be loaded
hybrid BIST. In section 6 Tabu search based method is upon request. Such an approach is very effective in the case
proposed for optimizing the hybrid BIST test set and in Of multiple cores, because for each additional core, only the
secton 7 we present the experimental results which BIST characteristics for this core have to be stored. The
demonstrate the efficiency of our approach. In section 8 we general concept of the software based pseudorandom TPG is
will draw some conclusions together with an introduction to depicted in Figure 3.

MISSION
LOGIC

BIST Controller

Figure 2. Hardware based hybrid BIST architecture

future work. Although it is assumed that the best possible
) . pseudorandom sequence is used, not always all parts of the
2. Target Hybrid BIST Architecture system are testable by a pure pseudorandom test sequence. It

A hardware based hybrid BIST architecture is depicted in can also take a very long test application time to reach a

Figure 2, where the pseudorandom pattern generator (PRPG)

and the Multiple Input Signature Analyzer (MISR) are ciel coe REM
implemented inside the core under test (CUT). The load (LFSRY. N 2 Creotoroi0100tt
deterministic test pattern are precomputed off-line and stored o LFSR2:110101011010110101
inside the system. AN

To avoid the hardware overhead caused by the PRPG and ™ I 1
MISR, and the performance degradation due to excessively
large LFSRs, a software based hybrid BIST can be used N4 _ Core j+...
where pseudorandom test patterns are produced by the test Core Core j+1
software. However, the cost calculation and optimization

algorithms to be proposed are general, and can be applied as Figure 3. LFSR emulation

good fault coverage level.

In case of hybrid BIST, we can dramatically reduce the
length of the initial pseudorandom sequence by
complementing it with deterministic stored test patterns, and
achieve the 100% fault coverage. The method proposed in
the paper helps to find tradeoffs between the length of the

longer pseudorandom test, on the other hand, will lead to
longer test application time with reduced memory
requirements. Therefore it is crucial to determine the optimal
length of the pseudorandom téghr in order to minimize
the total testing cost.

Figure 5 illustrates the total cost calculation for the hybrid

best pseudorandom test sequence and the number of store®IST consisting of pseudorandom test and stored test,

deterministic patterns.

3. Cost of Hybrid BIST

Since the test patterns generated by LFSRs are

generated off-line. We can define the total test cost of the
hybrld BISTCroraLas:

Gota=Coeent Cuem = al + S 1)
whereCggy, is the cost related to the time for generalting

pseudorandom by nature, the generated test sequences aBseudorandom test patterns (number of clock cyd&gl

usually very long and not sufficient to detect all the faults.
Figure 4 shows the fault coverage of the pseudorandom test
as the function of the test length for some larger ISCAS'85
[9] benchmark circuits. To avoid the test quality loss due to
the random pattern resistant faults and to speed up the testin
process, we have to apply deterministic test patterns targeting
the random resistant and difficult to test faults. Such a hybrid
BIST approach starts with a pseudorandom test sequence o
length L. On the next stage, stored deterministic test

approach takes place: precomputed test patterns, stored in th

ROM, are applied to the core under test to reach the desirable

fault coverage.

Progressive Coverage of Test Patterns

\

2670

Fault Coverage (%)

20

0 116 231 343 462 578

Number of Test Patterns

Figure 4. Pseudorandom test for some ISCAS’85 circuits

693 809 924

In a hybrid BIST technique the length of the
pseudorandom tedt is an important parameter, which
determines the behavior of the whole test process [7]. It is
assumed in this paper that for the hybrid BIST the best
polynomial for the pseudorandom sequence generation will
be chosen. Removing the latter part of the pseudorandom
sequence leads to a lower fault coverage achievable by the
pseudorandom test. The loss in fault coverage should be
covered by additional deterministic test patterns. In other
words, a shorter pseudorandom test set implies a larger
deterministic test set. This requires additional memory space,
but at the same time, it shortens the overall test process. A

e

is related to the memory cost for stori@grecomputed test
patterns to improve the pseudorandom test setpafichre
constants to map the test length and memory space to the
costs of the two parts of the test solutions to be mixed. Figure

