
Definitions of Equivalence for Transformational
Synthesis of Embedded Systems

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Dept. of Computer and Information Science
Linköping University, Linköping, Sweden

{luico,petel,zebpe}@ida.liu.se

), a
c-

on
t a
to
el
der
ls

m-
ns-

m-
-
a

has
sis
ti-
p-
ct
i-
ns
f

om-

ry
al

o
h-
or
v-
y,
m-

a
e-
l-
e
its
b-

g
ion
ne.

in Proc. ICECCS, 2000, pp. 134-142.
Abstract

Design of embedded systems is a complex task that re-
quires design cycles founded upon formal notation, so that
the synthesis from specification to implementation can be
carried out systematically. In this paper we present a com-
putational model for embedded systems based on Petri nets
called PRES+. It includes an explicit notion of time and al-
lows a concise formulation of models. Tokens, in our nota-
tion, hold information and transitions—when fired—
perform transformation of data. Based on this model we de-
fine several notions of equivalence (reachable, behavioral,
time, and total), which provide the framework for transfor-
mational synthesis of embedded systems. Different repre-
sentations of an Ethernet network coprocessor are studied
in order to illustrate the applicability of PRES+ and the def-
initions of equivalence on practical systems.

1. Introduction

Many electronic systems consist of dedicated hardware
elements and software running on specific platforms. Such
systems are obviously heterogeneous, i.e. are composed of
elements with distinct properties. At the same time, such
systems are typically embedded, that is, they are part of
larger systems and interact continuously with their environ-
ment. The inherent heterogeneity of this kind of systems
makes them very complex and consequently difficult to de-
sign. Moreover, the strong demand on high-performance
products has boosted the levels of sophistication of such
systems. The ever increasing complexity of embedded sys-
tems poses a challenge in the different phases of their design
process.

Design of hardware/software systems is a complex task.
Design cycles should be based on formal models so that the
synthesis from specification to implementation can be car-
ried out systematically. In order to devise systems that meet
the performance, cost, and reliability goals, the design pro-
cess must be founded upon a formal representation that al-
lows to accomplish the whole design cycle. Modeling is an
essential issue of any systematic design methodology. In

this work we introduce the formal definition of PRES+
(Petri net based Representation for Embedded Systems
notation capable of capturing relevant information chara
teristic to embedded systems.

Synthesis of systems involves translating a specificati
at a certain level of abstraction into an implementation a
more detailed level of granularity. Hence techniques
transform an abstract description into a more refined mod
are essential in the synthesis process. Conversely, in or
to facilitate the analysis of complex systems, higher leve
of abstraction might be achieved through hierarchical co
position preserving the system properties. Therefore, tra
formations can either refine a description or abstract it.

Transformational synthesis approaches perform a nu
ber of (small) transformation steps to the initial specifica
tion until a certain implementation is achieved. Such
stepwise approach to the synthesis of digital systems
some advantages with respect to the traditional synthe
approach, for instance it is more efficient when using op
mization heuristics in the synthesis process [7]. Another a
pealing feature of this kind of synthesis process is the fa
that different design alternatives might be explored if var
ous valid transformations or sequences of transformatio
are applied to the initial specification. Thus a variety o
analysis, such as cost, performance, etc., may be acc
plished.

Transformation-based synthesis is also becoming ve
attractive since design processes might be linked to form
verification methods. For the levels of complexity typical t
modern electronic systems, traditional validation tec
niques like simulation and testing are neither sufficient n
viable to verify their correctness: such techniques may co
er just a small fraction of the system behavior; additionall
bugs found late in prototyping phases have a negative i
pact on time-to-market. Formal methods are becoming
practical alternative to ensure the correctness of digital d
signs, overcoming some of the limitations of traditional va
idation techniques [3]. Through a rigorous analysis of th
system, it is possible to come to a better understanding of
behavior, uncover inconsistencies or ambiguities, and o
tain new insights.

A transformation is considered valid or not, dependin
on the properties that it preserves. A sound transformat
is one that changes a representation into an equivalent o

This research is sponsored by the Swedish National Board for Indu-
strial and Technical Development (NUTEK) in the frame of the SAVE
project.

e/
as
s-

em-

ve
ys-
ny
al-
ns
on
en
of
of
and
n-
t
ns
the

at
nd-
pli-
of
m-
re-
ng

-
pts

on-
are
is

that
ts.
ts
ub-
ed
er

e/
ma-
hs,
ni-
els
tri
de-
s

ol;
g

Here the concept of equivalence plays a key role. When we
claim that two systems are equivalent, it is very important to
understand the significance of equivalence and point out the
frame in which such an equivalence is encompassed. Then
we can say that a particular type of transformation will pre-
serve the properties of a system according to the concept of
equivalence in which that transformation is contrived.
Thereupon, clear definitions of equivalence should be stated
in order to study transformation-based design processes.

In this work we define several notions of equivalence
(reachable, behavioral, time, and total) for embedded sys-
tems represented using PRES+. The principal idea behind
the definitions of equivalence presented here is to provide a
formal framework for transformational synthesis of embed-
ded systems. Thus we can show whether one description is
equivalent to another and then define valid transformations
in the synthesis process. Establishing distinct levels of
equivalence allows to study several properties of a sys-
tem—especially which of them are preserved—when it is
represented by different descriptions.

This paper consists of two main parts. In the first one,
Section 3, we formally define the computational model that
we use to represent embedded systems, and we use a simple
example to illustrate the semantics of PRES+. In the second
part, we define the concepts of equivalence (Section 4) and
study two representations of a network coprocessor to show
how such notions are applicable to practical systems (Sec-
tion 5). Finally, Section 6 outlines some conclusions and
gives insights for future work.

