
Abstract

We present an approach to bus access optimization and
schedulability analysis for the synthesis of hard real-time dis-
tributed embedded systems. The communication model is
based on a time-triggered protocol. We have developed an
analysis for the communication delays proposing four differ-
ent message scheduling policies over a time-triggered commu-
nication channel. Optimization strategies for the bus access
scheme are developed, and the four approaches to message
scheduling are compared using extensive experiments.

1. Introduction
In this paper we concentrate on bus access optimization and

schedulability analysis for the synthesis of embedded hard real-
time systems which are implemented on distributed architectures
consisting of multiple programmable processors and ASICs.
Process scheduling is based on a static priority preemptive
approach while the bus communication is statically scheduled.

Process scheduling for performance estimation and synthe-
sis of embedded systems has been intensively researched in
the last years. Preemptive scheduling of independent proc-
esses with static priorities, running on single processor archi-
tectures has its roots in [8]. The approach has been later
extended to accommodate more general computational models
and has been also applied to distributed systems [17, 20].
Static non-preemptive scheduling of a set of processes on a
multiprocessor architecture has been discussed in [4, 5]. Sev-
eral approaches consider architectures consisting of a single
programmable processor and an ASIC. Under such circum-
stances deriving a static schedule for the software component
practically means the linearization of the dataflow graph [3].

Although different scheduling strategies have been adapted
to accommodate distributed architectures, researchers have
often ignored or very much simplified aspects concerning the
communication infrastructure. One typical solution is to con-
sider communication tasks as processes with a given execution
time (depending on the amount of information transferred)
and to schedule them as any other process [4, 20], without con-
sidering issues like communication protocol, bus arbitration,
packaging of messages, and clock synchronization.

Previous works related to communication synthesis, like [1,
2, 6, 10, 11], are dealing with lower level aspects of hardware-
software communication and are not addressing problems spe-
cific to distributed real-time embedded systems, based on par-
ticular communication protocols.

Currently, more and more real-time systems are used in phys-
ically distributed environments and have to be implemented on
distributed architectures in order to meet reliability, functional,
and performance constraints. Thus, in order to guarantee that
real-time requirements are fulfilled, schedulability analysis has

been done for some communication protocols [16, 18].
In this paper we consider the time-triggered protocol (TTP)

[7] as the communication infrastructure for a distributed real-
time system. Processes are scheduled according to a static pri-
ority preemptive policy. TTP is well suited for safety critical
distributed real-time embedded systems and represents one of
the emerging standards for several application areas like, for
example, automotive electronics [19].

Our first contribution is to develop the schedulability anal-
ysis in the above context, considering four different
approaches to message scheduling. After this, as a second con-
tribution, we show how the bus access scheme can be opti-
mized in order to fit the communication particularities of a
certain application.

In [12] we have addressed the issue of non-preemptive static
process scheduling and communication synthesis using TTP.
However, considering preemptive priority based scheduling at
the process level, with time triggered static scheduling at the
communication level can be the right solution under several cir-
cumstances [9]. A communication protocol like TTP provides
a global time base, and improves fault-tolerance and predicta-
bility. At the same time, certain particularities of the applica-
tion or of the underlying real-time operating system very often
impose a priority based scheduling policy at the process level.

The paper is divided into 7 sections. The next section
presents the architectures considered for system implementa-
tion. The computational model assumed and formulation of
the problem are presented in section 3, and section 4 presents
the schedulability analysis for each of the four approaches
considered for message scheduling. The optimization strategy
is presented in section 5, and the four approaches are evaluated
in section 6. The last section presents our conclusions.

2. System Architecture

2.1 Hardware Architecture
We consider architectures consisting of nodes connected by a
broadcast communication channel. Every node consists of a
TTP controller, a CPU, a RAM, a ROM and an I/O interface to
sensors and actuators. A node can also have an ASIC in order
to accelerate parts of its functionality.

Communication between nodes is based on the TTP [7]. TTP
was designed for distributed real-time applications that require
predictability and reliability (e.g, drive-by-wire). It integrates
all the services necessary for fault-tolerant real-time systems.

The communication channel is a broadcast channel, so a
message sent by a node is received by all the other nodes. The
bus access scheme is time-division multiple-access (TDMA)
(Figure 1). Each node Ni can transmit only during a predeter-
mined time interval, the so called TDMA slot Si. In such a slot,
a node can send several messages packaged in a frame. A
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sequence of slots corresponding to all the nodes in the archi-
tecture is called a TDMA round. A node can have only one slot
in a TDMA round. Several TDMA rounds can be combined
together in a cycle that is repeated periodically. The sequence
and length of the slots are the same for all the TDMA rounds.
However, the length and contents of the frames may differ.

