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Abstract
This paper presents an efficient way to analyse the per-

formance of task sets, where the task execution time is spec-
ified as a generalized continuous probability distribution. We
consider fixed task sets of periodic, possibly dependent, non-
pre-emptable tasks with deadlines less than or equal to the
period. Our method is not restricted to any specific schedul-
ing policy and supports policies with both dynamic and static
priorities. An algorithm to construct the underlying stochas-
tic process in a memory and time efficient way is presented.
We discuss the impact of various parameters on complexity,
in terms of analysis time and required memory. Experimental
results show the efficiency of the proposed approach.

1. Introduction

Embedded systems are digital systems meant to perform
a dedicated function inside a larger system. Most embedded
systems are also real-time systems. Hence, their validation
has to take into consideration not only the functional aspect
but also timeliness.

A typical digital systems design flow starts from an
abstract description of the functionality and a set of con-
straints. Subsequent steps partition the functionality, allo-
cate processing units, map the functionality to the allocated
processing units and, finally, select a scheduling policy and
perform timing analysis.

In safety-critical applications missing a deadline can
have disastrous consequences. Hence, a conservative model
for task scheduling is adopted, the worst-case execution
time (WCET) model. Such systems are designed to perform
according to hard time constraints even in rare borderline
cases. This leads to a processor underutilization for most of
the operation time.

There are several opportunities to relax some of the con-
servative assumptions typical to hard real-time systems.
This is the case for applications where missing a deadline
causes an overall quality degradation, but it is still accepta-
ble provided that the probability of such misses is below a
certain limit. Such applications are, for example, multime-
dia and telecommunication systems.

Another opportunity to relax the WCET model is during
the early design stages. For instance, in transformational
design approaches, the design phases may not be performed
in the simplistic waterfall sequence described above. It may
happen that information about a schedule fitness would be
needed without knowing exactly the processor on which a

certain task will be executed. The processor itself could be
still under design and, thus, no exact information concern-
ing execution time would be available.

Tia et al. [11] provide an example where the maximum
processor utilizations are around 145%, whereas the average
utilizations do not exceed 25%. The large variation in utili-
zations stems from the large variation of task execution
times. This could be due to several reasons: architectural
factors (dynamic features like caches and pipelines), causes
related to functionality (data dependent branches and loops),
external causes (network delays), and dependencies on input
data (very strong in multimedia applications). Another
source of non-exact execution time specification is the lim-
ited amount of information available. This could be the case
at early design phases or with designs integrating third party
components, or other customer blocks with secret function-
ality and insufficiently specified non-functional interfaces.

Typically, by using variable execution time models, con-
siderable savings in system (hardware) cost can be expected.
The functionality can be implemented on less powerful and
cheaper processors, leading to a higher processor utilization.
In the case of overload, some tasks will, most likely, fail their
deadlines. The designer has to be provided with analysis
tools in order to guide his or her decisions and to estimate the
trade-off between cost and quality, the failure likeliness and
the failure consequences. Thus, new execution time models
and analysis techniques have to be developed.

Approaches based on the average case or on probabilities
uniformly distributed between the best and worst case exe-
cution time have the advantage of simplicity. However, their
use is limited, as they do not give information on the likeli-
ness of particular cases. More accurate models are based on
execution time probability distributions. Those distributions
can be derived from statistical models of the variation
sources, from legacy designs, code analysis, simulations
and profiling. One of the main difficulties with probabilistic
models is their solving complexity.

The aim of this work is to provide a performance analy-
sis method for task schedules considering probabilistic
models of task execution times. The methodology is not
specific to any particular execution time probability distri-
bution class or scheduling policy and, thus, it is adaptable to
various applications. The result of the application analysis
is the ratio of missed deadlines per task or task graph. In
order to cope with the complexity problem typical to such
an analysis, we have considered both execution time and



memory aspects. The algorithm is efficient in both regards
and can be applied to the analysis of large task sets. We have
also investigated the impact of the task set parameters (e.g.
periods, dependencies, and number of tasks) on the com-
plexity of the analysis in terms of time and memory.

The rest of the paper is structured as follows. Section 2
surveys some related work. Section 3 details our assumptions
and gives the problem formulation. Section 4 introduces the
underlying stochastic process and illustrates its construction
and analysis on an example. Section 5 presents the analysis
algorithm and in section 6 we evaluate our approach experi-
mentally. The last section draws some conclusions.

