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Abstract
Meeting timing requirements is an important

constraint imposed on highly integrated circuits, and the
verification of timing of a circuit before manufacturing is
one of the critical tasks to be solved by CAD tools. In this
paper, a new approach and the implementation of several
algorithms to speed up gate-level timing simulation are
proposed where, instead of gate delays, path delays for
tree-like subcircuits (macros) are used. Therefore timing
waveforms are calculated not for all i nternal nodes of the
gate-level circuit but only for outputs of macros. The
macros are represented by structurally synthesized binary
decision diagrams (SSBDD) which enable a fast
computation of delays for macros. The new approach to
speed up the timing simulation is supported by
encouraging experimental results.

1. Introduction

The transition from the traditional Application-
Specific Integrated Circuit (ASIC) to System-on-Chip has
lead to new challenges in design methods, manufacturing,
verification, and test. Timing simulation is a widely used
method to verify the timing behavior of a digital design.
In a synchronous digital system the timing property that is
needed to be verified is that for each input vector
transition the combinational logic settles to a stable state
within a given clock period. One approach to ensuring
this is to use delay simulation.

There are different methods to model the delays in
digital circuits, including the zero delay, unit-delay and
multiple-delay models [1]. While the zero-delay models
can be used to analyze combinational circuits without
memories, and unit-delay models can be used to verify the
logical behavior of synchronous sequential circuits, they
are inadequate for analyzing the timing behavior of digital
circuits. For the timing behavior, a multiple-delay model
should be used. In such a model, each circuit element is
assigned a delay which is an integer multiple of a time
unit. Usually separate rise and fall delays are specified. If
the gate delays are not a function of the direction of the
output change, we can use a transition-independent delay

model. In the following we use a nominal delay model [2]
with the assumption that the gate delays are known.

In the classical gate-level delay simulation [2] all the
gates should be evaluated once per cycle which leads to a
great amount of simulation with circuits of high complex-
ity. In this paper, instead of gate-level simulation, we use
macro-level simulation, where macros represent tree-like
subcircuits (i.e. subcircuits with no reconvergent fanouts).
The paths are considered only inside the macros. For this
reason, we avoid the exponential explosion of the number
of paths processed. When representing complex gates by
macros, the number of macros is equal to the number of
tree-like subcircuits in the complex gate. For example, a
one-bit multiplexer is represented by a single macro.

To each path we assign a delay (or two delays in the
case of transition dependent delay model). For simplicity,
in this paper, without loosing the generality, we consider
the one-delay case for each path. For example, assume
that the subcircuit in Fig.1 is represented by a macro. This
macro is characterized by 6 paths and 6 delays calculated
on the basis of gate delays.

A novel method for delay simulation is developed
based on Boolean derivatives and structurally synthesized
binary decision diagrams (SSBDD). SSBDDs were
introduced the first time in [3,4] as structural alternative
graphs, and generalized for the multiple-valued decision
diagrams in [5]. In [6] SSBDDs were suggested for
multivalued simulation of digital circuits for different
purposes like hazards investigation [7], delay fault
analysis [8], and fault cover analysis in dynamic testing
[9]. When using SSBDDs for representing macros, the
complexity of the model will be substantially reduced
compared to the gate-level approaches.

Figure 1: Digital subcircuit
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This paper is organized as follows. Section 2 describes
equivalent parenthesis forms (EPF) for a given digital
circuit. In Section 3 the main considerations about timing
simulation based on Boolean derivatives are given, and in
Section 4 an eff icient implementation of this approach on
SSBDDs is described. Our algorithms are explained in
detail i n section 5. In Section 6 experimental results are
given and finally Section 7 brings concluding remarks.

2. Equivalent parenthesis forms

Let us represent a digital circuit by an equivalent
parenthesis form (EPF) synthesized by a superposition
procedure directly from the gate-level description of a
circuit. For synthesizing the EPF of a given circuit,
numbers are first assigned to the gates and letters to the
nets. Then, starting at an output and working back toward
the primary inputs, EPF replaces individual lit erals by
products of literals or sums of literals.