2. Related Work

The frame of reference to study the validity of a given
transformation is the model used to represent the system.
Many computational models have been proposed in the lit-
erature to represent digital systems. These models encom-
pass a broad range of styles, characteristics, and application
domains. Particularly in the field of embedded system de-
sign, a variety of models has been developed and used for
system representation [13], [6]. Their features largely differ
even though they all are computational models intended for
heterogeneous embedded systems.

Particularly, Petri nets (PNs) might be an interesting rep-
resentation for this kind of systems: PNs, for instance, may
fairly represent parallel as well as sequential activities, and
may easily capture non-deterministic constructions. In em-
bedded systems design, Petri nets have been extended in
various ways to fit their most relevant traits, e.g. notion of
time, and we can find several PN-based models with differ-
ent flavors: Macielet. al [14] introduce an intermediate
model for hardware/software codesign, extending Petri nets
to analyze certain properties used in the partitioning pro-
cess; Stoy [23] presents a modeling technique where timed
Petri nets with restricted transition rules are used to repre-
sent control flow in both hardware and software; Esseret al.

[8] utilize a combination of time Petri nets and predicat
transition nets augmented with object-oriented concepts
model of computation during the design of embedded sy
tems; Coloured Petri nets have been also used to model
bedded systems [1].

On the other hand, several notions of equivalence ha
been addressed in various contexts for different sorts of s
tems. In the field of digital design there have been ma
proposed approaches using transformations [6]. Specific
ly, many of the concepts of equivalence and transformatio
defined for PNs attempt to overcome the state explosi
problem, namely Petri nets tend to become complex ev
for relatively small systems. Murata [16] proposes a set
basic transformations—aimed to reduce the complexity
traditional Petri nets—that preserve liveness, safeness,
boundedness. This includes fusion of places, fusion of tra
sitions, and elimination of self-loops. Similarly, Berthelo
[2] studies several transformations on PNs, the conditio
under which those transformations are applicable, and
preservation of a rich set of properties. Felderet. al[9] study
Time PNs and introduce a set of transformation rules th
preserve the correctness of the system in respect to bou
ed-invariance and bounded-response properties. An ap
cation of transformations of nets to deal with the problem
state explosion is the study of optimal schedules for co
plex systems [17]. The system, modeled by a Petri net, is
duced until at least one optimal solution to the scheduli
problem remains.

Pomello [20] gives an overview of notions of equiva
lence for Petri nets of concurrent systems. Several conce
of equivalence are re-defined to capture and study the c
currency degree of systems. The ideas considered there
based on equivalence from an external point of view, that
to say, system properties are perceived by an observer
is usually the environment with which the system interac

Nakagawaet al. [18] present a method to abstract ne
based on equivalence of firing sequences of a specific s
set of transitions. Thus net reduction rules may be obtain
in order to generate an equivalent Petri net from anoth
one, preserving such firing sequences.

3. Petri Net based Representation
for Embedded Systems

Many of the computational models used for hardwar
software systems are based on extensions to finite-state
chines, Petri nets, discrete-event systems, data-flow grap
the so-called synchronous/reactive models, and commu
cating processes, among others. Several different mod
coexist in the scenario of HW/SW codesign. However, Pe
nets seem to be particularly appealing: PNs have been wi
ly used for system modeling in many fields of science; PN
are a well-understood graphical and mathematical to
powerful formal theories, defining its structure and firin
rules, have been developed around this model.

.
x-
of

g

a

s of

.

n
f
te
is
e-

d
-

i-
t

a
t

of
en

d

e

g
ow
As stated before, many applications in different areas
have successfully used PNs as a representation model. Due
to their intrinsic characteristics and particular extensions of
the conventional model, PNs might be an interesting nota-
tion for representation of embedded systems. The main ex-
tensions—proposed separately in distinct contexts—that
are relevant for embedded systems include the notion of
time [21], [15], [22], the concept of hierarchy [24], [5], and
the modeling power of high-level PNs [10], [12].

Figure 1. A PRES+ model

The notation we use to model embedded systems is
PRES+ (Petri net based Representation for Embedded Sys-
tems). PRES+ is a slightly modified version of the model in-
troduced in [4]. Its is a computational model based on Petri
nets that allows to capture important characteristics of em-
bedded systems. In the following we introduce the formal
definition of PRES+. Figure 1 shows a simple example used
to illustrate the main features of this representation.

3.1. Basic Definitions

Definition 1. A PRES+model is a five-tuple
 where

 is a finite non-empty set ofplaces;
is a finite non-empty set oftransitions;

is a finite non-empty set ofinput arcswhich de-
fine the flow relation between places and transitions;

is a finite non-empty set ofoutput arcswhich
define the flow relation between transitions and places;
M0 is the initialmarking of the net (see Definition 3).

Defined in this way,N is anordinary Petri net, which
means that there exist no multiple arcs. Like in classical
Petri nets, places are graphically represented by circles,
transitions by boxes, and arcs by arrows. For the example in
Figure 1, and

.
Properties, characteristics, and behavior of PRES+ will

be introduced and defined in detail in what follows.
Definition 2. A token is a pair where

v is the token value. This value may be of any type, e.g
boolean, integer, etc., or user-defined type of any comple
ity (for instance a structure, a set, or a record). The type
this value is referred to astoken type;
r is thetoken time, a non-negative real number representin

the time stamp of the token.
The setK denotes the set of all possible token types for

given system.
Definition 3. A marking is a function that
denotes the absence or presence of tokens in the place
the net. A PRES+ netN is safeor 1-bounded, that is, a place
may hold at most one token for a certain marking

whenever the placep is marked, otherwise
.

