
An Approach to Reducing Verification Complexity of Real-Time Embedded Systems
Luis Alejandro Cortés, Petru Eles, and Zebo Peng

Dept. of Computer and Information Science
Linköping University, Linköping, Sweden

{luico,petel,zebpe}@ida.liu.se

Abstract
We present an approach to the formal verification of

real-time embedded systems by using model checking. We
address the verification of systems modeled in a timed Petri
net representation and introduce a technique for reducing
verification complexity. We translate the Petri net based
model into timed automata and make use of available model
checking tools to prove the correctness of the system with
respect to design properties expressed in the temporal log-
ics CTL and TCTL. Experimental results demonstrate con-
siderable improvements in verification efficiency when the
degree of parallelism of the system is considered.

1. Introduction
Embedded systems are part of larger systems and typi-

cally interact continuously with their environment. Such
systems are often characterized by their dedicated function,
real-time behavior, and high requirements in terms of cor-
rectness and reliability.

Correctness plays a key role in many embedded systems.
The cost of a failure can be extremely high, in terms of loss
of both human lives and money. Traditional validation tech-
niques, like simulation and testing, are not sufficient to ver-
ify the correctness of such systems. Formal verification is
becoming a practical way to ensure the correctness of de-
signs by complementing simulation and testing.

In this paper we propose a technique for verifying sys-
tems represented in PRES+ [5]. PRES+ is a Petri net based
model that can capture relevant characteristics of real-time
embedded systems. In order to make use of existing model
checking tools, we first translate the PRES+ model into
timed automata and then model-check the resulting autom-
ata against required properties expressed in Computation
Tree Logic (CTL) and Timed CTL (TCTL).

Previous work on verification via formal methods of
PRES+ models include [5] and [6]. The former is a straight-
forward translation into a collection of timed automata,
where one automaton is obtained for each transition. The
latter extracts sequential parts of the Petri net representation
in such a way that the resulting automata model is more ef-
ficient for verification.

The major contribution of this paper is the further reduc-
tion of verification time. Our method is based on a transla-
tion procedure from PRES+ into timed automata that
significantly benefits the efficiency of the model checking
process. The translation procedure is composed of three
steps. First, we compute the concurrency relation of the un-
derlying Petri net. This relation contains the pairs of transi-
tions that can occur concurrently. Second, we form groups
of transitions such that no two transitions in a group can fire

simultaneously, aiming at minimizing the number of such
groups. Third, for each group, we construct the product au-
tomaton by composing the automata (which are obtained by
the procedure defined in [5]) corresponding to the transi-
tions in that particular group.

2. The Design Representation
The notation we use to model real-time embedded sys-

tems is an extension to Petri nets, called PRES+ (Petri Net
based Representation for Embedded Systems). Such a for-
malism overcomes some of the drawbacks of uninterpreted
Petri nets when modeling real-time embedded systems: for
instance, PRES+ explicitly captures timing aspects and to-
kens carry information. This section briefly presents rele-
vant characteristics of PRES+. The reader is referred to [5]
for a formal definition of the model.

A PRES+ model is a five-tuple
where is a set of places, is a set of transitions, is a
set of input (place-transition) arcs, is a set of output
(transition-place) arcs, and is the initial marking of the
net. A marking is an assignment of tokens to the places of
the net. A token is a pair where is the token val-
ue (may be of any type) and is the token time (a non-neg-
ative real number). Thus tokens carry data and time
information attached to them as stamps. In the model shown
in Figure 1, and are the only places initially marked.
For instance, the token in place has token
value and token time .

Figure 1. A PRES+ model

Every transition has one transition function asso-
ciated to it. Such a function takes as arguments the token
values of tokens in the pre-set of the transition. The pre-set

of a transition is the set of input places of . In Fi-
gure 1 we inscribe transition functions inside transition box-
es: the function associated to , for example, is given by

where and are the token values of to-
kens in and respectively. We use inscriptions on the
input arcs of a transition in order to denote the arguments of
its transition function and/or those of its guard.