When an AND gate is encountered during
backtracing, a product term is created in which the literals
are the names of nets connected to the inputs of the AND
gate. Encountering an OR gate causes a sum of literals to
be formed, while encountering an inverter causes a literal
to be complemented.

As an example, the procedure is ill ustrated by
transforming the circuit in Fig.1 to its EPF:
y = a1 b1 = (c12 + d12)(m13 + e13) = (g124 h124 + f125 k125) ∧
∧ (m13 + ¬k136) = (g124 h124 + ¬h1257 k125)(m13 + ¬k136).

When creating an equation by the superposition
procedure described above, the identity of every signal
path from the inputs to the outputs of the given circuit
will be retained. Each literal in an EPF consists of a
subscripted input variable or its complement, which
identifies a path from the variable to the output. From the
manner in which the EPF is constructed, it can be seen
that there will be at least one subscripted literal for every
path from each input variable to the output. It is also easy
to see that the complemented literals correspond to paths,
which contain an odd number of inversions.

3. Equivalent parenthesis forms and timing
simulation

Let us have an EPF y = P(x1, x2, ... xi, ... xn) where xi ∈
X are literals (inverted or not), which describe the beha-
vior of a digital circuit. Denote by L(xi) = (gi1, gi2, …, gin)
the signal path through the gates gi1, gi2, …, gin from the
output y up to the input xi. Denote the delay of the gate gij

by d(gij). For simplicity, here we use the same delay for
all the gate inputs for both raise and fall transitions. How-
ever, this does not affect the generali ty of the approach.

Let us call ∂y/∂xi as partial Boolean derivative. The
theory of Boolean differential calculus tells that if ∂y/∂xi

= 1, then a transition of the signal at input xi leads to a

transition of the signal at output y. To take into considera-
tion the timing aspect, we introduce a function ∂y(ty)/
∂xI(tx), where ∂y(ty)/∂xi(tx) = 1 means that the transition of
xi at moment tx causes the transition of y at moment ty.

Theorem 1: Given a single transition at moment tx on
the input xi with a single output of a circuit represented by
EPF y = P(x1, x2, ... xi, ... xn) with the path L(xi) = (gi1, gi2,
…, gin) from xi to y, the transition  propagates up to y with
the delay

         d(xi→ y) = d(gi1) + d(gi2) + …+ d(gin).           (1)
iff ∂y(ty)/∂xi(tx)= 1 where ty= tx + d(xi→ y).

Proof:  Along the definition of partial Boolean
derivatives, from ∂y/∂xi = 1 (here and afterwards ty and tx
for y and x are dropped for better readabilit y) it follows
that the value of y is depending on the value of xi, hence
the transition at xi propagates up to y. Since the path L(xi)
= (gi1, gi2, …, gin) along which the transition propagates is
not a branch, and it also has no fanouts, no other
reconverging paths can exist along which the same
transition at xi could influence the value of  y. Hence, the
delay of the transition at y may be produced only by the
sum of the delays of the gates along the path L(xi), and the
relationship (1) is valid. �

In the general case, if transitions occur on several
inputs, or a transition propagates along several
reconverging paths, then the derivative ∂y/∂xi may depend
on the influence of other transitions which may result in a
glitch at y. In other words, the value of the function ∂y/∂xi

= f (x1, x2, ... xi -1, ... xi +1, … xn) depends in this case on the
literals where values are nondetermined (unknown), and
the calculation of ∂y/∂xi is impossible.

Let us introduce now the set S5 =  { 0, 1, ε, h, U} for 5-
valued simulation, where ε (h) represents a waveform
having a step-up transition from 0 to a final value of 1
(step-down transition from 1 to a final value of 0), and U
represents undetermined (unknown) or don’ t care wave-
form. These values ε, h, U are called dynamic values.

In the following table we give also the algebra
introduced for the dynamic values { ε, h, U} in [6]:

∨ ε h U ∧ ε h U

ε ε U U ε ε U U
h U h U h U h U
U U U U U U U U

Table 1: Calculation of dynamic values
Let us have a network with EPF y = f(x1, x2, ... xi, ...

xn) and a multi-valued pattern xt = (xt
1, x

t
2, ... x

t
i, ... x

t
n) at

time tx where xt
i ∈ S5. Denote a subset of literals with

dynamic values at tx by xD = {xi | x
t
i∈{ ε,h,U} }.