Note that a markingM implicitly assigns one tokenk to
each marked place. We introduce the following notatio
which will be useful in defining the dynamic behavior o
PRES+: when a place is marked, or simply deno
the token present in . The token value of the token
denoted or , and the token time of the token is d
noted or . For instance, given the initial markingM0
in Figure 1, the token has a value an
a time stamp . For the sake of simplicity, in the ex
amples we use the short notationw to denote the token value

.
Definition 4. The type function associates a
place with a token type.τ(p) denotes the token type assoc
ated with the placep. The token type is the type of value tha
a token may bear in that place.

It is worth pointing out that the token type related to
certain place is fixed, that is, it is an intrinsic property of tha
place and will not change during the dynamic behavior
the net. For the example in Figure 1, all places have tok
type integer.
Definition 5. The pre-set of a
transitiont is the set ofinput placesof t. Similarly, thepost-
set of a transitiont is the set of
output places of t.

In our example we have, for instance, an
.

3.2. Description of Functionality

Definition 6. All output places of a given transition have th
same token type,

if

Definition 7. For every transitiont, there exists atransition
function associated tot. Formally,

where and .
Transition functions are very important when describin

the behavior of the system to be represented. They all

t 3
-b

[a<0]t 2-a

t 6
-d

t 8e+2

pa

pb cp

pd pe

t 1[a>0] a

t 7d

t 4b t 5c

d

a a

[1,1.7]

[2.2,4]

[1
.8

,3
]

b

e

[0,1]

[3
,4

]

[2,3]

[1,4] 3.5

b c

d

<3,0>

N (P T,,=
I O M0), ,
P p1 p2 … pm, , ,{ }=
T t1 t2 … tn, , ,{ }=
I P T×⊆

O T P×⊆

P pa pb pc pd pe, , , ,{ }= T { t1 t2 t3 t4,, , ,=
t5 t6 t7 t8}, , ,

k v r,〈 〉=

M : P 0 1,{ }→

M p() 1=
M p() 0=

pi kpi
ki

pi ki
vpi

vi ki
r pi

r i
ka 3 0,〈 〉= va 3=

r a 0=

vw
τ : P K→

°t p P p t,() I∈∈{ }=

t° p P t p,() O∈∈{ }=

°t3 pb{ }=
t3° pc{ }=

p q t° τ p()⇒∈, τ q()=

f
t T∈∀ f : τ p1() τ p2() … τ× pa()×× τ q()→∃
°t p1 p2 … p, a, ,{ }= q t°∈

n
is

si-

-

n
ot

d

r
r

-
n
r

5
.
a

re

e,
n

he

-
en
he
en
m

nta-
be

tri
systems to be modeled at different levels of granularity with
transitions representing simple arithmetic operations or
complex algorithms. In Figure 1 we inscribe transition func-
tions inside transition boxes: the transition functions associ-
ated to and , for example, are given by
and respectively. We use inscriptions on the
input arcs of a transition in order to denote the arguments of
its transition function and/or its guard.
Definition 8. For every transitiont, there exist aminimum
transition delay and amaximum transition delay ,
which are non-negative real numbers and represent, respec-
tively, the lower and upper limits for the execution time (de-
lay) of the function associated to the transition. Formally,

 such that
with being the set of non-negative real numbers.

We inscribe transition delays as close to the re-
spective transition. Thus the minimum transition delay
of is 1, and its maximum transition delay is 1.7 time
units. Note that whend-=d+=d we just inscribe the valued,
like in the case of the transition delay .
Definition 9. Theguard Gof a transitiont is the (necessary)
condition that must be satisfied in order to enable that tran-
sition, when all its input places hold tokens. The guard

of a transitiont is a function of the token values in the places
of its pre-set . If the condition holds
G = 1, otherwiseG = 0.

For instance, in the example of Figure 1, repre-
sents the guard .
Definition 10. Every transition has afunctionality. The
functionality of a transitiont is defined in terms of:
(i) Its transition function ;
(ii) Its minimumandmaximum transition delays and .

Intuitively, this functionality describes the “behavior” of
the transition when it fires. Unlike the classical Petri net
model, each token holds a value and a time stamp. When a
transitiont is fired, the markingM will generally change by
removing all the tokens from the pre-set and depositing
one token into each element of the post-set . These to-
kens, added to , have values and time stamps that depend
on the previous tokens in and the functionality oft.

3.3. Dynamic Behavior

Definition 11. A transitiont is said to beenabledif all plac-
es of its pre-set are marked, its output places different from
the input ones1 are empty, and its guard is asserted. Formal-
ly, for a given markingM, a transition is enablediff (if and
only if)
(i)
(ii)
(iii)

Note that, for the initial marking, is not enabled eve
though its only input place is marked and its output place
not. This is because ().
Definition 12. Every enabled transitiont has anenabling
time etthat represents the time instant at which the tran
tion becomes enabled. The enabling timeet of a (enabled)
transition is the maximum token time of the tokens in its in
put places,

where the pre-set oft is .
Note that this enabling time varies during the executio

of the net and, if the transition is not enabled, it does n
make sense.
Definition 13. The earliest trigger time and thelatest
trigger time of an enabled transition are the lower an
upper time bounds for the firing of the transition,

An enabled transitiont may not fire before its earliest
trigger time and must fire before or at its latest trigge
time , unlesst becomes disabled by the firing of anothe
transition.

