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Abstract
Meding timing requirements is an important
constraint imposed on highly integrated circuits, and the
verification d timing d a circuit before manufacturing is
one of the critical tasks to be solved by CAD toadls. In this
paper, a new approach and the implementation o seveal
algorithms to speed up gate-leved timing simulation are
proposed where, instead d gate delays, path delays for
treelike subcircuits (macros) are used. Therefore timing
waveforms are alculated na for all internal nodes of the
gate-leve circuit but only for outputs of macros. The
macros are represented by structurally synthesized hinary
dedson dagrams (S®8BDD) which enabe a fast
computation of delays for macros. The new approach to
spead up the timing simulation is suppated by

encouraging experimental results.

1. Introduction

The transition from the traditional Applicaion
Spedfic Integrated Circuit (ASIC) to System-on-Chip has
lead to new chall enges in design methods, manufaduring,
verification, and test. Timing simulation is a widely used
method to verify the timing behavior of a digital design.
In a synchronous digital system the timing property that is
needed to be verified is that for ead input vector
transition the combinational logic settles to a stable state
within a given clock period. One gproach to ensuring
thisisto use delay simulation.

There ae different methods to model the delays in
digital circuits, including the zero delay, unit-delay and
multi ple-delay models [1]. While the zeo-delay models
can be used to analyze ®@mbinationa circuits without
memories, and unit-delay models can be used to verify the
logicd behavior of synchronous sequential circuits, they
are inadequate for analyzing the timing behavior of digital
circuits. For the timing behavior, a multiple-delay model
should be used. In such a model, eadt circuit element is
asdgned a delay which is an integer multiple of a time
unit. Usually separate rise and fall delays are spedfied. If
the gate delays are not a function of the diredion of the
output change, we can use atransition-independent delay
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model. In the following we use anominal delay model [2]
with the assumption that the gate delays are known.

In the dassicd gate-level delay ssmulation [2] all the
gates dould be evaluated once per cycle which leads to a
grea amount of simulation with circuits of high complex-
ity. In this paper, instead of gate-level simulation, we use
maao-level simulation, where maaos represent treelike
subcircuits (i.e. subcircuits with no reconvergent fanouts).
The paths are wnsidered only inside the maaos. For this
reason, we avoid the exponential explosion of the number
of paths processeed. When representing complex gates by
maaos, the number of maaos is equal to the number of
treelike subcircuits in the cmplex gate. For example, a
one-bit multi plexer is represented by a single maao.

To ead path we assgn a delay (or two delays in the
case of transition dependent delay model). For simplicity,
in this paper, without loosing the generality, we cnsider
the one-delay case for ead path. For example, assume
that the subcircuit in Fig.1 is represented by a maco. This
maao is charaderized by 6 paths and 6 delays cdculated
on the basis of gate delays.

A novel method for delay simulation is developed
based on Boodlean derivatives and structurally synthesized
binary dedsion diagrams (SBDD). SIBDDs were
introduced the first time in [3,4] as structural aternative
graphs, and generalized for the multiple-valued dedsion
diagrams in [5]. In [6] SBDDs were suggested for
multivalued simulation of digital circuits for different
purposes like hazads investigation [7], delay fault
analysis [8], and fault cover analysis in dynamic testing
[9]. When using SSBDDs for representing maaos, the
complexity of the model will be substantialy reduced
compared to the gate-level approaces.

Figure 1: Digital subcircuit



This paper is organized as follows. Sedion 2 describes
equivaent parenthesis forms (EPF) for a given digital
circuit. In Sedion 3 the main considerations about timing
simulation based on Boolean derivatives are given, and in
Sedion 4 an efficient implementation of this approach on
SBDDs is described. Our agorithms are explained in
detail in sedion 5. In Sedion 6 experimental results are
given and finally Sedion 7 brings concluding remarks.

2. Equivalent parenthesisforms

Let us represent a digital circuit by an equivalent
parenthesis form (EPF) synthesized by a superposition
procedure diredly from the gate-level description of a
circuit. For synthesizing the EPF of a given circuit,
numbers are first assigned to the gates and letters to the
nets. Then, starting at an output and working badk toward
the primary inputs, EPF replaces individual literals by
products of literals or sums of literals.

