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Abstract
This paper explores aspects concerning system-level
specification, modelling and simulation of real-time
embedded systems. By means of case studies, we investigate
how object-oriented methodologies, and in particular
UML, support the modelling of industrial scale real-time
systems, and how different architectures can be explored by
model simulation. We are mainly interested in the problem
of system specification as it appears from the prospect of the
whole design process. The discussion is illustrated by a
large system model from the telecommunications area, the
GSM base transceiver station.

1. Introduction

Current real-time embedded systems have to fulfill more
and more complex requirements concerning functionality,
timing, power consumption, reliability, cost, etc. Typical
application areas for such systems are telecommunications,
automotive industry, avionics, or industrial process control.
Embedded systems are very often implemented on
distributed architectures consisting of several
programmable processors and application specific
integrated circuits (ASICs) [1].

Due to the complexity of such systems, design
environments have to be developed in order to assist the
designer throughout the whole design process, starting from
the system specification, going through the design phase,
until the final implementation. In Figure 1 we show a very
simplified view of such a design flow. One of the important
tasks performed during the design phase is architecture
exploration. Several architectures (which differ in number
and kind of processors, interconnection structure, number
of ASICs, memory structure, etc.) and alternatives for task
partitioning are explored in order to find an efficient
solution which also satisfies the imposed requirements.

An essential aspect of such an iterative design process is
the ability to check the functionality of a certain design
alternative and to estimate different parameters
characteristic to it like, for example, timing. Although
formal verification and static analysis are more and more

used in this context, simulation is still the basic technique
which allows to get a feedback concerning the degree to
which a specification or design alternative fulfils certain
requirements [2].

An important trend in current design methodologies for
embedded systems is towards the reuse of pre-designed
components as an alternative to the complete synthesis of
the whole system. Such an approach is well known for the
software design community but has been only recently
considered by hardware designers as a practicable strategy
in order to cope with increasing system complexity [3].
According to such a methodology, pre-designed
programmable cores and ASICs (called intellectual
property (IP) components), stored in a module library
(Figure 1), are used as building blocks for new system
designs.

In order to support such a complex design process, the
system specification has to fulfill several requirements.
Some of them are well known and have been much
discussed in the literature [4, 5, 8]. Such are the support for
concurrency, exception handling, timing, hierarchy, or
nondeterminism. In this paper, however, we are mainly
interested in the problem of system specification as it
appears from the prospect of the whole design process.
Thus, requirements like support for IP-based design,
separation of control and dataflow, or facilities for system
simulation and architecture exploration are of particular
interest. Our main focus is on how object-oriented

Figure 1. The design cycle of RT systems
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methodologies, and in particular UML, support such
requirements and how they can be used for the specification
and design of complex embedded systems. The discussion
is based on the experience gained from the modelling of a
large application in the telecommunications area, namely
the GSM Base Transceiver Station (BTS). This is a
representative example of a large reactive embedded system
and is therefore well suited to illustrate some design
problems and possible solutions. Another example, an
intelligent traffic lights controller, has been used for a set of
experiments concerning the architecture exploration
aspects.

In the following section we identify some of the main
problems to be discussed. Section 3 describes the basic
functionality of a GSM BTS, our main case study. Section
4 presents solutions to the problems identified in section 2,
in the particular context of UML. In section 5 we focus on
aspects related to architecture exploration. The last section
presents our conclusions.

2. Modelling of Real-Time Embedded Systems

Embedded systems, and in general all real-time (RT)
systems, have characteristics that make their design very
complex. They usually exhibit a reactive behaviour,
meaning that they respond in a well-defined manner to input
stimuli. Moreover, the response is time-constrained,
therefore it must occur within a more or less specific time
window. Safe critical embedded systems must be also
robust, showing correct behaviour even in unexpected
circumstances.

Concerning the specification and design of RT embedded
systems, several particular issues have been identified and
discussed in the literature [4, 5, 8]. Such are state-transition
oriented behaviour, inherent parallelism, timing aspects,
exception handling, environment dependency, and non-
functional characteristics (performance, safety, reliability,
power consumption etc.).

