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Abstract
This paper presents an approach to the analysis of task sets

implemented on multiprocessor systems, when the task execution times
are specified as generalized probability distributions. Because of the
extreme complexity of the problem, an exact solution is practically
impossible to be obtained even for toy examples. Therefore, our
methodology is based on approximating the generalized probability
distributions of execution times by Coxian distributions of exponentials.
Thus, we transform the generalized semi-Markov process, corresponding
to the initial problem, into a continuous Markov chain (CTMC) which,
however, is extremely large and, hence, most often is impossible to be
stored in memory. We have elaborated a solution which allows to
generate and analyze the CTMC in an efficient way, such that only a small
part has to be stored at a given time. Several experiments investigate the
impact of various parameters on complexity, in terms of time and
memory, as well as the trade-offs regarding the accuracy of generated
results.

1 Introduction

Systems controlled by embedded electronics become indispensable in
our lives and can be found in avionics, automotive industry, home
appliances, medicine, telecommunication industry etc. [4]. Due to the
application nature itself, as well as to the high demands in terms of
computation power and constraints, such as cost and energy dissipation,
these systems are mainly custom designed heterogeneous multiprocessor
platforms. Their high complexity makes the design process a challenging
activity. Hence, an accurate and efficient design process is the key to cope
with the high time-to-market pressure. The enormous design space
implies that accurate estimation and analysis tools in all design stages are
of capital importance for guiding the designer and reducing the design
iterations and cost.

The present work focuses on an analytic approach to schedulability
analysis of multiprocessor real-time systems. We consider applications
modelled as sets of task graphs with the tasks statically mapped on a set
of processors. Most of the previous work in this area considers worst case

execution times (WCET) [5][17] and provides answers whether the tasks
will meet or not all their deadlines. Such an approach is well suited for
particular critical applications. However, it leads to expensive and
inefficient implementations in the case of many application classes like
soft real-time systems and multimedia applications.

Our work considers the case when the task execution times are of
stochastic nature and their probabilities are distributed according to given
arbitrary time probability distribution functions. Because meeting a
deadline in this case becomes also a stochastic event, our method
generates the probability of task deadline misses.

The variability of the task execution time may stem from several
sources: input data characteristics (especially in differently coded video
frames), hardware architecture hazards (caches and pipelines),
environmental factors (network load), or insufficient knowledge
regarding the design (a task running on a not yet manufactured processor,
for example).

Leung and Whitehead [14] showed that the schedulability analysis is
an NP-complete problem in the case of fixed task execution times and
more than two processors. Obviously, the problem is much more
challenging in the case of stochastic task execution times.

The sequel of the paper is organized as follows: The next section
surveys some related approaches. Section 3 formulates the problem.
Section 4 presents the approach outline while Section 5 introduces our
intermediate representation based on Generalized Stochastic Petri Nets.
Section 6 presents the technique for approximation of arbitrary
probability distributions and Section 7 details our analysis method.
Experiments are presented in Section 8. The last section draws the
conclusions.

2 Related work

Lehoczky has pioneered the “heavy traffic” school of thought in the
area of real-time queueing [12][13]. The theory was later extended by
Harrison [7], Williams [18] and others. The application is modelled as a
multiclass queueing network. This network behaves as a reflected
Brownian motion with drift under heavy traffic conditions, i.e. when the
processor utilizations approach 1, and therefore it has a simple solution.



This approach, to our knowledge, fails yet to handle systems where a task
has more than one immediate successor task. Moreover, the heavy traffic
assumption implies an almost infinite queue in the case of input
distributions with non-negligible variation. This leads to an unacceptably
high deadline miss ratio and limits the applicability of such an approach
in real-time systems.

In our earlier work, we considered the particular case of
monoprocessor systems [15]. The analysis is based on solving a
generalized semi-Markov process by means of the auxiliary variable
method. Although we concurrently construct and analyse the process,
saving a significant amount of memory, this method is of limited
applicability to multiprocessor systems due to the exploding complexity.

Hu et al. [8] do not target individual task deadline miss probabilities,
but rather assess the feasibility of the entire application, by defining and
computing a feasibility metric. However, their approach is limited to
monoprocessor systems.

