
Symbolic Model Checking of Dual Transition Petri Nets

Mauricio Varea
∗
, Bashir M. Al-Hashimi,

Department of Electronics and
Computer Science

University of Southampton, SO17 1BJ, UK

{ m.varea , bmah}@ecs.soton.ac.uk

Luis A. Cortés, Petru Eles and Zebo Peng
Department of Computer and

Information Science
Linköping University, S-581 83, Sweden

{ luico , petel , zpe}@ida.liu.se

ABSTRACT
This paper describes the formal verification of the recently intro-
duced Dual Transition Petri Net (DTPN) models [12], using model
checking techniques. The methodology presented addresses the
symbolic model checking of embedded systems behavioural prop-
erties, expressed in either computation tree logics (CTL) or lin-
ear temporal logics (LTL). The embedded system specification is
given in terms of DTPN models, where elements of the model are
captured in a four-module library which implements the behaviour
of the model. Key issues in the development of the methodology
are the heterogeneity and the nondeterministic nature of the model.
This is handled by introducing some modifications in both structure
and behaviour of the model, thus reducing the points of nondeter-
minism. Several features of the methodology are discussed and two
examples are given in order to show the validity of the model.

1. INTRODUCTION
Ensuring the correctness of embedded systems is becoming a key
research area, since traditional methods of validation which in-
volves simulation and testing are rapidly becoming infeasible. For-
mal verification, on the other hand, mathematically checks whether
of not the functionality of an embedded system satisfies given prop-
erties. This form of validation is increasingly gaining popularity
in hardware verification [6] and software development [5]. For-
mal verification techniques based on model checking have been
widely used in the verification of finite-state concurrent systems.
Model checking algorithms [1] decide whether or not a design sat-
isfies some desired properties, which are expressed in a temporal
logic such as computation tree logic (CTL) or linear temporal logic
(LTL). If binary decision diagrams (BDD) are used, instead of an
exhaustive search through the entire state space, this technique is
known asSymbolic Model Checking[8].

Symbolic model checking has been applied to the verification of
embedded systems internal design representation (IDR). An ap-
proach which reduces the reachability graph of a Petri net has been
presented in [2]. This approach introduces a model checking al-

∗The first author performed part of this work as a research visitor
at Linköping University.

gorithm which makes use of a potentially reachable state space, in
order to reduce the size of the state space to be explored. Another
approach based on functions driven by state machines (FunState)
has been recently introduced in [10]. FunState formal verification
strategy is based on the symbolic model checking of regular state
machines (RSM) [11].

Petri net (PN) based models are a suitable internal design represen-
tation for hardware/software specifications of embedded systems,
since they are capable of exploiting many desired features of the de-
sign,e.g.concurrency. PRES+ is a Petri net oriented model aimed
to represent embedded systems, which has been applied to formal
verification [3]. Verification of Timed CTL (TCTL) properties of
PRES+ models is possible by means of their transformation into
Timed Automata. A new IDR, which efficiently captures both con-
trol and data structure from a behavioural description of an embed-
ded system, has been recently proposed [12]. This model is called
Dual Transition Petri Net(DTPN), and one of its features is the
combined representation of control and data flow.

This paper describes the formal verification, using symbolic model
checking techniques, of the recently introduced DTPN models. The
aim of this work is to exploit the features related to the coexis-
tence of control and data flow in embedded systems specification.
We capture the structure and behaviour of the embedded system by
means of an IDR and further apply the Cadence SMV tool [14] in
order to reason about its properties. This work is organised as fol-
lows. Section 2 introduces the framework of this paper, as well as
proposes a methodology for symbolic model checking which takes
into account the heterogeneous nature of embedded systems. Fi-
nally, two embedded systems of different complexity are analysed
in Section 3, while some concluding remarks are given in Section 4.

2. VERIFICATION OF DUAL TRANSITION
PETRI NETS

Dual Transition Petri Net (DTPN) is an extention of classical PNs
which directly supports the separation of control and data flow
that typically occurs in practical embedded systems design [12].
DTPN utilise a unified approach to model both control and data
flow of an embedded system specification, using a complex num-
ber notation on the behavioural analysis of the system. A DTPN
model is composed of: a set of places (P), two sets of transitions
(T, Q), two sets of arcs (FC, FD), a weight function (W = WC∪WD)
and a guard function (G =

⋂m
j=1G j ,m= |T|). Two domains are

identifiable: control domain,i.e. {P,T,FC,WC}, and data domain,
i.e.{P,Q,FD,WD}. There is a link between both domains achieved
by the guard functionG j : ◦t j →{0,1}. Here, thecontroltransition
t j fires according to thedatacontained inpi ∈ ◦t j , 1≤ i ≤ n = |P|.