2. Related work

Much work has been done in the field of task scheduling
with fixed parameters (periods, execution times, etc.).
Results are summarized in several surveys such as those by
Stankovic et al. [10], Fidge [5], and Audsley et al. [3]. How-
ever, only recently researchers have focused on scheduling
policies, schedulability analysis and performance analysis
of tasks with stochastic parameters.

Atlas and Bestavros [2] extend the classical rate mono-
tonic scheduling policy with an admittance controller in
order to handle tasks with stochastic execution times. They
analyse the quality of service of the resulting schedule and its
dependence on the admittance controller parameters. The
approach is limited to rate monotonic analysis and assumes
the presence of an admission controller at run-time.

Abeni and Butazzo’s work [1] addresses both scheduling
and performance analysis of tasks with stochastic parame-
ters. Their focus is on how to schedule both hard and soft
real-time tasks on the same processor, in such a way that the
hard ones are not disturbed by ill-behaved soft tasks. The
performance analysis method is used to assess their pro-
posed scheduling policy (constant bandwidth server), and is
restricted to the scope of their assumptions.

Spuri and Butazzo [9] propose five scheduling algorithms
for aperiodic tasks. The task model they consider is one with
aperiodic tasks but with fixed, worst-case execution time.

Tia et al. [11] assume a task model composed of inde-
pendent tasks. Two methods for performance analysis are
given. One of them is just an estimate and demonstrated to
be overly optimistic. In the second method, a soft task is
transformed into a deterministic task and a sporadic one.
The latter is executed only when the former exceeds the
promised execution time. The sporadic tasks are handled by
a server policy. The analysis is carried out on this model.

Zhou et al. [12] root their work in Tia’s. However, they
do not intend to give per-task guarantees, but characterize
the fitness of the entire task set. Because they consider all
possible combinations of execution times of all requests up
to a time moment, the analysis can be applied only to small
task sets due to complexity reasons.

De Veciana et al. [4] address a different type of problem.

Having a task graph and an imposed deadline, they deter-
mine the path that has the highest probability to violate the
deadline. The problem is then reduced to a non-linear opti-
mization problem by using an approximation of the convo-
lution of the probability densities.

Lehoczky [8] models the task set as a Markovian proc-
ess. The advantage of such an approach is that it is applica-
ble to arbitrary scheduling policies. The process state space
is the vector of lead-times (time left until the deadline). As
this space is potentially infinite, Lehoczky analyses it in
heavy traffic conditions, when the system provides a simple
solution. The main limitations of this approach are the non-
realistic assumptions about task inter-arrival and execution
times.

Kalavade and Moghe [7] consider task graphs, where the
task execution times are arbitrarily distributed over discrete
sets. Their analysis is based on Markovian stochastic proc-
esses too. Each state in the process is characterized by the
executed time and lead-time. The analysis is performed by
solving a system of linear equations. Because the execution
time is allowed to take only a finite (most likely small)
number of values, such a set of equations is small.

Besides the differences in assumptions, our work
diverges from Kalavade and Moghe’s in the sense that we
use pseudo-continuous execution time distributions (discre-
tized continuous distributions) instead of being restricted to
discrete sets. As the number of possible execution times
becomes very high, it is infeasible to consider individual
times as states. Our solution is to group execution times in
equivalence classes. As a consequence, we have to use
probability density convolutions for the analysis. In order to
reduce the complexity in terms of memory space, the sto-
chastic process is never stored entirely in memory, but we
both construct and analyse the process at the same time.

3. Preliminaries and problem formulation

The system to be analysed is represented as a set of task
graphs. A task graph is an acyclic graph with nodes repre-
senting tasks and edges capturing the precedence con-
straints among tasks. Precedences can be induced, for
example, by data dependencies (a task processes the output
of its predecessor). All tasks are executed on one single
processor. They are assumed to be non-pre-emptable.

Let N be the number of tasks and let ti, 0 ≤ i < N, denote
a task. Let M be the number of task graphs and let gi, 0 ≤ i
< M denote a task graph.

Each task is characterized by its period (inter-arrival
time), assumed to be fixed, its deadline, and its execution
time probability density. Let pi and di, 0 ≤ i < N, denote the
period and deadline of task ti, where di ≤ pi. P, the applica-
tion period, is the least common multiple of all task periods.
The period of a task has to be a common multiple of the peri-
ods of its predecessors. The period of a task graph equals the
least common multiple of the periods of its composing



tasks. Let Gi, 0 ≤ i < M, denote the period of the task graph
gi. A task graph gi is activated every Gi time units.

