
Modelling of Real-Time Embedded Systems in an Object-Oriented Design
Environment with UML

Razvan Jigorea, Sorin Manolache, Petru Eles, Zebo Peng
Computer and Information Science, Linköping University, Sweden

{g-razji, g-sorma, petel, zebpe}@ida.liu.se

Abstract
This paper explores aspects concerning system-level specifi-
cation, modelling and simulation of real-time embedded sys-
tems. By means of case studies, we investigate how object-
oriented methodologies, and in particular UML, support the
modelling of industrial scale real-time systems, and how dif-
ferent architectures can be explored by model simulation. We
are mainly interested in the problem of system specification
as it appears from the prospect of the whole design process.
The discussion is illustrated by a large system model from the
telecommunications area, the GSM base transceiver station.

1. Introduction

Real-time embedded systems (RTES) have to fulfill
increasing complex requirements concerning functionality,
timing, power consumption, cost, etc.

Design environments have to be developed in order to
assist the designer throughout the design process. Figure 1
shows a simplified view of such a design flow. An important
tasks performed during the design phase is architecture
exploration. Several architectures (differing in number and
kind of processors, interconnection structure, number of
ASICs, memory structure, etc.) and alternatives for task par-
titioning are explored in order to find an efficient solution
which also satisfies the imposed requirements. The ability
to check the functionality of a certain design alternative and
to estimate different parameters is essential. Simulation is
the most common technique which allows to get a feedback
concerning the degree to which a design alternative fulfils
the requirements [1].

An important trend in current design methodologies for
embedded systems is towards the reuse of pre-designed
components. Such an approach has been considered by
hardware designers as a practicable strategy [2]. Pre-
designed programmable cores and ASICs (called intellec-
tual property – IP), stored in a module library (Figure 1), are
used as building blocks for new system designs.

The system specification has to fulfill several require-
ments. Some of them, like support for concurrency, timing,

hierarchy, nondeterminism, are well known and have been
discussed in the literature [3, 4, 7]. In this paper we are inter-
ested in the problem of system specification as it appears
from the prospect of the whole design process. Some of the
following issues have been identified as result of our work
related to the modelling and design of RTES in the telecom-
munications area: data and control flow separation, generic
functional and control units, support for architecture explo-
ration, timeliness verification, multiple abstraction levels,
support for reuse.

Our main focus is on how OO methodologies, and in par-
ticular UML, support such requirements. The discussion is
based on the experience gained from the modelling of a large
application in the telecommunications area, a GSM Base
Transceiver Station (BTS). Another example, an intelligent
traffic lights controller, has been used for a set of experi-
ments concerning the architecture exploration aspects.

Section 2 describes the functionality of a GSM BTS, our
main case study. Section 3 presents solutions to the prob-
lems highlighted above, in the context of UML. Section 4
focuses on aspects related to architecture exploration. The
last section presents our conclusions.

2. The Base Transceiver Station (BTS)

The BTS is a device in the canonical architecture of the
Global System for Mobile Communication (GSM) [6].
Figure 2 shows the place of the BTS in the context of the
GSM architecture. The radio interface connects the BTS
with the mobile stations (MS). A terrestrial link, the Abis
interface, connects the BTS with the BSC. The BSC is con-
nected with the NSS. The BTS comprises radio transmis-
sion and reception devices, and all the radio interface signal

System
 specification

Module
library

Design

Implementa-
tion

Simulation

Figure 1. The design cycle of RT systems



processing. To counter the high error rate of the radio inter-
face, complex modulation/demodulation algorithms are
deployed in the BTS and computation intensive channel
encoding/decoding methods are applied. The number of
these channel encoding/decoding algorithms is relatively
large. In order to adapt more users, a time division multiple
access scheme (TDMA) is used. Thus, several communica-
tion channels multiplexed in time and frequency are man-
aged by the BTS. The BTS allocates/deallocates and
changes the channel mode at the request of the NSS. Signal-
ling protocols between the BTS and the MSs and between
the BTS and the infrastructure are used in order to make
such a channel management possible.

3. The BTS model

In this section we first present the general structure of the
BTS model. Next, solutions to certain specific problems are
discussed. The underlying specification and design strategy
is based on an OO methodology. The discussion here is in
the particular context of UML [4, 8].