Every node has a TTP controller that implements the proto-
col services, and runs independently of the node’s CPU
(Figure 2). Communication with the CPU is performed
through a so called message base interface (MBI) which is
usually implemented as a dual ported RAM.

The TDMA access scheme is imposed by a so called mes-
sage descriptor list (MEDL) that is located in every TTP con-
troller. The MEDL basically contains: the time when a frame
has to be sent or received, the address of the frame in the MBI
and the length of the frame. MEDL serves as a schedule table
for the TTP controller which has to know when to send or
receive a frame to or from the communication channel.

The TTP controller provides each CPU with a timer interrupt
based on a local clock, synchronized with the local clocks of
the other nodes. The clock synchronization is done by compar-
ing the a priori known time of arrival of a frame with the
observed arrival time. Thus, TTP provides a global time-base of
known precision, without any overhead on the communication.

2.2 Software Architecture
We have designed a software architecture which runs on the
CPU in each node, and which has a real-time kernel as its main
component. Each kernel has a so called tick scheduler that is
activated periodically by the timer interrupts and decides on
activation of processes, based on their priorities. Several activ-
ities, like polling of the I/O or diagnostics, take also place in
the timer interrupt routine.

In order to run a predictable hard real-time application, the
overhead of the kernel and the worst case administrative over-
head (WCAO) of every system call has to be determined. Our
schedulability analysis takes into account these overheads, and
also the overheads due to the message passing.

The message passing mechanism is illustrated in Figure 2,
where we have three processes, P1 to P3. P1 and P2 are mapped
to node N0 that transmits in slot S0, and P3 is mapped to node
N1 that transmits in slot S1. Message m1 is transmitted
between P1 and P2 that are on the same node, while message
m2 is transmitted from P1 to P3 between the two nodes.

Messages between processes located on the same processor
are passed through shared protected objects. The overhead for
their communication is accounted for by the blocking factor,
computed according to the priority ceiling protocol [14].

Message m2 has to be sent from node N0 to node N1. Thus,
after m2 is produced by P1, it will be placed into an outgoing
message queue, called Out. The access to the queue is guarded
by a priority-ceiling semaphore. A so called transfer process
(denoted with T in Figure 2) moves the message from the Out

queue into the MBI.
How the message queue is organized and how the message

transfer process selects the particular messages and assembles
them into a frame, depends on the particular approach chosen for
message scheduling (see Section 4). The message transfer proc-
ess is activated at certain a priori known moments, by the tick
scheduler in order to perform the message transfer. These activa-
tion times are stored in a message handling time table (MHTT)
available to the real-time kernel in each node. Both the MEDL
and the MHTT are generated off-line as result of the schedula-
bility analysis and optimization which will be discussed later.
The MEDL imposes the times when the TTP controller of a cer-
tain node has to move frames from the MBI to the communica-
tion channel. The MHTT contains the times when messages
have to be transferred by the message transfer process from the
Out queue into the MBI, in order to further be broadcasted by the
TTP controller. As result of this synchronization, the activation
times in the MHTT are directly related to those in the MEDL
and the first table results directly form the second one.

It is easy to observe that we have the most favourable situ-
ation when, at a certain activation, the message transfer proc-
ess finds in the Out queue all the “expected” messages which
then can be packed into the just following frame to be sent by
the TTP controller. However, application processes are not
statically scheduled and availability of messages in the Out
queue can not be guaranteed at fixed times. Worst case situa-
tions have to be considered, as will be shown in Section 4.

Let us come back to Figure 2. There we assumed a context
in which the broadcasting of the frame containing message m2
is done in the slot S0 of Round 2. The TTP controller of node
N1 knows from its MEDL that it has to read a frame from slot
S0 of Round 2 and to transfer it into its MBI. In order to syn-
chronize with the TTP controller and to read the frame from
the MBI, the tick scheduler on node N1 will activate, based on
its local MHTT, a so called delivery process, denoted with D
in Figure 2. The delivery process takes the frame from the
MBI, and extracts the messages from it. For the case when a
message is split into several packets, sent over several TDMA
rounds, we consider that a message has arrived at the destina-
tion node after all its corresponding packets have arrived.
When m2 has arrived, the delivery process copies it to process
P3 which will be activated. Activation times for the delivery
process are fixed in the MHTT just as explained earlier for the
message transfer process.