Definition 1: We say max{∂y/∂xi} = 1 iff there is at
least one combination of values 0 or 1 for nonspecified
x’s which produce ∂y/∂xi = 1. Otherwise, max{∂y/∂xi}= 0.



Lemma 1: The value of EPF y = P(x1, x2, ... xi, ... xn)
for a given network in the multivalued alphabet S5 is:

       y  =          ∧   xi               =                    ∨    xi                 (2)
                xi∈xD ∩{xi max{∂y/∂xi}=1}         xi∈xD ∩{xi max{∂y/∂xi}=1}

iff xD ∩{xi | max{∂y/∂xi} = 1} ≠ ∅.
Proof:  If max{∂y/∂xi} = 1 is valid for a single xi ∈ xD

then according to the definition of Boolean derivatives, y
= xi. In this case the same value of xi occurs on the output
(or inverted value if xi is inverted). Suppose now that
there are more than one literals xi ∈ xD satisfying the
condition max{∂y/∂xi} = 1. In other words, it means there
are more than one converging paths in the network which
propagate transitions towards the output. If two paths are
converging, either AND or OR of multiple values from
{ ε, h, U} is possible. From the equivalence of operations
AND and OR on the set { ε, h, U} , it follows that the
value of y can be calculated as the function of AND (or
OR) of values xi ∈  xD  ∩ {xi| max{∂y/∂xi} = 1}. �

Consider, for example, a transition pattern g = k = m =
1, h = ε at the input of the circuit in Fig 1. By calculating
Boolean derivatives, we find: ∂y/∂h124 = h1257, and
∂y/∂h1257 = ¬h124. Since h124 and h1257 have dynamic
values h124 = h1257 = h = ε, the calculation of Boolean
derivative is impossible. On the other hand, since
max{∂y/∂h124} = max{∂y/∂h1257} = 1, and since xD  ∩ {xi|
max{∂y/∂xi} = 1} = {h124, ¬h1257}, we have y = h124 ∧
¬h1257 =  ε ∧ ¬ ε  = U. The value U on the output of the
subcircuit in Fig.1 means the possibility of a glitch at the
given transition pattern.

Theorem 2: Given |xD| > 1 at input pattern xt = (xt
1, x

t
2,

... xt
i, ... x

t
n) where xt

i ∈ S5, and a subset x* D  ∈ xD  where

∀ xi ∈ x* D : (max{∂y/∂xi} = 1) &  (d(xi→ y) = ∆i),     (3)

there appears a transition on the output of a circuit  y =
P(x1, x2, ... xi, ... xn) with the value

y  =      ∧      xi                              (4)
                                                  xi ∈ x*D

at time tx + ∆i where ∆i  is calculated by formula (1).
Proof: Suppose there exist at least two inputs xt

i, x
t
j ∈

x* D  with corresponding paths L(xi) = (gi1, gi2, …, gin) and
L(xj) = (gj1, gj2, …, gjm) through the circuit. Suppose they
have a joint path L(gi,k) = (gi1, gi2, …,gi,k-1)  starting from
the output of a gate gik ≡ gjk , k>0, with the transition
delay τ = d(gi1) + d(gi2) + …+ d(gi,k-1).  From (3) it fol-
lows that the transitions evoked at the inputs xt

i, x
t
j reach

the inputs of the gate gik at the same moment tk+1 = tx +
(∆i - τ - d(gik)). On the other hand, from the condition xt

i,
xt

j ∈ xD ∩{xi max{∂y/∂xi} = 1} and Lemma 1, it follows
that the value of the signal at time tk = tx + ∆i - τ on the
output of the gate gik belongs to the set { ε, h, U} , which
means a transition (where U is a possible glitch). Since
the path L(gi,k)  is also activated due to (3), the transition
propagates to the output and shows itself at time tk+1 +
d(gik) + τ = tx + (∆i - τ - d(gik)) + d(gik) + τ  = tx + ∆i. �

Corollary:  From Theorems 1 and 2 the following
algorithm can be derived for timing simulation based on
calculating Boolean derivatives of equivalent parenthesis
forms.
 Algoritm 1.
1. Calculate ∂y/∂xi for xi ∈ xD for the given transition xt

.

