Implementation Notes for the GSM BTS Model

Sorin Manolache, Razvan Jigorea
ESLAB, Linkdping University

1. General Description

The general architecture of the model is depicted in Figure 1. Every block in the figure is mapped to a
package in the model, with a single exception: the two protocol interpreters (LAPDm Pl and LAPD PI) are
mapped to the same packadrdq) as they are very similar and result from simple parameterizations of a super-
class.

LAPDm PI LAPD PI

Radio : >< : Abis
> TRX TRX <>

BuG BIG

Radio interface FU — functional unit PI — protocol interpreter Abis interface
BC — baseband controller BuG - burst generator
TRX — transmitter-receiver BIG — block generator

Figure 1. Structure of the GSM BTS model

Additionally, the model has two more packages, “Globals” and “Shell”. Thus, the model consists of
eight packages:

* Abis

* BasebandCitil

* FunctionalUnits
* Globals

* Pls,

* Radiq

* Shell

e TRX

2. Description of Packages

First, the role of the two additional packages is described. Next, the mechanics of the packages
depicted in Figure 1 is explained starting from the interfaces towards the inner packages.

2.1 TheShell Package

The Shellpackage was introduced in order to interface the model with the environment (designer sup-
plied events) easily. The package consists of a single (Hmed| which implements associations to various enti-
ties in the model. All the events to be sent to the model from the exterior are senSbehebject, which in turn
dispatches them to the appropriate entities. The messages (events) which can be sent at the moment to the Shell
and implicitly to the model are:

» evAccess(AccessReason reason)

* evGrant(int trx, int timeslot, ChannelMode made)
» evDeallocate(int trx, int timeslot)

2.2 TheGlobalsPackage

The Globals package consists of utility classes, global functions and variables used in the entire
model. The classes are:

» BitAddressableBuffer
» Buffer,

* GlobalClock

* Queue

* BTSConfig

Several global functions provide a means to determine the position in the frame structure on the radio
interface. Such functions agetTSN(), getFrame@tc. The global variables are the clodtk) which gives the
timing on the radio interface and the variable that holds the initial channel configuration of thec8fg)(Of
particular interest is thBTSConfigclass. The information of greater importance contained irctimdigobject is
the following:

» The configuration for each TRX, i.e. the channel types for each physical chBRXenfig,
» The number of carriera¢OfFreq,
* An indication to the TRX responsible of the beacon charrezldo?).

2.3 TheRadioPackage

The Radiopackage corresponds to tRadio BuGblock in Figure 1. The main class in this package is
RadioSubsytenit registers itself to the GlobalClock, so it is notified every time a burst interval (8§ has
passed. When it receives such a notification it commands @eitsodulatorandModulatorsto generate (emit
respectively) a burst. The generated bursts are then fed tdRMe by means of the 1:N directed association
which exists betweeRadioSubsystemnd theTRXs. This briefly described mechanism of simulating the BTS
radio subassembly is depicted in the UML sequence dia@ampatchingMechUpLksee model). Different types
of modulators and demodulators exist in the model because different types of bursts are generated depending on
the physical channel type. The specialization hierarchy of the modulators and demodulators is depicted in the
ModemsUML object model diagram. Besides tfiRadioSubsytesrand the modulators/demodulators classes,
classes modelling the bursts were implemented. Bhess objects aggregate sevemitAddressableBuffer
objects. Methods for retrieving the useful parts of the bursts were provighformation(). The specialization
hierarchy of thdBursss classes is depicted in tBarstsobject model diagram (see model).

2.4 TheAbis Package

The Abis package is similar to thRadio package. It corresponds to tidis BIGin Figure 1. The
package main class BlockGeneratarlt generateg\bisBlocls according to the multiplexing scheme on the Abis
interface. Such aAbisBlockobject provides methods to extract different kind of blocks depending on the chan-
nel mode they are addressed toH24Block() toSpeechBlocletc.). Those blocks (blocks for F96 channels,
speech channels, and so on) are then dispatched {6RMe by means of the 1:N directed association which
exists between thBlockGeneratoland theTRXs. TheevAbisBlock(AbisBlock *block, int physChSletent car-
ries the block together with an indication for its destination on the radio pathBlockGeneratos responsibil-
ity to set thephysChSloparameter appropriately.