Assuming for instance that fires at 1 time units, the to
ken in is removed and accordingly a new toke

is deposited in . Thus the enabling time fo
both and becomes 1 time units. In consequence
may not fire before 4 time units and must fire before or at
time units, unless it becomes disabled by the firing of
Definition 14. Thefiring of an enabled transition changes
markingM into a new markingM+. As a result of firing the
transitiont, with pre-set , the follow-
ing events occur:
(i) Tokens from its pre-set (which are not in its post-set) a
removed;

(ii) One token is added to each place of its post-set;

(iii) Each new token deposited in has a token valu
which is calculated by evaluating the transition functio
with the token values of tokens in as arguments;

(iv) Each new token added to has a token time that is t
time instant at which the transitiont fires;

 where

The execution time of the function of a transition is con
sidered in the time stamp of the new tokens. Note that, wh
a transition fires, all the tokens in its output places get t
same token value and token time. The token time of a tok
represents the time at which it was “created”. The syste
time (the global time), in a markingM, is given by the max-
imum token time of all tokens in the net.

When used to model embedded systems, the represe
tion introduced above has several interesting features to
highlighted, some of them inherited from the classical Pe

1 A place may be, at the same time, input and output of a transition.

t6 t8 f 6 d() d–=
f 8 e() e 2+=

d- d+

t T∈∀ d- d+, ℜ0
+∈∃ d- d+≤

ℜ0
+

d- d+[,]
d1

-

t1 d1
+

d5 3.5=

G : τ p1() τ p2() … τ× pa()×× 0 1,{ }→

°t p1 p2 … p, a, ,{ }=

a 0<
G2

f
d- d+

°t
t°

t°
°t

t

p °t M p()∈∀ 1=
q t° °t–() M q()∈∀ 0=

G 1=

t2

G2 0= 3 0<

et max r1 r 2 … r a, , ,()=
°t p1 p2 … p, a, ,{ }=

tt-

tt+

tt- et d-+=
tt+ et d++=

tt-

tt+

t1
pa

kb 3 1,〈 〉= pb
t3 t4 t3

t4

°t p1 p2 … p, a, ,{ }=

p °t t°–() M+ p()∈∀ 0=

q t° M+ q()∈∀ 1=
t°

°t
qi t°∈∀ vi f v1 v2 … va, , ,()=

t°

qi t°∈∀ r i tt*= tt* tt- tt+[,]∈

-

on
d
s

-

net model:
• Non-determinism may be naturally represented by

PRES+. Non-determinism can be used as a powerful
mechanism to express succinctly the behavior of certain
systems and then reduce the complexity of the model.

• Parallel or concurrent activities may be easily expressed
in terms of Petri nets. We recall that concurrency is
present in most embedded systems.

• Since tokens carry information in our model, PRES+
overcomes the lack of expressiveness of classical Petri
nets, where tokens are considered as “black dots”.

• Time is a critical factor in many embedded applications.
Our model captures timing aspects by associating lower
and upper limits to the duration of activities related to
transitions and keeping time information in token
stamps.

• PRES+ has been also extended by introducing the con-
cept of hierarchy. However, we will not further discuss
this particular feature in this paper.
Summarizing, PRES+ is a model to be used in the design

cycle of embedded systems. Our representation is an exten-
sion to the classical PN model that overcomes some of the
drawbacks of Petri nets when modeling embedded systems:
it captures explicitly timing information; PRES+ allows
representations at different levels of granularity; our model
is more expressive since tokens might carry information.
Furthermore, the model is simple, intuitive, and can be eas-
ily handled by the designer.

4. Equivalence in Embedded Systems

In what follows we define the four notions of equiva-
lence mentioned in Section 1. These ideas are built upon the
model presented in Section 3. The underlying motivation of
the following definitions is to set a formal framework to
compare PRES+ representations, and thus establish the va-
lidity of transformations in the synthesis process of embed-
ded systems. The study of an Ethernet coprocessor (Section
5) will further illustrate these concepts of equivalence.
Definition 15. A placep is said to be anin-port if

that is, there is no transitiont for which p is output place.
The set of in-ports is noted asinP. Similarly, a placep is
said to be anout-port if

that is, there is no transitiont for whichp is input place.outP
denotes the set of out-ports.
Note: In some cases, the designer could be only interested
in some part of the net. In that case it is possible to re-define
the concepts ofin-port andout-port in such a manner that
the following notions of equivalence apply only to that part
of the system which concerns the designer. Thus, according
to his needs, the designer can re-defineinP as a subset com-
posed ofsome(instead ofall) places that have no transition
as input. SimilarlyoutPcould be re-defined as the subset of

some places with no transition as output.
Definition 16. Thereachability set R(N)of a netN is the set
of all markings reachable fromM0.
Definition 17. A netN1 is reachable-equivalentor R-equiv-
alent to another netN2 iff
(i) There exist bijections and

that define one-to-one correspon
dences between in(out)-ports ofN1 andN2;
(ii) For the initial marking, in bothN1 andN2, all in-ports
are marked and all out-ports are empty

where and are the initial markings ofN1 andN2
respectively;
(iii) For all such that

there exists such that

 where
and vice versa.