The number of activations of the message transfer and deliv-
ery processes depend on the number of frames transferred, and
they are taken into account in our analysis, as well as the delay
implied by the propagation on the communication bus.
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Figure 1. Bus Access Scheme
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3. Problem Formulation
We model an application as a set of processes. Each process pi
is allocated to a certain processor, has a known worst-case exe-
cution time Ci, a period Ti, a deadline Di and a uniquely
assigned priority. We consider a preemptive execution envi-
ronment, which means that higher priority processes can inter-
rupt the execution of lower priority processes. A lower priority
process can block a higher priority process (e.g., it is in its crit-
ical section), and the blocking time is computed according to
the priority ceiling protocol. Processes exchange messages,
and for each message mi we know its size Smi. A message is
sent once in every nm invocations of the sending process, and
has a unique destination process. Each process is allocated to
a node of our distributed architecture, and the messages are
transmitted according to the TTP.

We are interested to synthesize the MEDL of the TTP con-
trollers (and as a direct consequence, also the MHTTs) so that
the process set is schedulable on an as cheap (slow) as possible
processor set.

4. Schedulability Analysis
Under the assumptions presented in the previous section

Tindell et al. [17] integrate processor and communication
schedulability and provide a “holistic” schedulability analysis
in the context of distributed real-time systems with communi-
cation based on a simple TDMA protocol. The basic idea is
that the release jitter of a destination process depends on the
communication delay between sending and receiving a mes-
sage. The release jitter of a process is the worst case delay
between the arrival of the process and its release (when it is
placed in the run-queue for the processor). The communication
delay is the worst case time spent between sending a message
and the message arriving at the destination process.

Thus, for a process d(m) that receives a message m from a
sender process s(m), the release jitter is:

, where rs(m) is the response
time of the process sending the message, am (worst case arrival
time) is the worst case time needed for message m to arrive at
the communication controller of the destination node, rdeliver
is the response time of the delivery process (see section 2.2),
and Ttick is the jitter due to the operation of the tick scheduler.
The communication delay for a message m is

. am itself is the sum of the access delay and
the propagation delay. The access delay is the time a message
queued at the sending processor spends waiting for the use of
the communication channel. In am we also account for the exe-
cution time of the message transfer process (see section 2.2).
The propagation delay is the time taken for the message to
reach the destination processor once physically sent by the
corresponding TTP controller.

The worst case time, message m takes to arrive at the com-
munication controller of the destination node is determined in
[17] using the arbitrary deadline analysis, and is given by:

, where the

term is the access delay, is the propagation
delay, and Tm is the period of the message.

In [17] an analysis is given for the end-to-end delay of a

message m in the case of a simple TDMA protocol. For

this case, , where

Pm is the number of packets of message m, SP is the size of the
slot (in number of packets) corresponding to m, and Im is the
interference caused by packets belonging to messages of a
higher priority than m. Although there are many similarities
with the general TDMA protocol, the analysis in the case of
TTP is different in several aspects and also differs to a large
degree depending on the policy chosen for message schedul-
ing.

Before going into details for each of the message schedul-
ing approaches, we analyze the propagation delay and the
message transfer and delivery processes, as they do not depend
on the particular message scheduling policy chosen. The prop-
agation delay Xm of a message m sent as part of a slot S, with
the TTP protocol, is equal to the time needed for the slot S to
be transferred on the bus. This time depends on the slot size
and on the features of the underlying bus.

The overhead produced by the communication activities
must be accounted for not only as part of the access delay for
a message, but also through its influence on the response time
of processes running on the same processor. We consider this
influence during the schedulability analysis of processes on
each processor. We assume that the worst case computation
time of the transfer process (T in Figure 2) is known, and that
it is different for each of the four message scheduling
approaches. Based on the respective MHTT, the transfer proc-
ess is activated for each frame sent. Its worst case period is
derived form the minimum time between successive frames.

The response time of the delivery process (D in Figure 2),
rdeliver, is part of the communication delay. The influence due to
the delivery process must be also included when analyzing the
response time of the processes running on the respective proc-
essor. We consider the delivery process during the schedulabil-
ity analysis in the same way as the message transfer process.

The response times of the communication and delivery
processes are calculated, as for all other processes, using the
arbitrary deadline analysis from [17].