2.5 TheFunctional Units Package

The FunctionalUnitspackage gathers a large number of functional units from the baseband processing
subassembly. The units and their inheritance relationships are depicteddartelutional code¢s<CRCs Dein-
terleavers Interleaversand ParityEncDecobject diagrams. Despite the large number of those units, they all
exhibit a simple interface, which basically consists of two messages: one that starts the operation, the source of
which is a baseband controller, and one that notifies the baseband controller about the completion of the opera-
tion. The processing algorithms are specified in C++ functions, with self-explanatory niateeiefve compu-
teCRCetc.). The processing-completion event is emitted after a specified time interval, which simulates the

execution delay of the unit. The time interval can be specified for each unit individually at construction time and
it is stored in an attribute in the superclass of all functional UPrit&essingUnit

2.6 TheBasebandCtrlPackage

The BasebandCtrpackage corresponds to tB€ blocks in Figure 1. For every channel mode there
exists such a baseband controller, which specializes one of the two more general corthullke@rler and
DownLKkCtrl.A controller groups and manages two or three functional units, depending on the channel type. The
structure of a generic baseband controller is shown iraeeric Controllerobject diagram (see model), which
we consider quite important for the general understanding of the baseband internals. The activity of a downlink
controller is triggered by aavBlockevent. This event is sent by the TRX or, more precisely, physical chan-
nelmanaged by a TRX. The uplink controller has a similar behaviour. When the controller recemeBlants
event, it will command the appropriate functional unit. Data communication is modelled by means of event
parameters. ArvBurstsevent carries four bursts. It is the responsibility of some TRX managed entities in the
TRX package to buffer those four bursts. However some deinterleaving algorithms need 8 or even 22 bursts in
order to build up a block. It is then the deinterleaver responsibility to further buffer groups of four bursts in order
to reach the needed number of bursts to fire a deinterleaving operation. The consequence is that the uplink con-
troller behaviour will slightly differ from the downlink one. Thus, not every operation-starting eesBuUfst3
will actually fire the entire processing chain. TéeTransienevent was introduced in the uplink controller state-
chart in order to capture this aspect.

Further specialization of generic controllers, according to specific channel modes, is depicted in the
Controllersobject diagram (see model).

2.7 TheTRX Package

Although it is not the highest in the control hierarchy, we consideiR¥ package as being the most
important unit in the model. The protocol interpreters are viewed more as servers for the TRX requests.

The TRXpackage consists of seveRthysicalChanneland theTRXclass. ATRXmanages eight phys-
ical channels. It has to keep track of the chartypksand states (allocated or not). By chanthgle we mean
combined commqrommonfull traffic, half traffic, andsignalling, as opposite to the chanmabdeswhich char-
acterize the data semantics of tlogjical channels carried by the physical ones. The channel modes can be
speechF96, F48, etc.

The TRX exhibits a rather complex behaviour with three orthogonal components:

» signalling (channel allocation and deallocation),
» dispatching of uplink bursts,
» dispatching of downlink blocks.

TheevAllocateandevDeallocateevents from the signalling component are sent by an entity iPthe
package, which will be described in the next section.

The behaviour of the downlink component is the following: when the TRX receivesvaibis-
Block(AbisBlock *block, int physChSlayent, the TRX extracts the useful information, and subsequently it will
forward this useful data block to tHehysicalChannebn thephysChSlotimeslot. Extraction of the useful infor-
mation is done by means of the methods provided inAbisBlockclass (see 2.4) and according to the channel
type and channel mode information which are stored inTtRX class and”hysicalChannesubclasses respec-
tively (see the TRXextractmethod). Forwarding is next done by means ofék@Blockevent sent to the appro-
priatePhysicalChannetlass.

The activity on the uplink component is triggered byerBurstTickevent. This event is sent by the
RadioSubsytenwhich in turn receives it from thelk singleton object (of clas&lobalClocK. This event only
specifies that an interval equal to a burst period has elapsed and tiRadi@Subsystemight have generated a
burst. It is the responsibility of the TRX to determine the “position” in the frame hierarchy on the radio path, in
order to dispatch the burst correctly. This is done by means of the global fungBbhSN()getFrame()etc., in
theGlobalspackage (see 2.2). If the TRX is the one in charge of the beacon carrier it will interpret differently the
bursts on timeslot 0 and will enter tlaecessstate. If an access is requested, it will send a request message to an
entity in thePls package. This will be discussed in the following paragraph. The access request is indicated by
theaccessAttempioolean variable which is set by the shell when it receiveswatcesgvent and unset by the
TRX when it takes the request into consideration. Otherwise, if the conditions for access request are not met, the
TRX checks whether a channel is allocated on the current timeslot. If nagyBigrstTicks ignored. Otherwise,
the TRX gets a burst from tlRadioSubsysternd dispatches it to thhysicalChannebn the current timeslot.