As mentioned in the previous section, in this paper we
are interested in particular aspects of system specification,
which are related to the whole design process. Some of
these problems have been identified as result of our work
related to the modelling and design of RT systems in the
telecommunications area. They are briefly introduced here
and will be further discussed in the following sections:
• Data and control flow separation. The model should

be organized as a set of functional and control layers.
A functional layer performs operations on the incom-
ing data, while a control layer coordinates clusters of
units situated in a lower layer. The amount of control
implemented in a certain layer should not exceed the
minimum needed in order to coordinate the operation
of the lower layers.

• Generic functional and control units.Many functional
or control blocks share certain basic characteristics,
differing just in some aspects. Identifying such generic

units and specifying them as superclasses is essential
in order to manage complexity during the modelling
process.

• Support for architecture exploration. Both the specifi-
cation methodology and the related design environ-
ment should provide the support for exploration of
alternative implementation architectures.

• Timeliness verification. The model must be checked
not only for functional correctness, but also for tempo-
ral correctness. We therefore need mechanisms for
specification and checking of timing aspects.

• Multiple abstraction levels. The specification of a RT
system often consists of blocks which are described at
very different levels of abstraction. In the initial speci-
fication some blocks can be treated as black boxes and
be specified at a high level of abstraction, while other
blocks are specified in more detail. As result of subse-
quent design steps, some of the blocks are further
refined while other are left unchanged. Despite such an
unbalance in the abstraction level, a clear separation
between specification of interfaces and that of the
internal behaviour, allows the whole system to be kept
coherent and executable.

• Support for reuse. As mentioned earlier, the reuse of
predefined components (IP-based design) is of
extreme importance in managing the complexity of the
design process. Thus, specifications and models
should be built with a high-degree of reusability as an
essential goal. At the same time, the specification and
design methodology has to support the reuse of exist-
ing components.

In the following section we introduce a typical
telecommunication application of high complexity which in
the subsequent sections will be used in order to illustrate the
discussion. All the problems highlighted above will be
analysed, along with proposed solutions, in the context of
an OO design environment based on the UML.

3. The Base Transceiver Station (BTS)

The BTS is one of the devices in the canonical
architecture of the Global System for Mobile
Communication (GSM), as defined by the GSM
standardisation group [7]. Figure 2 shows the place of the
BTS in the context of the GSM architecture. The radio
interface connects the BTS with the mobile stations (MS).
A terrestrial link, the Abis interface, connects the BTS with
the Base Station Controller (BSC). The BSC is further
connected with the Network Switching Subsystem (NSS).
The BTS comprises radio transmission and reception
devices, and also all the signal processing specific to the
radio interface. The radio interface is characterized by a
high bit error rate. To counter this, complex modulation/
demodulation algorithms are deployed in the BTS and
computation intensive channel encoding/decoding methods
are applied. Because of the large range of services GSM



offers, the number of these channel encoding/decoding
algorithms is also very large. The BTS also performs the so
called characterization of the radio interface, i.e. it measures
interference level and bit error rates, processes
measurements of received power, and reports the results to
the NSS. In order to adapt more users, a time division
multiple access (TDMA) scheme is used. This allows a BTS
to manage several communication channels multiplexed
both in time and frequency. The BTS allocates/deallocates
and changes the channel mode at the request of the NSS.
Signalling protocols between the BTS and the mobile
stations as well as between the BTS and the infrastructure
are used in order to make such a channel management
possible.

4. The BTS Model

In this section we first present the general structure of the
BTS model. Next, solutions to the problems identified in
section 2 are discussed. The underlying specification and
design strategy is based on an OO methodology. The
discussion here is in the particular context of the UML [5,
10]. General aspects concerning OO methodologies and the
basics of the UML have been much discussed in the
literature [8, 9, 10], and therefore are not mentioned in this
paper.