A transition may have a guard, a condition that
must be satisfied in order to enable the transition when all

N = P T I O M 0, , , ,()
P T I

O
M 0

k= v r,〈 〉 v
r

pa pb
ka= va ra,〈 〉 pa

va=3 ra=0

1a+b

t 5
e

t 2

pa pb

cp

c-1

d

pet

p

[d>0]-d

t 4
d+

2
[d

<0
]

< >3,0 < >1,0

3t

a b

d

d

e

c

[1,1.7]

2

[1,2]

[2,4]

[3
,4

]

t T∈

°t t T∈ t

t1

f 1 a b,()=a+b a b
pa pb

t T∈

in Proc. Euromicro Conference on Real-Time Systems (Work-in-Progress Session), 2002, pp. 45-48.

its input places hold tokens. The guard of a transition is a
predicate whose arguments are the values of tokens in the
places of its pre-set. For instance, is the guard of
in the model of Figure 1. Note that when gets a token,
either or becomes enabled because their guards are
complementary.

For every transition , there exist a minimum tran-
sition delay and a maximum transition delay . The
non-negative real numbers and () represent the
lower and upper bounds for the execution time (delay) of
the function associated to the transition. Transition delays
give the limits in time for the firing of a transition since it
becomes enabled. When a transition fires, all tokens in its
output places get the same value and time. For the initial
marking in Figure 1, is the only transition enabled. It may
not fire before 1 time units and must fire before or at 2 time
units. Assuming fires at 2 time units, and accordingly to-
kens in and are removed and new tokens
and are deposited in and , then both and

become enabled at 2 time units but note that must fire
strictly before , in the time interval [3,3.7].

3. Formal Verification of PRES+ Models
There are different types of analysis that can be per-

formed on systems represented in PRES+: the absence/pres-
ence of tokens in places of the net, time stamps of such
tokens, and their token values. Such analyses have been
termed reachability, time, and functional analyses respec-
tively. Our approach to verification focuses on the first two,
that is, we reason about the marking of places in the net and
token times. Thus, if the system model does not bear guards,
we can ignore transition functions as reachability and time
analyses will not be affected by token values.

For the sake of verification, we restrict ourselves to safe
PRES+ nets, that is, models in which each place holds at
most one token for every reachable marking. Otherwise, the
formal analysis would become more cumbersome. This is a
trade-off between expressiveness and analysis power.

We use formal methods in order to verify the correctness
of real-time embedded systems modeled in PRES+. Model
checking is a well-established approach to formal verifica-
tion. It is an automatic procedure intended to determine
whether the model of a system satisfies a set of required
properties, usually expressed as temporal logic formulas.

Our approach allows to determine the truth of CTL
(Computation Tree Logic) [4] and TCTL (Timed CTL) [1]
formulas with respect to a (safe) PRES+ model. Formulas in
CTL are composed of atomic propositions, boolean connec-
tors, and temporal operators. CTL temporal operators con-
sist of forward-time operators (G globally, F in the future,
X next time, and U until) preceded by a path quantifier (A
all computation paths, and E some computation path).
TCTL is a real-time extension of CTL that permits to in-
scribe subscripts on the temporal operators to limit their
scope in time. For example, the formula expresses
that, along all computation paths, the property Q is satisfied
within n time units. In our methodology the atomic proposi-

tions of CTL/TCTL correspond to the marking of places in
the net: the atomic proposition p holds iff is marked.

There exist different tools for the analysis and verifica-
tion of real-time systems based on the Timed Automata
(TA) model, namely HyTech [9], KRONOS [12], and UP-

PAAL [13]. Such tools have been developed along many
years and nowadays are quite mature and widely accepted
within the real-time community. On the other hand, to the
best of our knowledge, there are no tools that support TCTL
model checking of timed Petri nets. In order to make use of
available tools, we first translate PRES+ models into timed
automata and then use one of the existing tools for model
checking of TA.