When an AND gate is encountered during
badktradng, a product term is creaed in which the literals
are the names of nets conneded to the inputs of the AND
gate. Encountering an OR gate causes a sum of literals to
be formed, while encountering an inverter causes aliteral
to be cmplemented.

As an example, the procedure is illustrated by
transforming the drcuit in Fig.1 to its EPF:
y=a by = (Ciz+ di)(Mi3 + €13) = (G124 hi2a+ frosKazg) [J

[J(mys + =Kyss) = (G124 hi2a+ 7Mi2s7 Kios)(Ms + =Kaze).

When creaing an equation by the superposition
procedure described above, the identity of every signal
path from the inputs to the outputs of the given circuit
will be retained. Each literal in an EPF consists of a
subscripted input variable or its complement, which
identifies a path from the variable to the output. From the
manner in which the EPF is constructed, it can be seen
that there will be & least one subscripted literal for every
path from each input variable to the output. It is also easy
to seethat the complemented literals correspond to paths,
which contain an odd number of inversions.

3. Equivalent parenthesisformsand timing
simulation

Let ushave an EPFy = P(xg, X, ... X;, ... X,) Where x; [
X are literals (inverted or not), which describe the beha
vior of adigita circuit. Denote by L(X) = (i1, Gi2, -+ Gin)
the signa path through the gates g1, g2, ..., Gin from the
output y up to the input x.. Denote the delay of the gate g
by d(g;). For smplicity, here we use the same delay for
all the gate inputs for both raise and fall transitions. How-
ever, this does not affed the generality of the goproach.

Let us cdl oy/dx as partial Bodean cerivative The
theory of Boolean differential cdculus tells that if dy/ox;
= 1, then a transition of the signal at input x; leals to a

transition of the signal at output y. To take into considera-
tion the timing asped, we introduce afunction dy(t,)/
ox(t), where dy(t,)/o%(ty) = 1 means that the transition of
X; at moment t, causes the transition of y at moment t,.

Theorem 1. Given a single transition at moment t, on
the input x, with a single output of a drcuit represented by
EPFy = P(Xq, X2, ... X, ... %) With the path L(%) = (gi1, Gi2,
.., Oin) from x to y, the transition propagates up to y with
the delay

d(x - y) = d(gid) + d(gi2) + ...+ d(gin). D
iff oy(t,)/ox(t)= 1 wheret,=t, + d(x - ).

Proof:  Along the definition of partial Booean
derivatives, from dy/dx = 1 (here and afterwards t, and t
for y and x are dropped for better readability) it follows
that the value of y is depending on the value of x, hence
the transition at x; propagates up to y. Since the path L(x;)
= (v, 92, --- Gin) dlOong which the transition propagates is
not a branch, and it aso has no fanouts, no ather
remnverging paths can exist along which the same
transition at x; could influence the value of y. Hence the
delay of the transition at y may be produced only by the
sum of the delays of the gates along the path L(x;), and the
relationship (1) isvalid. g

In the general case, if transitions occur on severa
inputs, or a transtion propagates aong several
recnverging paths, then the derivative dy/dx; may depend
on the influence of other transitions which may result in a
glitch at y. In other words, the value of the function dy/dx;
=f (X, Xop - X 1, - X +1, --- Xp) dEpends in this case on the
literals where values are nondetermined (unknown), and
the cdculation of oy/dx; isimpassble.

Let usintroducenow the set S; = {0, 1, ¢, h, U} for 5-
valued simulation, where ¢ (h) represents a waveform
having a step-up transition from 0 to a final value of 1
(step-down transition from 1 to a final value of 0), and U
represents undetermined (unknown) or don’'t care wave-
form. These values ¢, h, U are cdled dynamic values.