4.1. General Description of the Model Architecture

In Figure 3 we show the structure of the BTS model. Our
model has been organized on four layers. The bottom layer
consists of purely functional processing units (called
functional units — FU). The control tasks to be performed
by the BTS are distributed among the other three layers. The
responsibilities of the functional units are related to channel
encoding/decoding and to data interleaving/deinterleaving.

The encoding/decoding algorithms are the following:
• CRC encoding/decoding;

• convolutional encoding/decoding in its various vari-
ants (punctured or not);

• tailing;
• fire codes (similar to CRC codes).

Subsequent interleaving/deinterleaving schemes are
applied in order to build radio-bursts from data-blocks and
to assemble data-blocks out of the incoming radio-bursts.
Functional units in the model are specialized for a certain
encoding/decoding or interleaving/deinterleaving task.

The first layer of control, above the functional layer,
consists of the baseband controllers (BC). Their
responsibility is to assure a correct sequence of operations
(performed by the FUs) for each channel mode. BCs are
specialized for the control of channels in a certain channel
mode. By channel mode we understand a set of properties
that characterize the channel. Such properties are:
• semantics of carried data (speech, data, signalling);
• gross data rate, which classifies channels in full and

half rate channels;
• nett data rate;
• whether the channel is dedicated to a particular user at

a moment in time or it is a broadcast (common) chan-
nel;

• whether the channel is a duplex one or not.
The next level of control consists of the transmitter-

receivers (TRX). A TRX controls a set of BCs. It emits or
receives continuously, but on a single frequency at a given
moment. From the signalling point of view, each TRX
corresponds to a signalling link. A TRX manages traffic and
signalling for eight (due to the TDMA scheme) physical
channels.

The TRXs use the services of the LAPD (Link Access
Protocol for the “D” Channel) and LAPDm (Link Access
Protocol for the “Dm” Channel) protocol interpreters [6].
These modules receive from the TRX the signalling bursts/
blocks and are responsible for assembling the frames,
maintenance of the link, and notification of the TRX
regarding the received message. The two LAPD blocks
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Figure 2. The BTS in the context of the GSM architecture
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represent the third and highest layer of control.
The Radio Burst Generator (BuG) is the module that

models the radio subassembly of the BTS. It generates
bursts which are sent to the TRX. The BuG has to be aware
of the time division scheme, as demodulation is performed
differently for different channels.

The Abis Block Generator (BlG) has a similar role to the
Radio BuG. It generates blocks, simulating the time
division scheme deployed on the terrestrial link. These
blocks are then forwarded to the TRXs.

The BTS model has been specified and simulated with
the UML using the iLogix Rhapsody environment [12].

4.2. Deployment of Control

Functional units can be, in principle, reused over many
generations of a telecommunication application and often
they can be also included in different designs. Such different
designs and successive generations of the same design
usually differ in their control aspects (e.g. the protocols) but
not in the basic functions performed. The same philosophy
applies to control units, as well. Protocols are organized on
different layers and from one product to another only
particular layers are modified (upgraded) while other layers
are reused. Therefore, in order to support reusability of
functional and control units, a minimal amount of control
has to be deployed to any processing unit in the model. By
doing this, the potential of reusing the modelling units
increases significantly. Figure 4 shows the UML statechart
for one of the functional units which performs a part of the
channel encoding. The unit, a CRC encoder, is unaware of

the channel whose processing chain it belongs to. Thus, it
could be used as a building block for both speech encoding
and for fire codes, as well as for any other design in which
CRC encoding is performed. The unit has a very simple
interface: after a processing delay (procD) has elapsed from
the moment it receives a processing command
(evCRCEncCmd) from a controlling entity, it will notify the
controlling entity about completion of the processing and
offer the transformed data (evCmdCompleted(result)).

The same principle of minimum amount of control
deployment was adopted for the controlling units. A
baseband controller, for example, manages functional units
according to the mode of the channel it controls. At the
same time, it is completely unaware of the existence of the
other channels and it does not know anything about the
time-slots structure of the access scheme (a statechart of a
baseband controller is shown in Figure 8).