A systematic procedure to translate PRES+ into timed
automata was first defined in [5] (in the sequel this method
will be referred to as naive translation), where the resulting
model consists of a collection of automata that operate and
coordinate with each other through shared variables and
synchronization labels: one automaton with one clock vari-
able is obtained for each transition of the Petri net. This ap-
proach, though, is not feasible for medium or large systems
because the model checking of timed automata grows expo-
nentially in the number of clocks.

An attempt to reduce the number of automata and clocks
in the resulting TA model was introduced in [6]. An algo-
rithm extracts sequential parts of the Petri net by clustering
transitions. Intuitively, each cluster consists of a sequence
of transitions where the firing of one of them enables the
next one. The input of the algorithm is a safe Petri net and
its output is a set of clusters (that form a partition of T, the
set of transitions) each representing a sequential part of the
net. Once clustering has been performed, timed automata
are got by using a particular translation technique tuned for
this specific approach, where one automaton with one clock
is obtained per cluster (instead of one automaton and one
clock per transition).

Since model checking of timed automata is exponential
in the number of clocks, the translation into TA is crucial for
our approach and must therefore try to minimize the number
of resulting clocks. This paper presents a technique for
model checking of real-time embedded systems represented
in PRES+. This approach (called coloring as explained in
the next section) not only reduces the number of automata/
clocks but finds the minimum or near-minimum number of
clocks necessary in the resulting TA. In this way the effi-
ciency of verification is improved considerably.

4. Reduction of Verification Complexity by
Coloring the Concurrency Relation
A major gain in verification efficiency would be

achieved if we could get the “smallest” collection of autom-
ata as a result of the PRES+-to-TA translation procedure.
This means that what would be verified is a model consist-
ing of the minimum number of automata and clocks. This
section introduces an approach that aims at finding such an
optimal or near-optimal solution in terms of number of
clocks/automata. The first step of this method is to find out

d 0< t4

pd
t3 t4

t T∈
d - d+

d - d+ d - d+≤

t1

t1

pa pb kc= 4 2,〈 〉
kd= 4 2,〈 〉 pc pd t2

t3 t2

t3

AF<n Q

p P∈

the pairs of transitions in the Petri net that may occur con-
currently, that is those transitions that may fire at the same
time for some reachable marking. Thus, for example, if we
know that there is no reachable marking for which two giv-
en transitions may fire in parallel, then we can use one clock
for accounting for the firing time semantics of both transi-
tions because they will never fire simultaneously.

4.1. Computing the Concurrency Relation
The concurrency relation of an uninterpreted

Petri net is the set of pairs such that , can fire
concurrently for some reachable marking. In order to find
those transitions in the PRES+ model that may fire in paral-
lel, we take the underlying Petri net corresponding to the
PRES+ model and compute its concurrency relation. For in-
stance, in Figure 2 we show the model of a concurrent buff-
er [7] and its concurrency relation represented as a graph.
The vertices of the graph are the transitions and an
edge joining two vertices indicates that the corresponding
transitions can fire simultaneously.

Figure 2. Buffer of capacity 4 and
its concurrency relation

The problem of deciding if two given transitions of a
Petri net may concurrently fire can be solved in polynomial
time for live and extended free-choice nets [11]. It is impor-
tant to note that extended-free choice is a structural property
of the net and therefore easy to check, and that liveness of
safe and extended-free choice nets is decidable in polyno-
mial time [3].

We compute the concurrency relation of the live and ex-
tended free-choice Petri net by using an algorithm that, in
general, gives better results than the one presented in [11],
albeit both have a worst-case time complexity O(n3) where
n is the number of places and transitions of the net. As illus-
trated by the experimental results in Section 5, obtaining the
concurrency relation is computationally cheap.

4.2. Grouping Transitions
The naive way of grouping transitions is forming groups

each consisting of a single transition [5]. However, we can
do better by exploiting the information given by the concur-
rency relation. In Figure 2, for instance, and can be
grouped together since we know that they will never fire
concurrently. That means that the two timed automata cor-
responding to each transition may share the same clock vari-

able. Furthermore, it is possible to construct a single
automaton (with one clock) equivalent to the behavior of
both transitions.

