Symbolic Model Checking of Dual Transition Petri Nets

Mauricio Varea*, Bashir M. Al-Hashimi, Luis A. Cortés, Petru Eles and Zebo Peng

Department of Electronics and Department of Computer and
Computer Science Information Science
University of Southampton, SO17 1BJ, UK Link6ping University, S-581 83, Sweden
{ m.varea , bmaf@ecs.soton.ac.uk { luico , petel , zpg @ida.liu.se

ABSTRACT

This paper describes the formal verification of the recently intro- gorithm which makes use of a potentially reachable state space, in
duced Dual Transition Petri Net (DTPN) models [12], using model order to reduce the size of the state space to be explored. Another
checking techniques. The methodology presented addresses thepproach based on functions driven by state machines (FunState)
symbolic model checking of embedded systems behavioural prop- has been recently introduced in [10]. FunState formal verification
erties, expressed in either computation tree logics (CTL) or lin- strategy is based on the symbolic model checking of regular state
ear temporal logics (LTL). The embedded system specification is machines (RSM) [11].

given in terms of DTPN models, where elements of the model are

captured in a four-module library which implements the behaviour Petri net (PN) based models are a suitable internal design represen-
of the model. Key issues in the development of the methodology tation for hardware/software specifications of embedded systems,
are the heterogeneity and the nondeterministic nature of the model.since they are capable of exploiting many desired features of the de-
This is handled by introducing some modifications in both structure sign,e.g.concurrency. PRES+ is a Petri net oriented model aimed
and behaviour of the model, thus reducing the points of nondeter- to represent embedded systems, which has been applied to formal
minism. Several features of the methodology are discussed and twoverification [3]. Verification of Timed CTL (TCTL) properties of

examples are given in order to show the validity of the model. PRES+ models is possible by means of their transformation into
Timed Automata. A new IDR, which efficiently captures both con-
1. INTRODUCTION trol and data structure from a behavioural description of an embed-

ed system, has been recently proposed [12]. This model is called

Ensuring the correctness of embedded systems is becoming a ke% D ; . .
research area, since traditional methods of validation which in- ual Tran5|t|on petri l_\let(DTPN), and one of its features is the
combined representation of control and data flow.

volves simulation and testing are rapidly becoming infeasible. For-
mal verification, on the other hand, mathematically checks whether
of not the functionality of an embedded system satisfies given prop-
erties. This form of validation is increasingly gaining popularity
in hardware verification [6] and software development [5]. For-
mal verification techniques based on model checking have been
widely used in the verification of finite-state concurrent systems.
Model checking algorithms [1] decide whether or not a design sat-
isfies some desired properties, which are expressed in a tempora
logic such as computation tree logic (CTL) or linear temporal logic

This paper describes the formal verification, using symbolic model
checking techniques, of the recently introduced DTPN models. The
aim of this work is to exploit the features related to the coexis-
tence of control and data flow in embedded systems specification.
We capture the structure and behaviour of the embedded system by
means of an IDR and further apply the Cadence SMV tool [14] in
rder to reason about its properties. This work is organised as fol-
ows. Section 2 introduces the framework of this paper, as well as
(LTL). If binary decision diagrams (BDD) are used, instead of an proposes a methodology for symbolic model checking which takes

exhaustive search through the entire state space, this technique jdhto account the heterogeneous n.ature of embedded systems. Fi-
known asSymbolic Model Checking). nally, two embedded systems of different complexity are analysed

in Section 3, while some concluding remarks are given in Section 4.
Symbolic model checking has been applied to the verification of

embedded systems internal design representation (IDR). An ap-2. VERIFICATION OF DUAL TRANSITION
proach which reduces the reachability graph of a Petri net has been PETRI NETS

presented in [2]. This approach introduces a model checking al- b 5| Transition Petri Net (DTPN) is an extention of classical PNs
which directly supports the separation of control and data flow
that typically occurs in practical embedded systems design [12].
DTPN utilise a unified approach to model both control and data
flow of an embedded system specification, using a complex num-
ber notation on the behavioural analysis of the system. A DTPN
model is composed of: a set of plac&y,(two sets of transitions
(T, Q), two sets of arcsc, Fp), a weight functionV =We UWD)

and a guard function@ = ﬂJm:lG,-,m: [T]). Two domains are
identifiable: control domaini,e. {P,T,Fc,\WW}, and data domain,
i.e.{PQ,Fp,Wb}. There is a link between both domains achieved
by the guard functio; : °tj — {0,1}. Here, thecontroltransition

tj fires according to thdatacontained inp; € °tj, 1<i<n=|P|.