% illustrates how the cost of pseudorandom test is increasing

when striving to higher fault coverage (thg=ccurve). The

fIotal costCroraL IS the sum of the above two costs. The

weightsa and g reflect the correlation between the cost and
the pseudorandom test time (number of clock cycles used)
and between the cost and the memory size needed for storing
the precomputed test sequence, respectively. For simplicity
we assume here = 1, andB = B where B is the number of
bytes of the input test vector to be applied on the CUT.
Hence, to carry out some experimental work for
demonstrating the feasibility and efficiency of the following
algorithms, we use as the cost units the number of clocks
used for pseudorandom test generation and the number of
bytes in the memory needed for storing the precomputed
deterministic test patterns. In practice those weights are
determined by the system specification and requirements and
can be used to drive the final implementation towards
different alternatives (for example slower, but more memory
efficient solution).

Equation 1, which is used for calculating the test cost as a
sum of costs of pseudorandom test, and of the memory
associated with storing the ATPG produced test, represents a

A Cost

Total Cost

Number of remaining Crotau

faults after applying k
pseudorandom test
patterns fot(K)

Cost of
pseudorandom test
* patterns Gen

Cost of stored
test Guewm

>
Time/Memory

Figure 5. Cost calculation for hybrid BIST

simplified cost model for the hybrid BIST. In this model The rows in Table 1 correspond to selected efficient
neither the basic cost of memory (or its equivalent) occupied clocks for the circuit ¢880. If we decide to switch from
by the LFSR emulator, nor the time needed for generating pseudorandom mode to the deterministic mode after the
deterministic test patterns are taken into account. However, clock numbek, thenL = k.

the goal of this paper was not to develop accurate cost More difficult is to find the values foByeym = BS Lett(k)
function for the whole BIST solution. The goal was to show be the number of test patterns needed to agygk) not yet

that the total cost of a hybrid BIST is essentially a function of detected faults (these patterns should be precomputed and
argumentd. andS, and to develop a method to calculate the used as stored test patterns in the hybrid BIST). As an
value ofSat a given value df to find the tradeoffs between example, this data for the circuit c880 are depicted in the last

the length of pseudorandom test and the number of
deterministic patterns to minimize the total cost of a hybrid
BIST.

Hence, the main problem of the formulated optimization
task is how to find the curv&&gy andCyey in Figure 5in a
most efficient way.

4. Calculation of the Cost for Pseudorandom
Test

Creating the curv&gey = al is not difficult. For this
purpose, the cumulative fault coverage (like in Figure 4) for

the pseudorandom sequence generated by a LSFR should be

calculated by a fault simulation. As the result we find for
each clock cycle the list of faults which were covered at this
time moment. In fact, we are interested to identify only these
clock numbers at which at least one new fault will be
covered. Let us call such clock numbers and the
corresponding pseudorandom test patteffisient clocks
andefficient patternsrespectively.
As an example, in Table 1 the first four columns represent
a fragment of selected results of fault simulation for
pseudorandom test in the case of the ISCAS’85 circuit c880,
where
» kis the number of the clock cycle,
* rper(K) is the number of new faults detected by the test
pattern generated at the clock signal
* rnor(K) is the number of faults not yet covered with the
sequence generated kylock signals,
» FC(Kk) is the fault coverage reached with the sequence
generated byk clock signals.
Table 1. BIST analysis data

K| roerk) mork) FC(K) t(k)
1 155 839 15.6% 104
2 76 763 23.2% 104
3 65 698 29.8% 100
4 90 608 38.8% 101
5 44 564 43.3% 99
10 104 421 57.6% 95
20 44 311 68.7% 87
50 51 218 78.1% 74
100 16 145 85.4% 52
200 18 114 88.5% 41
411 31 70 93.0% 26
954 18 28 97.2% 12
1560 8 16 98.4% 7
2153 11 5 99.5% 3
3449 2 3 99.7% 2
4519 2 1 99.9% 1
4520 1 0 100.0% 0

column of Table 1. In the following section the difficulties
and possible ways to solve the problem are discussed.