We aim at obtaining as few groups of transitions as pos-
sible so that the automata equivalent to the PRES+ model
have the minimum number of clocks. This problem is pre-
cisely MINIMUM GRAPH COLORING (MGC): given the con-
currency relation as a graph G=(T,E), find a coloring of T,
i.e. a partitioning of T into disjoint sets T1, ..., Tk, such that
each Ti is an independent set1 for G and the size k of the col-
oring is minimum. This is known to be an NP-complete
problem [8]. Nonetheless MGC is a very well-known prob-
lem and many approximation algorithms have been pro-
posed as well as different heuristics that find near-optimal
solutions. There are also algorithms that find the optimal
coloring in reasonable time for some instances of the prob-
lem. For the particular example we use in Section 5, we are
able to find the optimal solution in short time by using an al-
gorithm based on Brélaz’s DSATUR [2].

From the point of view of our approach, we can study in-
teresting trade-offs when coloring the concurrency relation.
For instance, we can evaluate the results of letting some
heuristics, e.g. simulated annealing, run longer and find a
better solution in relation to the gain in verification time.

4.3. Composing Automata
We can reduce the number of resulting automata by com-

posing those that correspond to transitions with the same
color, after the concurrency relation has been colored. Thus
we get one automaton with one clock for each color.

Automata are composed by applying the product con-
struction [10]. In the general case, the product construction
suffers from the so-called state-explosion problem, i.e. the
number of locations of the product automaton is an expo-
nential function of the number of components. However, in
our approach we do not incur a blow-up in the number of
states because the automata are tightly linked through syn-
chronization labels and, most importantly, the composing
automata are not concurrent. Recall that we do not construct
the product automaton of the whole system. We construct
one automaton per color, so that the composing automata
(corresponding to that color) can not occur in parallel. In our
experiments we have used an utility implemented in KRO-

NOS [12] in order to compose timed automata.

5. Experimental Results
In order to illustrate our verification approach, we have

model-checked a scalable example, comparing the tech-
nique based on a naive translation from PRES+ into autom-
ata introduced in [5], the clustering approach presented in
[6], and the coloring-based method proposed in this paper.

The example that we use represents a number n of pro-
cesses arranged in a ring configuration. The model for one
such process is illustrated in Figure 3. Each one of the n pro-
cesses in the system has a bounded response requirement,
namely whenever the process starts it must strictly finish

T T×⊆
t1 t2,() t1 t2

ti T∈

t1

t3 t4

t2 t5

t1 t t2 3 t t4 5[1,2] [1,2] [1,2] 11

t2 t3

1 An independent set is a subset such that no two vertices in Ti
are joined by an edge in E.

T i T⊆

within a time limit, in this case 25 time units. Referring to
Figure 3, the start of one such process is denoted by the
marking of while the marking of denotes the end
of the process. This requirement is expressed by the TCTL
formula .

Figure 3. Model for one ring-configuration process

We have used UPPAAL [13], running on a Sun Ultra 10
workstation, in order to model-check the timing require-
ments of the processes in the ring-configuration example.
The results are summarized in Table 1.

The second column of Table 1 corresponds to the verifi-
cation time using the approach of [5] (naive translation of
PRES+ into timed automata). The third column in Table 1
shows the results of verification when using the clustering
technique of [6]. When applying our approach, the time
spent in computing the concurrency relation is given in the
fourth column. The fifth column shows the execution time
of the algorithm that finds the optimal coloring of the con-
currency relation. The sixth column corresponds to the time
spent in constructing the product automata. The model
checking time of the resulting time automata is given in the
seventh column. The last column of Table 1 shows the total
verification time using the method presented in this paper.

Observe that for the bounded response require-
ment expressed by the formula
is not satisfied, a fact which is not obvious at all. An infor-

mal explanation is that since transition delays are given in
terms of intervals, one process may take longer to execute
than another; thus different processes can execute “out of
phase” and this phase difference may be accumulated de-
pending on the number of processes, causing one such pro-
cess to take eventually longer than 25 time units (for).
It is also worth mentioning that, although the model has rel-
atively few transitions and places, this example is rather
complex because of its large state space which is due to the
high degree of parallelism.