A task consists of an infinite sequence of activations
called jobs. In the sequel, we will say that a task is running
when one of its jobs is running. Similarly, a task is ready
when one of its jobs is ready, and a task is discarded when
one of its jobs was discarded.

The task tk ∈ gi is ready (pending, waiting) if and only if
each of its predecessors tj has run pk/pj times during the cur-
rent activation of task graph gi. If any of the jobs in a current
activation of a task graph has missed its deadline, then the
current task graph activation is said to have failed.

A probabilistic guarantee given for a taskt is expressed
as the ratio between the number of jobs belonging tot that
miss their deadlines and the total number of jobs of the task
t. A probabilistic guarantee given for a task graphg is
expressed as the ratio between the number of the task
graph’s activations that fail and the number of all activations
of the task graphg.

Figure 1 depicts a task set consisting of three task graphs
g0, g1, and g2. For each task and task graph the respective
period is shown.

Let ei, 0 ≤ i < N, be the execution time probability den-
sity function (ETPDF) of task ti. ei is represented as a set of
samples resulting from the discretization of the density
curve. The discretization resolution is left to the designer’s
choice. We assume generalized probability densities of the
task execution times. Figure 2 illustrates some possible
ETPDFs. Density e1 could happen if, for example, the task
has only three computation paths and the variation around
them is caused by hardware architecture factors. e2 is a
deterministic density (a Dirac impulse).

When a job of a task t misses its deadline it is discarded.
If t has a successor in the task graph then two different pol-
icies are considered for the analysis among which the
designer can choose:

1. The whole task graph is discarded. This means that all
the jobs belonging to the current activation of the task
graph are discarded. These are the ones already arrived
but not yet completed and the ones that will arrive be-
fore a new activation of the task graph. This strategy is
adopted in the case when the computed value of a job
is critical for the continuation of the tasks in the task
graph and it is a meaningful value only if the job met
its deadline. In this case, it is meaningless to give per
task guarantees and only per task graph guarantees
will be produced as a result of the analysis. In the ex-
ample in Figure 1 assume that two jobs of task A have
successfully executed and B and C are now ready. As-
sume that B executes and misses its deadline. Then g0
is discarded and no jobs of any of its tasks are any-
more accepted until a new arrival of the entire task
graph at a time moment multiple of G0.

2. Only the missing job is discarded, but the rest of the
task graph is activated normally. The successor tasks
will consume either a partial result or the result from a
previous execution of the discarded task. In this case,
it is important to provide not only per task graph but
also per task guarantees.

Task execution is considered to be non-pre-emptable.
However, a method to work this around, if needed, is to
define pre-emption points inside a task. For analysis, the
task will be replaced by several dependent tasks with the
same period and deadline as the original one, as shown in
Figure 3. Letτi

q , 0 ≤ i < S be Stasks that resulted from task
tq, andπi

q be their respective periods,δi
q their deadlines and

εi
q their ETPDFs. Thenπi

q=pq andδi
q=dq, 0 ≤ i < S. The

convolution (denoted by *) of the execution time probabil-
ity density functionsεi

q has to be equal to eq. Due to the fact
that the tasksτi

q are dependent and have the same period,
the consequence of such a task decomposition on the anal-
ysis complexity is limited, as will be shown later.

Problem formulation
The input to the analysis algorithm is a set of task graphs

and a scheduling policy. The task graphs are given accord-
ing to the assumptions discussed previously. The scheduling
policy is given as an algorithm to choose a next job knowing
the set of ready jobs, their deadlines and the current time.

The analysis produces per task and per task graph prob-
abilistic guarantees, as defined above.
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4. The stochastic process

The analysis methodology for task sets with stochastic
execution times relies on the underlying stochastic process.
A stochastic process is a mathematical abstraction that char-
acterizes a random process which proceeds in stages. The
set of all possible stage outcomes in every stage forms the
stochastic process state space. A stochastic process can be
represented graphically in a similar manner as finite state
machines. The difference is that a next state is known only
probabilistically. It is assumed that the next state transition
probabilities are known once the current and past states are
known. If the next states and their corresponding transition
probabilities depend only on the current state, then the proc-
ess exhibits the Markovian property. The discrete time sto-
chastic process that results from sampling the state space of
the underlying continuous time stochastic process, at the
time moments immediately following a job arrival or a job
completion, forms the embedded stochastic process.