The entire model is set up according to the information stored ircoinig singleton object of class
BTSConfigsee 2.2). The TRX configuration, stored in ttanfigobject, is sent as a parameter to the TRX con-
structor. According to this configuration, the eigtitysicalChannelsmanaged by the TRX are constructed. There
are five suclPhysicalChannels

e CombCommonCfcombined common channel),

e CommonCh

e FullTrafficCh,

» HalfTrafficCh

e TACHB8Chor SDCCH (dedicated signalling channel).

The CommonClphysical channel carries the RACH, FCH, SCH, BCCH, PAGCH logical channels.
The FullTrafficCh carries the TCH/FS (full speech), TCH/F9.6, TCH/F4.8, TCH/F2.4 logical channels. The
HalfTrafficChcarries two TCH/H4.8 logical channels or two TCH/H2.4 logical channels or one TCH/H2.4 and
one TCH/H4.8 logical channel. ARACH8Chcarries eight SDCCH logical channels.GombCommonChbarries
the RACH, SCH, FCH, BCCH, PAGCH and four SDCCH logical channels. The configuration coded in the model
uses onlyCommonChFullTrafficChandTACH8Chphysical channels, but the other ones should work also.

A physical channetelates tobaseband controllerésee 2.6) for the logical channels it carries. Addi-
tionally, a physical channel class containgfers(2.2) where it buffers the bursts to be deinterleaved. Remember
that a deinterleaver works on groups of four bursts. Dispatching of incoming bursts to the appropriate logical
channel, i.e. baseband controller, is done by means of interrogating the “position” in the frame hierarchy (see the
dispatchToLogClmethod).

The partitioning of information betwednhysicalChannal andTRXs is made as follows. The TRX
stores thaypesof the eight physical channels it manages. It also keeps track whether a physical channel is allo-
cated or not. A physical channel is allocated when it carries at least one logical channel. Additionally, a TRX
keeps track of the subtimeslot, in case of half traffic channels¢ined member variable). ThBhysicalChannel
stores only the channehode(s)of the logical channel(s) it carries and their status (allocated or not). See the
attributes part of the classes and the corresponding accessor and mutator methods.

At allocation the needed resources (baseband controllers and the appropriate functional units) are
dynamically created. Thus, these units can be se&irtagl units, and not necessary as physically existing ones.

In reality, two or more such virtual units can be mapped on existing physical units, if the time multiplexing
scheme allows their simultaneous usage.

The split betweeMRXand PhysicalChannelvas made because of complexity management reasons
and not because of functionality reasons. We consider that they fulfil the same functions. This is why we did not
depictPhysicalChanneas a separate block in Figure 1.

2.8 ThePIs Package

This package contains the classes needed for modelling the LAPDm and LAPD protocol interpreters.
TheLinkSendeandLinkReceiveclasses play key roles in the mechanics of signalling transmission. They model
the acknowledged transmission mode, the sliding window concept as well as frame fragmentation and reassem-
bling. Both classes inherit from thank class, whose only role is to concentrate all the common data and utility
methods of the two subclasses. Thus, both classes use the following attributes:

» framelLength(Length of one frame, 184 bits for LAPDm and 260 bytes for LAPD),
» repetition (A frame number can take values in the interva¢petition1),

* windowSize (Maximum number of frames which can be transmitted before an acknowledge is
received),

» segments(Buffers for storing the frames which result from a upper layer message decomposition),

« segs (Number of frames, actually tlsegmentarray length),

» transmissionBufferdAn array ofwindowSizebuffers which store the yet not acknowledged frames),

» transmissionTimg(The time needed for sequencing the frame bits on the line).
TheLinkSendeclass contains the following attributes:

» timeout (How much the sender must wait for an acknowledge before signalling an error and trying a
retransmission),

* sent (How many frames were already sent, not necessarily already acknowledged),

* va, (va-l equals the last acknowledged frame),
* vs (vs1 equals the last frame sent),

« timerRunning (Boolean variable which indicates whether the timer was already started or not. The
timer is started whenever a frame is sent and the timer is not already running).