In the following table we give dso the dgebra
introduced for the dynamic values{ ¢, h, U} in [6]:

Ole |[h|U[DO]e |h |U
cele |U|UJe|e |U|U
h|U|h |U|h|]U|h |U
ujJu|jUu|U|U]JU ] |U U

Table 1: Calculation of dynamic values

Let us have anetwork with EPF y = f(xy, X, ... X, ...
X) and a multi-valued pattern X' = (X4, X5, ... X, ... X}) at
time t, where X} 0 S. Denote a subset of literals with
dynamic values at t, by x5 = {x | X{0{&h,U}}.

Definition 1 We say max{ady/ox} = 1 iff there is at
least one combination of values 0 or 1 for nonspedfied
X' swhich produce dy/dx; = 1. Otherwise, max{ dy/odx;}= 0.



Lemma 1 The value of EPF y = P(Xq, X2, ... Xj, «. Xn)
for agiven network in the multivalued alphabet S; is:

y = 0 x = 0 % )
%0xp n{ x0max{ dy/ox} =1} xOxp n{ xiOmax{ dy/ox} =1}
iff xo n{x | max{ady/ox} =1} # 0.

Prodf: If max{oy/dx} = lisvalid for asingle x; []Xp
then acarding to the definition of Bodean derivatives, y
= ¥;. In this case the same value of x; occurs on the output
(or inverted value if x is inverted). Suppcse now that
there ae more than one literals x; O xp satisfying the
condition max{ dy/dx} = 1. In other words, it means there
are more than one cnverging paths in the network which
propagate transitions towards the output. If two paths are
converging, either AND or OR of multiple values from
{& h, U} is posshle. From the equivalence of operations
AND and OR on the set {¢, h, U}, it follows that the
value of y can be cdculated as the function of AND (or
OR) of valuesx; 0 xp n {x| max{dy/ox} = 1}. g

Consider, for example, atransition patterng=k=m=
1, h = ¢ at the input of the drcuit in Fig 1. By cdculating
Bodean derivatives, we find: oy/oh;,s = hyoss and
W/(?ﬂ1257 = _|h124. Since h124 and h1257 have dynarﬂic
values hijos = hyos7 = h = €, the cdculation of Boolean
derivative is impossible. On the other hand, since
max{ dy/dhioab = max{ dy/dhios7 = 1, and since o N {X|
max{ dylox} = 1} = {his, “hios7, We have 'y = hypy O
=hs7= € 0= € =U. The value U on the output of the
subcircuit in Fig.1 means the possbility of a glitch at the
given transition pattern.

Theorem 2: Given |[xp| > 1 at input pattern X' = (X', X5,

X, . X) where X 0°S;, and asubset x*p 0 xp where

Ox Ox*p: (max{dy/ox} =1) & (d(x - y) =4), (3)
there gpeas a transition on the output of a drcuit y =

P(Xy, X9, ... X, ... %) With the value
y= 0 % 4
X O X*p

at timet, + A where 4, iscdculated by formula (1).
Proof: Suppase there exist at least two inputs X;, X O
X*p with corresponding paths L(x) = (9i1, G2, --- Gin) @nd
L(%) = (91, G2, .. Gm) through the drcuit. Suppose they
have ajoint path L(gi) = (i1, Gi2y ---0ik1) Starting from
the output of a gate g = gy , k>0, with the transition
delay 7 = d(gip) + d(gi2) + ...+ d(@ik1). From (3) it fol-
lows that the transitions evoked at the inputs X, X reat
the inputs of the gate g« at the same moment ty.; = t, +
(4 - T - d(gy). On the other hand, from the cndition X,
X, 0 %o n{xOmax{ dy/dx} = 1} and Lemma 1, it follows
that the value of the signal at timet, =t, + 4 - T on the
output of the gate g belongs to the set { &, h, U}, which
means a transition (where U is a possble glitch). Since
the path L(g;,) isalso adivated due to (3), the transition
propagates to the output and shows itself at time t.1 +

d(gW + T=t+ (A -T-d(@w) + d@W) + T =+ L. m

Corollary: From Theorems 1 and 2 the following
algorithm can be derived for timing simulation based on
cdculating Bodean derivatives of equivalent parenthesis
forms.

Algoritm 1.
1. Caculate dy/dx; for x O xp for the given transition X'
2. Takethelowest value of 4 = d(x - V).