A key issue in the behavioural DTPN model is the marking of its
placesµ(p) ∈C/ , ∀p∈ P, which allows a dual functionality of the
system. As a consequence, PN models withµ(p) ∈ IN can be ex-
pressed as a subset of DTPN models which haveµ(p) ∈C/ .

Givenx∈ {P,T,Q}, two sets of presets (•x for control and◦x for
data domain) and two sets of postsets (x• for control andx◦ for
data domain) have been defined. The behaviour of control transi-
tionst ∈ T are prompted by the classical enabling and firing rules,
while data transitionsq∈Q have slightly different rules, which are
formulated in (1) and (2) respectively.[

∃pi ∈ •q
∣∣∠µ(pi)>WC(pi ,q)

]
(1)

|µk+1(p j)|= ∑
i
|µk(pi)| ·WD(pi ,q), ∀pi ∈ ◦q, p j ∈ q◦ (2)

Further definition of DTPN modelling technique, as well as its mo-
tivation and introductory examples, can be found in [12].

Model checking algorithms check for completeness and uniqueness
of a solution. Therefore, the amount of nondeterminism present in
the transition relation of the underlying Kripke structure has to be
controlled. In order to combine the DTPN modelling technique
with symbolic model checking algorithms, it is important to per-
form a reduction in the points of nondeterminism of the model. To
achieve this, Section 2.1 incorporates some further restrictions to
the current definitions of DTPN.

2.1 Modified Dual Transition Petri Net
The original DTPN model [12] has been defined to support non-
determinism in both control and data domains, thus allowing a
compact graphical representation. In order to reduce the level of
nondeterminism in a DTPN model, we propose the use of an ad-
ditional set of arcs in the structural model and a further rule in the
behavioural model. There are two sets of arcs in DTPN: control
flow arcs (FC) and data flow arcs (FD). The introduction of a third
set of arcs, namelyFA, provides a further link between control and
data flow. This set of arcs is defined by:

FA ⊆ (T×Q)

The link introduced reduces the amount of nondeterminism, since
the new set of arcsFA makes the execution of data transitions de-
pendent on the firing of control transitions, as stated below in Def-
inition 1. Therefore, only control transitions are allowed to fire
nondeterministically (i.e. we transform the data domain into a de-
terministic set). As a consequence, the execution of the net is not
only ruled by the control and data transitions firing rule formerly
presented [12], but also the link between them.

DEFINITION 1. Firing a control transition t∈ T produces the
execution ofall enabled data transitions q∈Q which are linked to
t by the set FA, i.e.

{
q∈Q

∣∣(t,q) ∈ FA
}

.

Note that the new enabling condition(t,q) ∈ FA of a data transi-
tion q∈Q depends on other active elements (i.e. control transi-
tionst ∈ T) unlike [12], which uses placesp∈ •q for this purpose.
Therefore equation (1) has to be modified, leading to (3).[

∃(t j ,q) ∈ FA
∣∣∠µ(pi)>WC(pi , t j),∀pi ∈ •t j

]
(3)

To illustrate this modification, Figure 1 shows a simple DTPN model
which will be explained in Section 3.1. The presence of the new set
of arcsFA can be observed, since data transitionsqi ∈Q are linked

to a control transitiont j ∈ T, e.g.by arcs(t1,q2) and (t2,q1), as
shown by dashed lines in Figure 1. From the behavioural point of
view, the execution of each data transitionq is synchronised with
some control transitiont in the net. The consequence of such a
behaviour is that on the one hand no data transitionq can fire in a
nondeterministic way, but on the other hand the efficiency of deal-
ing with the modelling complexity is slightly reduced.

