
High-Level Synthesis and Test in the MOSCITO-Based
Virtual Laboratory1

1 This work was partially supported by EC Copernicus project VILAB CP977133, the Swedish National Board for Industrial and Technical

Development (NUTEK), Swedish Academy of Engineering Sciences, and the Estonian Science Foundation (Grants No 3658 and 4003).

A. Schneider, K.-H. Diener
Fraunhofer Institute for Integrated Circuits

(IIS/EAS), Germany
{schneider, diener}@eas.iis.fhg.de

G.Jervan, Z. Peng
Linköping University, Sweden

{gerje,zebpe}@ida.liu.se

J.Raik, R.Ubar
Tallinn Technical University, Estonia

{ieero, raiub}@pld.ttu.ee

T. Hollstein, M.Glesner
Technical University of Darmstadt, Germany

{glesner, thomas}@mes.tu-darmstadt.de

Abstract

The paper describes the results of the COPERNICUS
europroject JEP-97-7133 VILAB (VIrtual LABoratory)
obtained in a Internet-based joint activities of high-level
design and hierarchical test generation of digital
systems. Different CAD tools at geographically different
places running under virtual environment were used for
joint research purposes. The interfaces and convertors
between the integrated tools were developed during the
project. The tools can be used separately over Internet,
or in multiple applications in different complex flows.
The functionality of the virtual laboratory in a
collaborative research on HW/SW codesign, high-level
synthesis and test generation was tested and is
described in the paper.

1. Introduction

The basic idea of the activities in the project was to
exploit Internet-based tool integration. For that purpose
several design and ATPG tools implemented at
geographically different places were successfully
integrated into a new virtual environment MOSCITO
[1-3]. The essential features of this integration
environment were experimentally proved.

In this paper the results of cooperative research in the
field of high-level synthesis and hierarchical test
generation between partners from Fraunhofer Institute
for Integrated Circuits in Dresden, Technical University
of Darmstadt (Germany), Linköping University

(Sweden) and Tallinn Technical University (Estonia)
are described.

The paper is organized as follows. The MOSCITO
system developed in Dresden is shortly described in
Section 2. The functionality of the environment via tools
description is given in section 3. Experimental results
obtained by cooperative use of the environment are
shown in section 4.

2. Virtual Laboratory

2.1. MOSCITO

MOSCITO is an Internet based platform for
combining design tools via TCP/IP sockets. The
MOSCITO system provides:
• an open interface for tool integration
• mechanisms for a network-wide lookup for

searching registered tools, start-up, configuration,
initialisation and runtime control

• the communication between tools for data transfer
• an open interface for user defined workflows
• a graphical user interface for controlling the

workflow and the remote tools, and for viewing
status information and results.

Substantially, MOSCITO is relied on a Client-Server
concept, i.e. there are one Master Server, several Slave
servers and arbitrary number of clients. The service
requested is provided by the Slave servers provided with
software modules called Agents. These agents
encapsulate service provided by working tools (program
executables).

An Agent can be seen as an intelligent wrapper
around another stand-alone program (written earlier by
third party). The Agent is capable to communicate with
Servers. Any time, it is possible to add and remove
Agents. All Slave servers are registered in the Master
Server. That way all Agents (i.e. available services) are
also registered in the Master server. The USER accesses
first the Master server and will get a list of services
provided. After selecting the service (Agent) wanted,
the USER is automatically re-directed to the Slave

Server, and work with the tool can start.

Fig.1. Internet-based design and test flows

The detailed description of the MOSCITO
environment developed in VILAB is given in [3,4].

2.2. Tool integration

The main features of the tool integration conception are:
§ Each partner's application is embedded into a

MOSCITO agent
§ The communication between of the application and

the agent is file based.
§ The access to the communication files is handled by

adaptation of the agent to absolute file paths.
§ The application invocation is based on command

lines. Additional outputs (e.g. error messages) are
redirected to log files.

§ The agents are implemented in JAVA and the
communication is realized via network sockets.

§ MOSCITO provides additional tools for workflow
control and monitoring as well as result
visualization.

To validate the MOSCITO system and to collect
experiences while using it for real-life applications an
experimental tool environment for high-level synthesis
and test pattern generation (Fig.1) was developed and
mapped to a MOSCITO workflow. In the following the
functionality of the tools in this workflow are explained
in detail.

3. Tool descriptions

3.1. Interface to system-level HW/SW co-design

The initial entry to high-level design flow is
represented by a system-level HW/SW co-design back-
end tool developed at TU Darmstadt [5].

Fig.2 shows the overall co-design flow: within the
DICE design environment [5] an initial mixed HW/SW
specification (mixed VHDL/C description) will be
simulated and repartitioned according to predefined
design constraints. Before starting hardware synthesis,
such parts of the specification, which have been initially
assigned to become software (C specification) and were
moved into hardware modules during partitioning, have
to be migrated to VHDL.

