

COTEST meeting

Torino April, 26th 2002

Outline

- Experiment description
- Results
- Conclusions.

Goal

 Assess the feasibility of high-level test vectors generation based on high-level fault models.

Activities

- Different versions of the adopted benchmarks have been developed (using Behavioral Compiler)
- Prototypical environments have been developed (supporting semi-automated fault list generation, high-level fault simulation and gate-level fault simulation)
- High-level fault models have been compared.

Assumptions

- Behavioral-compiler (BC) like model:
 - One entity
 - One process
 - Explicit clocking strategy via (multiple) wait
 - Global synchronous reset
- BC+DC Synopsys synthesis flow
- Simple gate-level library (and, or, ffd...).

Metrics

- Behavioral level:
 - Statement coverage: SC
 - Bit coverage: BC
 - Condition coverage: CC
- Gate level (GL):
 - Single permanent stuck-at: GL stuck-at

Benchmarks

Benchmark	Scheduling	VHDL lines	Gates	FFs
BIQUAD 1	Fixed IO speed optimized	93	6,043	125
BIQUAD 2	Fixed IO area optimized	93	3,252	257
TLC	Fixed IO	168	241	23

Behavioral Fault Simulation

- Performed via
 - Manual instrumentation of circuit description for fault injection and faulty effects observation
 - Commercial VHDL/SystemC simulator.

Analysis of available fault models

Random Test Sequences

Benchmark	SC	ВС	BC+CC
BIQUAD 1	0.63	0.97	0.97
BIQUAD 2	0.64	0.97	0.98
TLC	0.83	0.45	0.80

Figures represent the **correlation** between high-level coverage and gate-level one.

Observation (I)

BIQUAD:

- SC is useless
- CC is not applicable (due to the benchmark nature)
- Good correlation between BC and GL stuck-at.
- Predictions about the testability are implementation-independent: same trends no matter the scheduling mode and the optimization constraints.

Observation (II)

- TLC:
 - SC is somewhat useful
 - BC has poor correlation with GL stuck-at
 - BC+CC has much better (but still rather low) correlation with GL stuck-at.

A new fault model

- State coverage (STC): it measures the percentage of wait statements that are reached
- It is related with the percentage of states of the model control unit that are traversed.

Analysis of the new fault model

Benchmark	BC+CC	BC+CC+STC
BIQUAD 1	0.97	0.97
BIQUAD 2	0.98	0.98
TLC	0.80	0.86

Figures represent the **correlation** between high-level coverage and gate-level one.

High-level ATPG

- Intended to preliminary assess the feasibility of generating test vectors on behavioral models
- It is based on the BC+CC+STC highlevel fault model
- It exploits a Simulating Annealing algorithm.

Simulated Annealing

- The solution is a sequence of vectors
- The evaluation function measures the BC+CC+STC coverage
- The temperature is gradually decreased to a *freeze* temperature, where no further change occurs.

Experimental results

	High-level ATPG		testgen			
Benchmark	FC [%]	Len [#]	CPU [s]	FC [%]	Len [#]	CPU [s]
BIQUAD 1	68.27	287	2,139	37.06	154	10,817
BIQUAD 2	86.94	287	2,139	70.75	245	11,060
TLC	74.48	23	9.71	80.67	77	98.77

Result analysis

	High-level ATPG			
Benchmark	FC [%]	Len [#]	CPU [s]	
BIQUAD 1	0 0	0 0	0 0	
BIQUAD 2	0 0	0 0	0 0	
TLC	0 0	00	0 0	

Conclusion

- According to the parameters defined in the COTEST technical annex:
 - High-level ATPG is well-suited for datadominated applications.
 - Research is still required for effective testing of control-dominated applications, although preliminary results are encouraging.

Publications

O. Goloubeva, M. Sonza Reorda, M. Violante,
"Experimental analysis of fault models for behavioral-level test generation",
IEEE DDECS 2002 Design and

IEEE DDECS 2002, Design and Diagnostics of Electronic Circuits and Systems Workshop, pp. 416-419

Submitted

- O. Goloubeva, M. Sonza Reorda, M. Violante, "Behavioral-level fault models comparison: An experimental approach", ICAM
- O. Goloubeva, M. Sonza Reorda, M. Violante, "Behavioral-level test vector generation: fault model selection and preliminary test generation results", DCIS