5. Calculation of the Cost for Stored Test

There are two approaches to fitfl): ATPG based and
fault table based. Let us have the following notations:
* i —the current number of the entry in the table of BIST
analysis data;
» k(i) — the number of the efficient clock cycle;
e Rper() - the set of new faults detected by the
pseudorandom pattern generated@y;
Ruvor(i) - the set of not yet covered faults after applying
the pseudorandom pattern numbéj;
* T(i) - the set of test patterns found by ATPG to cover the
faults inRyor(i);
* N — the number of all efficient patterns in the sequence
created by the pseudorandom test;
» FT — the fault table for a given set of test pattefrend
for the given set of faullR: the table defines the subsets

R(t)COR of detected faults for each pattern
4 OT.

Algorithm 1: ATPG based generation oft(k)

1. Letk:=N;

2. Generate foRyor(k) a testT(k), T := T(k), t(k) := |T];

3. Forallk=N-1, N-2, ... 1:
Generate for the fauli&o1(k) not covered by a test set
T(K), T =T+ T(K), t(k) :=|T|;

4. END.

This algorithm generates a new deterministic test set for
the not yet detected faults at every efficient clock cycle. In
this way we have the complete test set (consisting of
pseudorandom and deterministic test vectors) for every
efficient clock, which can reach to the maximal achievable
fault coverage. The number of deterministic test vectors at all
efficient clocks are then used to create the c@ygu(BS).

The algorithm is straightforward, however, very time
consuming because of repetitive use of ATPG.

Algorithm 2: Fault Table based generation ot(k)

1. Calculate the whole tedt = {t} for the whole set of
faultsR by any ATPG to reach as high fault coverage as
possible;

2. Create forT andR the fault tableFT = { R(t;)};
3. Takek=0,Ty=T,R=R,Fk=FT;
4. Takek=k+1;

5. Calculate by fault simulatioRoe(K); Tabu search is a form of local neighborhood search. Each

6. Update the fault tablédj, tj U Ty R(t) - Roer(K); solution SOJQ where Q is the search space (the set of all

7. Remove from the test s&f all the test patterng O T feasible solutions) has an associated set of neighbors
whereR(t) = U; NSOYIQ. A solutionSOLN(SO)can be reached froO

8. If T(k) =0 go to END; by an operation calledraove to SO: At each step, the local

9. Optimize the test setT, by any test compaction neighborhood of the current solution is explored and the best
algorithm;t(k) =] T |; go to 4; solution is selected as a new current solution. Unlike local

10.END. search which stops when no improved new solution is found

))) in the current neighborhood, Tabu search continues the

This algorithm starts by generating a test set T for all gearch from the best solution in the neighborhood even if it is
detectable faults. Based on the fault simulation results a fault \yorse than the current solution. To prevent cycling
table FT will be created. By applying k pseudorandom jnformation pertaining to the most recently visited solutions
patterns, we can remove from the original fault table all 5re inserted in a list calleBabu list Moves to the Tabu
faults, which were covered by the pseudorandom vectors and g |ytions are not allowed. The Tabu status of a solution is
by using static test compaction reduce the original oyerridden when a certain criteria (aspiration criteria) is
deterministic test set. Those modifications should be gatisfied. One example of an aspiration criterion is when the
performed iteratively for all possible breakpoints to calculate cost of the selected solution is better than the best seen so far,
the curveCyen(BS) and to use this information to find the which is an indication that the search is actually not cycling
optimal Crora: _ . back, but rather moving to a new solution not encountered

More details about the algorithm can be found in [10], but pefore [12].
in the case of very large circuits both of these algorithms The procedure of the Tabu search starts from an initial
may lead to very expensive and time-consuming feasible solutiorSO(current solution) in the search spa2e
experiments. It would be desirable to find the global | oyr approach we use a fast estimation method proposed in
optimum of the total cost curve by as few sampled [13] to find an initial solution. This estimation method is

calculations of the total cost for selected values lofs based on number of not yet covered faRlis(i) and can be
possible. obtained from the pseudorandom test simulation results
6. Tabu search (Table 1). A neighborhood/(SO)is defined for eaclsQ

