ivauk_TCAD14

Probabilistic Analysis of Power and Temperature Under Process Variation for Electronic System Design

Ivan Ukhov
 
Petru Eles Author homepage
Zebo Peng Author homepage

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, June 2014, Volume 33, No. 6, pp. 931-944.

ABSTRACT
Electronic system design based on deterministic techniques for power-temperature analysis is, in the context of current and future technologies, both unreliable and inefficient since the presence of uncertainty, in particular, due to process variation, is disregarded. In this work, we propose a flexible probabilistic framework targeted at the quantification of the transient power and temperature variations of an electronic system. The framework is capable of modeling diverse probability laws of the underlying uncertain parameters and arbitrary dependencies of the system on such parameters. For the considered system, under a given workload, our technique delivers analytical representations of the corresponding stochastic power and temperature profiles. These representations allow for a computationally efficient estimation of the probability distributions and accompanying quantities of the power and temperature characteristics of the system. The approximation accuracy and computational time of our approach are assessed by a range of comparisons with Monte Carlo simulations, which confirm the efficiency of the proposed technique.


Related files:
ivauk_TCAD14.pdfAdobe Acrobat portable document

Copyright note for papers published by the IEEE Computer Society:
Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.


[UEP14] Ivan Ukhov, Petru Eles, Zebo Peng, "Probabilistic Analysis of Power and Temperature Under Process Variation for Electronic System Design", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, June 2014, Volume 33, No. 6, pp. 931-944.
( ! ) perl script by Giovanni Squillero with modifications from Gert Jervan   (v3.1, p5.2, September-2002-)
Last modified on Monday December 04, 2006 by Gert Jervan