For the sequel, “process” will refer to the underlying sto-
chastic process, and “state” will refer to the stochastic proc-
ess state.

In order for the embedded process to be Markovian, cer-
tain information have to be available in a process state. A
straightforward solution would be to characterize a state by
the currently running task, the ready tasks and the start time
of the running job. A state change would occur if the run-
ning task finished execution for some reason. The ready
tasks can be deduced from the old ready tasks and the jobs
arrived during the old task’s execution time. The new run-
ning job can be selected considering the particular schedul-
ing policy. In principle, there may be as many next states as
many possible execution times the running job has. Hence,
one factor that influences the stochastic process size is the
task execution time span. This is the approach followed by
Kalavade and Moghe [7] and leads to tree-like stochastic
processes. Except the case that only a very small number of
discrete execution times are allowed for each task, such an
approach leads to an extremely huge state explosion. In our
approach, we have grouped time moments into equivalence
classes and, by doing so, we limited the process size explo-
sion. Thus, practically a set of equivalent states is repre-
sented as a single state in the stochastic process. Even so,
the application size is still limited by the amount of memory
available for analysis. Therefore, we propose a way to per-
form the construction and the analysis of the process simul-
taneously. Consequently only a part of the process is stored
in memory at any time during the analysis.

Due to the assumption that the tasks are discarded when
they miss their respective deadlines, the analysis is per-
formed over the interval [0, P), where P is the application
period (the least common multiple of all task periods).

In the following, an example is used in order to illustrate the
construction and the analysis of the stochastic process. Let t0
and t1 be two independent tasks scheduled according to an ear-
liest deadline first (EDF) policy. Let p0 = 3 and p1 = 5 be their
periods and let d0 = p0 and d1 = p1. P is then 15. The execution
time probabilities are distributed as depicted in Figure 4. For
simplicity, the densities were not depicted as discretized. Note
that e0 contains execution times larger than the deadline.

As a first step to the analysis, the interval [0, P) is divided
in disjunct intervals, the so-calledpriority monotonicity
intervals (PMI). A PMI is delimited by the time moments a
job may arrive or may be discarded. Figure 5a depicts the
PMIs for the example above. If the deadlines were d0 = 2
and d1 = 4, then the PMIs would be as depicted in Figure 5b.

Next, the stochastic process is constructed and analysed
at the same time. Let us assume the straightforward
approach mentioned earlier. In this case, a stochastic proc-
ess state would be characterized by the index of the task the
currently running job belongs to, the start time of this job
and the indexes of the waiting tasks (see Figure 6a).τ1, τ2,
…, τq in Figure 6a are possible finishing times for the job of
task t0 and, implicitly, possible starting times of the waiting
job of task t1. The number of next states equals the number
of possible execution times of the running job in the current
state. The resulting process is extremely large (theoretically
infinite, practically depending on the discretization resolu-
tion) and, in practice, unsolvable. Therefore, we would like
to group as many states as possible in one equivalent state
and still preserve the Markovian property.

Consider a state s0 characterized by {i, t, w}: the current

Figure 4. ETPDFs for tasks t 0 and t 1
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job belongs to task ti, it has been started at time t, and the
waiting jobs belong to the tasks in set w. Let us consider the
next states derived from s0: s1 characterized by {j,τ1, w1}
and s2 with {k, τ2, w2}. Let τ1 andτ2 belong to the same PMI.
This means that no job has arrived or finished in the time
interval betweenτ1 andτ2, no one has missed its deadline,
and the relative priorities of the tasks inside the set w have not
changed (see Section 5.1). Thus, j=k= the index of the high-
est priority task in the set w; w1=w2=w\{t j}. It follows that all
states derived from state s0 that have their timeτ belonging to
the same PMI have an identical current job and identical sets
of waiting jobs. Therefore, instead of considering individual
times we consider time intervals, and we group together
those states that have their associated start time inside the
same PMI. With such a representation, the number of next
states of a statesequals the number of PMIs the possible exe-
cution time of the job that runs in states is spanning over.