*The first author performed part of this work as a research visitor
at Linkoping University.

A key issue in the behavioural DTPN model is the marking of its to a control transitiort; € T, e.g.by arcs(ty,qp) and (t2,qz), as
placesp(p) € C, Vp € P, which allows a dual functionality of the ~ shown by dashed lines in Figure 1. From the behavioural point of

system. As a consequence, PN models with) € N can be ex- view, the execution of each data transitigis synchronised with
pressed as a subset of DTPN models which h#ge € C. some control transition in the net. The consequence of such a

behaviour is that on the one hand no data transijjoan fire in a
Givenx € {P,T,Q}, two sets of presets’x for control and°x for nondeterministic way, but on the other hand the efficiency of deal-
data domain) and two sets of postsex$ for control andx® for ing with the modelling complexity is slightly reduced.

data domain) have been defined. The behaviour of control transi-
tionst € T are prompted by the classical enabling and firing rules,
while data transitiong € Q have slightly different rules, which are
formulated in (1) and (2) respectively.

[HpiE'q\Au(piD\Nc(pi,q) (N
M1 (P)l =Y I(pi)l-Wo(pi,@), YPi€®aped (2

Further definition of DTPN modelling technique, as well as its mo-
tivation and introductory examples, can be found in [12].

Model checking algorithms check for completeness and uniqueness Figure 1: A modified DTPN model

of a solution. Therefore, the amount of nondeterminism present in . .

the transition relation of the underlying Kripke structure has to be 2-2 Symbolic M_Odel Checklng Methodology
controlled. In order to combine the DTPN modelling technique The proposed (symbolic) model checking methodology based on
with symbolic model checking algorithms, it is important to per- DTPN models is shown in Figure 2. The inputs to the methodology
form a reduction in the points of nondeterminism of the model. To are the DTPN model of the embedded system and a set of proper-
achieve this, Section 2.1 incorporates some further restrictions to ties expressed in temporal logics. A verification engine is used to

the current definitions of DTPN. generate the BDD space, using a translation of the DTPN model
into a Kripke structureN)) and the given LTL or CTL properties to
21 Modified Dual Transition Petri Net be verified). The outcome of the Model Checkee. eitherY ES

NO or (unknown, provides information on the correctness of the

The original DTPN model [12] has been defined to support non- oo model with regard to the LTL/CTL properties.

determinism in both control and data domains, thus allowing a
compact graphical representation. In order to reduce the level of Embedded Systems Specification
nondeterminism in a DTPN model, we propose the use of an ad-

ditional set of arcs in the structural model and a further rule in the ~____DTPNMogd___ Fronares
behavioural model. There are two sets of arcs in DTPN: control |

flow arcs fc) and data flow arcs%). The introduction of a third
set of arcs, namellfa, provides a further link between control and :
data flow. This set of arcs is defined by: . S — ’

FAC(TxQ)

The link introduced reduces the amount of nondeterminism, since
the new set of arcBs makes the execution of data transitions de-
pendent on the firing of control transitions, as stated below in Def- ----SouceCode

inition 1. Therefore, only control transitions are allowed to fire [mem Verification Engine .’

nondeterministicallyi(e. we transform the data domain into a de- | Sitithh% | {)
terministic set). As a consequence, the execution of the netis not | - i i
only ruled by the control and data transitions firing rule formerly =~ =" i

presented [12], but also the link between them. o
ibrary

DEFINITION 1. Firing a control transition te T produces the
execution ofill enabled data transitions g Q which are linked to
t by the set, i.e. {q€ Q| (t,q) € Fa}.