Kalavade and Moghê [9] address the problem of individual task
deadline miss probabilities in the context of multiprocessors. Their
approach is based on solving the underlying generalized semi-Markov
process. In order to be able to manage such a complex problem, they
restrict their approach to task execution times that assume values from a
discrete set.

Other researchers, such as Kleinberg et al. [11] and Goel et al. [6],
apply approximate solutions to problems exhibiting stochastic behaviour
but in the context of load balancing, bin packing and knapsack problems.
Moreover, the probability distributions they consider are limited to a few
very particular cases.

Kim and Shin [10] modelled the application as a queueing network,
but restricted the task execution times to exponentially distributed ones
which reduces the complexity of the analysis. The tasks were considered
to be scheduled according to a particular policy, namely FIFO. The
underlying mathematical model is then the appealing continuous time
Markov chain (CTMC).

In our approach we address the extremely complex problem of tasks
running on multiprocessor systems and which have execution times with
arbitrary probability distributions. Our approach is also based on a CTMC
in order to keep the appealing character of the solution procedure and to
avoid the time and memory consuming convolutions implied by solving
the otherwise generalized semi-Markov process (GSPM). Tasks are
scheduled according to a fixed priority non-preemptive policy. We
overcome the limitation of the exponentially distributed execution time
probabilities by approximating arbitrary real-world distributions by
means of Coxian distributions, i.e. weighted sums of convoluted
exponentials. The resulting CTMC is huge, but by exploiting certain
regularities in its structure, we have elaborated a solution such that the
infinitesimal generator needs not to be stored explicitly. As a
consequence, the memory complexity, which is the most critical aspect of
the analysis, is drastically reduced. This makes the method applicable to
real-world applications.

3 Problem formulation

Informally, the problem can be formulated as follows: given a set of
task graphs where the task execution time probabilities are distributed
according to given arbitrary continuous distributions, as well as the
mapping of the tasks to a set of processors, the analysis generates the task
deadline miss ratios. More formally, the input to the analysis procedure
consists of:
• A set of task graphs TG = {g1, …, gG}. Graph nodes are tasks from

the setT=T∪CT, where T={t1, …, tM} are the actual tasks specified

by the designer, and CT={tM+1, …, tN} represent communication
activities. Graph edges capture data dependencies. A communica-
tion task is inserted on each node connecting tasks from the set T,
that are mapped to different processors. In the paper, where we use
the term “task”, without any particular specification, we refer to
both actual tasks from the set T and communication tasks;

• A set of processors P = {p1, p2, …, pr}, and a set of buses
BU={l r+1, …, ls};

• Two surjective mappings, MapP : T→ P, mapping tasks on proces-
sors, and MapB : CT→ BU, mapping communication tasks on
buses;

• A set of continuous execution time probability distribution func-
tions E = {e1, …, eN}, ei : [0:∞)→ℜ, statistically independent,
where ei is the execution time (communication time in the case of
communication tasks) probability distribution function of task ti;

• A mapping that associates a static priority to each task,
Prior : T → ℵ; two tasks mapped on the same processor are not
allowed to have the same priority1;

• A set of periods, A = {a1, a2 …, aG}, where ai is the period of task
graph gi;

• Each task graph has an associated deadline which equals its period;
• If all deadlines are satisfied, there exists at most one active instanti-

ation of a task graph in the system at a certain moment. If the exe-
cution of any task graph gi exceeds its deadline, then and only then
two or more instantiations of gi can be simultaneously active at a
time. A set of integers B={b1, …, bG} is given by the designer,
where bi indicates the maximum number of simultaneously active
instantiations of the task graph gi that are acceptable. If the number
of instantiations of gi equals bi when a new instantiation of gi
arrives, then the new instantiation will be rejected and a new dead-
line miss will be noted.

The analysis outputs the deadline miss ratios of the task graphs, F =
{f 1, f2, …, fG},

where Di(t) denotes the number of missed deadlines of graph gi until
time t, and Ai(t) denotes the number of arrivals of graph gi until time t.