The BTS model has been specified and simulated with
UML using the iLogix Rhapsody environment [10].

3.1. General description of the model architecture

In Figure 3 we show the structure of the BTS model. Our
model has been organized on four layers. The bottom layer
consists of purely functional processing units (called func-
tional units — FU). The control tasks to be performed by the
BTS are distributed among the other three layers. The
responsibilities of the FUs are related to channel encoding/
decoding and to data interleaving/deinterleaving. Subse-
quent interleaving/deinterleaving schemes are applied in
order to build radio-bursts from data-blocks and to assemble
data-blocks out of the incoming radio-bursts. FUs in the
model are specialized for a certain encoding/decoding or

interleaving/deinterleaving task.
The control layer above the functional layer consists of

the baseband controllers (BC). They have to assure a correct
operation sequence for each channel mode. BCs are special-
ized for the control of channels in a certain channel mode.

The next control level consists of the transmitter-receiv-
ers (TRX). A TRX controls a set of BCs. Each TRX corre-
sponds to a signalling link. A TRX manages traffic and
signalling for eight physical channels.

The TRXs use the services of the third control layer, the
LAPD (Link Access Protocol for the “D” Channel) and the
LAPDm (LAP for the “Dm” Channel) protocol interpreters
[5]. These modules receive from the TRX the signalling
data and are responsible for assembling the frames, link
maintenance, and notification of the TRX regarding the
received message.

The Burst Generator (BuG) models the BTS radio sub-
assembly. It generates bursts to be sent to the TRX. The
Abis Block Generator (BlG) has a similar role as the Radio
BuG. It generates blocks, simulating the time division
scheme deployed on the Abis.

3.2. Deployment of control

FUs can be reused over many generations of telecommu-
nication applications or over different designs. The same
philosophy applies to control units. Protocols are organized
on different layers and from one product to another only
particular layers are modified while other layers are reused.
In order to support reusability of FUs and control units, a
minimal amount of control has to be deployed to any unit in
the model. Thus, the potential of reusing the modelling units
increases significantly.

Figure 4 shows the UML statechart for one of the FUs
which performs a part of the channel encoding. The unit, a
CRC encoder, is unaware of the channel whose processing
chain it belongs to. Thus, it could be used as a building
block for both speech encoding and for fire codes, as well as
for any other design in which CRC encoding is performed.
The unit has a very simple interface: after a processing
delay (procD) has elapsed from the moment it receives a
processing command (evCRCEncCmd) from a controlling
entity, it will notify the controlling entity about completion
of the processing and offer the transformed data (evCmd-
Completed(result)).

The same principle of minimum amount of control
deployment was adopted for the controlling units. A BC, for
example, manages FUs according to the channel mode of
the controlled channel. It is completely unaware of the
existence of the other channels (a statechart of a BC is

Network
Switching

Subsystem
(NSS)

Figure 2. The BTS in the GSM architecture
radio interface Abis interface

MS Base
Trans-
ceiver
Station
(BTS)

Base
Station

Controller
(BSC)

MS

MS

LAPDm PI

...

...

...FU

BC

Radio
BuG

Abis
BlG

FU – functional unit
BC – baseband controller
TRX – transmitter-receiver

PI – protocol interpreter
BuG – burst generator
BlG – block generator

Figure 3. Structure of the GSM BTS model

Abis interfaceradio inter-
face

TRX

LAPD PI

TRX

BCBC

FU FU
evCRCEncCmd

tm(procD)/itsController->evCmdCompl(result);
idle CRC

Figure 4. Statechart for CRC processing unit



shown in Figure 6).
The TRX, on the other hand, is in charge of the eight

channels it manages. It is the only unit which has to be
aware of the timing scheme in order to identify a channel
correctly and to activate the right BC (Figure 7).

3.3. Separation of control and data flows

Separation of data and control flows improves the units
reusability degree. OO modelling particularly suits this
requirement. There are objects which model entities on the
data path, and objects which model controlling units. Due to
the inherent loose coupling between objects, the separation of
control and data flow is easy to achieve. This aspect is well
highlighted in Figure 3. FUs are operating on the data path,
while no control functions are embedded within them. On the
other hand, BCs as well as TRXs do not perform any process-
ing on the data flow. They just coordinate lower level entities.