Note that the new enabling conditigh q) € Fa of a data transi-

tion g € Q depends on other active elemenitg.(control transi- Figure 2: Our Model Checking Methodology

tionst € T) unlike [12], which uses placgse °q for this purpose.

Therefore equation (1) has to be modified, leading to (3). One form of heterogeneity present in embedded systems is due to
the existence of two separate but related pagscontrol and data

[H(t,-,q) € Fa } ZU(pi) =We(pi)tj),vpi € 't,—] 3 flow. These two parts are tightly linked in a DTPN model. In or-

der to perform the symbolic model checking of a DTPN model, we

To illustrate this modification, Figure 1 shows a simple DTPN model have implemented a library which supports the underlying hetero-

which will be explained in Section 3.1. The presence of the new set geneity implicit in the model. This library consist of four mod-

of arcsFa can be observed, since data transitigns Q are linked ules which are instantiated for creating the structure of the net,

NO
(unknown)

i.e. place() control transition(), data transition()andguard(), and Note thate(i) is expressed in modal logics [4], which is not suffi-
a schedulesch. The communication among these modules is il- cient to express behavioural properties along the time.
lustrated in Figure 3, where the effects of the new Definition 1 are

highlighted. Here, it can be observed that duatrol transition() Module: CONTROL TRANSITION (T)
module interacts with only half of the array structure, producing | Input: - p: array of places

a result that useBa to select which of the elements of the array - pre: array in control domain

of place$ place()=p[i] = pi interacts with thalata transition() - post: array in control domain

module. Figure 3 also shows that by means of a scheduler - guard: boolean
Output: - p": array of places

which is global from the control transitions point of view but lo- ST Check enabiing conditon:

cally defined as to the data transitions, the two modules are per-| = ‘gl '

fectly synchronised. Since an enabled control transition may or en «— guard A A pre[] >0 = Zpl[i] > pre[i
may not fire, the scheduler has been defined in a nor_ndetern_winistic <2: Perform Firinglj:éperation:

way such that the schedule generated for each step is restricted 10 forali(p[i] € P)

the set of control transitions which are enablieé, the scheduler if (en) then £ p'[i] < £ pli] - pre]i] + post [i]

chooses nondeterministically (from the set of enabled control tran- else p'li] — £ pi]

sitions) the next transition to fire. Because oslyabledcontrol

transitions are used in the nondeterministic points, the generation Figure 4: Algorithm for a DTPN Control Transition

of BDD nodes is optimised.
The algorithm presented in Figure 4 consists of two main parts,

checking for an enabling conditiogs1) and the firing operation
p[O] =1 (s2). When a control transition is selected by the scheduler, an
p1] K> assignment occurs in all places of the net. Then, according to
ni2] e _ the structure formed by the instantiation of tntrol transition()
Data Transition .
. . . QZ# Module modules, only places affected will change the number of tokens.
A A

i Example 1 For the sake of clarity, considercantrol_transition()

o | o module instantiated as follows:
pn] .

t[1]: transition(p,[3,2,0,1]1,[0,1,2,0],1);

_ Where:
- the first argument is transparent to the user.
- from the second argument3, 1,0, 2], the following
\ Nondeterministic Scheduler (sch) | information can be obtainedt; = {p1, p2, p4} and
We(pa,t1) = I 3tky\/ct§]p2dt1) 2, V\rg(l% 1)=1 that
. . C . - ana ogously, the third argument, 1,2, 0] means tha
Figure 3: Communication among library modules
g 9 y = {pz, p3} and that\e(t1, p2) =1 Wc(tl 3) = 2.
2.2.1 Places - flnally, t; is not guarded by any guard functlon (sirce
Places in a DTPN are the only elements in the net with storage is the default value on the result obaard()module).

capabilities. As a consequence, in classical PN th&setrepre-
sented by an array of integer elements. However, a DTPN marking
of a placep(p;) is composed of two disjointed partse. modu-

lus and phase [12]. Therefore, each element in the aprayi | is

a structure composed of two members, one for the number of to-
kens (control domain) and another for the value (data domain), as
shown in Figure 3. The extraction of each pam, the applica-

tion of the|u(p)| and £ u(p) operators in order to obtain modulus
and phase respectively, is performed through a direct access to the
corresponding member of the structure.