If oyldx =1 fix the new value of y for timet, + A;.

Use formula (2) to chedk if aglitch is present.

Remove x; from Xp.

3. Ifxp =0, stop, elsereped step 2

4. Timing simulation on SSBDDs

A structurally synthesized BDD G,=(M,I,X) with a
set of nodes M and a mapping I from M to M is a BDD
which represents an equivalent parenthesis formy = P(x)
of a gate-level network. The set of nodes consists of a
subset of nonterminal nodes MV and o a subset of
terminal nodes M"; M = MY [ M". There ae one initial
node my 7 MM and two termina nodes m™® O M,
e{0,1}, in M. A oneto-one @rrespondence «ists
between nonterminal nodes m O MM and the literals x, O
X. The nodes m O M" are labeled by subscripted input
variables (or the inverted variables) which identify a path
from the input to the output of the network. The terminal
nodes m® 0 M" are labeled by constants e[}{0,1}. The
literal x;, O X which is associated with the node m is
denoted by x(m). The mapping I defines the set of edges
between the nodes of M whereas I(m) [J M is a set of
successors of m, and m® O (m) is the successor of m for
the value x(m) = e. A pattern X' defines a set of adivated
edges in G,. The elge between m and m® is adivated
when x(m) = e in the pattern X'. Activated edges which
conned nodes m and my make up an adivated path I(m,
m). The path I(m, m) consists of nodes M(m, my) JJ M.
An adivated path |(my, m") is cdled afull adivated path.

Definition 2 A SBDD G, = (M,I,X) represents an
equivaent parenthesis form y = P(X) of a gate-level
network, iff for ead pattern X' a full path [(mp, m™®) in Gy
will be adivated wherey = e.

Two-valued test pattern simulation on SBDDs is
equivalent to path tradng procedure on graphs acwording
to the values of variables at a given test pattern. At a
given pattern X, in a S8BDD G, a full path [(me,m") will
be adivated which determines the value of y = x(m'). The
simulation procedure will consist of tradng the path
I(m,m") and finding the value of x(m') at the terminal
nodem'.

For multi-valued simulation, a procedure based on
cdculation of Boolean derivatives on SBDDs will be now
described. Denote I(m,m) = 1, if there exists an adivated
path between the nodes m and my at the given pattern X,
otherwise, [(m,my) = 0.



Theorem 3: Giveny = P(x) and x [J X, the condition
dy/dx; =1 for SSBDD G, = (M,[",X) where x(m) = x is
equivalent to the foll owing equation:

[(Me,m) OI(m*, m™) OI(m°, m™) = 1. (5)
The proof of the theorem can be found in [6].

Note, Theorem 3 can be used for cadculating Boolean
derivatives dy/dx only in the case where pattern X' is two-
valued, because only in this case dl the paths |(m,m) are
adivated uniquely. In the general case, when X' is a multi-
valued pattern, to check the existence of a glitch, we have
to generalize eyuation (5). The generalized case based on
maximums of Boolean derivativesis considered in [6].

3 3
y (D) —(m)—> 1
+(®) ®
o
Figure 2: SSBDD for the circuit in Figure 1

Using SSBDDsiit is possble to considerably speed up
the cdculations described in Algorithm 1 because it is not
needed to trace d pathsin equation (5) for ead x; [ Xp.

Node Path Delay Pattern
g 9,421y 3 h (10)
h, h 4,21y 3 £(0)

-h, | h 7521y 4 h (10)
kq k,5,2,1y 3 0
m h 31y 2 1

-k, |k 631y 3 £(01)

Table 2: Signal paths and delays of the example

Example: An example of SSBDD for the drcuit in
Fig.1 is represented in Fig.2. The nodes of the graph, the
corresponding paths in the drcuit, and the path delays
cdculated by equation (1) are depicted in Table 2 (here
we asme that all the gates have aunit delay).

Consider a transition pattern gven in Table 2. The
bad arrows (in Fig. 2) mark the adivated path in the
graph before the transition. The shaded nodes are those
involved in the transition, i.e. where the diredion of the
adivated path changes. For the nodes g and h; we have
max{ oy/dg} = max{dy/ch;} = 1[5]. Using the formula (2)
we find that g Oh; = h O &= U which means that at time't
=3 we may have aglitch on the output of the drcuit.