4 Approach outline

The underlying mathematical model of the application to be analysed
is the stochastic process. The process has to be constructed and analysed
in order to extract the desired performance metrics. When considering
arbitrary execution time probability distribution functions (ETPDFs), the
resulting process is a generalized semi-Markov process, making the
analysis extremely demanding in terms of memory and time. If the
execution time probabilities were exponentially distributed, as assumed
for instance by Kim and Shin [10], the process would be a CTMC which
is easier to solve.

The outline of our approach is depicted in Figure 1. As a first step, we
generate a model of the application as a Generalized Stochastic Petri Net
(GSPN). We use this term in a broader sense than the one defined by
Balbo [1], allowing arbitrary probability distributions for the firing delays
of the timed transitions. This step is detailed in the next section.

The second step implies the approximation of the arbitrary real-world
ETPDFs with Coxian distributions, i.e. weighted sums of convoluted

1.We consider that bus conflicts are arbitrated based on priorities associated to
messages (as is the case, for example, with the popular CAN bus[2])

f i

Di t( )
A t( )
------------

t ∞→
lim=



exponential distributions. Some details regarding Coxian distributions
and the approximation process follow in Section 6.

In the third step, the tangible reachability graph of the GSPN is
obtained. Its nodes correspond to states in a generalized semi-Markov
process (GSMP). Directly analysing this process is practically impossible
(because of time and memory complexity) for even small toy examples if
they are implemented on multiprocessor systems. Therefore, the states of
this process are substituted by sets of states based on the approximations
obtained in the second step. The transitions of the GSMP are substituted
by transitions with exponentially distributed firing interval probabilities
from the Coxian distributions. What results is a CTMC, however much
larger than the GSMP. The construction procedure of the CTMC is
detailed in Section 7.

As a last step, the obtained CTMC is solved and the performance
metrics extracted.

5 Intermediate model generation

As a first step, starting from the task graph model given by the
designer, an intermediate model based on Generalized Stochastic Petri
Nets (GSPN) [1] is generated. Such a model allows an efficient and
elegant capturing of the characteristics of the application and of the
scheduling policy. It constitutes also an appropriate starting point for the
generation of the CTMC to be discussed in the following sections.

A classical GSPN, as introduced by Balbo [1], contains timed
transitions with exponentially distributed firing delay probabilities and
immediate transitions, with a deterministic zero firing delay. The
immediate transitions may have associated priorities. Atangible marking
is one in which no immediate transitions are enabled. Such a marking can
be directly reached from another tangible marking by firing exactly one
timed transition followed by a possibly empty sequence of immediate
transition firings, until no more immediate transitions are enabled. The
tangible reachability graph (TRG) contains the tangible markings of the

GSPN. An edge in the TRG is labelled with the timed transition that
triggers the marking change. Each marking in the TRG corresponds to a
state in the underlying stochastic process. If all the timed transitions have
exponentially distributed firing delay probabilities, as it is the case in the
classical definition of the GSPN, then the underlying stochastic process
is a CTMC.

We use the term GSPN in a broader sense, allowing arbitrary
probability distributions of the transition firing delays. In this case, the
TRG of the net corresponds to a generalized semi-Markov process.

We illustrate the construction of the GSPN based on an example. Let
us consider the task graphs in Figure 2. Tasks t1, t2 and t3 form graph g1
while g2 consists of task t4. t1 and t2 are mapped on processor p1 and t3
and t4 on processor p2. The task priorities are 1, 2, 2, 1 respectively. The
task graph g1 has periodπ1 and g2 has periodπ2. For simplicity, in this
example, we ignore the communication tasks. The GSPN corresponding
to the example is depicted in Figure 3. Timed transitions are depicted as
solid rectangles. Immediate transitions appear as lines possibly annotated
by the associated priority. If a timed transition ei is enabled, it means that
an instantiation of the task ti is running. The probability distribution of the
firing delay of transition ei is equal to the ETPDF of task ti. As soon as ei
fires, it means that the instantiation of ti completed execution and leaves
the system. The task priorities are modelled by prioritizing the immediate
transitions ji.