 8

q2

t2

t1

2

p1

CLK

<
8

q1
"1"

t3 p2

RST

t4

Figure 1: A modified DTPN model

2.2 Symbolic Model Checking Methodology
The proposed (symbolic) model checking methodology based on
DTPN models is shown in Figure 2. The inputs to the methodology
are the DTPN model of the embedded system and a set of proper-
ties expressed in temporal logics. A verification engine is used to
generate the BDD space, using a translation of the DTPN model
into a Kripke structure (N) and the given LTL or CTL properties to
be verified (f). The outcome of the Model Checker,i.e.eitherYES,
NO or (unknown), provides information on the correctness of the
DTPN model with regard to the LTL/CTL properties.

switch(i,j) {
ctrl[i][j]:=

forall(j in PLACES)
forall(i in CTRL)

.
.
.

. . .

fN

P

Q

G

T

sch

AG (q -> EX r)

G (p -> F q)

Properties
LTL / CTL

Model Checker

N
Verification Engine

BDD

YES NO
(unknown)

f

Library

Embedded Systems Specification

DTPN Model

Source Code

Figure 2: Our Model Checking Methodology

One form of heterogeneity present in embedded systems is due to
the existence of two separate but related parts,i.e. control and data
flow. These two parts are tightly linked in a DTPN model. In or-
der to perform the symbolic model checking of a DTPN model, we
have implemented a library which supports the underlying hetero-
geneity implicit in the model. This library consist of four mod-
ules which are instantiated for creating the structure of the net,

i.e. place(), control transition(), data transition()andguard(), and
a schedulersch. The communication among these modules is il-
lustrated in Figure 3, where the effects of the new Definition 1 are
highlighted. Here, it can be observed that thecontrol transition()
module interacts with only half of the array structure, producing
a result that usesFA to select which of the elements of the array
of places1 place()≡ p[i] ≡ pi interacts with thedata transition()
module. Figure 3 also shows that by means of a schedulersch,
which is global from the control transitions point of view but lo-
cally defined as to the data transitions, the two modules are per-
fectly synchronised. Since an enabled control transition may or
may not fire, the scheduler has been defined in a nondeterministic
way such that the schedule generated for each step is restricted to
the set of control transitions which are enabled,i.e. the scheduler
chooses nondeterministically (from the set of enabled control tran-
sitions) the next transition to fire. Because onlyenabledcontrol
transitions are used in the nondeterministic points, the generation
of BDD nodes is optimised.

Module
Data Transition

p[0]

p[n]

p[2]

p[1]

Nondeterministic Scheduler (sch)

Module
Control Transition

FA

Figure 3: Communication among library modules

2.2.1 Places
Places in a DTPN are the only elements in the net with storage
capabilities. As a consequence, in classical PN the setP is repre-
sented by an array of integer elements. However, a DTPN marking
of a placeµ(pi) is composed of two disjointed parts,i.e. modu-
lus and phase [12]. Therefore, each element in the array (p[i]) is
a structure composed of two members, one for the number of to-
kens (control domain) and another for the value (data domain), as
shown in Figure 3. The extraction of each part,i.e. the applica-
tion of the|µ(p)| and∠µ(p) operators in order to obtain modulus
and phase respectively, is performed through a direct access to the
corresponding member of the structure.

2.2.2 Transitions
Both control and data transitions have the same mechanism which
involves (s1) checking whether they are enabled or not, and (s2) ex-
ecuting an action ifs1 holds. The evolution of the state on a DTPN
model depends on which control transitions fire, as they modify the
marking of the net. Derived from PNs, the enabling condition for
such transitions can be generalised into the following expression,
where 16 i 6 |T|:

ψe(i) =
∧

{ j|p j∈ •ti}

(
∠µ(p j)>WC(p j , ti)

)
1the place()module and arrayp[i] are terms that we use inter-
changeably, since thismoduleis only used to reserve some space in
memory (array) for the allocation of control and data information.

Note thatψe(i) is expressed in modal logics [4], which is not suffi-
cient to express behavioural properties along the time.

Module: CONTROL TRANSITION (T)
Input: - p: array of places

- pre: array in control domain
- post: array in control domain
- guard: boolean

Output: - p’: array of places
s1: Check enabling condition:

en← guard ∧
|P|∧
i=1

pre[i] > 0 =⇒ ∠ p[i] > pre[i]

s2: Perform Firing Operation:
forall(p[i] ∈ P)

if (en) then ∠ p’[i]←∠ p[i] - pre[i] + post [i]
else p’[i]←∠ p[i]

Figure 4: Algorithm for a DTPN Control Transition

The algorithm presented in Figure 4 consists of two main parts,
checking for an enabling condition(s1) and the firing operation
(s2). When a control transition is selected by the scheduler, an
assignment occurs in all places of the net. Then, according to
the structure formed by the instantiation of thecontrol transition()
modules, only places affected will change the number of tokens.