5. TheTiming Simulation Algorithms

Using the SBDD model gives us the posshility to
minimize the number of maao inputs to be processed as
well as the possibility to use some SEBDD fedures in
order to increase the timing simulation efficiency.

In this edion we describe several implementations of
the Algorithm 1 on the SSBDD model. First, the general
algorithm is given, then we describe the single and dauble
stadk based approaches.

Given a set of multi-valued input patterns X' at the
input of a maao SBDD Gy=(M,I",X), and a set of delays
A={d°(m)| mOM, e}{ g,h}} . Certain values for both raise
dé(m) and fall d"(m) delays are spedfied for eah node.
We denote avariable in the node m as x(m). The output
of the dgorithm is a single waveform for the output of
eathh maao. The waveforms dow al the transitions
taking placethere.

The general ideais as foll ows. Let the current moment
of time be t, and the arrent pattern applied X. We ae
traversing the adivated (before the transition) path
[(me,m") in the graph from the initial node m, to one of the
terminal nodes m" and chedking if x(m)Oxp in order to
find the node with transition that has the minimal delay
dmin. The transition in this node is the first transition that
may influence the maao’'s output. It will happen at the
moment t=t+dy, iff max{dy/d(x(m))}=1. When the
node isfound, the current timet, is changed to t,+dqp.

Our task now is to find the next dy;,. We go bad to
the initial node and traverse the path from the beginning
takinginto acaunt that one of the values has already been
changed. However, as we ae probably traversing a new
path, we @an find a node with delay that is smaller or
equal to the previous d,,. This means that the transition
in that node has also taken place ad it is not interesting
anymore. In general, we ae not interested in al delays
d°(m)<t,. Suppcse, we ae in mode m, Xx(m)OXp,
somewhere in the middle of the path. The delay here is
d(m) and somewhere before (along the path I(my, m)) we
have drealy found the next minimum delay d,. Then we
will update the d;, with d(my) iff t,<d*(m)<dyn.

After we have readied a terminal node ajain, we ae
cheding if it is a different one from the previoudly rea
ched termina node. If it is, we put the new transition to
the output waveform labeling it with the current moment
of time. We ontinue the graph traversal procedure until
no dyir>ty is found. This means that all the transitions
(which have influence to the maao output) in the maao
have drealy taken place ad the next vedor should be
taken. When al the vectors have been simulated for the
given maao, a new maao is taken. The whole process
stops when the whale drcuit has been finished.

The &ove was the description of the general SSBDD-
based timing simulation algorithm, which uses no stack.
Note that in some caes we do not neal to chedk al the
nodes in the graph becaise those nodes will never lie on
an adivated peth. To make the procedure es/en more
efficient, we use astac to store every encountered node
along the path, with the delay which was taken as dp.
Using the stack we have no need to begin path traversal
from the initial node every time. We can return to the last



node my taken from the stack and take the d(my) as the
next d.,, and update it further as we start moving forward.

In the following we give the description of a single
stadk-based algorithm step by step.

Algorithm 2.
1. Initidization: t=0, d;,=0, i=0, ptr=0, stack(ptr).node=0,
stack(ptr).time=0, maao ouput is undefined;
2. If t<d®(m) go to 3. Otherwise take i as the index of m if
x(m)={h,0} or astheindex of m*if x(m)={ 1}, goto 7;
3. If x(m)Oxp go to 4. Otherwise take i as the index of n if
x(m)={ &0} or astheindex of m*if x(m)={h,1}, goto 7;
If ptr=0 or d*(m)<stack(ptr).time go to 5. If not, go to 6;
ptr=ptr+1, stack(ptr).time= d%(m), stack(ptr).node=i;
Takei astheindex of m° if x(m)=¢ or as the index of m'" if
x(m)=h;
7. If misnot oneof theterminal nodes go to 2. If not, go to 8;
8. If macro ouput is different from the value of the terminal
node we have mme to, update maao ouput with the new
transition and label it with timet;
9. If ptr=0 stop, otherwise go to 10;
10. t=stack(ptr).time, i=stack(ptr).node, ptr=ptr-1, dmn,=
stack(ptr).time, go to 2;