Figure 2. R-equivalent nets

When two nets are R-equivalent, we use the notati
. The concept of R-equivalence will be illustrate

with reference to the example shown in Figure 2. Let u
consider the netsN1 andN2 in Figures 2(a) and 2(b) respec
tively. According to Definition 15,

t T t p,() O∉∈∀

t T p t,() I∉∈∀

f in : inP1 inP2→
f out : outP1 outP2→

p inP1 M1,0 p()∈∀ 1=
q outP1 M1,0 q()∈∀ 0=
pp inP2 M2,0 pp()∈∀ 1=

qq outP2 M2,0 qq()∈∀ 0=
M1,0 M2,0

M ′1 R N1()∈
p inP1 M′1 p()∈∀ 0=

a P1 in– P1 out– P1() M′1 a()∈∀ M1 0, a()=
M ′2 R N2()∈

pp inP2 M′2 pp()∈∀ 0=
b P2 in– P2 out– P2() M′2 b()∈∀ M2 0, b()=

qq outP2 M′2 qq()∈∀ M′1 q()= qq fout q()=

a b

c d

e f g

ee ff gg

aa bb

xx

(a)

(b)

N1 =RN2

P1 { a b c d e f,, , , , ,=

e

n

re

n-
res
us,
ce
, , ,
, , and

. One-to-one correspondences between in(out)-
ports are defined by , ,

, , and . Using
the notation to ex-
press the marking of a net, we can write the initial markings
asM1,0= (1 1 0 0 0 0 0) andM2,0= (1 1 1 0 0 0), which fulfill
the condition (ii) in Definition 17. A simple analysis of
reachability shows that there exist two markings in the
reachability setR(N1) satisfying the first part of condition
(iii) in Definition 17 (in-ports are not marked and other
places, different from in-ports and out-ports, have the same
marking asM1,0), namelyM’1 = (0 0 0 0 1 0 1) andM’’ 1 =
(0 0 0 0 0 1 0). For each one of these markings, there exists
a marking inR(N2) that fulfills the second part of condition
(iii) given in Definition 17,M’2 = (0 0 1 1 0 1) andM’’ 2 =
(0 0 1 0 1 0) respectively. In a similar way, for each one of
the markingsM’2 andM’’ 2 above, there exists a marking in
R(N1) satisfying the second part of Definition 17(iii). Hence
N1 andN2 are R-equivalent.

Figure 3. R-equivalent nets with different “behavior”

Before defining the concepts ofbehavioral-equivalence
andtime-equivalence, we will study the simple netsN1 and
N2 shown in Figures 3(a) and 3(b) respectively. Having

and , the initial markings
areM1,0= (1 0) andM2,0= (1 0). It is straightforward to note
thatM’1 = (0 1) andM’2 = (0 1) fulfill the conditions estab-
lished in Definition 17 and therefore . However,
note thatN1 has different “behaviors”. Assuming, for both
nets in the initial marking, that the token in is

, it is clear that the very same markingM’1 = (0
1) may associate different tokens to the place : when
fires the token in will be with ,
but when fires the token in will be
with . The reason of this behavior is the non-de-
terminism ofN1. On the other hand, forN2 the markingM’2
= (0 1) associates to the token with

.
As shown in the example of Figure 3(a), a certain mark-

ing M’ (see condition (iii) in Definition 17) might associate
different tokens to the same place. In other words, a mark-
ing denotes absence or presence of tokens in a certain place
but says nothing about token value/time when the place is

marked. Note, for instance, that for the netN1 in Figure 3(a)
the set of all possible tokens in the out-port , for th
markingM’1 = (0 1), is given by

.
We denote withoutP’1 andoutP’2 the subsets, ofoutP1

and outP2 respectively, in which out-ports are marked i
M’1 andM’2 (condition (iii) in Definition 17),

The concepts ofoutP’1 andoutP’2 are needed in the fol-
lowing definitions.
Definition 18. Two nets,N1 andN2, arebehavioral-equiv-
alent or B-equivalent iff
(i) The nets are R-equivalent;

(ii) For the initial marking stated in Definition 17(ii),
 where

(iii) For those markings that fulfill the condition (iii) in Def-
inition 17, it holds that for all such that

there exists such that

 where
and vice versa.

The expression denotes that the two nets a
B-equivalent.
Definition 19. Two nets,N1 andN2, aretime-equivalentor
T-equivalent iff
(i) The nets are R-equivalent;

(ii) For the initial marking stated in Definition 17(ii),
 where

(iii) For those markings that fulfill the condition (iii) in Def-
inition 17, it holds that for all such that

there exists such that

 where
and vice versa.

Two T-equivalent nets are noted as .
Definition 20. Two nets,N1 andN2, aretotal-equivalentor
§-equivalent iff
(i) The nets are B-equivalent;

(ii) The nets are T-equivalent;

We denote this strong equivalence as .

Figure 4 shows the relation between the different co
cepts of equivalence introduced above. The graph captu
the dependence between the notions of equivalence. Th
for instance, R-equivalence is necessary for T-equivalen

g} inP1 a b,{ }= outP1 e f g, ,{ }= P2 { aa bb,,=
xx ee ff gg}, , , inP2 aa bb,{ }= outP2 { ee,=
ff gg},

aa fin a()= bb fin b()=
ee fout e()= ff f out f()= gg fout g()=

M M p1() M p2() … M pm()()=

t 1a t 2a +12

pb

pa

a a

[2,3][1,3]

pb

pa

t 1a

a

[2,3.5]

(a) (b)