3.4. Uniform interfaces and generic units

Various types of low level units are treated uniformly by
the upper layers. This simplifies the modelling process. The
use of inheritance relationships leads to such an uniformity.

Particular interleavers, for instance, are derived from a
generic interleavers which again are specializations of
generic FUs. For the upper, control layers, every FU appears
as the generic unit. A similar strategy applies to control units.

In Figure 5 the unshaded boxes form the class diagram of
a generic downlink BC. The generic controller aggregates
generic FUs of the classes Interleaver, ConvEnc, and Parity-
Enc. A specific BC aggregates specialized FUs, depending
on the particular channel mode it controls. A data downlink
BC for example, is an instantiation of the generic class
DownLkCtrl, and aggregates an instantiation of the class
DataConvEnc and of the class DataIntl. The corresponding
class diagram is represented by the shaded boxes.

3.5. Timing aspects

Modelling of timing aspects comprises specification of
deadlines and execution delays.

Execution delays are modelled as time-triggered state
transitions (see Figure 4). A parameter of a FU characterizes
the execution delay of that FU. During architecture explora-
tion, this delay depends on the particular processor to which

the unit is assigned for execution. This delay has to be esti-
mated [9] and the resulting value is assigned to the unit. The
delay attribute is specified in the superclass of all FUs.

Control units coordinate the functionality of lower level
units. The control units have to monitor whether certain pre-
defined time intervals have passed and to take certain deci-
sion if a deadline has been reached. Deadline is modelled by
introducing an additional state, which is entered after a cer-
tain time interval has elapsed. Figure 6 illustrates this mech-
anism for a BC. If the execution delay of the processing chain
exceeds the predefineddeadlinevalue, the watchdog state is
entered. The TRX interprets this as an exceptional situation.

3.6. Concurrency issues

Usually, telecommunication devices perform a set of
well specified operations on multiple data flows. Identifica-
tion of this parallelism is important in the analysis phase
because it influences the model object structure. In UML,
parallelism can be expressed in two ways. First, all the
objects are considered to be parallel entities. Synchroniza-
tion is achieved by means of message exchanges. Second,
an entity which has been modelled as a single object can
exhibit itself a concurrent behaviour. In this case the state-
chart corresponding to the object is specified as a set of con-
current components. Such a case is shown in Figure 7,
where the statechart of a TRX is depicted. The TRX has to
handle uplink and downlink traffic, as well as signalling
information addressed to it. Those activities are independ-
ent to each other and can be performed concurrently.

3.7. Multiple abstraction levels

Our main focus was set on the specification and design

Data
DownLkCtrl

Data
ConvEnc

DataIntl

Figure 5. Specialization of a downlink controller

1 11 1

DownLkCtrlConvEnc ParityEnc

Interleaver

0,1 0,1

0,1

1 1
1 idle

watchdog

deinterl

convDec

CRCDec

errConv

errCRC

active
evBursts/deI->GEN(evDeICmd(params->bursts));

evDeICompl/conv->GEN(evConvCmd(params->block));

evConvCompl

[params->status==0]

[else]

evCRCDecCompl

[else]

[params->status==0]

tm(deadline)

Figure 6. Statechart of a baseband controller

inactive
idle

access dispatch

idle

idle

signalling uplink downlink

evAlloc/
alloc(params);

evBurstTick

[else]

[else]

[TSN()==3] [isAlloc()]

evAbisBlock/
extract(params);

Figure 7. Statechart of a TRX



of the digital components of the BTS. However, in order to
perform simulation and architecture exploration, the whole
functionality of the BTS had to be modelled. Thus, the radio
subassembly was simply modelled as a radio burst genera-
tor, at a very high abstraction level. The strong encapsula-
tion, typical to the OO approach, allows for an uniform
treatment of entities specified at different abstraction levels.
They allow us to concentrate on the refinement of that part
of the model we are mainly interested in.

4. Architecture exploration

In order to complete our goal in exploring the way UML
suits the RTES design cycle, we imagined a simpler case
study, which allows to demonstrate how architecture explo-
ration can be performed. The example we have chosen is an
intelligent, adaptive traffic lights controller (TLC).