The four approaches we have considered for scheduling of
messages using TTP differ in the way the messages are allocat-
ed to the communication channel (either statically or dynami-
cally) and whether they are split or not into packets for
transmission. The next subsections present an analysis for these
approaches as well as the degrees of liberty a designer has, in
each of the cases, when synthesizing the MEDL.

4.1 Static Single Message Allocation (SM)
The first approach to scheduling of messages using TTP is to
statically (off-line) schedule each of the messages into a slot of
the TDMA cycle, corresponding to the node sending the mes-
sage. We also consider that the slots can hold each at maximum
one single message. This approach is well suited for application
areas (like automotive electronics) where the messages are typi-
cally short and the ability to easily diagnose the system is critical.

As each slot carries only one fixed, predetermined message,
there is no interference among messages. If a message m misses
its slot it has to wait for the following slot assigned to m. The
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access delay for a message m in this approach is the maximum
time between consecutive slots of the same node carrying the
message m. We denote this time by Tmmax, illustrated in Figure 3.

In this case, the worst case arrival time am of a message m
becomes Tmmax+ Xm. Therefore, the main aspect influencing
the schedulability analysis for the messages is the way the
messages are statically allocated to slots, resulting different
values for Tmmax. Tmmax, as well as Xm, depend on the slot
sizes which in the case of SM are determined by the size of the
largest message sent from the corresponding node, plus the
bits for control and CRC, as imposed by the protocol.

During the synthesis of the MEDL, the designer has to allo-
cate the messages to slots in such a way that the process set is
schedulable. Since the schedulability of the process set can be
influenced by the synthesis of the MEDL only through the
Tmmax parameters, these parameters have to be optimized.

Let us consider the simple example depicted in Figure 4,
where we have three processes, p1, p2, and p3 running each on
different processors. When process p1 finishes executing it
sends message m1 to process p3 and message m2 to process p2.
In the TDMA configuration presented in Figure 4 a), only the
slot for the CPU running p1 is important for our discussion and
the other slots are represented with light gray. With this con-
figuration, where the message m1 is allocated to the rounds 1
and 4 and the message m2 is allocated to rounds 2 and 3, proc-
ess p2 misses its deadline because of the release jitter due to
the message m2 in round 2. However, if we have the TDMA
configuration depicted in Figure 4 b), where m1 is allocated to
the rounds 2 and 4 and m2 is allocated to the rounds 1 and 3,
then all the processes meet their deadlines.

4.2 Static Multiple Message Allocation (MM)
This second approach is an extension of the first one. In this
approach we allow more than one message to be statically
assigned to a slot, and all the messages transmitted in the same
slot are packaged together in a frame. In this case there is also no
interference, so the access delay for a message m is the same as
for the first approach, namely, the maximum time between con-
secutive slots of the same node carrying the message m, Tmmax.

However, this approach offers more freedom during the
synthesis of the MEDL. We have now to decide also on how

many and which messages should be put in a slot. This allows
more flexibility in optimizing the Tmmax parameter. To illus-
trate this, let us consider the same example depicted in Figure
4. With the MM approach, the TDMA configuration can be
arranged as depicted in Figure 4 c), where the messages m1
and m2 are put together in the same slot in the rounds 1 and 2.
Thus, the deadline is met, and the release jitter is further
reduced compared to the case presented in Figure 4 b) where
the deadlines were also met but the process p3 was experienc-
ing large release jitter.

4.3 Dynamic Message Allocation (DM)
The previous two approaches have statically allocated one or
more messages to their corresponding slots. This third
approach considers that the messages are dynamically allo-
cated to frames, as they are produced.

Thus, when a message is produced by a sender process it is
placed in the Out queue ordered according to the priorities of
the messages. At its activation, the message transfer process
takes a certain number of messages from the head of the Out
queue and constructs the frame. The number of messages
accepted is decided so that their total size does not exceed the
length of the data field of the frame. This length is limited by the
size of the slot corresponding to the respective processor. Since
the messages are sent dynamically, we have to identify them in
a certain way so that they are recognized when the frame arrives
at the delivery process. We consider that each message has sev-
eral identifier bits appended at the beginning of the message.

Since we dynamically package the messages into frames in
the order they are sorted in the queue, the access delay to the
communication channel for a message m depends on the
number of messages queued ahead of it.

The analysis in [17] bounds the number of queued ahead
packets of messages of higher priority than message m, as in
their case it is considered that a message can be split into pack-
ets before it is transmitted on the communication channel. We
use the same analysis, but we have to apply it for the number
of messages instead that of packets. We have to consider that
messages can be of different sizes as opposed to packets which
always are of the same size.