2. Take the lowest value of ∆i  = d(xi→ y).
If ∂y/∂xi =1 fix the new value of y for time tx + ∆i.
Use formula (2) to check if a glitch is present.
Remove xi from xD.

3. If xD = ∅, stop, else repeat step 2.

4. Timing simulation on SSBDDs

A structurally synthesized BDD Gy=(M,Γ,X) with a
set of nodes M and a mapping Γ from M to M is a BDD
which represents an equivalent parenthesis form y = P(x)
of a gate-level network. The set of nodes consists of a
subset of nonterminal nodes MN and of a subset of
terminal nodes MT; M = MN ∪ MT. There are one initial
node m0 ∈ MN and two terminal nodes mT,e ∈ MT,
e∈{0,1}, in M.  A one-to-one correspondence exists
between nonterminal nodes m ∈ MN and the literals xi ∈
X. The nodes m ∈ MN are labeled by subscripted input
variables (or the inverted variables) which identify a path
from the input to the output of the network. The terminal
nodes mT,e ∈ MT  are labeled by constants e∈{0,1}. The
literal xi ∈ X which is associated with the node m is
denoted by x(m). The mapping Γ defines the set of edges
between the nodes of M whereas Γ(m) ⊂ M is a set of
successors of m, and me ∈ Γ(m) is the successor of m for
the value x(m) = e. A pattern xt defines a set of activated
edges in Gy. The edge between m and me is activated
when x(m) = e in the pattern xt. Activated edges which
connect nodes mi and mj make up an activated path l(mi,
mj). The path l(mi, mj) consists of nodes M(mi, mj) ⊆ M.
An activated path l(m0, m

T,e) is called a full activated path.
Definition 2. A SSBDD Gy = (M,Γ,X) represents an

equivalent parenthesis form y = P(X) of a gate-level
network, iff f or each pattern xt a full path l(m0, m

T,e) in Gy

will be activated where y = e.
Two-valued test pattern simulation on SSBDDs is

equivalent to path tracing procedure on graphs according
to the values of variables at a given test pattern. At a
given pattern xt, in a SSBDD Gy, a full path l(m0,m

T) will
be activated which determines the value of y = x(mT). The
simulation procedure will consist of tracing the path
l(m0,m

T) and finding the value of x(mT) at the terminal
node mT.

For multi-valued simulation, a procedure based on
calculation of Boolean derivatives on SBDDs will be now
described. Denote l(mi,mj) = 1, if there exists an activated
path between the nodes mi and mj at the given pattern xt,
otherwise, l(mi,mj) = 0.



Theorem 3: Given y = P(x) and xi ∈ X, the condition
dy/dxi =1 for SSBDD Gy = (M,Γ,X) where x(m) ≡ xi is
equivalent to the following equation:

         l(m0,m) ∧ l(m1, mT,1) ∧ l(m0, mT,0) = 1.             (5)
The proof of the theorem can be found in [6].

Note, Theorem 3 can be used for calculating Boolean
derivatives dy/dxi only in the case where pattern xt is two-
valued, because only in this case all the paths l(mi,mj) are
activated uniquely. In the general case, when xt is a multi-
valued pattern, to check the existence of a glitch, we have
to generalize equation (5). The generalized case based on
maximums of Boolean derivatives is considered in [6].

Figure 2: SSBDD for the circuit in Figure 1

Using SSBDDs it is possible to considerably speed up
the calculations described in Algorithm 1 because it is not
needed to trace all paths in equation (5) for each xi ∈ xD.

Node Path Delay Pattern
g g, 4, 2, 1, y 3 h (10)
h1 h, 4, 2, 1, y 3 ε (01)

¬h2 h, 7, 5, 2, 1, y 4 h (10)
k1 k, 5, 2, 1, y 3 0
m h, 3, 1, y 2 1

¬k2 k, 6, 3, 1, y 3 ε (01)

Table 2: Signal paths and delays of the example

Example:  An example of SSBDD for the circuit in
Fig.1 is represented in Fig.2. The nodes of the graph, the
corresponding paths in the circuit, and the path delays
calculated by equation (1) are depicted in Table 2 (here
we assume that all the gates have a unit delay).