The controller was designed for a typical two road cross-
ing (one main road, crossed by a secondary road), including
pedestrian sideways. It is connected with the controllers in
the previous and next crossing on the main road. Beyond the
crossing, on the main road, there is a departure sensor, used
for detecting if a car left the current crossing. It is needed in
order to perform statistical analysis on the time needed for
a car to get from one crossing to another. According to the
statistical data, the intelligent subsystem (IS) will adjust the
traffic lights timing in order to have an optimal “green
wave” on the main road.

We considered that the controller is physically mapped
on a microcontroller, and the IS is mapped on a processor.
Figure 8 presents the object model diagram of the system.

The model was conceived in a way which allows simula-
tion with or without the IS. We assumed that the average
waiting time for a car is the performance parameter of inter-
est. Thus, we explored how different processors and com-
munication lines affect this performance parameter. The
processing efficiency (PE) is a parameter of the processor
which runs the IS, and the communication efficiency (CE)
reflects the performance of the communication lines con-
necting our controller to the two controllers in the adjacent
crossings. We define PE (CE) as the ratio between the exe-
cution time (communication delay) of the best considered

processor (communication link) and the processor (link)
under consideration.

The experimental results are presented in Table 1. We
run the same scenario, first for the TLC without the IS, and
next for the TLC with IS, departure sensor and communica-
tion lines. For both settings we explored several values for
PE and CE. As it can be seen from Table 1, the IS produces
a significant increase in performance. The system quality is
degraded for lower performances of the processor and/or
communication line. Thus, starting from the performance
required for a particular setting, the most cost-efficient
architecture (processor and communication infrastructure),
which still fulfils the requirements, can be selected.

5. Conclusions

We discussed several issues concerning the modelling of
complex RTES using an OO methodology with the UML.

Using the particular example of a GSM BTS we showed
how the UML based methodology allows the proper layer-
ing of a model, the separation of control and data flows, as
well as the definition and usage of generic units. The goals
are to facilitate complexity management during the model-
ling phase. IP-based design and architecture exploration are
supported.

Using a smaller example, which allows for a more
detailed discussion, we also presented an example of archi-
tecture exploration and gave some experimental results.

References

[1] J. Axelsson,“Holistic OO Modelling of Distributed Automo-
tive RT Control Applications”, Proc. 2nd IEEE Intl. Symp. on OO
RT Distributed Computing, 1999, pp. 85-92.
[2] M. Keating, P. Bricaud,“Reuse Methodology Manual for
System-on-a-Chip Designs”, Kluwer Academic Publishers, 1998.
[3] A. Sarkar, R. Waxman, J. Cohoon,“Specification-Modelling
Methodologies for Reactive-System Design”, in “High-Level Sys-
tem Modelling: Specification Languages”, eds. J. M. Bergé et al.,
Kluwer Academic Publishers, 1995, pp. 1-34.
[4] B. Douglass,“Doing Hard Time”, Addison-Wesley, 1999.
[5] M. Mouly, M. Pautet,“The GSM System for Mobile Commu-
nication”, Palaiseau, 1992.
[6] “GSM 03.02”, ETSI, http://www.etsi.org.
[7] B. Selic, G. Gullekson, P. Ward,“Real-Time Object-Oriented
Modeling”, John Wiley & Sons, 1994.
[8] G. Booch,“Object Oriented Design With Applications”, The
Benjamin/Cummings Publishing, 1991.
[9] J. Gong, D. Gajski, S. Bakshi,“Software Estimation Using A
Generic Processor Model”, Proc. of the Eur. Design and Test
Conf., 1995, pp. 498-502.
[10] “Rhapsody Reference Guide, Release 2.1”, iLogix, 1999.Figure 8. Object diagram of adaptive TLC

departure
sensortraffic lights

pedestrian
traffic lights

car
traffic lights

intelligent
subsystem

timer

controller

previous
crossing

next crossing

car

1 1

*1
*

1

10,1

 Table 1. Simulation results

Intelligent
subsystem

Average waiting time for a car (seconds)
PE=0.9
CE=0.9

PE=0.9
CE=0.6

PE=0.6
CE=0.9

PE=0.6
CE=0.6

No 11.56 11.56 11.56 11.56
Yes 1.66 5.82 9.09 11.31