According to these considerations, Figure 5 illustrates the
graphical representation of the control transitign

2.2.2 Transitions
Both control and data transitions have the same mechanism which
involves 1) checking whether they are enabled or not, a2l éx-
ecuting an action i1 holds. The evolution of the state on a DTPN
model depends on which control transitions fire, as they modify the
marking of the net. Derived from PNs, the enabling condition for
such transitions can be generalised into the following expression
where 1< i < |T|:

Figure 5: Graphical representation of the control_transition()
'module instantiation, for the example given

Weli) = /\ (L u(p;) = We(p; 7ti)) I'I;}Tgszilggr:g Ec))(r;(ro:t;(l)g f?gsi) of thecontroL transition()module

{ilpje-ti}
1the place()module and array[i] are terms that we use inter- P
changeably, since thimoduleis only used to reserve some space in guardA /\ prefi] >0 = Zp[i] > preli]

memory @rray) for the allocation of control and data information. i1

Which can be unfolded into:

T A Zp[1] > pre[1] A £p[2] = pre[2] A £Zp[4] > pre[4]
=TAZLP[] =Z3ANZLp[2]Z22A Zpld]>21 (4)

The boolean result of (4) is used in paetto see whether the next

step of the phase of each marked place is assigned to the result o

the firing rule or its former content.

Similarly, Figure 6 shows the algorithm for a data transition Q.

The enabling parél uses a condition which is twofold: Firstly, it
checks whether or not the control transition which fires at a given
stepk, i.e. t [sch], has any connection to the data transition itself.
This is due to Definition 1 —see (3). Secondly, it confirms that
there is nadeadlockin the control domain. Furthermore, the firing
parts2 implements equation (2).

Module: DATA_TRANSITION (Q)
Input: - p: array of places
- pre: array in control domain
- post: array in control domain
- FA: set of arcs in Fa
Output: - p”: array of places
s1: Check enabling condition:
if (output of the scheduler € FA)&(there is no deadlock)
then
en«— T
elseen «— L
s2: Perform Firing Operation:
forall(p[i] € P)
P

[P|
S igl\ plil | pre[i]
forall(p[i] € P)
if (en) then | p'[i] | < posti] - s
else p'fi] — | pi] |

Figure 6: Algorithm for a DTPN Data Transition

The deadlock condition is another modal logics formula, which can
be expressed as:

u
Wg =\ Weli)
i=1

This means that “at least one control transition is enabled”. The
conditionyy is used to reason about the availability of a module
in the execution path. Thereby, patt of Figure 6 shows that the
deadlock condition, which has been globally defined, affectsehe
parameter.

2.2.3 Guard Function

The guard functior, defined in [12], maps information from the
data domain into the control domain by comparing va&ein a
place with the labelal of the guard function. This boolean evalua-
tion is taken into account by a control transitioa T.

2.3 Analysis of Properties in DTPN Models

To investigate about the dynamics of a system modelled in terms of
a PN extension, it is necessary to performrnechability analysis

of the system’s model. A marking is said to be reachable from a
markingpy if there is a sequence of firings which can tygninto

. Using CTL formulae, it is possible to express this property as
Eollows:

Pl

dr=30 A\ (M(pi) =Gi)
i=1

Wherec; = b; € is the desired final marking(pi),Vpi € P atthe
time stepk. Therefore, if bothu(pi)| = by andZ pu(pi) = & holds,
then the general state of the systementuallyreaches a marking
of i (pi),v1i<i<n.

Safety properties are conditions that are verified along any execu-
tion path. These type of properties are usually associated with some
critical behaviour, thereby they shouldivayshold. Classically, a
safePN only allows a boolean marking function, which means that
the following LTL formula holds:

Pl

ds=0/\ (Zu(pi) < 1)
i=1

Analogously, liveness properties are useful to express that “inter-
esting things eventually happen”. Like in classical PNs, a control
transitiont; is said to bdive if it can eventually fire, which implies
that it is eventually enable®e(i), V1< i< m, wherem=|T]|.
Thus, a live DTPN model satisfies the following LTL property:

IT|

o= A Oweli)
i=1

3. EXPERIMENTAL RESULTS

The proposed methodology has been applied to a number of exam-
ples in order to demonstrate its validity. Without loosing generality,
the implementation of the algorithms has been done using the Ca-
dence SMV tool [14] as verification engine for the methodology,
for the following reasons:

- Itis robust and well known within the community.