The periodic arrival of graph instantiations is modelled by means of
the transition G with the deterministic delay T. G fires every T time units,
where T is the greatest common divisor of the graph periods. As soon as
G has firedπi/T times, the transition vi fires and a new instantiation of task
graph gi demands execution. (In our example, we consideredπ1/T=3 and
π2/T=2.) If there are already bi active instantiations of gi in the system,
where bi is the initial marking of place Bi, then Bi is not marked, and the
transition di fires, meaning that the new graph instantiation is rejected.
Otherwise, wi fires, a token from Bi is consumed and the new instantiation
is accepted in the system. The transitions wi have a higher priority than
the transitions di, as indicated by the integers near the transitions, so an
instantiation is always accepted if possible.

The mutual exclusion of the execution of tasks mapped on the same
processor is modelled by means of the places P1 and P2. The data
dependencies among the tasks are modelled by the arcs e2→a23, e1→a13
and e1→a12. Once a task graph instantiation leaves the system (the sink
nodes in the task graph complete execution), a token is added to Bi.

Consider two arbitrary tangible markings M1 and M2, such that M2 is
directly reachable from M1 by firing the timed transition U. The sets of
timed transitions ei that are enabled in M1 and M2 are W1 and W2.
(Observe that W1 and W2 can be seen as sets of tasks, as each transition
ei corresponds to a task ti.) An important property that is easily detected
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from the Petri Net is that the net does not contain competitively enabled
timed transitions. This means that no transition in W1 can be disabled
when firing U, except possibly U itself (W1\{U} ⊆W2). In other words, if
the cardinality of W1\W2 is greater than 1, then we are guaranteed that M2
is not directly reachable from M1. In the underlying stochastic process,
this implies that there can be no edge from a state in which a set W1 of
tasks is running to a state in which a set W2 of tasks is running, if
|W1\W2|>1. This property is used in Section 7 to determine the states of
the underlying stochastic process that might be directly connected with an
edge labelled with a given transition.

The underlying GSMP is extracted from the Petri Net by building its
TRG. The GSMP is then approximated with a CTMC by replacing the
arbitrary probability distributions of the task execution times (firing delay
probability distributions of the timed transitions ei) with Coxian
distributions. This is further discussed in Section 6 and Section 7.

6 Coxian distribution approximation

Coxian distributions were introduced by Cox [3] in the context of
queueing theory. A Coxian distribution of r stages is a weighted sum of
convoluted exponential distributions. The Laplace transform of the
probability density of a Coxian distribution with r stages is given below:

X(s) is a strictly proper rational transform, implying that the Coxian
distribution may approximate a fairly large class of arbitrary distributions
with an arbitrary accuracy provided a sufficiently large r.

Figure 4 illustrates the way we are using Coxian distributions in our
approach. Let us consider the timed transition with a certain probability
distribution of its firing delay in Figure 4a. This transition can be replaced
by the Petri Net in Figure 4b, where hollow rectangles represent timed
transitions with exponential firing delay probability distribution. The
annotations near those transitions indicate their average firing rate. In this
example, three stages have been used for approximation.

Practically, the approximation problem can be formulated as follows:
given an arbitrary probability distribution, findµi, i=1,r, andαi, i=1,r-1
(αr=1) such that the quality of approximation of the given distribution by
the Coxian distribution with r stages is maximized. This is usually done
in the complex space by minimizing the distance between the Fourier
transform X(jω) of the Coxian distribution and the computed Fourier
transform of the distribution to be approximated. The minimization is a
typical interpolation problem and can be solved by various numerical
methods [16]. We use a simulated annealing approach that minimizes the
difference of only a few most significant harmonics of the Fourier
transforms which is very fast, if provided with a good initial solution. We
choose the initial solution in such way that the first moment of the real
and approximated distribution coincide.

By replacing all generalized transitions of the type depicted in Figure

4a with subnets of the type depicted in Figure 4b the GSMP underlying
the Petri Net becomes a CTMC. It is obvious that the introduced
additional places trigger an explosion in the TRG and implicitly in the
resulted CTMC. The next section details on how to efficiently handle
such a complexity increase.