Consider a transition pattern given in Table 2. The
bold arrows (in Fig. 2) mark the activated path in the
graph before the transition. The shaded nodes are those
involved in the transition, i.e. where the direction of the
activated path changes. For the nodes g and h1 we have
max{∂y/∂g} = max{∂y/∂h1} = 1 [5]. Using the formula (2)
we find that g ∧ h1 = h ∧ ε = U which means that at time t
= 3 we may have a glitch on the output of the circuit.

5. The Timing Simulation Algorithms

Using the SSBDD model gives us the possibili ty to
minimize the number of macro inputs to be processed as
well as the possibili ty to use some SSBDD features in
order to increase the timing simulation efficiency.

In this section we describe several implementations of
the Algorithm 1 on the SSBDD model. First, the general
algorithm is given, then we describe the single and double
stack based approaches.

Given a set of multi-valued input patterns xt at the
input of a macro SSBDD Gy=(M,Γ,X), and a set of delays
∆={ de(mi)| mi∈M, e∈{ ε,h}} . Certain values for both raise
dε(mi) and fall dh(mi) delays are specified for each node.
We denote a variable in the node mi as x(mi). The output
of the algorithm is a single waveform for the output of
each macro. The waveforms show all the transitions
taking place there.

The general idea is as follows. Let the current moment
of time be tx and the current pattern applied xt. We are
traversing the activated (before the transition) path
l(m0,m

T) in the graph from the initial node m0 to one of the
terminal nodes mT and checking if x(mi)∈xD in order to
find the node with transition that has the minimal delay
dmin. The transition in this node is the first transition that
may influence the macro’s output. It will happen at the
moment ty=tx+dmin iff max{ ∂y/∂(x(mi))} =1. When the
node is found, the current time tx is changed to tx+dmin.

Our task now is to find the next dmin. We go back to
the initial node and traverse the path from the beginning
taking into account that one of the values has already been
changed. However, as we are probably traversing a new
path, we can find a node with delay that is smaller or
equal to the previous dmin. This means that the transition
in that node has also taken place and it is not interesting
anymore. In general, we are not interested in all delays
de(mi)<tx. Suppose, we are in node mi, x(mi)∈xD,
somewhere in the middle of the path. The delay here is
de(mi) and somewhere before (along the path l(m0, mi)) we
have already found the next minimum delay dmin. Then we
will update the dmin with de(mi) iff tx<de(mi)<dmin.

After we have reached a terminal node again, we are
checking if it is a different one from the previously rea-
ched terminal node. If it is, we put the new transition to
the output waveform labeling it with the current moment
of time. We continue the graph traversal procedure until
no dmin>tx is found. This means that all the transitions
(which have influence to the macro output) in the macro
have already taken place and the next vector should be
taken. When all the vectors have been simulated for the
given macro, a new macro is taken. The whole process
stops when the whole circuit has been finished.

The above was the description of the general SSBDD-
based timing simulation algorithm, which uses no stack.
Note that in some cases we do not need to check all the
nodes in the graph because those nodes will never lie on
an activated path. To make the procedure even more
efficient, we use a stack to store every encountered node
along the path, with the delay which was taken as dmin.
Using the stack we have no need to begin path traversal
from the initial node every time. We can return to the last

h1 m

k2h2 k1

y g

3 3

4

1

0



node ms taken from the stack and take the de(ms) as the
next dmin and update it further as we start moving forward.

In the following we give the description of a single
stack-based algorithm step by step.