Based on the experimental results it was concluded, that the
For reducing the number of Total Cost calculations in most efficient step size for defining the neighborhbi¢g8O)
Algorithms 1 and 2 for finding the minimum value, the was 3% of efficient clocks, as the larger step size, even if it
method of Tabu search [11-12] as a general iterative can give considerable speedup, will decrease the accuracy of
heuristic for solving combinatorial optimization problems the final result. A sample of neighbor solutidfts 7 N(SO)

was used. is generated. An extreme case is to generate the entire
Algorithm 3: Tabu search neighborhood, that is to také* = MSO). Since this is
Start with initial solutiorBO/[J Q; generally impractical (computationally expensive), a small
BestSolution:=SQ sample of neighbor®/* [J N(SO))is generated, and called
T::_D?])) trial solutions ((W*[F n << [N(SOY]). In case of
While number of empty iterations& Or there is no return ISCAS'85 benchmark circuits the best results were obtained,
to previously visited solutioBo _ , when the size of the sample of neighborhood solutions was

Generate the sample of neighbor solutions 4. Increase of the size o¥* had no effect to the

V.*DN(SO) improvement of the results. From these trial solutions the

Find besCost(SOt V), best solution saO* N*, is chosen for consideration as the
M: If move to solutioi®O*is not in theT Then '

sde-=gox next solution. The move BO* considered even BO* is
Upda.te Tabu list: worse thar5Q that is,Cost(SO*)>Cost(SO)A move from
' SOto SO*is made provided certain conditions are satisfied.

Else Find the next beost(SOTN*); The best candidate solutioBO* V* may or may not
Goto M; improve the current solution but is still considered. It is this
End If; feature that enablescapingrom local optima.
If Cost(S®™) < Cost(BestSolutiorifhen One of the parameters of the algorithm is the size of the
BestSolution := S Tabu list. A Tabu lisT is maintained to prevent returning to
Else previously visited solutions. The list contains information
Increment number of empty iteratioBs that to some extent forbids the search from returning to a
End If; previously visited solutions. Generally the Tabu list size is
End While; small. The size can be determined by experimental runs,

END.

watching the occurrence of cycling when the size is too

small, and the deterioration of solution quality when the size®

is too large [14]. Results have shown that the best average®
size for the ISCAS’85 benchmark family was 3. Larger size =

lead to the loss of result quality.

Let's have the following additional notatiors- number
of allowed empty iterations (i.e. iterations that do not result
in finding a new best solution), defined for each circuit, and

SJ™ - solution generated from current solution as a result of
the move.

7. Experimental results

Experiments were carried out on the ISCAS'85
benchmark circuits for comparing the algorithms 1 and 2,
and for investigating the efficiency of the Tabu method for
optimizing the hybrid BIST. Experiments were carried out
using the Turbo Tester toolset [15] for deterministic test

pattern generation, fault simulation, and test set compaction.

O Pseudorandom

O Deterministic

70

60

50

40

30-

C432
C499 c880

C1355 C1908
C2670
C3540
C5315 C6288
C7552

Figure 6. Percentage of test patterns in the optimized test

sets compared to the original test sets

values ofi = 1,2, ...,N. However the differences were in the

The results are presented in Table 2 and illustrated by af@nge of few percents, which allowed us to neglect this

diagram in Figure 6.

In the columns of Table 2 the following data is depicted:
ISCAS'85 benchmark circuit namd, - length of the
pseudorandom test sequerte, fault coverageS - number

impact and to use the average valuegaindT,.