We propose a representation in which a stochastic proc-
ess state is a triplet {r, pmi, w}, where r is the running task
index, pmi is the index of the PMI containing the running
job’s start time, and w the set of ready task indexes. When
there is no running task, then r = -1. In our example, the exe-
cution time of task t0 (which is in the interval [2, 3.5]) is
spanning over the PMIs 0 and 1. Thus, there are only two
states emerging from the initial state, as shown in Figure 6b.

Let ℘i, the set of predecessor states of a statesi, denote
the set of all states that havesi as a next state. The set of suc-
cessor states of a statesi consists of those states that can be
reached directly from state si. With our proposed stochastic
process representation, the time moment a transition to a
statesi occurred is not determined exactly, as the task exe-
cution times are known only probabilistically. However, a
probability density of this time can be deduced. Let zi
denote this density function. Then zi can be computed from
the functions zj, where sj ∈ ℘i, and the ETPDFs of the tasks
running in the states sj ∈ ℘i.

Figure 7 depicts a part of the stochastic process con-
structed for our example. The initial state is s0: {0, 0, {1}}.
The first field indicates that a job of task t0 is running. The
second field shows the current pmi (0), and the third field

denotes that task t1 is waiting. If the job of task t0 does not
complete until time moment 3, then it will be discarded. The
state s0 has two possible next states. The first one is state s1:
{1, 0, {}} and corresponds to the case when the job com-
pletes before time moment 3. The second one is state s2: {1,
1, {0}} and corresponds to the case when the job was dis-
carded at time moment 3. State s1 indicates that a job of task
t1 is running (it is the job that was waiting in state s0), that
the pmi is 0 and that no job is waiting. Consider state s1 to be
the new current state. Then the next states could be state s3:
{-1, 0, {}} (task t 1 completed before time moment 3 and the
processor is idle), state s4: {0, 1, {}} (task t 1 completed at a
time moment somewhere between 3 and 5), or state s5: {0, 2,
{1}} (the execution of task t1 reached over time moment 5,
and hence it was discarded at time moment 5). The construc-
tion procedure continues until all possible states correspond-
ing to the time interval [0, P) have been visited.

The transition time probability density functions z1, z2,
z3, z4, and z5 are shown in Figure 7 to the left of their corre-
sponding states. The transition from state s3 to state s4 occurs
at a precisely known time instant, time 3, at which a new job
of task t0 arrives. Therefore, z4 will contain a Dirac impulse
at the beginning of the corresponding PMI. The probability
density function z4 results from the superposition of z1 * e1
(because task t1 runs in state s1) with z2 * e1 (because task t1
runs in state s2 too) and with the aforementioned Dirac
impulse over the PMI 1, i.e. over the time interval [3, 5).

The embedded process being Markovian, the probabili-
ties of the transitions out of a statesi are computed exclu-
sively from the information stored in that statesi. For
example, the probability of the transition from state s1 to
state s4 (see Figure 7) is given by the probability that the
transition occurs at some time moment in the PMI of state
s4 (the interval [3, 5)). This probability is computed by inte-
grating z1 * e1 over the interval [3, 5). The probability of a
task missing its deadline is easily computed from the tran-
sition probabilities of those transitions that correspond to a
job discarding (the thick arrows in Figure 7).

As it can be seen, by using the PMI approach, some proc-
ess states have more than one incident arc, thus keeping the
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graph “narrow”. This is because, as mentioned, one process
state in our representation captures several possible states of
a representation considering individual times (see Figure 6a).

Because the number of states grows rapidly and because
each state has to store its probability density function, the
memory space required to store the whole process can
become prohibitively large. Our solution to mastering mem-
ory complexity is to perform the stochastic process con-
struction and analysis simultaneously. As each arrow
updates the time probability density of the state it leads to,
the process has to be constructed in topological order. The
result of this procedure is that the process is never stored
entirely in memory but rather that a sliding window of states
is used for analysis. For the example in Figure 7, the con-
struction starts with state s0. After its next states (s1 and s2)
are created, their corresponding transition probabilities
determined and the possible discarding probabilities
accounted for, state s0 can be removed from memory. Next,
one of the states s1 and s2 is taken as current state, let us con-
sider state s1. The procedure is repeated, states s3, s4 and s5
are created and state s1 removed. At this moment, the arcs
emerging from states s2 and s3 have not yet been created.
Consequently, one would think that any of the states s2, s3,
s4, and s5 can be selected for continuation of the analysis.
Obviously, this is not the case, as not all the information
needed in order to handle states s4 and s5 are computed (in
particular those coming from s2 and s3). Thus, only states s2
and s3 are possible alternatives for the continuation of the
analysis in topological order. In Section 5 we discuss the
criteria for selection of the correct state to continue with.