 Algorithm 2.
1. Initialization: t=0, dmin=0, i=0, ptr=0, stack(ptr).node=0,

stack(ptr).time=0, macro output is undefined;
2. If t<de(mi) go to 3. Otherwise take i as the index of m0 if

x(mi)={ h,0} or as the index of m1 if x(mi)={ ε,1} , go to 7;
3. If x(mi)∈xD go to 4. Otherwise take i as the index of m0 if

x(mi)={ ε,0} or as the index of m1 if x(mi)={ h,1} , go to 7;
4. If ptr=0 or de(mi)<stack(ptr).time go to 5. If not, go to 6;
5. ptr=ptr+1, stack(ptr).time= de(mi), stack(ptr).node=i;
6. Take i as the index of m0 if x(mi)=ε or as the index of m1 if

x(mi)=h;
7. If mi is not one of the terminal nodes go to 2. If not, go to 8;
8. If macro output is different from the value of the terminal

node we have come to, update macro output with the new
transition and label it  with time t;

9. If ptr=0 stop, otherwise go to 10;
10. t=stack(ptr).time, i=stack(ptr).node, ptr=ptr-1, dmin=

stack(ptr).time, go to 2;

Example: In Fig. 3 an example to ill ustrate the
algorithm is given for the SSBDD in Fig. 2. The input
pattern and the delays are the same as in Table 2. We start
from the node g and go to the node h1. As the stack was
empty and g had a transition at the given moment of time
we put g and its delay into the stack. The node h1 has a
transition but the delay in it is not smaller than that in g.
So we continue moving forward without updating the
stack. The nodes h2 and k1 have no transitions this time.
We just pass them by. Finally we reach the terminal node
mT,0. So the initial value at the output y will be 0.

We get back to the node taken from the stack (it is g)
and go to another direction (the value in g has been
changed). The current moment of time is 3 now. The node
h2 has a transition and the transition time is greater than
the current moment of time. As the stack is empty again,
we put h2 and the delay into the stack and move forward.
Finally again we reach the same terminal node. So, the
output is stable. Again we get back to the node h2 taken
from the stack and reach the same terminal node, which
means no change of the value on the output. Since the
stack is empty now, the calculation terminates.

Figure 3: Single stack based timing simulation
for the SSBDD in Figure 2

Note that despite node k2 has a transition, we did not
examine this macro input at all . That is, we have to check
all of the macro inputs and calculate derivatives for all
x(mi)∈xD only in the worst case.

In Algorithm 2 and the example above we use a stack
to return each time not to the very beginning of the graph
but exactly to the node with the next transition. However,
not every transition along the activated path can influence
the output of the macro. In the following we give an idea
how to improve the Algorithm 2 by using this feature.

Given an input pattern that activates a full path l(m0,
mT,e), which consists of the nodes M(m0, mT,e). We
designate Me(m0, m

T,e) = { m | m ∈ MN, m ∈ M(m0, m
T,e),

x(m) = e, e∈{0, 1} }  the set of all nonterminal nodes along
the path which hold the value e. Similarly, the set of all
the nodes along the path which hold the value ¬e are
designated M¬e(m0, m

T,e) = { m | m ∈ MN, m ∈ M(m0,
mT,e), x(m) =¬ e, e∈{0, 1} } . In other words we divide all
the nodes along the activated path into two subsets. First
one M0(m0, mT,e) contains all the nodes which hold the
current value 0 and another one M1(m0, m

T,e) contains all
the nodes which hold the value 1. Terminal node mT,e

does not belong to any of the two subsets. If the currently
reached terminal node is mT,0 then it is known that  transi-
tions in all the nodes m ∈ M1(m0, m

T,0) do not affect the
output value (taking a new path, we will still reach the
node mT,0), and vise versa, for the node mT,1 no transitions
in nodes m ∈ M0(m0, m

T,1) can affect the output.
The above statement shows clearly that, standing in

the terminal node mT,e, we should consider only the nodes
m ∈ Me(m0, m

T,e) as the potential sources of influence on
the macro output. Therefore, we introduce a minor change
to the Algorithm 2 using two different stacks for the
nodes of M0(m0, mT,e) and M1(m0, mT,e). Standing each
time at the terminal node we check only the dedicated
stack for the next transition to simulate it. If there are
some transitions in another stack, they will be left not
simulated because they cannot affect the macro output.
That is, we have to simulate all the nodes with transitions
on the current active path only in the worst case.

However, certain operations and comparison of data
between two stacks should be added to make the
algorithm work well . This generates some overhead and
in the worst case the double-stack-based algorithm may
work slower than the single-stack-based one. This gave us
an idea to try to use the two-stack approach only for
finding the next moment of time but starting the traversal
procedure from the initial node m0. This helps us to avoid
considerably time-consuming procedure of stack update.
This means that we can win the time needed for stack
update, but we lose the time needed for the path traversal
from the beginning.

