
Deadline Miss Rate Analysis of Applications with Stochastic Task Execution Times
Sorin Manolache, Petru Eles, Zebo Peng

{sorma, petel, zebpe}@ida.liu.se

Linköping University, Sweden

Abstract analysis approach that can be efficiently applied to mono-
The expected fraction of missed deadlines is an impor-
tant performance indicator of applications with stochastic
task execution times. Obtaining this indicator is a challeng-
ing endeavour especially for multiprocessor applications.
In this paper, we propose two analysis approaches that
trade the analysis accuracy for analysis speed and memory
in a designer-controlled way. The more accurate approach
is applicable to the one-time design validation phase, while
the faster approach can be plugged into an optimisation
loop which explores several design alternatives during sys-
tem synthesis. Experiments demonstrate the applicability and
efficiency of the proposed approximate analysis methods.
1 Introduction

Reactive real-time systems [2], composed of possibly
communicating tasks that respond to stimuli, have to deliver
their response typically within a prescribed time interval
from the stimulus arrival time. The validation of this timeli-
ness property is done by schedulability analysis [1] among
other methods, such as simulation and formal verification.
Typical worst case analysis validates or invalidates the sys-
tem while considering that all tasks execute a fixed, worst
case execution time. In the more realistic case however,
when task execution times are variable and their probability
distributions given, the analysis computes the expected rate
at which the timeliness property is not satisfied or equiva-
lently the fraction of missed deadlines. In either case, deter-
ministic or stochastic task execution times, the validation
analysis is very important as deadline misses could have
catastrophic consequences [12] or could significantly
degrade the system quality.

Besides system validation, analysis plays an important
role during design space exploration. Design transforma-
tions, such as decisions about task assignment to processors
or priority assignment to tasks are driven by the analysis
that assesses their impact on performance indicators such as
deadline miss rates.

In previous work, we proposed an exact1 schedulability

processor systems [7]. As exact analysis approaches are
prohibitive in terms of consumed resources (analysis time
and memory) in the case of multiprocessor systems, we
present two approximate analysis strategies that trade accu-
racy for speed and reduced memory in a designer-controlled
way. The first proposed approach is rather accurate and
applicable to the one-time validation phase at the end of the
high-level design. The second approach is less accurate but
much faster and it is intended to be plugged into a design
space exploration loop.

The two approaches are presented in dedicated sections,
following Section 2 which gives the common problem for-
mulation. The last section draws the conclusions.
2 Application modelling

The hardware architecture is modelled as a set of proces-
sors P1, P2, …, PM, a set of buses, and the corresponding
interconnection topology.

The application is modelled as a set of tasks τ1, τ2, …,
τN. Each task τi, 1≤i≤N, is characterised by its period πi, its
deadline δi, its priority, its mapping m(τi), i.e. the processor
on which every job of task τi executes, and its execution
time probability density function (ETPDF) εi. The execu-
tion times of any two jobs (of the same or of different tasks)
are assumed statistically independent. Jobs are dispatched
for execution by a runtime scheduler according to the static
priority of the task to whom the job belongs. The execution
of jobs is assumed non-preemptive.

There may exist data dependencies among the tasks. For
all pairs of tasks τj→τi, where τi is data dependent of τj we
assume that πj divides πi and that the kth job of task τi may
execute only after the jobs πi/πj · (k–1), πi/πj · (k–1) + 1, …,
πi/πj · k–1 of task τj have completed their execution. The
symmetric and transitive closure of the dependence relation
between tasks partitions the set of tasks into task graphs.

The analysis solves the following problem: Given a hard-
ware architecture and an application under the assumptions
listed above, find the expected fraction of missed deadlines,
limt→∞ πi · Mi(t)/t, for each task τi, where Mi(t) is the
number of missed task deadlines during the interval [0, t).1.In the sense that the obtained performance indicator (e.g. deadline

miss probability) is exact and not an approximation

3 Analysis based on Coxian approximation
Because the task execution times are stochastic varia-

bles, the behaviour of the entire system is random and can
be characterised by the stochastic process underlying the
system.

The process has to be constructed and analysed in order
to extract the desired performance metrics. When consider-
ing arbitrary execution time probability distribution func-
tions (ETPDFs), the resulting process is a generalized semi-
Markov process (GSMP), making the analysis extremely
demanding in terms of memory and time. If the execution
time probabilities were exponentially distributed, the proc-
ess would be a continuous-time Markov chain (CTMC)
which is easier to solve.