7 CTMC construction and analysis

Let S be the set of states of the GSMP underlying the Petri Net. Let
M=[mij ] be a square matrix of size |S|×|S| where mij denotes the average
transition rate from state i to state j in the GSMP, i.e. the average firing
rate of the transition that labels the edge from i to j in the GSMP. We first
partition the set of states S in clusters such that states in the same cluster
have outgoing edges labelled with the same set of transitions. A cluster is
identified by a binary combination that indicates the set of transitions that
are enabled in the particular cluster. The clusters are sorted according to
their corresponding binary combination and the states in the same cluster
are consecutively numbered.

Consider an example application with four independent tasks, each
mapped on a different processor. In this case, 16 clusters can be formed,
each corresponding to a possible combination of simultaneously running
tasks. Note that if the tasks were not independent, the number of
combinations of simultaneously running tasks, and implicitly of clusters,
would be smaller. Figure 5 depicts the matrix M corresponding to the
GSMP of this example application. The rows and columns in the figure
do not correspond to individual rows and columns in M. Each row and
column in Figure 5 corresponds to one cluster of states. Thus, each cell in
the figure does not correspond to a matrix element but to a submatrix. The
row labelled with 1101, for example, as well as the column labelled with
the same binary number, indicate that the tasks 1, 2, and 4 are running in
the states belonging to the cluster labelled with 1101. The shaded cells of
M indicate those submatrices that may contain non-zero elements. The
blank ones are null submatrices. For example, one such null submatrix
appears at the intersection of row 1101 and column 1000. Due to the non-
preemption assumption, a task arrival or departure event may not stop the
running of another task. If the submatrix (1101, 1000) had non-zero
elements it would indicate that an event in a state where the tasks 1, 2, and
4 are running, triggers a transition to a state where only the task 1 is
running, and two of the previously running tasks are not running
anymore. This is not possible in the case of non-preemption. The
submatrix (1000, 0000) may contain non-zero elements, because, if the
task 1 completes execution, the stochastic process may transit to a state in
which no task is running.

Once we have the matrix M corresponding to the underlying GSMP,
the next step is the generation of the CTMC using the Coxian distribution
for approximation of arbitrary probability distributions of transition
delays. When using the Coxian approximation, a set of new states is
introduced for each state in S resulting an expanded state space S’, the
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state space of the approximating CTMC. We have to construct a matrix Q
of size |S’|×|S’|, the so called infinitesimal generator of the approximating
CTMC. The construction of Q is done cell-wise: for each cell of matrix
M, a corresponding cell of matrix Q will be generated. Furthermore,
blank cells (null submatrices) of M will result in null submatrices of Q,
while shaded cells will result in submatrices that contain at least one non-
zero element. A cell (U, V) of Q will be of size X×Y, where

and U and V are clusters of states, EnU={k : transition tk is enabled in
U}, EnV={k : transition tk is enabled in V}, and rk is the number of stages
we use in the Coxian approximation of the ETPDF of task tk.

We will illustrate the construction of a cell in Q from a cell in M using
an example. We consider a cell on the main diagonal, as it is the most
complex case. Let us consider three states in the GSMP as depicted in
Figure 6. Two tasks, u and v, are running in the states X and Y. These two
states belong to the same cluster, labelled with 11. Only task v is running
in state Z. State Z belongs to cluster labelled with 10. If task v finishes
running in state X, a transition to state Y occurs in the GSMP. This
corresponds to the situation when a new instantiation of v becomes active
immediately after the completion of a previous one. When task u finishes
running in state X, a transition to state Z occurs in the GSMP. This
corresponds to the situation when a new instantiation of u is not
immediately activated after the completion of a previous one. Consider
that the probability distribution of the execution time of task v is
approximated with the three stage Coxian distribution depicted in Figure
4b and that of u is approximated with the two stage Coxian distribution
depicted in Figure 7. The resulting CTMC corresponding to the GSMP in
Figure 6 is depicted in Figure 8. The edges between the states are labelled
with the average firing rates of the transitions of the Coxian distributions.