The TRX, on the other hand, is in charge of the eight
channels it manages. It is the only unit which has to be
aware of the timing scheme in order to identify a channel
correctly and to activate the right baseband controller (the
statechart of the TRX is depicted in Figure 9).

4.3. Separation of Control and Data Flows

Another aspect which improves the reusability of the
various elements of the model is the separation of data and
control flows. Object-oriented modelling particularly suits
this requirement. There are objects which model entities on
the data path, and objects which model controlling units.
Due to the inherent loose coupling between objects, the
separation of control and data flow is easy to achieve. This
aspect is well highlighted in Figure 3. Functional units are
operating on the data path, while no control functions are
embedded within them. On the other hand, baseband
controllers as well as TRXs do not perform any processing
on the data flow. They just coordinate lower level entities
(other controllers or functional units).

...

...

...FU FU FU FU

BCBCBC

TRX TRX
Radio
BuG

Abis
BlG

LAPDm PI LAPD PI

FU – functional unit
BC – baseband controller
TRX – transmitter-receiver

PI – protocol interpreter
BuG – burst generator
BlG – block generator

Figure 3. Structure of the GSM BTS model
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4.4. Uniform Interfaces and Generic Units

Various types of low level control or processing units are
treated uniformly by the upper layers. This highly simplifies
the modelling process. Such an uniformity is achieved by
means of the inheritance relationship.

Figure 5 illustrates a class hierarchy for functional units.
Particular interleavers are derived from a generic interleaver
which again is a specialization of a generic functional unit.
For the upper, control layers, every functional unit appears
as this generic unit. A similar strategy also applies to control
units.

Figure 6 shows the class diagram of a generic downlink
baseband controller. The generic controller aggregates
generic functional units of the classes Interleaver (see also
Figure 5), ConvEnc, and ParityEnc. A specific BC
aggregates specialized FUs, depending on the particular
channel mode it controls. A data downlink controller, for
example, is an instantiation of the generic class
DownLkCtrl, and aggregates an instantiation of the class
DataConvEnc and of the class DataIntl (see also Figure 5).
The corresponding class diagram is shown in Figure 7.

4.5. Timing Aspects

Specification of timing aspects is mandatory in order to
verify timeliness and to perform architecture exploration.

Modelling of such timing aspects comprises specification of
deadlines and execution delays.

Execution delays are modelled as time-triggered state
transitions (see Figure 4). The parameter which
characterizes the execution delay on a certain functional
unit is specified as an attribute of that unit. During
architecture exploration, this delay depends on the
particular processor to which the unit is assigned for
execution. This delay has to be estimated [11] and the
resulting value is assigned to the unit. The delay attribute is
specified in the superclass of all functional units (procD in
Figure 5).

The controlling units are in charge of coordinating the
functionality of lower lever units. They are not
characterized by a processing delay in the sense the
functional units are. However, the control units have to

Figure 5. Generic functional units
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monitor whether certain predefined time intervals have
passed and to take certain decision if a deadline has been
reached. Deadline is modelled by introducing an additional
state, which is entered after a certain time interval has
elapsed. In Figure 8 we illustrate this mechanism for a
baseband controller. If the execution delay of the processing
chain exceeds the predefined value ofdeadline, the
watchdog state is entered. The TRX interprets this as an
exceptional situation.

4.6. Concurrency Issues

Usually, telecommunication devices, and the BTS makes
no exception, perform a set of well specified operations on
multiple data flows. Identification of this parallelism is
important in the analysis phase because it significantly
influences the object structure of the model. In the UML,
parallelism can be expressed in two ways. First, all the
objects are considered to be parallel entities.
Synchronization is easily achieved by means of message
exchanges. Second, an entity which has been modelled as a
single object can exhibit itself a concurrent behaviour. In
this case the statechart corresponding to the object is
specified as a set of orthogonal (concurrent) components.
Such a case is shown in Figure 9, where the statechart of a
TRX is depicted. The TRX has to handle both uplink and
downlink traffic, as well as signalling information
addressed to it. Those activities are independent to each
other and can be performed concurrently.