Itis able to analyse both CTL and LTL properties.

- It can potentially reduce the BDD space by means of sym-
metry.

- It supports data type reduction.

3.1 \Verification of State Machines

In this section we present a very basic FSM which will aid to the
understanding of the DTPN model itself and the property encoding
process. The FSM analysed has a cyclic behaviour, unless a reset
(RST) signal holds [13], and its number of states is directly pro-
portional to the number of places in the net. The simple sequence

The analysis of behavioural properties is of much interest in PN for this four-bit state machine i$:001 — 0010 — 0100 — 1000.
theory (thus, in DTPN). Since the evolution of the state of an em- WhenRST holds, the state register is unconditionally assigned a
bedded system is a time function, assuring that a certain temporalvalue of0001.

logics formula holds throughout the entire evolution leads to gain

knowledge of the system’s behaviour. In this section we analyse The DTPN model for such a behaviour has been introduced in Sec-
three behavioural propertieisg. TL formula, namelyreachability, tion 2.1. With reference to Figure 1, there are two input signals:
safetyandliveness and present the CTL/LTL formulae which de- clock (CLK) and resetRST). The first signal is bound into transi-
scribes them. tion t; while the latter into transitioty. This means that the firing

Bus Data

of t; represents the rising edge ©fK (i.e. when the signaCLK is Transceiver

active) and the firing ofy takes place wheRST holds. | ﬂ

Once the DTPN model is encoded in the way described in Sec-

tion 2.2, and used as input to the verification engine, some prop-

erties of the embedded system can be analysed. Since there are D Device
two signals present in this FSMe. CLK andRST, it is important N LDS

to check how the model responds to each of them, independently. VME Bus

First, we propose four LTL formulas to check if the sequential be- DSV = controller

haviour produced by theLK signal is the desired one. DT ack | LOTack
¢1=0(|u(p1)| =1 = Olu(p1)| =2)
02 =0(|u(p1)| =2 = Olu(p1)| =4) Figure 7: VME bus controller
b3 = D((\u(pl)\ =4 = O\u(pl))\ =8
a

$4=D0(u(p1)| =8 = Olu(p1)| =1)
Propertiesh,, 2, ¢3 andd4 show the natural evolution of the state
for this FSM assuming neesetaction,i.e. 4 never fires, which is
itself another property to verify:

a data transceiver. The controller opens the transceiver to transfer
data from/to the device/bus, through the sighah the read cycle,

a request-to-read signailSr is propagated t@DS. Then, the de-
vice acknowledges with BDT 5ck When the data is ready, which

de = O(sch* #£14) is taken into account to activate sigral A falling edge in signal

DSr, i.e. the end of the read cycle, caugesand all other outputs

Propertyde is anassumptionwhich means that it is assumed to be Of the controller to go low. In the write cycle (started by signal
true while verifying propertieg;, V1 < i < 4. This assumption can DSw), the controller places the data in the device's port and sends
be read ashe scheduler never points tg wheresch* is the value @ request-to-read signal to the device througi$ signal. When
pointed bysch. Since there exist an interdependability amadngt the device is ready BD T ack signal is produced, which closes the
can be concluded that if all four properties hold (We already know transceiver in Ol’del’ to iSOlate the deVice from the bUS. Further in-
that the BDD space generated will only consider the cases in which formation about the VME-bus signals can be found in [7].

de holds), the embedded system will remain in the cyclic behaviour) o])
described at the beginning of this section. Our goal is to verify if the synthesis results shown in [7] correspond

to the behaviour inherent to the net description. To achieve this, we
To verify that firingts will reset the system, regardless of the pre- have encoded each signal of the original specification as an abstract

vious state, the following LTL property should be assessed: type signal, which indicates that these signals are only used as part
of the proof but do not belong to the actual system implementation.
¢r =0(Zu(p2) =1 = Olp(py)| =1)