Therefore, the total size of higher priority messages queued
ahead of a message m in a window w is:

 where Sj is the size of the

message mj, rs(j) is the response time of the process sending
message mj, and Tj is the period of the message mj.
Further, we calculate the worst case time that a message m
spends in the Out queue. The number of TDMA rounds
needed, in the worst case, for a message m placed in the queue
to be removed from the queue for transmission is

 where Sm is the size of the message m and Ss is

the size of the slot transmitting m (we assume, in the case of
DM, that for any message x, ). This means that the
worst case time a message m spends in the Out queue

is given by , where TTDMA is the time

taken for a TDMA round.
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To determine the term that gives the access
delay (see Section 4), is determined, using the arbitrary
deadline analysis, as being:

. Since the size of

the messages is given with the application, the parameter that
will be optimized during the synthesis of the MEDL is the slot
size. To illustrate how the slot size influences the schedulabil-
ity, let us consider the example in Figure 5 a), where we have
the same setting as for the example in Figure 4 a). The differ-
ence is that we consider message m1 having a higher priority
than message m2, and we schedule dynamically the messages
as they are produced. With the TDMA configuration in Figure
5 a) message m1 will be dynamically scheduled first in the slot
of the first round, while message m2 will wait in the Out queue
until the next round comes, thus causing the process p2 to miss
its deadline. However, if we enlarge the slot so that it can
accommodate both messages, message m2 does not have to
wait in the queue and it is transmitted in the same slot as m1.
Therefore p2 will meet its deadline, as presented in Figure 5 b).
However, in general, increasing the length of slots does not nec-
essarily improve the schedulability, as it delays the communi-
cation of messages generated by other nodes.

4.4 Dynamic Packets Allocation (DP)
This approach is an extension of the previous one, as we allow
the messages to be split into packets before they are transmitted
on the communication channel. We consider that each slot has a
size that accommodates a frame with the data field being a mul-
tiple of the packet size. This approach is well suited for the appli-
cation areas that typically have large message sizes, and by
splitting them into packets we can obtain a higher utilization of
the bus and reduce the release jitter. However, since each packet
has to be identified as belonging to a message, and messages
have to be split at the sender and reconstructed at the destination,
the overhead becomes higher than in the previous approaches.

For the analysis we use the formula from [17] which is
based on similar assumptions as those for this approach:

, where Pm is the

number of packets of message m, SP is the size of the slot (in
number of packets) corresponding to m, and

, where Pj is the number

of packets of a message mj.
In the previous approach (DM) the optimization parameter

for the synthesis of the MEDL was the size of the slots. Within
this approach we can also decide on the packet size, which
becomes another optimization parameter. Consider the exam-
ple in Figure 5 c) where messages m1 and m2 have a size of 6
bytes each. The packet size is considered to be 4 bytes and the
slot corresponding to the messages has a size of 12 bytes (3
packets) in the TDMA configuration. Since message m1 has a
higher priority than m2, it will be dynamically scheduled first
in the slot of the first round, and it will need 2 packets. In the
remaining packet, the first 4 bytes of m2 are scheduled. Thus,
the rest of 2 bytes from message m2 have to wait for the next
round, causing the process p2 to miss its deadline. However, if
we change the packet size to 3 bytes, and keep the same size
of 12 bytes for the slot, we now have 4 packets in the slot cor-
responding to the CPU running p1 (Figure 6 d). Message m1
will be dynamically scheduled first, and will take 2 packets
from the slot of the first round. This will allow us to send m2
in the same round, therefore meeting the deadline for p2.

In this particular example, with one single sender processor
and the particular message and slot sizes as given, the problem
seems to be simple. This is, however, not the case in general.
For example, the packet size which fits a particular node can
be unsuitable in the context of the messages and slot size cor-
responding to another node. At the same time, reducing the
packets size increases the overheads due to the transfer and
delivery processes.