P1 pa pb,{ }= P2 pa pb,{ }=

N1 =R N2

pa
ka a 0,〈 〉=

pb t1
pb kb a rb

i,〈 〉= r b
i 1 3[,]∈

t2 pb kb a2+1 r b
ii,〈 〉=

r b
ii 2 3[,]∈

pb kb a rb,〈 〉=
r b 2 3.5[,]∈

pb
a rb,〈 〉 r b 1 3[,]∈{ } ∪

a2+1 r b,〈 〉 r b 2 3[,]∈{ }

outP′1 q outP1 M′1 q() 1=∈{ }=
outP′2 qq outP2 M′2 qq() 1=∈{ }=

N1 =RN2

pp inP2∈∀ vpp vp= pp fin p()=

kq
q outP′1∈

kqq
qq outP′2∈

vqq vq= qq fout q()=

N1 =B N2

N1 =RN2

pp inP2∈∀ r pp r p= pp fin p()=

kq
q outP′1∈

kqq
qq outP′2∈

r qq r q= qq fout q()=

N1 =T N2

N1 =B N2

N1 =T N2

N1 =§ N2

ce,
he
ware
,

ssi-
n-

a-
al
ble
s-

n
ch
e

are

),
to
v-

ng

-
of
re-
p-

es
ini-
d,
-

and also for B-equivalence. Similarly, §-equivalence im-
plies all other equivalences. §-equivalence is the strongest
notion of equivalence defined in this work. However, ob-
serve that the stronger the equivalence, the more difficult to
validate a transformation based on such an equivalence.

Figure 4. Relation between notions of equivalence

5. The Example: An Ethernet
Network Coprocessor

In order to illustrate the concepts of equivalence defined
above, let us analyze a high-level representation of an
Ethernet network coprocessor. We have chosen this appli-
cation because it has been discussed several times in the
context of hardware/software codesign [11], [19]. The sys-
tem is a network coprocessor that manages communication
functions in an Ethernet link, off-loading the host computer
from these activities. Briefly, the CPU sends instructions to
the coprocessor. Based on these, if a frame of data must be
transmitted, the Ethernet coprocessor loads the data from a
location of memory, specified by the CPU, and sends the
frame over the network. The coprocessor might continually
receive data from the network and store it in a local memo-
ry, unless the CPU deactivates this function. In Figure 5 we
give a representation of this system formulated in PRES+,
which consists of three functional blocks (execution unit,
transmit unitandreceive unit). Each functional block is rep-
resented by a transition. The model includes places through
which the system interacts with its environment, in this case
the host CPU, the Ethernet link, and a local memory.

We consider as a first alternative a possible implementa-
tion of such a system completely in hardware. The execu-
tion times of each one of the functional units can be
estimated, and the duration of its operations can be assigned
as lower and upper limits to the respective transitions in the
PRES+ model. For the sake of clarity, Figure 5 does not
show inscriptions on the arcs, nonetheless all transitions do
have transition functions associated to them. Thus, for ex-
ample, there exists a transition function corresponding to
execution unit, defined in terms of the token values of to-
kens in placesINSTRand COLLISION. We assume that
each transition has its functionality completely defined. Fi-
gure 5 shows neither token values nor token times for the
initial marking. We assume that all time stamps of tokens in
the initial marking are 0. For instance, the token in the place
DATA_SEND for the initial marking is given by

, where data_sendhas a
valid type corresponding to the token type of that place.

Figure 5. PRES+ model of an ethernet
network coprocessor

Now suppose that, in order to explore the design spa
we want to study another possible implementation of t
Ethernet coprocessor as a heterogeneous hardware/soft
system. Having different functional blocks in our system
we can analyze several alternatives. Figure 6 shows a po
ble partition of the system on two processing engines. Co
sider thatP1 represents a programmable processor andP2
is a hardware component. The new placesP1andP2are in-
troduced in the Petri net of Figure 6 to indicate the alloc
tion of resources in the system and the way that function
units are mapped onto different processors (programma
and hardware). In order to consider the cost of inter-proce
sor communication, a new transitioncommhas been added
to the model. In this way, we consider the communicatio
time, estimated between 2 and 3 time units, assigning su
limits as minimum and maximum transition delays. Th
transition comm just “transmits” toreceive unitthe data
coming fromexecution unit. The placeB represents the only
system bus. Since the blocks to be mapped onto softw
(execution unitandtransmit unit) differ in implementation
with respect to the previous design alternative (Figure 5
their execution times have been changed in the model
take into account the characteristics of this design. Howe
er, transition functions are the same for correspondi
blocks in Figures 5 and 6.

Although the nets in Figures 5 and 6 are relatively sim
ple, they serve our purposes of illustrating the concepts
equivalence as defined above. It is clear that Figure 6 is a
finement of the representation given in Figure 5: it is a ty
ical step in transformational synthesis.

In order to prove the R-equivalence of the nets in Figur
5 and 6, we have to check the requirements stated in Def
tion 17: both nets have four in-ports and two out-ports an
then, it is possible to define bijections and repre

= R

= B = T

= §

kDATA_SEND data_send 0,〈 〉=

execution
unit unit

transmit

unit
receive

[12,16] [22,25]

TRS_CMD

FRAME_IN

RCV_CMD

DATA_SEND

FRAME_OUT

COLLISION

INSTR

Ethernet Link

Local Memory

DATA_RECEIVE

Host CPU

[15,19]

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

f in f out

nta-
of

y,
p-

o-
re
er-
n-

-
ed a
ng
hes
be-
s
of
m.

et-
o-
ce
f a

g

a-

e
,
s-

el

-
a-

ed

ts

h

-
8,
senting one-to-one relations between these places; in both
nets, for the initial marking, in-ports are marked and out-
ports are not; a reachability analysis—simple for this level
of abstraction but, in general, complex for more detailed
systems—shows that both nets have reachable markings in
which all out-ports are marked, in-ports are empty, and oth-
er places have the very same marking they had in the initial
state (Definition 17). Consequently the nets are R-equiva-
lent.