Four next-states functions are derived from [7], which are:
This means that if, at any timg, is marked with a token, then the

next state hafu(p;)| = 1 unavoidably. D = LDTack-Cs® (5)

LDS = D+csg (6)
The four-state example presented in this section has allocated 1105 DTack = D)
BDD nodes in memory. If the same example is encoded as a classi- cs — DS (csq-+LDTacK) ®)

cal PN, 4353 BDD nodes are necessary in order to verify equivalent
properties. Moreover, it is not difficult to extend these results to a We know that a next-state function in the synthesis of FSM repre-
larger number of states in the FSM. Since the SMV tool used here sents the behaviour of the system described in terms of its previ-
is potentially designed to cope with symmetry, having to formulate ous state. This is analogous to teoperator in temporal logics.
mored; properties in order to verify the correctness of the FSM for Therefore, we use the notatioa= O to express a “next-state”
the CLK signal will not necessarily increase the BDD space propor- function,i.e. if the cause of the implication holds then the conse-

tionally. quence holds in theexttime step. Therefore, we propose three
LTL formulas @1, $2 andd3) to request thénfinitely oftencom-

3.2 \Verification of a VME-bus controller pletion of (5), (6) and (7).

An interesting asynchronous circuit which has been widely stud- ¢1 = OO (LDTackACSG = OD)

ied is the VME-bus controller [9]. This bus is of much interest in 2 = 0OO(D = ODTack)

industrial applicationse.g. avionics), since it provides a flexible 3 = 0OO(DVesg = OLDS)

multi-master bus arbitration scheme which is both simple and not
vulnerable to noise. The VME design technology has evolved since
it became an ANSI approved standard. In [7], the controller was X ; o TR
modelled by means of Signal Transition Graphs (STG), a Petri net can St'." cope with thlslllr.mtatlon by means of an abstract type aux-
oriented formalisation of timing diagrams for asynchronous design, iliary signal csc0). This is:

and then synthesised into a gate netlist. Since STGs are a form of

PNs and the DTPN model is a generalisation of RiMs$ection 2), abstract csc0O : boolean;

we can apply the proposed methodology to this controller. next (csc0) := DSr & (cscO | "LDTACK);

Since (8) is recursive, it cannot be expressed as an LTL formula in
SMV. However, SMV supports data type reduction and, thus, we

Figure 7 shows the interface of a generic device connected to aAltogether, the next-state functions derived in [7] are correct if
VME bus. The functionality of the controller is to regulate the read- these three properties hold when using the definition of the abstract
ing and writing cycles of the device connected to the bus through signal for the fourth signal, hence the synthesis process is verified.

For then = 11 places and then= 10 control transitions that form ing symbolic model checking techniques. This has involved the
part of the DTPN model used for the verification of the VME- development of a four-module library which underpins the key fea-
bus controller, the methodology has allocated 10957 BDD nodes tures of DTPN, including heterogeneity. A new set of arcs and a
in memory (which represents an increase of onp22imes w.r.t. rule for firing both types of transitions has been introduced in order
then =2 m= 4 example given in Section 3.1). Thus, the valida- to cut down the amount of nondeterminism. Both CTL and LTL
tion of DTPN through this methodology is more suitable for control formulas have been treated and a generalised analysis of properties

dominated applications than for data dominated systems. has been introduced. The proposed methodology has been success-
fully applied to a number of examples, confirming its validity. Fur-
3.3 Scalability Analysis thermore, this paper concludes with a preliminary indication on the

This section analyses the results obtained when the method is scalegc@lability of the methodology, showing more affinity for control
up to realistic problems. Sections 3.1 and 3.2 have shown the ap-dominated than data dominated applications.

plicability of the proposed methodology to rather simple control

dominated examples. However, the methodology can be applied5. ACKNOWLEDGMENTS

to the formal verification of more complex problems, mainly in The authors wish to thank Gethin Norman (University of Birming-
the area of reactive embedded systems. In order to give an insightham, UK), for many fruitful discussions related to this investiga-
of the methodology’s applicability in dealing with such complex- tion.

ity, this section investigates the effects of variations performed on

two early indicators of the complexity in control and data domains. 5. REFERENCES