5. Optimization Strategy
Our problem is to analyze the schedulability of a given process
set and to synthesize the MEDL of the TTP controllers (and
consequently the MHTTs) so that the process set is schedula-
ble on an as cheap as possible architecture. The MEDL is syn-
thesized according to the optimization parameters available
for each of the four approaches to message scheduling dis-
cussed before. In order to guide the optimization process, we
need a cost function that captures the “degree of schedulabil-
ity” for a certain MEDL implementation. Our cost function is
a modified version of that in [15]:

where n is the number of processes in the application, Ri is the
response time of a process pi, and Di is the deadline of a proc-
ess pi. If the process set is not schedulable, there exists at least
one Ri that is greater than the deadline Di, therefore the term
f1 of the function will be positive. In this case the cost function
is equal to f1. However, if the process set is schedulable, then
all Ri are smaller than the corresponding deadlines Di. In this
case f1 = 0 and we use f2 as the cost function, as it is able to
differentiate between two alternatives, both leading to a sched-
ulable process set. For a given set of optimization parameters
leading to a schedulable process set, a smaller f2 means that we
have improved the response times of the processes, so the
application can be potentially implemented on a cheaper hard-
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ware architecture (with slower processors and/or bus). The
release time Ri is calculated according to the arbitrary deadline
analysis [17] based on the release jitter of the process (see sec-
tion 4), its worst-case execution time, the blocking time, and
the interference time due to higher priority processes.

For a given application, we are interested to synthesize a
MEDL such that the cost function is minimized. We are also
interested to evaluate in different contexts the four approaches
to message scheduling, thus offering the designer a decision
support for choosing the approach that best fits his application.

The MEDL synthesis problem belongs to the class of com-
binatorial problems, therefore we are interested to develop
heuristics that are able to find accurate results in a reasonable
time. We have developed optimization algorithms correspond-
ing to each of the four approaches to message scheduling. A
first set of algorithms is based on simple and fast greedy heu-
ristics. A second class of heuristics aims at finding near-opti-
mal solutions using the simulated annealing (SA) algorithm.

The greedy heuristic differs for each of the four approaches
to message scheduling. The main idea is to improve the
‘degree of schedulability’ of the process set by incrementally
trying to reduce the release jitter of the processes.

The only way to reduce the release jitter in the SM and MM
approaches is through the optimization of the Tmmax parame-
ters. This is achieved by a proper placement of messages into
slots (see Figure 4).

The OptimizeSM algorithm presented in Figure 6, starts by
deciding on a size (sizeSi) for each of the slots. There is noth-
ing to be gained by enlarging the slot size, since in this
approach a slot can carry at most one message. Thus, the slot
sizes are set to the minimum size that can accommodate the
largest message sent by the corresponding node.

Then, the algorithm has to decide on the number of rounds,
thus determining the size of the MEDL. Since the size of the
MEDL is physically limited, there is a limit to the number of
rounds (e.g., 2, 4, 8, 16 depending on the particular TTP controller
implementation). However, there is a minimum number of rounds

min_rounds that is necessary for a certain application, which
depends on the number of messages transmitted. For example, if
the processes mapped on node N0 send in total 7 messages, then
we have to decide on at least 7 rounds in order to accommodate
all of them (in the SM approach there is at most one message per
slot). Several numbers of rounds, rounds_no, are tried out by the
algorithm starting from min_rounds up to max_rounds.

For a given number of rounds (that determine the size of the
MEDL) the initially empty MEDL has to be populated with
messages in such a way that the cost function is minimized. In
order to apply the schedulability analysis that is the basis for
the cost function, a complete MEDL has to be provided. A
complete MEDL contains at least one instance of every mes-
sage that has to be transmitted between the processes on dif-
ferent processors. A minimal complete MEDL is constructed
from an empty MEDL by placing one instance of every mes-
sage mi into its corresponding empty slot of a round. In Figure
4 a), for example, we have a MEDL composed of four rounds.
We get a minimal complete MEDL, for example, by assigning
m2 and m1 to the slots in rounds 3 and 4, and letting the slots
in rounds 1 and 2 empty. However, such a MEDL might not
lead to a schedulable system. The ‘degree of schedulability’
can be improved by inserting instances of messages into the
available places in the MEDL, thus minimizing the Tmmax
parameters. For example, in Figure 4 a) by inserting another
instance of the message m1 in the first round and m2 in the sec-
ond round leads to p2 missing its deadline, while in Figure 4
b) inserting m1 into the second round and m2 into the first
round leads to a schedulable system.

Our algorithm repeatedly adds a new instance of a message to
the current MEDL in the hope that the cost function will be
improved. In order to decide an instance of which message
should be added to the current MEDL, a simple heuristic is used.
We identify the process pi which has the most “critical” situation,
meaning that the difference between its deadline and response
time, Di - Ri, is minimal compared with all other processes. The
message to be added to the MEDL is the message m=mpi
received by the process pi. Message m will be placed into that
round (best_round) which corresponds to the smallest value of
the cost function. The algorithm stops if the cost function can not
be further improved by adding more messages to the MEDL.