For different circuits all the three algorithms should
give different results. It is logical to suppose that the sim-

h2

h1 k1y g h2 y=0

k1 y=0

y=0



pler algorithms should work faster for smaller macros but
for bigger ones sophisticated stack-based algorithms can
give better results. In the next section we will il lustrate
this statement by experimental data but now let us give an
example to il lustrate the two-stacks-based algorithm.

Example: Consider the same SSBDD, the same input
pattern, and the same delays as in the last example. Simi-
larly, we begin with the node g and traverse the activated
path until the end but, differently from the single stack
case, we store the node g in one stack and the node h1 in
another. We do not put nodes h2 and k1 into the stacks si-
milarly to the previous example. Finally we reach the ter-
minal node mT,0. So, the initial value at the output y is 0.

In this case, only nodes with transitions 0 to 1 can
affect the macro output. So, we have to check the
corresponding stack. We find the node h1 in this stack and
go back to this node. However, at this point we cannot
continue the graph traversal before we have checked
another stack to see if it has a node which stands closer to
the initial node and has a delay smaller than or equal to
the delay in the node h1. If there is such a node in another
stack we have to go further to this node. This is the point
where the overhead of processing of stacks is added.

In another stack we find node g with the delay equal
to the delay in h1, so we move further to node g and start
the traversal of newly activated path from that point. Both
stacks are empty again. As the node h2 has a transition
and the delay is greater than the current moment of time,
we put it into one of the stacks. Node k1 does not have a
transition, so we pass it by and come to the same terminal
node (again y=0).

We look at the stack, which corresponds to the
situation where y=0 and find it to be empty. This means
that the simulation is over. In Fig. 4 an il lustration of the
algorithm’s work is given. Compared to the single-stack-
based algorithm (Fig. 3) it has one step less.

Figure: 4. Double-stack based timing simulation
for the SSBDD in Figure 2

6. Experimental data

Experiments were carried out using two different
types of benchmarks. The ISCAS’85 circuits were chosen
since they are widely adopted benchmarks. However, the
efficiency of simulation is highly dependent on the
number of levels and on the number of gates in tree-like
subcircuits represented by graphs. Therefore, we have
also used 5 tree-like circuits with numbers of levels from
2 to 10 (numbers of gates from 3 to 1023).  And we used
two different input pattern generation modes: with a
single and multiple bit transitions allowed on inputs at the
same time. Experimental results presented below clearly
show a noticeable speed-up of our approach.

The results for tree-like circuits are il lustrated for the
case of single transitions in Fig. 5 and 6 and for the case
of multiple transitions in Fig. 7 and 8. Simulation time is
given in seconds for 30000 random patterns. In our work
we measured simulation time on both macro and gate
levels. Note that the simulation time grows exponentiall y
with the number of levels at the gate level (Fig. 5). The
simulation time at the macro level (our approach) grows
much slower (Fig. 5) but also not linearly (as shown in
Fig. 6 with a more detailed timing scale).  In Fig. 6 all the
four macro-level algorithms are shown. However, there is
no noticeable difference in simulation time between them.

 For the multiple-bit change input pattern generation
mode there is a noticeable difference in speed for the
macro-level timing simulation algorithms (Fig. 8). The
double-stack-based algorithm (lower thin line) is the
fastest for this case and the algorithm with no stack (upper
bold line) is the slowest. The timing simulation at the gate
level needs the time (dashed line in Fig. 7) that grows
again much faster than the time our approach requires.