In Figure 6 the amount of pseudorandom and
deterministic test patterns in the optimal BIST solution is
compared to the sizes of pseudorandom and deterministic

of test patterns generated by deterministic ATPG to be stored (St Sets when only either of the sets is used. In the typical

in BIST, C; —total cost of BIST T - the time (sec) needed
for ATPG to generate the deterministic test Egt, the time
(sec) needed for carrying out manipulations on fault tables
(subtracting faults, and compacting the test d&t)number
of efficient patterns in the pseudorandom test sequdnce,
andT, - the time (sec) needed for calculating the cost curve
by Algorithms 1 and 2T — the time (sec) to find the optimal
cost by using Tabu searcfy,— the number of calculations in
Tabu searchicc— accuracy of the Tabu search solution in
percentage compared to the exact solution found from the
full cost curve, The total testing time for Algorithms 1 and 2
and for Tabu Search was calculated as follows:
Tl =N* TG

T2 = TG +N* TA

T=To*(Ts/N)+A,
where A is the time needed to perform the Tabu search
calculations (was below 0.1 sec in the given experiments)

In fact, the values folfg and T, differ for the different

cases less than half of the deterministic vectors and only a
small fraction of pseudorandom vectors are needed, however

=

{1]|

O Pseudorandom Test Cos
80 @ Deterministic Test Cost
W Hybrid BIST Cost

i

€3540 C5315 €6288

o4+t || || ||

c432 C499 €880 C1355 C1908 C2670 C7552

Figure 7. Cost comparison of different methods.
Cost of pseudorandom test is taken as 100%

Table 2. Experimental results

Pseudorandom tegt Stored tes Hybrid test Calculation cost

Circuit L C S C L S G To Ta N T, T, Ts | Ts Acc

C432 780 93.4 8 93.p 91 21 196 20.1 001 81 1632 21 85| 11 100.0

C499 2036 99.3 13p 293 18 60 4B8 .7 002 114 74 3 P50 | 19 100.0

C880 5589 100. 7V 100{0 121 18 5p5 .2 (.02 114 17 2 026 | 15 99.7
C1355 1522 99. 12h 995 121 52 4833 1.2 (.03 [L09 133 5 1083 | 18 99.5
C1908 5803 99. 148 99]5 105 1p3 720 1.7 0.07 183 2132 25 [3.83] 28 100.0
C2670 6581 84.9 15p 995 444 V7 2754 L9 Q.09 118 230 13 |0.99 9 99.1
C3540 8734 95. 21 95]5 297 110 1467 853 0.14 265 2p601 122 | 7.37] 16 100.0
C5315 231§ 98.9 171 989 711 12 987 1p.3 Q.11 252 2593 38 (181 12 97.2
C6288 210 99.] 45 293 20 20 100 3.8 004 53 R0OO 6 L.70 | 15 100.0
C7552 18704 93.1 267 97]1 583 p1 2169 53.8 (.27 279 15004 129 |3.70 8 99.7

the maximum achievable fault coverage is guaranteed and Estonian Science Foundation grants G3658 and 4300. The
achieved. Figure 7 compares the costs of different authors appreciate the work of Jaan Raik and Elmet Orasson
approaches using for Hybrid BIST cost calculation an from Tallinn Technical University for developing software

equation 1 with the parameters= 1, andB = B where B is

the number of bytes of the input test vector to be applied on
the CUT. As pseudorandom test is usually the most
expensive method, it has been selected as a reference angh)
given value 100%. The other methods give considerable
reduction in terms of cost and as it can be seen, hybrid BIST
approach has significant advantage compare to the purel2]
pseudorandom or stored test approach in most of the cases.

8. Conclusions -

This paper describes a hybrid BIST architecture for
testing systems-on-chip. It supports the combination of [4]
pseudorandom test patterns with deterministic test patterns in
cost effective way. The self-test architecture can be
implemented either in classical way, by using LFSRs, or in
software to reduce the area overhead and to take advantag%]
of the SoC architecture. For selecting the optimal switching
moment from pseudorandom test mode to stored test mode
two algorithms were proposed for calculating the complete [6]
cost curve of the different hybrid BIST solutions. The first
one is a straightforward method based on using traditional
fault simulation and test pattern generation approach. The [7]
second one is based on fault table manipulations and uses
test compaction tool. The speed-up of the second algorithm
was in the range from 7 to 184 (in average 64,5) for the
ISCAS’85 benchmark family. A Tabu search algorithm was
also developed to reduce the number of calculations in
search for the optimal solution for hybrid BIST. The speed-
up of using Tabu search varies from 3,5 to 34,9 (in average
10,5) compare to the faster, fault table manipulations based [9]
algorithm, whereas the accuracy of the solution (the reached
minimum cost compared to the exact minimum) was not less
than 97,2 % for the whole family of ISCAS’85 benchmark
circuits.