As a first step, we generate a model of the application as
a Generalized Stochastic Petri Net (GSPN). We use this
term in a broader sense than the one defined by Balbo [3],
allowing arbitrary probability distributions for the firing
delays of the timed transitions. More details on this step are
found in our previous work [9]. The translation task graph-
→GSPN is automatically made in O(N) time, where N is
the number of tasks. The tangible reachability graph (TRG)
[3] of the GSPN is isomorphic to the generalised semi-
Markov process underlying the application.

The second step implies the approximation of the
arbitrary real-world ETPDFs with Coxian distributions [4],
i.e. weighted sums of convoluted exponentials. A Coxian
distribution is depicted in Figure 1. The circles represent
exponentially distributed execution times, while the dashed
box represents the entire Coxian execution time. A task
having the Coxian execution time shown in the figure,
would execute an exponentially distributed time interval
with an average rate of µ1, and then it would finish its total
execution with probability α1. With probability 1–α1, the
task execution would enter a second stage, also an
exponentially distributed stage with an average rate of µ2,
and it would finish its total execution with probability α2.
With probability 1–α2 it would enter a final third stage, that
is exponentially distributed with an average rate of µ3.

The Laplace transform of the probability density of a
Coxian distribution with r stages is given below:

X(s) is a strictly proper rational transform, implying that
the Coxian distribution may approximate a fairly large class
of arbitrary distributions with an arbitrary accuracy pro-
vided a sufficiently large r. Practically, the approximation
problem can be formulated as follows: given an arbitrary

probability distribution, find µi, i=1,r, and αi, i=1,r-1 (αr=1)
such that the quality of approximation of the given distribu-
tion by the Coxian distribution with r stages is maximized.
This is usually done in the complex space by minimizing
the distance between the Fourier transform X(jω) of the
Coxian distribution and the computed Fourier transform of
the distribution to be approximated. The minimisation is a
typical interpolation problem and can be solved by various
numerical methods [10]. We use a simulated annealing
approach that minimizes the difference of only a few most
significant harmonics of the Fourier transforms which is
very fast, if provided with a good initial solution. We choose
the initial solution in such way that the first moment of the
real and approximated distribution coincide.

Figure 2 shows the Coxian approximation with two to
six stages of a generalised ETPDF.

By replacing all generalized transitions of the GSPN
with Coxian subnets containing only transitions with expo-
nentially distributed firing delays, the GSMP underlying the
Petri Net becomes a CTMC. It is obvious that the intro-
duced additional places of the subnets trigger an explosion
in the TRG and implicitly in the resulted CTMC. However,
instead of storing large sets of samples of arbitrary distribu-
tion functions, only the average firing rates for each expo-
nential transition needs to be stored and manipulated during
the analysis process. Moreover, classic numerical tech-
niques like the power method of the Jacobi method [11] can
be used for solving the CTMC. However, the biggest advan-
tage is that the newly introduced states of the CTMC form
regular structures. Therefore, the elements of the infinitesi-
mal generator of the CTMC do not have to be stored in
memory but they are generated at analysis time. In this way,
larger applications can be analysed.

We will illustrate the above mentioned property using an
example. Let us consider three states in the GSMP as
depicted in Figure 3. Two tasks, u and v, are running in the
states X and Y. Only task v is running in state Z. If task v

Figure 1. Coxian distribution

α1 α2

1–α1 1–α2
µ1 µ2 µ3

X s() α i 1 α i–()
µk

s µk+

k 1=

i

∏⋅
k 1=

i 1–

∏⋅
i 1=

r

∑=

Figure 2. Coxian approximation

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000 25000 30000

pr
ob

ab
ili

ty
 d

en
si

ty

time

2 stages
3 stages
4 stages
5 stages
6 stages

original

finishes running in state X, a transition to state Y occurs in
the GSMP. This corresponds to the situation when a new
instantiation of v becomes active immediately after the
completion of a previous one. When task u finishes running
in state X, a transition to state Z occurs in the GSMP. This
corresponds to the situation when a new instantiation of u is
not immediately activated after the completion of a previous
one. Consider that the probability distribution of the execu-
tion time of task v is approximated with the three stage Cox-
ian distribution and that of u is approximated with the two
stage Coxian distribution. The resulting CTMC correspond-
ing to the GSMP in Figure 3 is depicted in Figure 4. The
edges between the states are labelled with the average firing
rates of the transitions of the Coxian distributions. As seen,
there are many more states in the approximating CTMC
than in the original GSMP. However, due to the regularity of
the structure of the chain, its infinitesimal generator is
expressed as a sum of Kronecker products of very small
matrices as we have shown in our previous work [9]. These
small matrices have a dimension equal to the number of
stages of the approximating Coxian distributions, that is
typically in the range 2 to 6. Only the very small matrices
are stored in memory while the large infinitesimal generator
is generated on-the-fly at analysis time, according to the
Kronecker products.