6. Conclusions and Future Work
We have presented an approach to the problem of CTL/

TCTL model checking of real-time embedded systems
modeled in a Petri net based representation. Experimental
results have shown that, by exploiting the levels of concur-
rency of the system, the complexity of verification can im-
portantly be reduced.

As part of our future work, we intend to analyze the
trade-offs when coloring the concurrency relation and their
impact on the overall verification cost. For instance, when
there are several optimal solutions to MINIMUM GRAPH

COLORING, we plan to study how the choice of coloring in-
fluences the verification process.

References
[1] R. Alur, C. Courcoubetis and D. L. Dill, “Model Checking for
Real-Time Systems,” in Proc. Symposium on Logic in Computer
Science, 1990, pp. 414-425.
[2] D. Brélaz, “New Methods to Color the Vertices of a Graph,”
in Communications of the ACM, vol. 22, pp. 251-256, April 1979.
[3] A. Cheng, J. Esparza, and J. Palsberg, “Complexity results for
1-safe nets,” in Theoretical Computer Science, vol. 147, pp. 117-
136, Aug. 1995.
[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
Verification of Finite-State Concurrent Systems Using Temporal
Logic Specifications,” in ACM Trans. on Programming Languag-
es and Systems, vol. 8, pp. 244-263, April 1986.
[5] L. A. Cortés, P. Eles, and Z. Peng, “Verification of Embedded
Systems using a Petri Net based Representation,” in Proc. ISSS,
2000, pp. 149-155.
[6] L. A. Cortés, P. Eles, and Z. Peng, “Verification of Real-Time
Embedded Systems using Petri Net Models and Timed Automata,”
in Proc. RTCSA Conference, 2002, pp. 191-199.
[7] J. Esparza, “Model checking using net unfoldings,” in Science
of Computer Programming, vol. 23, pp. 151-195, Dec. 1994.
[8] M. R. Garey and D. S. Johnson, Computers and Intractabili-
ty: A Guide to the Theory of NP-Completeness. San Francisco,
CA: W.H. Freeman, 1979.
[9] HyTech: The HYbrid TECHnology Tool, http://www-
cad.eecs.berkeley.edu/~tah/HyTech/

[10] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to
Automata Theory, Languages, and Computation. Boston, MA:
Addison-Wesley, 2001.
[11] A. Kovalyov and J. Esparza, “A polynomial algorithm to
compute the concurrency relation of free-choice Signal Transition
Graphs,” in Proc. Intl. Workshop on Discrete Event Systems, 1996,
pp. 1-6.
[12] KRONOS, http://www-verimag.imag.fr/TEMPORISE/
kronos/

[13] UPPAAL, http://www.uppaal.com/

Table 1. Verification of the ring-configuration example

Num.
Pro-

cesses
(n)

Verification Time [s]

Naive
[5]

Cluster-
ing [6]

Coloring

Comp.
Conc.

Relation

Coloring
Conc.

Relation

Product
Automata

Model
Checking

Total
Verifica-

tion

2 0.078 0.054 0.001 0.001 0.071 0.049 0.122

3 0.595 0.201 0.003 0.002 0.109 0.085 0.199

4 8.252 2.071 0.006 0.005 0.142 0.493 0.646

5 114.066 27.107 0.012 0.014 0.178 5.779 5.983

6 1200.61 268.639 0.021 0.056 0.214 55.171 55.462

7†

† Specification does not hold

18702.5 2309.61 0.032 0.185 0.249 464.596 465.062

8 NA*

* Not available: out of time

NA* 0.048 0.408 0.289 8341.44 8342.18

pstart pend

AG pstart AF<25 pend⇒()

t 0

t 1

t 5

pstart

pend

t 2

t 3

t 4

qi+1

pi+1pi

qi

1

1

[1,2]

1
[1,2]

[0,1]

. . .

.

. . .

†

n 7≥
AG pstart AF<25 pend⇒()

n 7≥