o o s

Example: In Fig. 3 an example to illustrate the
algorithm is given for the SSBDD in Fig. 2. The input
pattern and the delays are the same @& in Table 2. We start
from the node g and go to the node h;. As the stack was
empty and g had a transition at the given moment of time
we put g and its delay into the stadk. The node h; has a
transition but the delay in it is not smaller than that in g.
So we ontinue moving forward without updating the
stadk. The nodes h, and k; have no transitions this time.
We just passthem by. Finally we read the terminal hode
m"°. So theiinitial value & the output y will be 0.

We get badk to the node taken from the stadk (it is g)
and go to another diredion (the value in g has been
changed). The arrent moment of time is 3 now. The node
h, has a transition and the transition time is greaer than
the aurrent moment of time. As the stack is empty again,
we put h, and the delay into the stadk and move forward.
Finaly again we reach the same terminal node. So, the
output is gable. Again we get bad to the node h, taken
from the stack and reat the same terminal node, which
means no change of the value on the output. Since the
stadk is empty now, the cdculation terminates.

O OO ONEE
(:)—> y=0

y=0

Figure 3: Single stack based timing simulation
for the SSBDD in Figure 2

Note that despite node k, has a transition, we did not
examine this maao input at al. That is, we have to chedk
al of the maao inputs and cdculate derivatives for all
x(m)Oxp only in the worst case.

In Algorithm 2 and the example &ove we use astack
to return ead time not to the very beginning of the graph
but exadly to the node with the next transition. However,
not every transition along the adivated path can influence
the output of the maao. In the following we give a1 idea
how to improve the Algorithm 2 by using this feature.

Given an input pattern that adivates a full path I(my,
m'®), which consists of the nodes M(m,, m"™®). We
designate M®(mp, M%) = { m| m O M", m O M(mp, m"®),
x(m) = e, e){0, 1} } the set of al nonterminal nodes along
the path which hold the value e. Similarly, the set of all
the nodes along the path which hold the value -e are
designated M™%(mo, m™®) = { m | m O M", m O M(m,
m"®), x(m) = - e, e{0, 1} }. In other words we divide dl
the nodes along the ativated path into two subsets. First
one M%my,, m™®) contains al the nodes which hold the
current value 0 and another one M*(mo, m™®) contains all
the nodes which hold the value 1. Terminal node m"®
does not belong to any of the two subsets. If the aurrently
readed terminal node is m"° then it is known that transi-
tions in all the nodes m O M*(my,, m™®) do not affed the
output value (taking a new path, we will still read the
node m"%), and vise versa, for the node m"* no transitions
in nodes m O M%(my, m"™) can affedt the output.

The aove statement shows clealy that, standing in
the terminal node m", we should consider only the nodes
m O M®(my, m™®) as the potential sources of influence on
the maao output. Therefore, we introduce aminor change
to the Algorithm 2 using two dfferent stacks for the
nodes of M°(mo,, m™) and M*(m,, m™®). Standing each
time & the terminal node we ced only the dedicaed
stack for the next transition to simulate it. If there ae
some transitions in another stad, they will be left not
simulated because they cannot affed the maao autput.
That is, we have to simulate dl the nodes with transitions
on the arrent adive path only in the worst case.

However, certain operations and comparison of data
between two stacks should be alded to make the
algorithm work well. This generates ssme overheal and
in the worst case the double-stack-based agorithm may
work slower than the single-stadk-based one. This gave us
an ideato try to use the two-stack approach only for
finding the next moment of time but starting the traversal
procedure from the initial node my. This helps us to avoid
considerably time-consuming procedure of stack update.
This means that we can win the time needed for stack
update, but we lose the time needed for the path traversal
from the beginning.

For different circuits all the three &gorithms should
give different results. It islogicd to suppacse that the ssim-



pler algorithms should work faster for smaller maaos but
for bigger ones phisticated stack-based algorithms can
give better results. In the next sedion we will il lustrate
this datement by experimental data but now let us give an
exampleto illustrate the two-stacks-based algorithm.