Example 1 For the sake of clarity, consider acontrol transition()
module instantiated as follows:

t[1]: transition(p,[3,2,0,1],[0,1,2,0],1);

Where:
- the first argumentp is transparent to the user.
- from the second argument,[3,1,0,2], the following

information can be obtained:•t1 = {p1, p2, p4} and
WC(p1, t1) = 3,WC(p2, t1) = 2,WC(p4, t1) = 1.

- analogously, the third argument[0,1,2,0] means that
t1• = {p2, p3} and thatWC(t1, p2) = 1,WC(t1, p3) = 2.

- finally, t1 is not guarded by any guard function (since1
is the default value on the result of aguard()module).

According to these considerations, Figure 5 illustrates the
graphical representation of the control transitiont1.

t1

p1

p4

p
3

p2

3

2

2

Figure 5: Graphical representation of the control transition()
module instantiation, for the example given

The enabling condition part (s1) of thecontrol transition()module
introduced in Example 1 is:

guard∧
|P|∧
i=1

pre[i]> 0 =⇒ ∠p[i] > pre[i]

Which can be unfolded into:

> ∧ ∠p[1]> pre[1]∧ ∠p[2]> pre[2]∧ ∠p[4]> pre[4]

=> ∧ ∠p[1]> 3∧ ∠p[2]> 2∧ ∠p[4]> 1 (4)

The boolean result of (4) is used in parts2 to see whether the next
step of the phase of each marked place is assigned to the result of
the firing rule or its former content.

Similarly, Figure 6 shows the algorithm for a data transitionq∈Q.
The enabling parts1 uses a condition which is twofold: Firstly, it
checks whether or not the control transition which fires at a given
stepk, i.e. t[sch], has any connection to the data transition itself.
This is due to Definition 1 —see (3). Secondly, it confirms that
there is nodeadlockin the control domain. Furthermore, the firing
parts2 implements equation (2).

Module: DATA TRANSITION (Q)
Input: - p: array of places

- pre: array in control domain
- post: array in control domain
- FA: set of arcs in FA

Output: - p’: array of places
s1: Check enabling condition:

if (output of the scheduler ∈ FA)&(there is no deadlock)
then

en←>
else en←⊥

s2: Perform Firing Operation:
forall(p[i] ∈ P)

s←
|P|
∑

i=1
| p[i] |· pre[i]

forall(p[i] ∈ P)
if (en) then | p’[i] | ← post[i] · s

else p’[i]← | p[i] |

Figure 6: Algorithm for a DTPN Data Transition

The deadlock condition is another modal logics formula, which can
be expressed as:

ψd = ¬
|T|∨
i=1

ψe(i)

This means that “at least one control transition is enabled”. The
conditionψd is used to reason about the availability of a module
in the execution path. Thereby, parts1 of Figure 6 shows that the
deadlock condition, which has been globally defined, affects theen
parameter.

2.2.3 Guard Function
The guard functionG, defined in [12], maps information from the
data domain into the control domain by comparing thevalue in a
place with the labelval of the guard function. This boolean evalua-
tion is taken into account by a control transitiont ∈ T.

2.3 Analysis of Properties in DTPN Models
The analysis of behavioural properties is of much interest in PN
theory (thus, in DTPN). Since the evolution of the state of an em-
bedded system is a time function, assuring that a certain temporal
logics formula holds throughout the entire evolution leads to gain
knowledge of the system’s behaviour. In this section we analyse
three behavioural properties,i.e. TL formula, namelyreachability,
safetyand liveness, and present the CTL/LTL formulae which de-
scribes them.

To investigate about the dynamics of a system modelled in terms of
a PN extension, it is necessary to perform thereachability analysis
of the system’s model. A markingµk is said to be reachable from a
markingµ0 if there is a sequence of firings which can turnµ0 into
µk. Using CTL formulae, it is possible to express this property as
follows:

ϕR = ∃3
|P|∧
i=1

(µ(pi) = ci)

Whereci = bi ei·ai is the desired final markingµk(pi),∀pi ∈ P at the
time stepk. Therefore, if both|µ(pi)|= bi and∠µ(pi) = ai holds,
then the general state of the systemeventuallyreaches a marking
of µk(pi),∀16 i 6 n.