Experimental results on ISCAS’85 benchmarks are
given in Table 3. The first two rows show names and
sizes of the benchmarks. The third row in the table
indicates the two modes for pattern generation by S and
M respectively. The time for 10000 input patterns
simulation is given in seconds in the rows 4 to 8. Rows 4
to 7 correspond to the four macro-level algorithms and
row 8 corresponds to a gate-level simulation. Rows 9 to
12 in the table (G/M Ratio) show the efficiency of the
four macro-level simulation algorithms compared to the
gate-level simulation algorithm. The best simulation times
and speedups are shown in bold.
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Figure: 5, 6. Comparison of simulation times of
different algorithms (single-bit transition mode)
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Figure: 7, 8. Comparison of simulation times of
different algorithms (multiple-bit transition mode)
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Circuit 1 c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552

Number of Gates 2 232 618 357 514 718 997 1446 1994 2416 2978

Pattern Generation Mode 3 S M S M S M S M S M S M S M S M S M S M

No Stack 4 0,77 1,49 1,71 3,38 1,34 2,52 2,81 5,17 2,32 4,49 3,80 7,85 3,63 8,69 6,18 15,2 30,8 139 8,88 24,4

Single stack 5 0,86 1,47 1,93 3,73 1,53 2,56 3,41 5,76 2,69 4,71 4,64 8,21 4,26 8,71 7,36 15,4 32,3 133 10,7 24,5

Double stack 6 0,80 1,37 1,79 3,77 1,33 2,40 2,94 5,20 2,36 4,50 4,02 7,66 3,78 8,42 6,55 15,1 31,6 141 9,22 23,7
Double stack,
no update

7 0,79 1,46 1,80 3,53 1,38 2,58 2,94 5,44 2,34 4,59 4,01 8,00 3,78 8,81 6,43 15,6 33,0 152 9,26 24,7

Simulation
Time for
10000

Patterns
(s)

Gate level 8 2,16 3,32 5,30 9,83 3,26 5,19 4,86 8,38 6,98 11,5 9,24 15,9 12,9 23,6 20,1 37,7 58,7 272 28,0 57,1

No Stack 9 2,81 2,23 3,10 2,91 2,43 2,06 1,73 1,62 3,01 2,57 2,43 2,03 3,54 2,72 3,26 2,47 1,90 1,95 3,15 2,34

Single stack 10 2,51 2,26 2,75 2,64 2,13 2,03 1,43 1,45 2,59 2,45 1,99 1,94 3,02 2,71 2,73 2,44 1,82 2,04 2,60 2,32

Double stack 11 2,70 2,42 2,96 2,61 2,45 2,16 1,65 1,61 2,96 2,56 2,30 2,08 3,40 2,81 3,07 2,50 1,86 1,92 3,03 2,41G/M Ratio

Double stack,
no update

12 2,73 2,27 2,94 2,78 2,36 2,01 1,65 1,54 2,98 2,51 2,30 1,99 3,40 2,68 3,13 2,42 1,78 1,78 3,02 2,31

Table 3: Experimental results

Note that the double stack-based and no stack-based
algorithms give the best results. However, there is no big
difference between the four algorithms but there is still a
great speedup compared to the gate-level algorithm. The
speed of simulation based on the proposed method
increases up to 3,54 times for patterns with single
transition and up to 2,91 times for patterns with multiple
transitions.

For all the experiments we used a Sun Ultra 10
workstation with 440 MHz UltraSparc – IIi processor,
256 MB RAM, and SunOS 5.7.

7. Conclusions

A new approach to speed up gate-level timing
simulation is proposed where, instead of gate delays, path
delays for tree-like subcircuits (macros) represented by
SSBDDs are used. SSBDDs capture the structure of a
circuit whereas conventional BDDs does not allow that.
At the same time, using SSBDDs for representing macros
avoids exponential explosion of the model complexity.
The number of paths in the circuit processed by delay
calculation is a linear function of the number of gates.

Experiments were carried out on the ISCAS’85 bench-
marks with the number of gates up to about 3000. The
linear feature of the model complexity allows efficient
simulation of complex realistic combinational circuits.

Four algorithms for this approach were implemented
and their efficiencies compared. The timing simulation
speed at the macro-level is up to 3,54 times faster
compared to the gate-level simulation for the investigated
set of ISCAS’85 benchmark circuits. The best among the
macro-level algorithms is the double-stack based one.

The high speed of simulation is achieved on the cost
of some loss of simulation data. Instead of the all
waveforms for all nodes of the gate-level network, only
the waveforms for the outputs of macros are calculated.

This simplification is nevertheless acceptable for most
industrial applications of timing simulation.
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