Example: Consider the same SBDD, the same input
pattern, and the same delays as in the last example. Simi-
larly, we begin with the node g and traverse the adivated
path until the end but, differently from the single stack
case, we store the node g in one stack and the node h; in
another. We do not put nodes h, and k; into the stadks si-
milarly to the previous example. Finaly we read the ter-
minal node m"?. So, theiinitial value & the output y is 0.

In this case, only nodes with transitions 0 to 1 can
affect the maao output. So, we have to check the
corresponding stack. We find the node h; in this gack and
go badk to this node. However, at this point we cainot
continue the graph traversal before we have decked
another stack to seeif it has a node which stands closer to
the initial node and has a delay smaller than or equal to
the delay in the node h;. If there is such a node in another
stadk we have to go further to this node. This is the point
where the overhead of processng of stadksis added.

In another stack we find node g with the delay equal
to the delay in hy, so we move further to node g and start
the traversal of newly adivated path from that point. Both
stadks are empty again. Asthe node h; has a transition
and the delay is greder than the aurrent moment of time,
we put it into one of the stadks. Node k; does not have a
transition, so we passit by and come to the same terminal
node (again y=0).

We look at the stadk, which corresponds to the
situation where y=0 and find it to be empty. This means
that the smulation is over. In Fig. 4 an illustration of the
algorithm’s work is given. Compared to the single-stack-
based agorithm (Fig. 3) it has one step less.

y—> @ y=0

Figure: 4. Double-stack based timing simulation
for the SSBDD in Figure 2
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Figure: 5, 6. Comparison of simulation times of
different algorithms (single-bit transition mode)

6. Experimental data

Experiments were caried out using two dfferent
types of benchmarks. The ISCAS 85 circuits were chosen
since they are widely adopted benchmarks. However, the
efficiency of simulation is highly dependent on the
number of levels and on the number of gates in tree-like
subcircuits represented by graphs. Therefore, we have
also used 5treelike drcuits with numbers of levels from
2 to 10 (numbers of gates from 3 to 1023. And we used
two dfferent input pattern generation modes. with a
single and multi ple bit transitions allowed on inputs at the
same time. Experimental results presented below clealy
show a noticedle spead-up of our approach.

The results for treelike drcuits are illustrated for the
case of single transitions in Fig. 5 and 6 and for the case
of multiple transitions in Fig. 7 and 8. Simulation time is
given in secnds for 30000random patterns. In our work
we measured simulation time on both maao and gate
levels. Note that the ssmulation time grows exponentiall y
with the number of levels at the gate level (Fig. 5). The
simulation time & the maao level (our approach) grows
much slower (Fig. 5) but also not linealy (as shown in
Fig. 6 with a more detail ed timing scde). In Fig. 6 all the
four maao-level algorithms are shown. However, there is
no noticeale differencein simulation time between them.

For the multiple-bit change input pattern generation
mode there is a noticedle difference in speal for the
maao-level timing simulation algorithms (Fig. 8). The
double-stack-based algorithm (lower thin line) is the
fastest for this case and the dgorithm with no stack (upper
bald line) is the slowest. The timing ssimulation at the gate
level nedls the time (dashed line in Fig. 7) that grows
again much faster than the time our approach requires.