Safety properties are conditions that are verified along any execu-
tion path. These type of properties are usually associated with some
critical behaviour, thereby they shouldalwayshold. Classically, a
safePN only allows a boolean marking function, which means that
the following LTL formula holds:

ϕS = 2

|P|∧
i=1

(∠µ(pi)6 1)

Analogously, liveness properties are useful to express that “inter-
esting things eventually happen”. Like in classical PNs, a control
transitionti is said to belive if it can eventually fire, which implies
that it is eventually enabled3ψe(i), ∀16 i 6m, wherem= |T|.
Thus, a live DTPN model satisfies the following LTL property:

ϕL =
|T|∧
i=1

3ψe(i)

3. EXPERIMENTAL RESULTS
The proposed methodology has been applied to a number of exam-
ples in order to demonstrate its validity. Without loosing generality,
the implementation of the algorithms has been done using the Ca-
dence SMV tool [14] as verification engine for the methodology,
for the following reasons:

- It is robust and well known within the community.
- It is able to analyse both CTL and LTL properties.
- It can potentially reduce the BDD space by means of sym-

metry.
- It supports data type reduction.

3.1 Verification of State Machines
In this section we present a very basic FSM which will aid to the
understanding of the DTPN model itself and the property encoding
process. The FSM analysed has a cyclic behaviour, unless a reset
(RST) signal holds [13], and its number of states is directly pro-
portional to the number of places in the net. The simple sequence
for this four-bit state machine is:0001→ 0010→ 0100→ 1000.
WhenRST holds, the state register is unconditionally assigned a
value of0001.

The DTPN model for such a behaviour has been introduced in Sec-
tion 2.1. With reference to Figure 1, there are two input signals:
clock (CLK) and reset (RST). The first signal is bound into transi-
tion t1 while the latter into transitiont4. This means that the firing

of t1 represents the rising edge ofCLK (i.e. when the signalCLK is
active) and the firing oft4 takes place whenRST holds.

Once the DTPN model is encoded in the way described in Sec-
tion 2.2, and used as input to the verification engine, some prop-
erties of the embedded system can be analysed. Since there are
two signals present in this FSM,i.e. CLK andRST, it is important
to check how the model responds to each of them, independently.
First, we propose four LTL formulas to check if the sequential be-
haviour produced by theCLK signal is the desired one.

ϕ1 = 2(|µ(p1)|= 1 =⇒ ◦|µ(p1)|= 2)
ϕ2 = 2(|µ(p1)|= 2 =⇒ ◦|µ(p1)|= 4)
ϕ3 = 2(|µ(p1)|= 4 =⇒ ◦|µ(p1)|= 8)
ϕ4 = 2(|µ(p1)|= 8 =⇒ 3|µ(p1)|= 1)

Propertiesϕ1, ϕ2, ϕ3 andϕ4 show the natural evolution of the state
for this FSM assuming noresetaction,i.e. t4 never fires, which is
itself another property to verify:

ϕe = 2(sch∗ 6= t4)

Propertyϕe is anassumption, which means that it is assumed to be
true while verifying propertiesϕi ,∀1≤ i ≤ 4. This assumption can
be read asthe scheduler never points to t4, wheresch∗ is the value
pointed bysch. Since there exist an interdependability amongϕi , it
can be concluded that if all four properties hold (we already know
that the BDD space generated will only consider the cases in which
ϕe holds), the embedded system will remain in the cyclic behaviour
described at the beginning of this section.

To verify that firingt4 will reset the system, regardless of the pre-
vious state, the following LTL property should be assessed:

ϕr = 2(∠µ(p2) = 1 =⇒ ◦|µ(p1)|= 1)

This means that if, at any timep2 is marked with a token, then the
next state has|µ(p1)|= 1 unavoidably.

The four-state example presented in this section has allocated 1105
BDD nodes in memory. If the same example is encoded as a classi-
cal PN, 4353 BDD nodes are necessary in order to verify equivalent
properties. Moreover, it is not difficult to extend these results to a
larger number of states in the FSM. Since the SMV tool used here
is potentially designed to cope with symmetry, having to formulate
moreϕi properties in order to verify the correctness of the FSM for
theCLK signal will not necessarily increase the BDD space propor-
tionally.