In order to assess the proposed analysis method, we per-
formed a set of experiments. The results are presented in
more detail in the referred paper [9]. We observed a linear
increase of the analysis time with the number of tasks, an

exponential increase of the analysis time with the number of
processors and with the average number of stages of the
Coxian distributions. For applications consisting of 60 tasks
mapped on 2 processors, the analysis took 2300 sec. on
average. Applications consisting of 10 tasks mapped on 6
processors were analysed in 5200 sec. on average. Table 1
shows the accuracy of our approach as a function of the
number of stages of the approximating Coxian distribu-
tions. The exact numbers for the deadline miss rates were
obtained from the exact analysis approach that we previ-
ously proposed [7] and that is efficient for monoprocessor
systems. As seen, good accuracy levels can be obtained
even for a small number of stages, but, of course, they
depend on the shape of the original ETPDFs.

4 Fast approximate analysis
The analysis based on Coxian approximation, described

in the previous section, is too slow to be plugged into an
optimising loop driving a design space exploration process
such as a task-to-processor mapping or a task priority
assignment heuristic [8]. In this section, we propose a faster
but less accurate deadline miss rate analysis method. The
basic idea is to sweep over the time axis from 0 to the least
common multiple (LCM) of task periods, and to approxi-
mate the state of the system at each time based on approxi-
mations at previous time points. In this context, the state of
the system at a time t is given by a vector of probabilities,
pi, 1≤i≤N, where pi is the probability that task τi is running
at time moment t (the instantaneous processor load caused
by task τi at time t). The probability that a task misses its
deadline is given by the corresponding element of the sys-
tems state at the time of the deadline.

As a first approximation, only a discrete set of time
moments t1, t2, … in the interval [0, LCM) are selected, and
the density of these time moments is designer-specified
depending on the desired accuracy.

A second approximation is used when computing the
probability that a task with two or more predecessors is
ready to execute prior to time tn, denoted P(Ai≤n). If all the
finishing times of the predecessor tasks were statistically
independent among themselves, we could write.

If any two predecessor tasks of task τi have a common
predecessor task or if any of the ancestor tasks of task τi
share the same processor, the independence assumption
does not hold. However, as shown by Li [6] and Kleinrock

Figure 3. Part of a GSMP

ZXY uv

Figure 4. Expanded Markov chain

Y00 Z0

Y10

Y01

Y11

Y02

Y12

X00

X10

X01

X11

X02

X12

Z1

Z2

α1µ1

α1µ1

α2µ2

α 3µ
3

β1λ1

β1λ1

β1λ1

β
2λ

2

(1
−β

1)
λ 1 β
2λ

2

β
2λ

2

(1
−β

1)
λ 1

(1
−β

1)
λ 1

(1
−β

1)
λ 1

(1
−β

1)
λ 1

(1
−β

1)
λ 1

α 3µ
3

α 2µ 2

(1
−α

2)
µ 2

(1
−α

2)
µ 2

(1
−α

1)
µ 1

(1
−α

1)
µ 1

(1
−α

2)
µ 2

(1
−α

1)
µ 1

(1
−α

2)
µ 2

(1
−α

1)
µ 1

(1
−α

2)
µ 2

(1
−α

1)
µ 1

 Table 1. Accuracy vs. no. of stages

2 stages 3 stages 4 stages 5 stages

Relative error 8.467% 3.518% 1.071% -0.4%

P Ai n≤() P Fi n≤()
σ Pred τ()∈

∏=

[5], the dependence is weak enough to accept the equation
as being a reasonable approximation.

Last, we approximate the probability that task τi is run-
ning at time tn knowing that task τj has arrived prior to time
tn with the probability that task τi is running at time tn
(P(Li(n) | Aj≤n) = P(Li(n)). More details and an illustrative
example are found in previous work [8].