Figure 6. Refinement of the Ethernet coprocessor

The B-equivalence of these models can be noticed intu-
itively: since the refinement to the first representation af-
fected only the mapping of functional blocks, it did not
influence any behavioral aspect. Note that transition func-
tions have been preserved. However, a formal demonstra-
tion of B-equivalence for such a complex system including
its explicit functionality is beyond the scope of this paper.

The non-T-equivalence can be illustrated observing that
for the marking characterized in Definition 17(iii), there ex-
ists at least one token in the first net that has no match in the
second one. For instance, in the PRES+ model of Figure 5,
whenDATA_RECEIVEis marked its token will have a to-
ken time in the interval [27,35]. However, there does not ex-
ist a token inDATA_RECEIVEin Figure 6, for such a
marking, whose token time isr = 27 time units, because the
interval for such a token time will be [33,42]. Finally, since
the nets are not T-equivalent, they are not §-equivalent ei-
ther.

6. Concluding Remarks

Many electronic systems consist of dedicated hardware
and software running on specific platforms. At the same
time, such systems are typically embedded, that is, they are
part of larger systems and interact continuously with their
environment. The complexity of these systems is such that,
in order to reason about their properties, formal notations
and models are needed. Design cycles should be based on
formal representations so that the synthesis of a design from
specification to implementation can be carried out system-

atically.
We have presented PRES+, a Petri net based represe

tion for embedded systems. It captures important features
this kind of systems: time related information, concurrenc
and sequential behavior as well. The model also allows re
resentations at different levels of granularity. In PRES+ t
kens might carry information which makes the model mo
expressive in comparison to classical Petri nets. Furth
more, the model is simple, intuitive, and can be easily ha
dled by the designer.

We introduced several notions of equivalence for em
bedded systems represented in PRES+. Thus we provid
formal framework to study embedded systems usi
PRES+ models. In transformational synthesis approac
unambiguous concepts of equivalence are necessary
cause they permit to define the validity of transformation
(abstractions/refinements). Establishing different levels
equivalence allows to study several properties of a syste

The study of different representations of an Ethernet n
work coprocessor has illustrated the applicability of the pr
posed computational model and the notions of equivalen
defined above on the transformation-based synthesis o
practical embedded system.

References

[1] L. P. M. Benders and M. P. J. Stevens, “Petri Net Modellin
in Embedded System Design,” inProc. European Computer Con-
ference, 1992, pp. 612-617.
[2] G. Berthelot, “Checking Properties of Nets using Transform
tions,” in Advances in Petri Nets 1985, G. Rozenberg, Ed.LNCS
222, Berlin: Springer-Verlag, 1986, pp. 19-40.
[3] E. M. Clarke and J. M. Wing, “Formal Methods: State of th
Art and Future Directions,” Technical Report CMU-CS-96-178
School of Computer Science, Carnegie Mellon University, Pitt
burgh, Sept. 1996.
[4] L. A. Cortés, P. Eles, and Z. Peng, “A Petri Net based Mod
for Heterogeneous Embedded Systems,” inProc. NORCHIP Con-
ference, 1999, pp. 248-255.
[5] G. Dittrich, “Modeling of Complex Systems Using Hierarchi-
cally Represented Petri Nets,” inProc. Intl. Conference on Sys-
tems, Man, and Cybernetics, 1995, pp. 2694-2699.
[6] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vin
centelli, “Design of Embedded Systems: Formal Models, Valid
tion, and Synthesis,” inProc. IEEE, vol. 85, pp. 366-390, March
1997.
[7] P. Eles, K. Kuchcinski, and Z. Peng,System Synthesis with
VHDL. Dordrecht: Kluwer, 1998.
[8] R. Esser, J. Teich, and L. Thiele, “CodeSign: An embedd
system design environment,” inIEE Proc. Computers and Digital
Techniques, vol. 145, pp. 171-180, May 1998.
[9] M. Felder, C. Ghezzi, and M. Pezzè, “Analyzing refinemen
of state based specifications: the case of TB nets,” inProc. Intl.
Symposium on Software Testing and Analysis, 1993, pp. 28-39.
[10] H. J. Genrich and K. Lautenbach, “System modelling wit
high-level Petri nets,” inTheoretical Computer Science, vol. 13,
pp. 109-136, Jan. 1981.
[11] R. K. Gupta and G. De Micheli, “System Synthesis via Hard
ware-Software Co-design,” Technical Report CSL-TR-92-54

FRAME_OUT

TRS_CMD

INSTR DATA_SEND

P1

DATA_RECEIVE

P2

RCV_CMD

RCV_CMD’

FRAME_IN

COLLISION

B

unit
transmit

unit
receivecomm

execution
unit

[16,20]

[2,3]

[15,19]

[29,35]

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

n,”

nd
-

s-

.
nt
rt
ary

,”

r

-

Dept. EECS, Stanford University, Stanford, Oct. 1992.
[12] K. Jensen,Coloured Petri Nets. Berlin: Springer-Verlag,
1992.
[13] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich,
“Models of Computation for Embedded System Design,” inNATO
ASI Proc. on System Synthesis, 1998, pp. 1-57.
[14] P. Maciel, E. Barros, and W. Rosenstiel, “A Petri Net Model
for Hardware/Software Codesign,” inDesign Automation for Em-
bedded Systems, vol. 4, pp. 243-310, Oct. 1999.
[15] P. M. Merlin and D. J. Farber, “Recoverability of Communi-
cation Protocols—Implications of a Theoretical Study,” inIEEE
Trans. Communications, vol. COM-24, pp. 1036-1042, Sept.
1976.
[16] T. Murata, “Petri Nets: Analysis and Applications,” inProc.
IEEE, vol. 77, pp. 541-580, April 1989.
[17] J. C. Murgaza, H. Camus, J.-C. Gentina, E. Teruel, and M.
Silva, “Reducing the Computational Complexity of Scheduling
Problems in Petri Nets by means of Transformation Rules,” in
Proc. Intl. Conference on Systems, Man, and Cybernetics, 1998,
pp. 19-25.
[18] M. Nakagawa, D.-I. S. Lee, S. Kumagai, and S. Kodama,