Let us construct the cell Q(11),(11)on the main diagonal of Q, situated
at the intersection of the row and column corresponding to the cluster
labelled with 11. The cell is depicted in Figure 9. The matrix Q(11),(11)
contains the average transition rates between the states Xij and Yij of the
CTMC in Figure 8 (only states X and Y belong to the cluster labelled with
11). The observed regularity in the structure of stochastic process in
Figure 8 is reflected in the expression of Q(11),(11)as shown in Figure 9.
Because Q is a generator matrix (sum of row elements equals 0), there
appear some negative elements on the main diagonal that do not
correspond to transitions in the chain depicted in Figure 8. The expression
of Q(11),(11) is given below:

where

and

|11| denotes the size of the cluster labelled with 11. Ii is the identity
matrix of size i×i, ri indicates the number of stages of the Coxian
distribution that approximates the ETPDF of task ti. ⊕ and ⊗ are the
Kronecker sum and product of matrices, respectively.

In general, a matrix Ak=[aij ] is a rk×rk matrix, and is defined as
follows:

whereαki andµki characterize the ith stage of the Coxian distribution
approximating transition tk.

X U ri
i EnU∈
∏⋅= Y V ri

i EnV∈
∏⋅=

Figure 6. Part of a GSMP

ZXY uv

Figure 7. Coxian approximation with 2 stages
(1−β1)λ1

β1λ1 β2λ2

Q 11( ) 11( ), Au Av⊕( ) I 11 I r u
Bv erv

Dv⊗ ⊗ ⊗+⊗=

Au
λ1– 1 β1–( )λ1

0 λ2–
= Bv

α1µ1

α2µ2

α3µ3

= Dv
0 1

0 0
=

Av

µ1– 1 α1–( )µ1 0

0 µ2– 1 α2–( )µ2

0 0 µ3–

= erv 1 0 0=

Figure 8. Expanded Markov chain

Y00 Z0

Y10

Y01

Y11

Y02

Y12

X00

X10

X01

X11

X02

X12

Z1

Z2

α1µ1

α1µ1

α2µ2

α 3µ
3

β1λ1

β1λ1

β1λ1

β
2 λ

2

(1−
β 1)

λ 1 β
2 λ

2

β
2 λ

2

(1−
β 1)

λ 1

(1−
β 1)

λ 1

(1
−β

1)
λ 1

(1
−β

1)
λ 1

(1
−β

1)
λ 1

α 3µ
3

α 2µ 2

(1
−α

2)
µ 2

(1
−α

2)
µ 2

(1
−α

1)
µ 1

(1
−α

1)
µ 1

(1
−α

2)
µ 2

(1
−α

1)
µ 1

(1
−α

2)
µ 2

(1
−α

1)
µ 1

(1
−α

2)
µ 2

(1
−α

1)
µ 1

aij

1 αki–( )µki

µki–

0





=

if j i 1+=

if j i=

otherwise

Figure 9. The cell Q (11),(11) corresponding
 to the example in Figure 8

X00 Y00 X01 Y01 X02 Y02 X10 Y10 X11 Y11 X12 Y12

X00

Y00

X01

Y01

X02

Y02

X10

Y10

X11

Y11

X12

Y12

c

d

e

c

d

e

a

a

a

a

b

b

b

b

f

f

f

f

f

f

a=(1−α1)µ1

b=(1−α2)µ2

f=(1−β1)λ1

c=α1µ1

d=α2µ2

e=α3µ3

•

•

•

•

•

•

•

•

•

•

•

•

• = a negative number such that the matrix is a generator matrix



A matrix Bk=[bij ] is a rk×1 matrix and bi1=αkiµki. A matrix erk=[eij ] is
a 1×rk matrix and e11=1, e1i=0, 1<i≤rk. A matrix Dk=[dij ] corresponding
to a cluster U of size |U| is a |U|×|U| matrix defined as follows:

In general, considering a label U, the cell QU,U on the main diagonal
of Q is obtained as follows:

A cell situated at the intersection of the row corresponding to label U
with the column corresponding to label V (U≠V) is obtained as follows:

The matrices F are given by the following expression:

The solution of the CTMC implies solving forπ in the following
equation:

whereπ is the steady-state probability vector and Q the infinitesimal
generator of the CTMC.