Experimental results on 1ISCAS 85 benchmarks are
given in Table 3. The first two rows show names and
sizes of the benchmarks. The third row in the table
indicaes the two modes for pattern generation by S and
M respedively. The time for 10000 input patterns
simulation is given in seconds in the rows 4 to 8. Rows 4
to 7 correspond to the four maao-level algorithms and
row 8 corresponds to a gate-level simulation. Rows 9 to
12 in the table (G/M Ratio) show the efficiency of the
four maao-level simulation algorithms compared to the
gate-level smulation algorithm. The best simulation times
and speedups are shown in bald.
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Circuit 1| 432 | c499 | 880 | c1355 | c1908 | 2670 | 3540 | 5315 | 6288 | c7552
Number of Gates 2| 232 618 357 514 718 097 | 1446 | 1994 | 2416 | 2978
Pattern GenerationMode [ 3| S [M | S |[M|s|M|s|M|s|M|s|M|[s|M|s|M|[s|M]|s|m
No Stack 4 [0,77]1,49|1,71]3,38[1,34|2,52|2,81]5,17]2,32[4,49|3,80] 7,85(3,63]8,69|6,18] 15,2[30,8] 1398 88]24,4
S'Tmu'af]flon Singlestack | 5 | 0,86|1,47|1,93|3,73[1,532,56|3,41]5,76|2,69] 4,71|4,64|8,21|4,26[ 8, 71| 7,36] 15,4|32,3] 133[10,7[24,5
Imertor
10000 |Poublestad | 6 10,80]1,37|1,79]3,77]1,33|2,40]2,94/5,20|2,36|4,50]4,02| 7,663, 78] 8,42[ 6 55| 15,1]31,6] 141]9,22]23,7
Paf‘(tgms ngs dztséad(' 7 |0,79|1,46|1,80|3,53|1,38|2,58|2,94|5,44|2,34| 4,59|4,01|8,00|3,78|8,81|6,43| 15,6|33,0| 152{9,26|24,7
Gatelevel 8 12,16]3,32[5,30[9,83|3.26]5,19] 4,86|8,38]6,98] 11,5]9,24] 15,9] 12,9 23.6| 20,1[37,7]58.7] 272[28,0[57.1
No Stac 9 [2,81]2,23]3,10[2,91]2,43]2,06] 1,73]1,62|3,01] 2,57| 2,43[2,03] 3, 54| 2, 72[ 3,26 2,47] 1,90] 1,95] 3,15 2,34

Singlestadk | 10]2,51|2,26(2,75|2,64]|2,13|2,03|1,43|1,45|2,59|2,45|1,99|1,94(3,02(2,71|2,73|2,44(1,82| 2,04]| 2,60| 2,32

G/M Ratio [poype stad |11 2,70|2,42|2,96|2,61(2,45|2,16|1,65|1,61(2,96|2,56|2,30| 2,08|3,40(2,81|3,07|2,50|1,86|1,92(3,03| 2,41

Doube stadk,

no update 12|2,73|2,27|12,94|2,78(2,36|2,01|1,65|1,54(2,98|2,51]2,30| 1,99| 3,40( 2,68 3,13| 2,42|1,78|1,78(3,02| 2,31

Table 3: Experimental results

Note that the double stackk-based and no stack-based
algorithms give the best results. However, there is no big
difference between the four algorithms but there is ill a
greda speedup compared to the gate-level algorithm. The
spead of simulation based on the proposed method
incresses up to 354 times for patterns with single
transition and up to 2,91 times for patterns with multiple
transitions.

For al the experiments we used a Sun Ultra 10
workstation with 440 MHz UltraSparc — Ili processor,
256 MB RAM, and SunOS5.7.

7. Conclusions

A new approach to speed up gate-level timing
simulation is proposed where, instead of gate delays, path
delays for treelike subcircuits (maaos) represented by
SBDDs are used. SBDDs capture the structure of a
circuit whereas conventional BDDs does not allow that.
At the same time, using SSBDDs for representing maaos
avoids exponential explosion of the model complexity.
The number of paths in the drcuit procesed by delay
cdculation isalinea function of the number of gates.

Experiments were caried out on the ISCAS' 85 bench-
marks with the number of gates up to about 3000. The
linea feaure of the model complexity alows efficient
simulation of complex redi stic combinational circuits.

Four algorithms for this approach were implemented
and their efficiencies compared. The timing simulation
spead at the macao-level is up to 354 times faster
compared to the gate-level simulation for the investigated
set of ISCAS'85 kenchmark circuits. The best among the
maao-level agorithmsisthe double-stack based one.

The high spead of simulation is achieved on the st
of some loss of smulation data Instead of the dl
waveforms for all nodes of the gate-level network, only
the waveforms for the outputs of maaos are cdculated.

This smplificaion is nevertheless acceptable for most
industrial applicaions of timing simulation.
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