5. Stochastic process construction and analysis

The analysis of the stochastic task set is performed in
two phases:
1. Divide the interval [0, P) in PMIs.
2. Construct the stochastic process in topological order

and analyse it.

5.1. Priority monotonicity intervals

The concept of PMI (called in their paper “state”) was
introduced by Zhou et al. [12] in a different context, unre-
lated to the construction of a stochastic process.

Let Ai denote the set of time moments in the interval [0,
P) when a new job of task ti arrives and let A denote the
union of all Ai. Let Di denote the set of absolute deadlines1

of the jobs belonging to task ti in the interval [0, P), and D
be the union of all Di. Consequently,

If the deadline of a certain task ti equals its period, then Ai

= Di (the time moment 0 is considered, conventionally, to be
the deadline of the job arrived at time moment -pi).

Let H = A ∪ D. If H is sorted in ascending order of the
time moments, then a priority monotonicity interval is the
interval between two consecutive time moments in H. The
last PMI is the interval between the greatest element in H
and P.

The only restriction imposed on the scheduling policies
accepted by our approach is that inside a PMI the ordering
of tasks according to their priorities is not allowed to
change. The consequence of this assumption is that the next
state can be determined no matter when the currently run-
ning task completes within the PMI. All the widely used
scheduling policies we are aware of (RM, EDF, FCFS, etc.)
exhibit this property.

5.2. The construction and analysis algorithm

The algorithm proceeds as discussed in Section 4 An
essential point is the construction of the process in topolog-
ical order, which allows only parts of the states to be stored
in memory at any moment.

The algorithm for the stochastic process construction is
depicted in Figure 8. All states belonging to the sliding win-
dow are stored in a priority queue. The key to the process
construction in topological order lies in the order in which
the states are extracted from this queue. First, observe that
it is impossible for an arc to lead from a state with a PMI
number u to a state with a PMI number v so that v < u (there
are no arcs back in time). Hence, a first criterion for select-
ing a state from the queue is to select the one with the small-
est PMI number. A second criterion determines which state
has to be selected out of those with the same PMI number.
Note that inside a PMI no new job can arrive, and that the
task ordering according to their priorities is unchanged.
Thus, it is impossible that the next state sk of a current state
sj would be one that contains waiting tasks of higher priority

1.Except here, whenever we use the term “deadline”, we consider rel-
ative deadlines.

Ai x x k pi 0 k P pi⁄<≤,⋅={ }
Di x x di k pi 0 k P pi⁄<≤,⋅+={ }

=
=

Figure 8. Construction and analysis algorithm

put first state in the queue;
while  queue not empty do

sj  = extract state from the queue;
t i  = s j .running; -- field r of state s j

   distribution  = convolute( ei , z j );
nextstatelist  = next_states( s j );

-- consider task dependencies!
for each sk ∈ nextstatelist do

compute probability of the transition
from sj to sk using distribution ;

     update discarding probabilities;
     update zk;

if sk is not in the queue then
       put sk in the queue;

end if ;
end for ;

   delete state s j ;
end while ;



than those waiting in sj. Hence, the second criterion reads:
among states with the same PMI, one should choose the one
with the waiting task of highest priority.

Figure 9 illustrates the algorithm on the example given in
Section 4 (Figure 7). The shades of the states denote their
PMI number. The lighter the shade, the smaller the PMI
number. The numbers near the states denote the sequence in
which the states are extracted from the queue and processed.

6. Experimental Results

The most computation intensive part of the analysis is the
computation of the convolutions. In our implementation we
used the FFTW library [6] for performing convolutions based
on the Fast Fourier Transform. The number of convolutions
to be performed equals the number of states of the stochastic
process. The memory required for analysis is determined by
the maximum number of states in the sliding window. The
main factors on which the stochastic process depends are P
(the least common multiple of the task periods), the number
of PMIs, the number of tasks, and the task dependencies.

As the selection of the next running task is unique, given the
pending jobs and the time moment, the particular scheduling
policy has a reduced impact on the process size. On the other
hand, the task dependencies play a significant role, as they
strongly influence the set of ready tasks and by this the process
size. Additionally, they generate a smaller number of PMIs as
they impose a certain harmony among the task periods.