As explained in Section 5, if there are already Bi active instantiations
of a task graph gi in the system, a new arrival is rejected and a deadline
miss is noted. In the Petri Net model (see Figure 3), this event
corresponds to the sequence of firings of the timed transition G, followed
by the immediate transitions vi and di. This sequence of firings
corresponds to one transition in the stochastic process. Let us consider
that X→Z (Figure 6) is such a transition. The deadline missrate is
approximated based on the rates of the transitions X00→Z0, X10→Z0,
X01→Z1, X11→Z1, and X12→Z2 and is given by the expression
(πx00+πx01+πx02)⋅β1λ1 + (πx10+πx11+πx12)⋅β2λ2, where πxij is the
probability of the CTMC being in state ij after an infinite (very long) time.
These probabilities are the result of the numerical solution of the CTMC.
The deadline missratio is obtained by multiplying therate with the task
graph period.

We conclude this section with a discussion on the size of Q and its
implications on analysis time and memory. Consider the cluster labelled
11…1 of S, i.e. the one that contains the largest number of enabled
transitions. The largest Q is obtained if the cluster labelled 11…1
dominates all the other clusters of S, in the sense that it contains by far
more states than all the other clusters, and that the cell M(11…1),(11…1)
contains by far more non-zero entries than all the other cells of M. Thus,
a pessimistic upper bound for the number of non-zero elements of Q is
given by the expression:

where E={i : ti enabled in the dominant cluster} and |M| denotes the
number of non-zero elements of M, the matrix corresponding to the
GSMP. In the context of multiprocessor scheduling, E may have at most
s elements (s=number of processors). The above formula shows that the
increase in the size of the CTMC, relative to the initial GSMP, is mainly

dictated by the number of processors and the number of stages used for
the approximation of the probability distribution (which means the degree
of expected accuracy). The number N of tasks does not directly induce
any growth in terms of the CTMC. However, the structure of the initial
GSMP also depends on the number of tasks. The GSMP is reflected in the
matrix M and, thus, has an influence on the dimension of the resulted
CTMC.

The dimension of matrix Q, as shown above, grows quickly with the
number of processing elements and the number of stages used for
approximation of the probability distributions. Apparently, the analysis of
applications of realistic complexity would be impossible. Fortunately,
this is not the case. As can be seen from the expressions of QU,U and QU,V,
the matrix Q is completely specified by means of the matrices A, B, and
Di, hence it needs not be stored explicitly in memory, but its elements are
generated on-the-fly during the numerical solving of the CTMC. This
leads to a significant saving in memory demand for analysis. Even for
large applications, the matrices A, B, and Di are of negligible size. The
limiting factor in terms of memory is onlyπ, the steady-state probability
vector, which has to be stored in memory. In the worst case, the vector has

elements, where |S| is the size of the GSMP. It is easy to observe that
π is as large as a row (column) of Q. The effect of the complexity increase
induced by the approximation in terms of analysis time can be attenuated
by deploying intelligent numerical algorithms for matrix-vector
computation. Such algorithms rely on factorizations that exploit the
particular structure of Q.

8 Experimental results

We performed four sets of experiments. All were run on an Athlon at
1533 MHz. The first set of experiments investigates the dependency of the
analysis time on the number of tasks in the system. Sets of random task
graphs were generated, with 9 up to 60 tasks per set. Ten different sets
were generated and analysed for each number of tasks per set. The
underlying architecture consists of two processors. The dependency
between the needed analysis time and the number of tasks is depicted in
Figure 10. The analysis time depends on the size of the stochastic process
to be analysed as well as on the convergence rate of the numerical
solution of the CTMC. The latter explains some non-linearities exhibited
in Figure 10. The dependency of the stochastic process size as a function
of the number of tasks is plotted in Figure 11.
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Figure 10. Analysis time vs. no. of tasks



In the second set of experiments, we investigated the dependency
between the analysis time and the number of processors. Ten different
sets of random task graphs were generated. For each of the ten sets, 5
experiments were performed, by allocating the 18 tasks of the task graphs
to 2 up to 6 processors. ETPDFs were approximated by using Coxian
distributions with 4 stages. The results are plotted in Figure 12.