Fig.2. Embedding Design & Test into codesign flow

This migration is performed by a C to VHDL
converter, which is connected as a front-end to the
integrated design flow. Therefore this converter enables
the targeted design flow to process C specifications for
hardware synthesis. C processes are parsed and stored in
an C Structure Tree (CST) object library. Several code
transformations can be applied based on the object
structure. A VHDL code generator back-end is
generating an VHDL entity/architecture pair, which

Behavioral level
VHDL description

(EAS/IIS)

High-level
synthesis(LIU)

RTL VHDL
description

High-level DD
model

Hierarchical
ATPG (TTU)

Test patterns

Fault simulator
(TTU)

Fault coverage,
Testability

Functional patterns
(EAS/IIS)

Logic synthesis
(Synopsys)

Gate-level
EDIF

EDIF-SSBDD
converter (TTU)

SSBDD model

High-level
VHDL description

(EAS/IIS)

Simulation-based
ATPG (TTU)

1

2

3 4

5
6

7

VHDL-DD
converter(TTU)

contains one or several VHDL processes which serve as
the input for high-level synthesis system CAMAD
developed at LIU [6].

3.2. High-level synthesis system CAMAD

The CAMAD high-level synthesis system (Block 1
in Fig.1) is built around an internal design
representation, called ETPN (Extended Timed Petri
Net), which has been developed to capture the
intermediate results during the high-level synthesis
process. The use of Petri nets provides a natural
description of concurrency and synchronization of the
operations and processes of a hardware system. It gives
thus a natural platform to represent and manipulate
concurrent processes of VHDL specifications.

ETPN is used as a unified design representation
which allows the synthesis algorithm to employ an
iterative improvement approach to carry out the
synthesis task. The basic idea is that once the VHDL
specification is translated into the initial design
representation, it can be viewed as a primitive
implementation. Correctness-preserving transformations
can then be used to successively transform the initial
design into an efficient implementation. CAMAD
integrates the operation scheduling, data path allocation,
control allocation and, to some degree, module binding
sub-tasks of high-level synthesis. This is achieved by
developing a set of basic transformations of the design
representation which deals simultaneously with partial
scheduling and local data path/control allocation. An
optimization algorithm is then used to analyze the
(global) design and select transformations during each
step of the iterative improvement process.

Fig.4. Overview of CAMAD

Fig. 4 illustrates the basic structure of the CAMAD.
As the output of CAMAD, a RTL implementation in
structural VHDL is generated which consists of a data
path netlist and a controller. An interface (Block 3 in

Fig.1) has been built between CAMAD and hierarchical
ATPG (Block 5) developed at TTU [7].

3.3. Hierarchical ATPG DECIDER

A hierarchical test generation system DECIDER
(Block 5 in Fig.1) has been developed which includes a
Register-Transfer Level (RTL) VHDL interface for
importing high-level design information, and also an
EDIF interface (Block 4) for importing gate-level
descriptions of logic. The structure of DECIDER is
presented in Fig.5.

Fig.5. Overview of DECIDER

The ATPG uses a top-down approach, with a novel
method of combining random and deterministic
techniques. Tests are generated for each functional unit
(FU) of the system separately. First, a high-level
symbolic test frame (test plan) is created for testing the
given FU by deterministic search. As the result, a
symbolic path for propagating faults through the
network of components is activated and corresponding
constraints are extracted. The frame will adopt the role
of a filter between the random TPG and the FU under
test. If the filter does not allow to find a random test
with 100% fault coverage for the component under test,
another test frame will be chosen or generated in
addition to the previously created ones. In such a way,
the following main parts in the ATPG are used
alternatively: deterministic high-level test frame
generator, random low-level test generator, high-level
simulator for transporting random patterns to the
component under test and low-level fault simulator for
estimating the quality of random patterns.

4. Experimental research

The described environment has been tested in the
frame of European project VILAB by the partners for

VHDL
Compiler &
Parallelizer

VHDL
Specification

Scheduling
Allocation

Optimization

Simulation
and

Verification

RT-level
Design

Netlist
Generation

Controller
Implementation

ETPN
ControlPart

ETPN
Data Path

Logic Synthesis
Scripts

Design Compiler
(Synopsys Inc.)

Gate Level
Descriptions

SSBDD Synthesis

SSBDD Models
of FUs

Hierarchical ATPG

RTL Model
(VHDL)

FU
Library
(VHDL)

FU
Library
(DDs)

RTL DD
Synthesis

Test patterns

RTL DD
Model

several designs The following three subflows may be
carried out (the reference to the exploited tools in Fig. 1
is given in parentheses):
§ design with hierarchical and deterministic test

generation (using the blocks 1,2,3,4,7);
§ design with low-level simulation-based test

generator (2,4,6,7);
§ design with user defined functional tests (2,4,7).