We use these three approximations to compute P(Ai≤n),
P(Si≤n), P(Fi≤n), P(Li(n)) at each considered discrete time
moment, where P(Ai≤n) is the probability that task τi has
arrived prior to time moment tn, P(Si≤n) is the probability
that task τi has started prior to time moment tn, P(Fi≤n) is
the probability that task τi has finished prior to time moment
tn, and P(Li(n)) is the probability that task τi is running at
time moment tn. These probabilities are computed based on
the following formul ae:

where MT is the set of tasks mapped on the same processor
with task τi, and Ei is the execution time of task τi.

In order to assess the accuracy of the proposed fast
approximate analysis (FAA), we compared the processor
load curves obtained by FAA with processor load curves
obtained by the analysis method described in the previous
section (CA). The benchmark application consists of 20
processing tasks mapped on 2 processors and 3 communi-
cation tasks mapped on a bus connecting the two proces-
sors. Figure 5 gives a qualitative measure of the
approximation. It depicts the two processor load curves for
a task in the benchmark application. A quantitative measure
of the approximation is given in Table 2. We present only
the extreme values for the average errors and standard devi-
ations. Thus, row 1 in the table, shows the largest obtained
average error, while row 2, shows the smallest obtained

average error. Row 3, shows the worst obtained standard
deviation, while row 4, shows the smallest obtained stand-
ard deviation. The average of standard deviations of errors
over all tasks is around 0.065. Thus, we can say with 95%
confidence that FAA approximates the processor load
curves with an error of ±0.13. The analysis time grows lin-
early with the number of tasks. For a set of benchmark
applications consisting of 40 tasks mapped on 3 to 8 proc-
essors, the average analysis time was 3ms.

5 Conclusions
In this paper we have proposed two analysis methods for

obtaining the deadline miss rate for real-time applications
with stochastic task execution times. Both methods manage
complexity by trading result accuracy for required analysis
resources.

References
[1] N.C. Audsley, A. Burns, R.I. Davis, K.W. Tindell, A.J.

Wellings, “Fixed priority pre-emptive scheduling: a
historical perspective“, J. of Real-Time Systems, 8(2-3),
1995, pp. 173-198

[2] A. Burns, A.J. Wellings, “Real-time systems and
programming languages”, Addison-Wesley, 2001

[3] G. Balbo, G. Chiola, G. Franceschinis, G. M. Roet, “On the
Efficient Construction of the Tangible Reachability Graph of
Generalized Stochastic Petri Nets”, Proc 2nd Workshop on
Petri Nets and Performance Models, pp. 85-92, 1987

[4] D.R. Cox, “A Use of Complex Probabilities in the Theory of
Stochastic Processes”, Proc. Cambridge Philosophical Society, pp.
313-319, 1955

[5] L. Kleinrock, “Communication Nets: Stochastic Message
Flow and Delay”, McGraw-Hill, 1964

[6] Y.A. Li, J.K. Antonio, “Estimating the execution time
distribution for a task graph in a heterogeneous computing
system”, 6th Heterogeneous Computing Workshop, HCW 97

[7] S. Manolache, P. Eles, Z. Peng, “Memory and Time Efficient
Schedulability Analysis of Task Sets with Stochastic
Execution Time”, Euromicro Conf. on Real-Time Systems
(2001).

[8] S. Manolache, P. Eles, Z. Peng, “Optimization of Soft Real-
Time Systems with Deadline Miss Ratio Constraints”,
RTAS04, pp. 562-570

[9] S. Manolache, P. Eles, Z. Peng, “Schedulability Analysis of
Multiprocessor Real-Time Applications with Stochastic
Task Execution Times”, ICCAD 2002, pp 699-706

[10] W.H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
“Numerical Recipes in C”, Cambridge Univ. Press, 1992

[11] W.S. Stewart, “Introduction to the Numerical Solution of
Markov Chains”, Princeton Univ. Press, 1994

[12] N. Storey, “Safety-Critical Computer Systems”, Addison-
Wesley, 1996

Figure 5. Approximation accuracy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

P
ro

ce
ss

or
 lo

ad

Time [sec]

FAA
CA

P Fi n Si= k=() P Ei n k–=()=

P Li n() Si k=() P Ei n k–>()=

P Si n=() P Ai n≤() P Si n<()–() 1 P Lσ n()()
σ MT∈
∑– 

 ⋅=

 Table 2: Approximation accuracy

Task Average error
Standard

deviation of errors

19 0.056351194 0.040168796

13 0.001688039 0.102346107

5 0.029250265 0.178292338

9 0.016695770 0.008793487

	Abstract
	1 Introduction
	2 Application modelling
	3 Analysis based on Coxian approximation
	4 Fast approximate analysis
	5 Conclusions
	References