The OptimizeMM algorithm is similar to OptimizeSM. The
main difference is that in the MM approach several messages
can be placed into a slot (which also decides its size), while in
the SM approach there can be at most one message per slot.
Also, in the case of MM, we have to take additional care that

OptimizeSM
for each node Ni do // set the slot sizes

sizeSi = max(size of messages mj sent by node Ni)
end for
for each node Ni do // find the min. no. of rounds that can hold...

nmi = number of messages sent from Ni // ...all the messages
end for
min_rounds = max (nmi)
for each message mi // create a minimal complete MEDL

find round in [1..min_rounds] that has an empty slot for mi
place mi into its slot in round

end for
for each rounds_no in [min_rounds...max_rounds] do

repeat // insert messages in such a way that the cost is minimized
for each process pi that receives a message mi do

if Di - Ri is the smallest so far then m = mpi end if
end for
for each round in [1..rounds_no] do

place m into its corresponding slot in round
calculate the cost_function
if the cost_function is smallest so far then

best_round = round
end if
remove m from its slot in round

end for
place m into its slot in best_round if one was identified

until the cost_function is not improved
end for

end OptimizeSM
Figure 6. Greedy Heuristic for SM

OptimizeDM
for each node Ni do

min_sizeSi = max(size of messages mj sent by node Ni)
end for
for each slot Si // identifies the size that minimizes the cost function

best_sizeSi = min_sizeSi
for each slot_size in [min_sizeSi...max_size] do

calculate the cost_function
if the cost_function is best so far then

best_sizeSi = slot_sizeSi
end if

end for
sizeSi = best_sizeSi

end for
end OptimizeDM

Figure 7. Greedy Heuristic for DM



the slots do not exceed the maximum allowed size for a slot.
The situation is simpler for the dynamic approaches,

namely DM and DP, since we only have to decide on the slot
sizes and, in the case of DP, on the packet size. For these two
approaches, the placement of messages is dynamic and has no
influence on the cost function. The OptimizeDM algorithm
(see Figure 7) starts with the first slot Si = S0 of the TDMA
round and tries to find that size (best_sizeSi) which corre-
sponds to the smallest cost_function. This slot size has to be
large enough (Si ≥ min_sizeSi) to hold the largest message to
be transmitted in this slot, and within bounds determined by
the particular TTP controller implementation (e.g., from 2 bits
up to max_size = 32 bytes). Once the size of the first slot has
been determined, the algorithm continues in the same manner
with the next slots.

The OptimizeDP algorithm has, in addition, to determine the
proper packet size. This is done by trying all the possible packet
sizes given the particular TTP controller. For example, it can
start from 2 bits and increment with the “smallest data unit”
(typically 2 bits) up to 32 bytes. In the case of the OptimizeDP
algorithm the slot size is a multiple of the packet size, and it is
within certain bounds depending on the TTP controller.

We have also developed an SA based algorithm for bus access
optimization corresponding to each of the four message schedul-
ing approaches [13]. In order to tune the parameters of the algo-
rithm we have first performed very long and expensive runs on
selected large examples, and the best ever solution, for each
example, has been considered as the near-optimum. Based on
further experiments we have determined the parameters of the
SA algorithm, for different sizes of examples, so that the optimi-
zation time is reduced as much as possible but the near-optimal
result is still produced. These parameters have then been used in
the large scale experiments presented in the following section.

6. Experimental Results
For evaluation of our approaches we first used sets of proc-
esses generated for experimental purpose. We considered
architectures consisting of 2, 4, 6, 8 and 10 nodes. 40 proc-
esses were assigned to each node, resulting in sets of 80, 160,
240, 320 and 400 processes. 30 sets were generated for each
dimension, thus a total of 150 sets of processes were used for
experimental evaluation. Worst case computation times, peri-
ods, deadlines, and message lengths were assigned randomly
within certain intervals. For the communication channel we
considered a transmission speed of 256 kbps. The maximum
length of the data field in a slot was 32 bytes, and the frequency

of the TTP controller was chosen to be 20 MHz. All experi-
ments were run on a Sun Ultra 10 workstation.

For each of the 150 generated examples and each of the four
scheduling approaches we have obtained, using our optimiza-
tion strategy, the near-optimal values for the cost function,
produced by our SA based algorithm. These values, for a given
example, might differ from one approach to another, as they
depend on the optimization parameters and the schedulability
analysis determined for each of the approaches. We were inter-
ested to compare the four approaches to message scheduling
based on the values obtained for the cost function.