The first flow is used in connection with the high-
level synthesis tool CAMAD (1) developed by LIU. The
output of the synthesis tool will be a RTL description
presented in a subset of VHDL which is converted (3)
into the input of the hierarchical test generator (5). If the
design is presented in a VHDL description not
corresponding to the defined VHDL subset, this flow
with hierarchical test generation cannot be used. Instead
of that, the second flow based on simulation-based test
generator (6) is suggested. If the fault coverage of user
functional tests is sufficient (determined by fault
simulation using blocks 2,4,7), no additional test
generation is needed (third flow).

DECIDER GATEST HITEC
Fault
cover

%

Time
s

Fault
cover

%

Time
s

Fault
cover

%

Time
s

GCD 91.0 3.4 92.2 89.8 89.3 195.6
Mult
8x8 79.4 13.6 77.3 1585 63.5 1793

Diffeg 95.8 15.8 96.0 9720 95.1 N.A.

Table 1. Experimental results for hierarchical ATPG

This environment has been utilized for research
purposes. For example, the performance of the
hierarchical test generator DECIDER (7) was compared
against the known tools GATEST [8] and HITEC [9].
The results of comparison of ATPGs are given in Table
1 which show the excellent performance of DECIDER.

5. Summary

In the paper an Internet-based environment for high-
level design and test generation for digital systems is
presented. The environment is focused on supporting
SW/HW codesign, high-level and logic design flows
with test pattern generation and fault simulation at
register-transfer and gate level operational activities.
The system provides interfaces and links to commercial
design environments. The functionality of the integrated
system was verified by several benchmark circuits and
by different design and test flows.

The scientific mission of joining partners’
competence by a close cooperation in a virtual
environment to create synergy has been achieved. Four
partners formed a virtual laboratory and joined their

competences and know-how in design methodology
(IIS/EAS, THD), high-level synthesis and testability
(LIU) and hierarchical test generation (TTU) to achieve
a new quality in research by remotely carrying out joint
design and test flows. Including new original test
oriented operations into a commercial design
environment and design flows helps to increase the
testability of designs and in this way to reach higher
quality of products. The convenience of intervening test
oriented tools into the design process contributes to
speeding up the whole design process and to reducing
time-to-market.

Authors believe that the MOSCITO architecture is
powerful enough to solve similar problems in other
application areas of automated system design. Future
work will continue in this direction.

References

[1] P.Schneider, S.Parodat, A.Schneider, P.Schwarz: A

modular approach for simulation-based optimization of

MEMS. Design, Modeling, and Simulation in

Microelectronics, 28-30 November 2000, Singapore, pp

71-82, SPIE Proceedings Series Volume 4228.

[2] MOSCITO: http://www.eas.iis.fhg.de/solutions/moscito.

[3] A.Schneider, E.Ivask, P.Miklos, J.Raik, K.-H.Diener,

R.Ubar, T.Cibakova, E.Gramatova. Internet-based

Collaborative Test Generation with MOSCITO. Proc. of

DATE’02, Paris, France, March 4-8, 2002, pp.221-226.

[4] A. Schneider, K.-H. Diener, J.Raik, R.Ubar, E.

Gramatova, M.Fisherova, W.Pleskacz, W.Kuzmicz.

Defect-Oriented Test Generation and Fault Simulation

in the Environment of MOSCITO. In this proceedings.

[5] T.Hollstein, J.Becker, A.Kirschbaum, M.Glesner.

HiPART: A New Hierarchical Semi-Interactive

HW/SW Partitioning Approach with fast Debugging for

Real-Time Embedded Systems. CODES/CASHE’98.

[6] G.Jervan, P.Eles, Z.Peng, J.Raik, R.Ubar. High-Level

Test Synthesis with Hierarchical Test Generation. 17th

NORCHIP Conf., Oslo, Nov. 8-9, 1999, pp.291-296.

[7] J.Raik, R.Ubar: Fast Test Pattern Generation for

Sequential Circuits Using DD Representations. J. of

Electronic Testing: Theory and Applications. Kluwer

Acad. Publishers. Vol. 16, No. 3, pp. 213-226, 2000.

[8] E.M.Rudnick, J.Patel, G.S.Greenstein, T.M.Niermann:

Sequential Circuit Test Generation in a Genetic

Algorithm framework. DAC., pp. 698-704, 1994.

[9] M.Niermann, J.H.Patel: HITEC: A Test Generation

Package for Sequential Circuits. European Conf. Design

Automation, pp. 214-218, 1991.