The experimental results demonstrate the feasibility of the
method and algorithms proposed, and the efficiency of the
fault table based cost calculation method combined with [11]
Tabu search for finding optimized cost-effective solutions
for hybrid BIST.

As a future work we would like to investigate possibilities
to use the proposed approach for parallel testing issues
(testing multiple cores simultaneously) and to use the same
ideas in case of sequential cores. Additionally different [13]
search algorithms should be investigated to find the best
possible method to find the optimal balance point from the
search space.

(8]

[10]

(12]

[14]
Acknowledgements

This work has been supported by the EC projects IST
2000-29212 COTEST and INCO-COPERNICUS 977133
VILAB “Microelectronics Virtual Laboratory for
Cooperation in Research and Knowledge Transfer”, by the

[15]

tools.

References

E. J. Marinissen, Y. Zorian, “Challenges in Testing Core-
Based System ICSJEEE Communications Magazingy.
104-109, June 1999.

Y. Zorian, E. J. Marinissen, S. Dey, “Testing Embedded
Core-Based System Chips,JEEE International Test
Conference (ITG)pp. 130-143, Washington, DC, October
1998. IEEE Computer Society Press.

S. W. Golomb, “Shift Register Sequences,” Aegan Park
Press, Laguna Hills, 1982.

S. Hellebrand, S. Tarnick, J. Rajski, B. Courtois,
“Generation Of Vector Patterns Through Reseeding of
Multiple-Polynomial Linear Feedback Shift Registers,”
IEEE Int. Test Conference (ITC'92)pp. 120-129,
Baltimore, 1992.

M. Chatterjee, D. K. Pradhan, “A novel pattern generator
for near-perfect fault-coverageyLS| Test Symposiymp.
417-425, 1995

N. Zacharia, J. Rajski, J. Tyzer, “Decompression of Test
Data Using Variable-Length Seed LFSRY/LSI Test
Symposiumpp. 426-433, 1995.

S. Hellebrand, H.-J. Wunderlich, A. Hertwig, “Mixed-
Mode BIST Using Embedded Processordgurnal of
Electronic Testing: Theory and Applicatiorp. 127-138,
No. 12, 1998

M. Sugihara, H. Date, H. Yasuura, “Analysis and
Minimization of Test Time in a Combined BIST and
External Test Approach,Design, Automation & Test In
Europe Conference (DATE 200Q0pp. 134-140, Paris,
France, March 2000

F. Brglez, H. Fujiwara, “A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target
Translator in Fortran,IEEE Int. Symp. on Circuits and
Systemspp. 663-698, June 1985.

R. Ubar, G. Jervan, Z. Peng, E. Orasson, R. Raidma, “Fast
Test Cost Calculation for Hybrid BIST in Digital
Systems,” Euromicro Symposium on Digital Systems
Design,pp. 318-325, Sept. 2001.

F. Glover and M. Laguna. "Modern Heuristic Techniques
for Combinatorial Problems"”, Blackwell Scientic
Publishing, pp. 70-141, 1993.

F.Glover, E. Taillard, and D. de Werra. “A user's guide to
tabu search,”Annals of Operations Researchl:3-28,
1993.

G. Jervan, Z. Peng, R. Ubar, “Test Cost Minimization for
Hybrid BIST,” IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT'2000).
283-291, October 2000.

S. M. Sait, H. Youssef. "lterative Computer Algorithms
with Application in Engineering. Solving Combinatorial
Optimization Problems." IEEE Computer Society Press,
Los Alamitos, CA, 1999.

Turbo Tester Reference Manual. Version 3.99.03. Tallinn
Technical University 1999. http://www.pld.ttu.ee/tt