3.2 Verification of a VME-bus controller
An interesting asynchronous circuit which has been widely stud-
ied is the VME-bus controller [9]. This bus is of much interest in
industrial applications (e.g. avionics), since it provides a flexible
multi-master bus arbitration scheme which is both simple and not
vulnerable to noise. The VME design technology has evolved since
it became an ANSI approved standard. In [7], the controller was
modelled by means of Signal Transition Graphs (STG), a Petri net
oriented formalisation of timing diagrams for asynchronous design,
and then synthesised into a gate netlist. Since STGs are a form of
PNs and the DTPN model is a generalisation of PNs (c.f.Section 2),
we can apply the proposed methodology to this controller.

Figure 7 shows the interface of a generic device connected to a
VME bus. The functionality of the controller is to regulate the read-
ing and writing cycles of the device connected to the bus through

VME Bus
Controller

ACKDT
LDTACK

Transceiver
Data

DSw

DSr LDS

Bus

D Device

Figure 7: VME bus controller

a data transceiver. The controller opens the transceiver to transfer
data from/to the device/bus, through the signalD In the read cycle,
a request-to-read signalDSr is propagated toLDS. Then, the de-
vice acknowledges with aLDTACK when the data is ready, which
is taken into account to activate signalD. A falling edge in signal
DSr, i.e. the end of the read cycle, causesD and all other outputs
of the controller to go low. In the write cycle (started by signal
DSw), the controller places the data in the device’s port and sends
a request-to-read signal to the device throughLDS signal. When
the device is ready aLDTACK signal is produced, which closes the
transceiver in order to isolate the device from the bus. Further in-
formation about the VME-bus signals can be found in [7].

Our goal is to verify if the synthesis results shown in [7] correspond
to the behaviour inherent to the net description. To achieve this, we
have encoded each signal of the original specification as an abstract
type signal, which indicates that these signals are only used as part
of the proof but do not belong to the actual system implementation.

Four next-states functions are derived from [7], which are:

D = LDTACK ·csc0 (5)

LDS = D+csc0 (6)

DTACK = D (7)

csc0 = DSr· (csc0 +LDTACK) (8)

We know that a next-state function in the synthesis of FSM repre-
sents the behaviour of the system described in terms of its previ-
ous state. This is analogous to the◦ operator in temporal logics.
Therefore, we use the notation=⇒◦ to express a “next-state”
function, i.e. if the cause of the implication holds then the conse-
quence holds in thenext time step. Therefore, we propose three
LTL formulas (ϕ1, ϕ2 andϕ3) to request theinfinitely oftencom-
pletion of (5), (6) and (7).

ϕ1 = 23
(
LDTACK∧csc0 =⇒ ◦D

)
ϕ2 = 23

(
D =⇒ ◦DTACK

)
ϕ3 = 23

(
D∨csc0 =⇒ ◦LDS

)
Since (8) is recursive, it cannot be expressed as an LTL formula in
SMV. However, SMV supports data type reduction and, thus, we
can still cope with this limitation by means of an abstract type aux-
iliary signal (csc0). This is:

abstract csc0 : boolean;
next(csc0):= DSr & (csc0 | ˜LDTACK);

Altogether, the next-state functions derived in [7] are correct if
these three properties hold when using the definition of the abstract
signal for the fourth signal, hence the synthesis process is verified.

For then = 11 places and them= 10 control transitions that form
part of the DTPN model used for the verification of the VME-
bus controller, the methodology has allocated 10957 BDD nodes
in memory (which represents an increase of only 2.52 times w.r.t.
then = 2,m = 4 example given in Section 3.1). Thus, the valida-
tion of DTPN through this methodology is more suitable for control
dominated applications than for data dominated systems.

3.3 Scalability Analysis
This section analyses the results obtained when the method is scaled
up to realistic problems. Sections 3.1 and 3.2 have shown the ap-
plicability of the proposed methodology to rather simple control
dominated examples. However, the methodology can be applied
to the formal verification of more complex problems, mainly in
the area of reactive embedded systems. In order to give an insight
of the methodology’s applicability in dealing with such complex-
ity, this section investigates the effects of variations performed on
two early indicators of the complexity in control and data domains.
These are: the capacity in the control domain (KC) and the capacity
in the data domain (KD).