These are: the capacity in the control domagXand the capacity [1] E. M. Clarke, O. Grumberg, and D. A. Pelddodel CheckingMIT

in the data domainKp). Press, 1999.
. .) . . [2] J. Cortadella. Combining structural and symbolic methods for the
As in classical PN, the notion of capacity of a place in the con- verification of concurrent systems. Imt. Conf. on Application of
trol domain K¢) is associated to the maximum number of tokens Concurrency to System Desigrages 2—7, Mar. 1998.
allowed. Similarly,Kp defines the capacity in the data domain as [3] L. A. Cortés, P. Eles, and Z. Peng. Verification of Embedded Systems
the maximum value allowed in a place. Variations on the parameter using a Petri Net based RepresentatiorPioceedings of the
Kp of the underlying DTPN model are reflected in variations on the 13" International Symposium on System Level Synthesis (ISSS)
overall bus width, since there is a direct relation between the max- pages 149-155, Madrid, Spain, 20-22 Sept. 2000.
imum valueallowed in places and the size of the physical registers [4] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen,
in the final implementation. editor,Handbook of Theoretical Computer Scieneelume B:

Formal Models and Semantics, chapter 16, pages 995-1072. Elseiver
\ T Science Publishers, B.V., 1990.
Data Domain —&—

Control Domain -+ [5] J.D. Gannon, J. M. Purtillo, and M. V. ZelkowitSoftware
Specification: A Comparison of Formal Methoddlex, Norwood,
NJ, 1994.

C. Kern and M. R. Greenstreet. Formal Verification in Hardware
Design: A SurveyACM Transaction on Design Automation of
Embedded System&?2):1-67, Apr. 1999.

[7] M. Kishinevsky, J. Cortadella, and A. Kondratyev. Embedded
tutorial: Asynchronous interface specification, analysis and
synthesis. IProceedings of thd5"Design Automation Conference
(DAC), pages 2—7, June 15-18 1998.

350
300 [~

250
[6

200 —

time [sec]

150 [~

100 -

50 -

Lo [8] K. McMillan. Symbolic Model Checkindglluwer Academic
0 ; :1 Publishers, 1993.
Ke, Kp [9] W. D. PetersonThe VMEbus HandboolITA publications,
Scottsdale, AZ 85260-3415, USA'&dition, 1998.
Figure 8: Verification time vs. capacitiesKc, Kp [10] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Teich.

FunState—an internal design representation for codesigiEE

To illustrate the scalability of the proposed methodology, we have g{ig‘_;;‘i%ﬁom/geréé‘g{ge Scale Integration (VLSI) Systems
chosen the multiplier example presented in [12], since it contains N s ')

a well balanced mixture of control and data flow. Figure 8 shows [11] lﬁé:ar“glle,&léb -{ifr']‘:r;"sz’:% *Xpit"rs;‘t'i-oﬁg%?'Zegs_tgtoeom;;&')ﬂessggi‘i'aﬁ’f
a search through the state space of this DTPN model using our Issue on Advanced Regular Array Design. '

proposed methodology. The solid line shows the state space explo- o ")

ration of the multiplier wherKc = 2 andKp is variable, while the [12] M. Varea and B. Al-Hashimi. Dual Transitions Petri Net based

. - . . Modelling Technique for Embedded Systems Specification. In
dotted line representskp = 8 and a variabl&c. As it can be ob- Proceedings of thé"Proc. Design, Automation and Test in Europe

served, increasingp results in an exponential growth of verifica- (DATE), pages 566-71, Munich, Germany, Mar. 2001. IEEE/ACM.
tion time, while increasingc results in a linear growth. Therefore,

it can be said that larger ranges of tl&ues have a stronger impact
on the complexity of the state space search, rather than increase
number of tokens.

[13] J. F. WakerlyDigital Design: Principles & PracticesPrentice-Hall,
Englewood Cliffs, New Jersey™® edition, 1994.

?14] The SMV Model Checker.
http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/.

4. CONCLUSIONS

This paper has proposed a methodology for formal verification of
the recently introduced dual transition Petri net (DTPN) model, us-