“Equivalent Net Abstraction and Firing Sequence Preservatio
in Proc. ISCAS, 1995, pp. 513-516.
[19] S. Narayan, F. Vahid, and D. D. Gajski, “Modeling with
SpecCharts,” Technical Report #90-20, Dept. of Information a
Computer Science, University of California, Irvine, July 1990 (re
vised Oct. 1992).
[20] L. Pomello, “Some Equivalence Notions for Concurrent Sy
tems: An Overview,” inAdvances in Petri Nets 1985, G. Rozen-
berg, Ed.LNCS 222, Berlin: Springer-Verlag, 1986, pp. 381-400
[21] C. Ramchandani, “Analysis of Asynchronous Concurre
Systems by Timed Petri Nets,” Project MAC, Technical Repo
120, Massachusetts Institute of Technology, Cambridge, Febru
1974.
[22] J. Sifakis, “Performance Evaluation of Systems using Nets
in Net Theory and Applications, W. Brauer, Ed.LNCS 84, Berlin:
Springer-Verlag, 1980, pp. 307-319.
[23] E. Stoy and Z. Peng, “An Integrated Modelling Technique fo
Hardware/Software Systems,” inProc. ISCAS, 1994, pp. 399-402.
[24] W. M. Zuberek and I. Bluemke, “Hierarchies of Place/Tran
sitions Refinements in Petri Nets,” inProc. Conference on Emerg-
ing on Technologies and Factory Automation, 1996, pp. 355-360.

	Abstract
	1. Introduction
	2. Related Work
	3. Petri Net based Representation for Embedded Systems
	Figure 1. A PRES+ model
	3.1. Basic Definitions
	3.2. Description of Functionality
	3.3. Dynamic Behavior

	4. Equivalence in Embedded Systems
	Figure 2. R-equivalent nets
	Figure 3. R-equivalent nets with different “behavior”
	Figure 4. Relation between notions of equivalence

	5. The Example: An Ethernet Network Coprocessor
	Figure 5. PRES+ model of an ethernet network coprocessor
	Figure 6. Refinement of the Ethernet coprocessor

	6. Concluding Remarks
	[1] L. P. M. Benders and M. P. J. Stevens, “Petri Net Modelling in Embedded System Design,” in Pr...
	[2] G. Berthelot, “Checking Properties of Nets using Transformations,” in Advances in Petri Nets ...
	[3] E. M. Clarke and J. M. Wing, “Formal Methods: State of the Art and Future Directions,” Techni...
	[4] L. A. Cortés, P. Eles, and Z. Peng, “A Petri Net based Model for Heterogeneous Embedded Syste...
	[5] G. Dittrich, “Modeling of Complex Systems Using Hierarchically Represented Petri Nets,” in Pr...
	[6] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, “Design of Embedded System...
	[7] P. Eles, K. Kuchcinski, and Z. Peng, System Synthesis with VHDL. Dordrecht: Kluwer, 1998.
	[8] R. Esser, J. Teich, and L. Thiele, “CodeSign: An embedded system design environment,” in IEE ...
	[9] M. Felder, C. Ghezzi, and M. Pezzè, “Analyzing refinements of state based specifications: the...
	[10] H. J. Genrich and K. Lautenbach, “System modelling with high-level Petri nets,” in Theoretic...
	[11] R. K. Gupta and G. De Micheli, “System Synthesis via Hardware-Software Co-design,” Technical...
	[12] K. Jensen, Coloured Petri Nets. Berlin: Springer-Verlag, 1992.
	[13] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich, “Models of Computation for Embedde...
	[14] P. Maciel, E. Barros, and W. Rosenstiel, “A Petri Net Model for Hardware/Software Codesign,”...
	[15] P. M. Merlin and D. J. Farber, “Recoverability of Communication Protocols—Implications of a ...
	[16] T. Murata, “Petri Nets: Analysis and Applications,” in Proc. IEEE, vol. 77, pp. 541-580, Apr...
	[17] J. C. Murgaza, H. Camus, J.-C. Gentina, E. Teruel, and M. Silva, “Reducing the Computational...
	[18] M. Nakagawa, D.-I. S. Lee, S. Kumagai, and S. Kodama, “Equivalent Net Abstraction and Firing...
	[19] S. Narayan, F. Vahid, and D. D. Gajski, “Modeling with SpecCharts,” Technical Report #90-20,...
	[20] L. Pomello, “Some Equivalence Notions for Concurrent Systems: An Overview,” in Advances in P...
	[21] C. Ramchandani, “Analysis of Asynchronous Concurrent Systems by Timed Petri Nets,” Project M...
	[22] J. Sifakis, “Performance Evaluation of Systems using Nets,” in Net Theory and Applications, ...
	[23] E. Stoy and Z. Peng, “An Integrated Modelling Technique for Hardware/Software Systems,” in P...
	[24] W. M. Zuberek and I. Bluemke, “Hierarchies of Place/Transitions Refinements in Petri Nets,” ...