4.7. Multiple Abstraction Levels

Our main focus was set on the specification and design
of the digital components of the BTS. However, in order to
perform simulation and architecture exploration, the whole
functionality of the BTS had to be modelled. Thus, the radio
subassembly was simply modelled as a radio burst
generator, at a very high abstraction level. The strong
encapsulation, typical to the object-oriented approach,
allows for an uniform treatment of entities specified at
different abstraction levels. They permit us to concentrate
on the refinement of that part of the model we are mainly
interested in.

5. Architecture Exploration

In order to complete our goal in exploring the way UML
suits the real-time systems design cycle, we imagined a
simpler case study, which allows to easily demonstrate how
architecture exploration can be performed. The example we
have chosen is an intelligent, adaptive traffic lights
controller (see Figure 10).

The controller was designed for a typical two road
crossing (one main road, crossed by a secondary road),
including pedestrian sideways. It is connected with the
controllers in the previous and next crossing on the main
road. Beyond the crossing, on the main road, there is a
departure sensor, used for detecting if a car left the current
crossing, heading to the next crossing on the main road.
This is needed in order to perform statistical analysis on the
time needed for a car to get from one crossing to another.
According to the statistical data, the intelligent subsystem
will adjust the synchronization and traffic lights timing in
order to have an optimal “green wave” on the main road,

inactive idle
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signalling uplink downlink
main

evAlloc/
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evBurstTick
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Figure 9. Statechart of a TRX
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which adapts to the current traffic condition.
In Figure 10, the shaded blocks represent the core of the

traffic lights controller. We considered that the controller is
physically mapped on a microcontroller, and the intelligent
subsystem (which performs statistical analysis and adjusts
the timing accordingly) is mapped on a processor. This
mapping is illustrated by the UML deployment diagram in
Figure 11.

A high-level object model diagram of the intelligent
traffic lights controller is presented in Figure 12. The model
was conceived in a way which allows code generation and
simulation with or without the intelligent subsystem.

We assumed that the average waiting time for a car is the
performance parameter of interest. Thus, we explored how
different processors and communication lines affect this
performance parameter. The processing efficiency (PE) is a
parameter of the processor which runs the intelligent
subsystem, and the communication efficiency (CE) reflects
the performance of the communication lines connecting our
controller to the two controllers in the adjacent crossings.

We define PE and CE as follows:

where v is the execution time for the intelligent
subsystem on the currently considered processor,δ is the
communication delay for an instance of data transfer on the
currently considered infrastructure for the communication
lines, vmin is the value ofv corresponding to the fastest
processor in the module library, andδmin is the value ofδ

corresponding to the fastest communication link in the
module library.

The experimental results are presented in Table 1. We

run the same scenario (i.e., input vectors), first for the traffic
lights controller without the intelligent subsystem, and
second for the traffic lights controller with intelligent
subsystem, departure sensor and communication lines. For
the case without an intelligent subsystem, the controller
works by granting access to the tracks according to a round
robin strategy. For both settings we explored several values
for PE and CE. As it can be seen from Table 1, the
intelligent subsystem produces a significant increase in
performance. The quality of the system is degraded for
lower performances of the processor and/or communication
line.

6. Conclusions

We discussed several issues concerning the modelling of
complex embedded real-time applications using an OO
methodology with the UML.

We have concentrated on particular issues which are
characteristic to the modelling of large telecommunication
applications. Using the particular example of a GSM BTS
we showed how the UML based methodology allows the
proper layering of a model, the separation of control and
data flows, as well as the definition and combination of
generic units. The main objective is to facilitate complexity
management during the modelling phase. At the same time,
reusability (IP-based design) and architecture exploration
are supported.

Using a smaller example, which allows for a more
detailed discussion, we also presented an example of
architecture exploration and gave some experimental
results.
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