In the third set of experiments, we investigated the increase in the
stochastic process size induced by using different number of stages for
approximating the arbitrary ETPDFs. We constructed 98 sets of random
task graphs ranging from 10 to 50 tasks mapped on 2 to 4 processors. The
ETPDFs were approximated with Coxian distributions using 2 to 6
stages. The results for each type of approximation were averaged over the
98 sets of graphs and the results are plotted in Figure 13. Recall that |S| is
the size of the GSMP and |S’| is the much larger size of the CTMC
obtained after approximation. As more stages are used for approximation,
as larger the CTMC becomes compared to the original GSMP. As shown
in Section 7, in the worst case, the growth factor is

As can be seen from Figure 13, the real growth factor is smaller than
the theoretical upper bound. It is important to emphasize that the matrix
Q corresponding to the CTMC needs not to be stored, but only a vector
with the length corresponding to a column of Q. The growth of the vector
length with the number of Coxian stages used for approximation can be
easily derived from Figure 13. The same is the case with the growth of
analysis time, which follows that of the CTMC.

The fourth set of experiments investigates the accuracy of results as a

factor of the number of stages used for approximation. This is an
important aspect in deciding on a proper trade-off between quality of the
analysis and cost in terms of time and memory. For comparison, we used
analysis results obtained with our approach presented in previous work
[15]. As mentioned in Section 2, that approach is an exact one based on
solving the underlying GSMP. However, it can handle only
monoprocessor systems. Therefore, we applied the approach presented in
this paper to a monoprocessor example, which has been analysed in four
variants using approximations with 2, 3, 4, and 5 stages. The relative error
between missed deadline ratios resulted from the analysis using the
approximate CTMC and the ones obtained from the exact solution is
presented in Table 1. The generalized ETPDF used in this experiment
were created by drawing Bezier curves that interpolated randomly
generated control points.

It can be observed that good quality results can be already be obtained
with a relatively small number of stages.

Finally, we considered an example from the mobile communication
area. A set of 8 tasks co-operate in order to decode the digital bursts
corresponding to the GSM 900 signalling channel. The 8 tasks are
mapped on three processors, one for modulation, one for control and one
for digital signal processing. The variability in task execution times has
two causes: variability in input data and pipeline hazards in the deeply
pipelined DSPs. In the case of 8 tasks, the analysis reported a miss
deadline ratio of 0.11% and the analysis took 3 seconds. The ETPDFs
were approximated by Coxian distributions with 6 stages. If we attempt
to perform the baseband processing of another channel on the same DSP
processor, three more tasks are added to the task graph. As a result of the
analysis, in this case 10.05% of the deadlines are missed, which is
unacceptable according to the application specification.

9 Conclusions

We presented an approach to schedulability analysis of tasks with
probabilistically distributed execution times, implemented on
multiprocessor systems. The arbitrary probability distributions of the
execution times are approximated with Coxian distributions, and the

Figure 11. Stochastic process size vs. no. of tasks
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Figure 12. Analysis time vs. no of processors
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Table 1 Accuracy vs. no. of stages

2 stages 3 stages 4 stages 5 stages

Relative error 8.467% 3.518% 1.071% -0.4%
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expanded underlying Markov chain is constructed in a memory efficient
manner exploiting the structural regularities of the chain. In this way we
have practically pushed the solution of an extremely complex problems
to its limits. Our approach also allows to trade-off between time and
memory complexity on one side and solution accuracy on the other. It is
worth to be mentioned that certain assumptions regarding the analysed
systems could be, in principle, further relaxed. Such are, for example, the
assumption regarding non-preemptability of tasks, or deadlines equal to
the period. Such relaxations, however, seriously increase the complexity
of the analysis and, thus, strongly reduce the size of tractable
applications.
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