In the following, we report on three sets of experiments.
The aspects of interest were the stochastic process size, as it
determines the analysis execution time, and the maximum
size of the sliding window, as it determines the memory
space required for the analysis. All experiments were per-

formed on an UltraSPARC 10 at 450 MHz.
In the first set of experiments we analysed the impact of

the number of tasks on the process size. We considered task
sets of 10 up to 19 independent tasks. P, the least common
multiple of the task periods, was 360 for all task sets. We
repeated the experiment four times for average values of the
task periodsα = 15.0, 10.9, 8.8, and 4.8 (keeping P=360).
The results are shown in Figure 10. Figure 11 depicts the
maximum size of the sliding window for the same task sets.
As it can be seen from the diagram, the increase, both of the
process size and of the sliding window, is linear. The steep-
ness of the curves depends on the task periods (which influ-
ence the number of PMIs). It is important to notice the big
difference between the process size and the maximum
number of states in the sliding window. In the case for 19
tasks, for example, the process size is between 64356 and
198356 while the dimension of the sliding window varies
between 373 and 11883 (16 to 172 times smaller). The
reduction factor of the sliding window compared to the
process size was between 15 and 1914, considering all our
experiments. Because of space limitation, for the rest of
paper we will concentrate only on the process size.

In the second set of experiments we analysed the impact
of the application period P (the least common multiple of
the task periods) on the process size. We considered 784
sets, each of 20 independent tasks. The task periods were
chosen such that P takes values in the interval [1, 5040].
Figure 12 shows the variation of the average process size
with the application period.

With the third set of experiments we analysed the impact
of task dependencies on the process size. A task set of 200
tasks with strong dependencies (28000 arcs) among the tasks
was initially created. The application period P was 360.
Then 9 new task graphs were successively derived from the
first one by uniformly removing dependencies between the
tasks until we finally got a set of 200 independent tasks. The
results are depicted in Figure 13 with a logarithmic scale for
the y axis. The x axis represents the degree of dependencies
among the tasks (0 for independent tasks, 9 for the initial

Figure 9. State selection order
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task set with the highest amount of dependencies). In this set
of experiments, we used the first of the two policies defined
in Section 3 for handling task graphs with dependencies.

As mentioned, the execution time for the analysis algo-
rithm strictly depends on the process size. Therefore, we
showed all the results in terms of this parameter. For the set
of 200 independent tasks used in the last experiment (proc-
ess size 1126517) the analysis time was 745 seconds. In the
case of the same 200 tasks with strong dependencies (proc-
ess size 2178) the analysis took 1.4 seconds.

Finally, we considered an example from the mobile com-
munication area. A set of 8 tasks co-operate in order to
decode the digital bursts corresponding to a GSM 900 sig-
nalling channel. In this example, there are two sources of
variation in execution times. One task has both data and con-
trol intensive behaviour, which can cause pipeline hazards
on the deeply pipelined DSP it runs on. Its execution time
probability density is derived from the input data streams
and measurements. Another task will finally implement a
deciphering unit. Due to the lack of knowledge about the
deciphering algorithm (its specification is not publicly avail-
able), the deciphering task execution time is considered to be
uniformly distributed between an upper and a lower bound.
When two channels are scheduled on the same DSP, the ratio
of missed deadlines is 0 (all deadlines are met). Considering

three channels assigned to the same processor, the analysis
produced a ratio of missed deadlines, which was below the
one enforced by the required QoS. It is important to note that
using a hard real-time model with WCET, the system with
three channels would result as unschedulable on the selected
DSP. The underlying stochastic process for the three chan-
nels had 130 nodes and its analysis took 0.01 seconds. The
small number of nodes is caused by the strong harmony
among the task periods, imposed by the GSM standard.

7. Conclusions

This work proposes a method for performance analysis
of task sets with probabilistically distributed execution
times. The tasks are scheduled according to an arbitrary
scheduling policy. The method is based on the construction
of the underlying stochastic process and the analysis of this
process. The stochastic process is constructed and analysed
in a memory- and time-efficient way making the method
applicable to large task sets. Experimental results show a
very good scaling of the algorithm both in terms of memory
space and execution time.

As a future work, we intend to extend our approach in
order to handle sets of tasks distributed over multiprocessor
systems.
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Figure 13. Experiment 3, stochastic process size
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