Thus, Figure 8 a) presents the average percentage devia-
tions of the cost function obtained in each of the four
approaches, from the minimal value among them. The DP
approach is generally the most performant, and the reason for
this is that dynamic scheduling of messages is able to reduce
release jitter because no space is waisted in the slots if the
packet size is properly selected. However, by using the MM
approach we can obtain almost the same result if the messages
are carefully allocated to slots by our optimization strategy.
Moreover, in the case of bigger sets of processes (e.g., 400)
MM outperforms DP, as DP suffers form large overhead due to
the handling of the packets. DM performs worse than DP
because it does not split the messages into packets, and this
results in a mismatch between the size of the messages dynam-
ically queued and the slot size, leading to unused slot space
that increases the jitter. SM performs the worst as it does not
permit much room for improvement, leading to large amounts
of unused slot space. Also, DP has produced a MEDL that
resulted in schedulable process sets for 1.33 times more cases
than the MM and DM. MM, in its turn, produced two times
more schedulable results than the SM approach.

Together with the four approaches to message scheduling, a
so called ad-hoc approach is presented. The ad-hoc approach
performs scheduling of messages without trying to optimize
the access to the communication channel. The ad-hoc solutions
are based on the MM approach and consider a design with the
TDMA configuration consisting of a simple, straightforward,
allocation of messages to slots. The lengths of the slots were
selected to accommodate the largest message sent from the
respective node. Figure 8 a) shows that the ad-hoc alternative
is constantly outperformed by any of the optimized solutions.
This shows that by optimizing the access to the communication
channel, significant improvements can be produced.

Next, we have compared the four approaches with respect
to the number of messages exchanged between different nodes
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and the maximum message size allowed. For the results
depicted in Figure 8 b) and 8 c) we have assumed sets of 80
processes allocated to 4 nodes. Figure 8 b) shows that as the
number of messages increases, the difference between the
approaches grows while the ranking among them remains the
same. The same holds for the case when we increase the max-
imum allowed message size (Figure 8 c), with a notable excep-
tion: for large message sizes MM becomes better than DP,
since DP suffers from the overhead due to packet handling.

We were also interested in the quality of our greedy heuris-
tics. Thus, we have run all the examples presented above, using
the greedy heuristics and compared the results with those pro-
duced by the SA based algorithm. The table below presents the
average and maximum percentage deviations of the cost func-
tion for each of the graph dimensions.

All the four greedy heuristics perform very well, with less than
2% loss in quality compared to the results produced by the SA
algorithms. The execution times for the greedy heuristics were
more than two orders of magnitude smaller than those with
SA.

Finally, we have considered a real-life example implement-
ing an aircraft control system adapted from [17] where the ad-
hoc solution and the SM approach failed to produce a schedu-
lable solution. However, with the other two approaches sched-
ulable solutions were produced, DP generating the smallest
cost function followed in this order by MM and DM.

The above comparison between the four message scheduling
alternatives is mainly based on the issue of schedulability. How-
ever, when choosing among the different policies, several other
parameters can be of importance. Thus, a static allocation of
messages can be beneficial from the point of view of testing and
debugging and has the advantage of simplicity. Similar consider-
ations can lead to the decision not to split messages. In any case,
however, optimization of the bus access scheme is highly desira-
ble.

7. Conclusions
We have presented an approach to static priority preemptive
process scheduling for synthesis of hard real-time distributed
embedded systems. The communication model is based on a
time-triggered protocol. We have developed an analysis for the
communication delays and optimization strategies for four dif-
ferent message scheduling policies.

The four approaches to message scheduling were compared
using extensive experiments. We showed that by optimizing
the bus access scheme, significant improvements can be pro-
duced. Our optimization heuristics are able to efficiently pro-
duce good quality results.
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Optimize 80 procs. 160 procs.240 procs.320 procs.400 procs.
SM aver. 0.12% 0.19% 0.50% 1.06% 1.63%

max. 0.81% 2.28% 8.31% 31.05% 18.00%
MM aver. 0.05% 0.04% 0.08% 0.23% 0.36%

max. 0.23% 0.55% 1.03% 8.15% 6.63%
DM aver. 0.02% 0.03% 0.05% 0.06% 0.07%

max. 0.05% 0.22% 0.81% 1.67% 1.01%
DP aver. 0.01% 0.01% 0.05% 0.04% 0.03%

max. 0.05% 0.13% 0.61% 1.42% 0.54%