As in classical PN, the notion of capacity of a place in the con-
trol domain (KC) is associated to the maximum number of tokens
allowed. Similarly,KD defines the capacity in the data domain as
the maximum value allowed in a place. Variations on the parameter
KD of the underlying DTPN model are reflected in variations on the
overall bus width, since there is a direct relation between the max-
imum valueallowed in places and the size of the physical registers
in the final implementation.

KC KD,

0

50

100

150

200

250

300

350

2 4 6 8 10 12 14 16

tim
e

[s
ec

]

Data Domain
Control Domain

Figure 8: Verification time vs. capacitiesKC,KD

To illustrate the scalability of the proposed methodology, we have
chosen the multiplier example presented in [12], since it contains
a well balanced mixture of control and data flow. Figure 8 shows
a search through the state space of this DTPN model using our
proposed methodology. The solid line shows the state space explo-
ration of the multiplier whenKC = 2 andKD is variable, while the
dotted line represents aKD = 8 and a variableKC. As it can be ob-
served, increasingKD results in an exponential growth of verifica-
tion time, while increasingKC results in a linear growth. Therefore,
it can be said that larger ranges of thevalues have a stronger impact
on the complexity of the state space search, rather than increased
number of tokens.

4. CONCLUSIONS
This paper has proposed a methodology for formal verification of
the recently introduced dual transition Petri net (DTPN) model, us-

ing symbolic model checking techniques. This has involved the
development of a four-module library which underpins the key fea-
tures of DTPN, including heterogeneity. A new set of arcs and a
rule for firing both types of transitions has been introduced in order
to cut down the amount of nondeterminism. Both CTL and LTL
formulas have been treated and a generalised analysis of properties
has been introduced. The proposed methodology has been success-
fully applied to a number of examples, confirming its validity. Fur-
thermore, this paper concludes with a preliminary indication on the
scalability of the methodology, showing more affinity for control
dominated than data dominated applications.

5. ACKNOWLEDGMENTS
The authors wish to thank Gethin Norman (University of Birming-
ham, UK), for many fruitful discussions related to this investiga-
tion.

6. REFERENCES
[1] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT

Press, 1999.

[2] J. Cortadella. Combining structural and symbolic methods for the
verification of concurrent systems. InInt. Conf. on Application of
Concurrency to System Design, pages 2–7, Mar. 1998.

[3] L. A. Cortés, P. Eles, and Z. Peng. Verification of Embedded Systems
using a Petri Net based Representation. InProceedings of the
13thInternational Symposium on System Level Synthesis (ISSS),
pages 149–155, Madrid, Spain, 20-22 Sept. 2000.

[4] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen,
editor,Handbook of Theoretical Computer Science, volume B:
Formal Models and Semantics, chapter 16, pages 995–1072. Elseiver
Science Publishers, B.V., 1990.

[5] J. D. Gannon, J. M. Purtillo, and M. V. Zelkowitz.Software
Specification: A Comparison of Formal Methods. Ablex, Norwood,
NJ, 1994.

[6] C. Kern and M. R. Greenstreet. Formal Verification in Hardware
Design: A Survey.ACM Transaction on Design Automation of
Embedded Systems, 4(2):1–67, Apr. 1999.

[7] M. Kishinevsky, J. Cortadella, and A. Kondratyev. Embedded
tutorial: Asynchronous interface specification, analysis and
synthesis. InProceedings of the35thDesign Automation Conference
(DAC), pages 2–7, June 15–18 1998.

[8] K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[9] W. D. Peterson.The VMEbus Handbook. VITA publications,
Scottsdale, AZ 85260-3415, USA, 4th edition, 1998.

[10] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Teich.
FunState—an internal design representation for codesign.IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
9(4):524–544, Aug. 2001.

[11] L. Thiele, J. Teich, and K. Strehl. Regular state machines.Journal of
Parallel Algorithms and Applications, 15:265–300, 2000. Special
Issue on Advanced Regular Array Design.

[12] M. Varea and B. Al-Hashimi. Dual Transitions Petri Net based
Modelling Technique for Embedded Systems Specification. In
Proceedings of the4thProc. Design, Automation and Test in Europe
(DATE), pages 566–71, Munich, Germany, Mar. 2001. IEEE/ACM.

[13] J. F. Wakerly.Digital Design: Principles & Practices. Prentice-Hall,
Englewood Cliffs, New Jersey, 2nd edition, 1994.

[14] The SMV Model Checker.
http://www-cad.eecs.berkeley.edu/∼kenmcmil/smv/.