The activity of aLinkSendeobject is triggered by apvSendMessage(LinkMessage *ieNgent. The
message to be transmitted is fragmented in frames which are storedsegimentbuffers.windowSizérames
are next downloaded in thieansmissionBuffersThe sender starts then transmitting the frames. Whenever a
frame is sent and the timer is not already running, it will be started. Transmission stopsvnldemwSizdrames
were sent without being yet acknowledged. In such a situation the sender enteamtioéTransmistate. Two
events can cause a transition from this state: eithew&mror or anevAckevent is received. ThevErrormessage
is received when the timer indicatesimeoutelapsing. In this case the sender sett vaand starts retransmis-
sion. When arevAckis received, the timer is reset, all acknowledged frames inrdresmissionBufferare dis-
carded, new ones are downloaded fromgbgmentbuffers andvais updated. If there are still unacknowledged
frames the timer is restarted. The sender returns to its initial state (the one which is exited only when it receives
theevSendMessagvent) when all the frames were sent and acknowledged. Then all the buffers are purged.
TheLinkReceiverlass contains the following attributes:

* entireMessageg(Boolean variable which indicates whether an entire message was received or not),
« inf, (Buffer where the received upper layer message is assembled),

» toAck (Integer variable that holds the number of next frame to acknowledge),

* vr, (vr-1 equals the last received frame),

» received (How many frames were already received. Corresponds tegheamember variable in the
LinkSendeclass).

TheLinkReceivers composed also of Queuewhich stores the acknowledge messages. This queue is
used in order not to lose acknowledge commands. Such situation could be possible due to the fact that transmis-
sion of acknowledges tak&snsmissionTimenilliseconds.

The activity of aLinkReceiveis triggered by arvGetFrame(LinkMessage *messagegnt. Regard-
less of the frame sequence number, the frame is acknowledged. If the frame is also the one the receiver waits for
(message->NS == yrthen the frame is stored in tlkegmentduffers andvr is updated. If the last frame from a
message is received then the receiver returns to its initial sthiek®klessagés assembled from theegments
the algorithms variables reinitialized, tbegmentpurged and the upper layer notified.

The LinkSenderndLinkReceiverclasses relate to tHe2Channelclass. The latter models the trans-
mission channel. Such a channel is characterized by the following attributes:

» recDelay (Channel latency in carrying a frame in a particular direction),

« sndDelay(Channel latency in carrying a frame in the opposite direction),

» recEff (Receiving efficiency, i.e. the percent of transmitted frames in the first direction),

» sndEff (Sending efficiency, i.e. the percent of transmitted frames in the opposite direction).

A L2ChannelHelpers created whenever a frame is conveyed by the channel. Actually the helper is the
one that performs the transmission. Having one helper for every frame transmission, transmission delays can be
specified on a per frame basis. The consequence is that frames can arrive at their destination in a different order
than they were sent. Thus, a feature of packet data networks can be modelled. However this feature is not used in
the model.

By parameterizindLinkSendeandLinkReceiveby means of inheritance, senders and receivers for the
particular LAPD and LAPDm protocols are created (&vgndowSizeequals 8 for LAPD and 1 for LAPDnrep-
etition equals 8 for LAPDm and is negociable for LAPD — defaults to 128 in our model).

For a more synthetic description of those classes sekitikersobject diagram. Theommunication
sequence diagram depicts the sequence of events which are exchanged between the main entities in order to con-
vey a layer 2 message.

The information carried by these layer 2 entities is encapsulatedliméaMessag®bject. ALinkMes-
sageconsists of aLinkAddrField a LinkCtrlField and aBitAddressableBuffewhich models the information
field. The former two components provide methods for extraction of various information (like, for example,
sequence number). By specializing and extendingd.thikMessagelass thd APDMessagandLAPDmMMessage
classes are built. For a more detailed view of the messages composition and inheritance relationshipesee the
sagesobject diagram in the model.

A LinkLayerclass groups ainkSenderLinkReceiverand aL2Channelklass. The specialized classes
LAPDLkLayerandLAPDmLkLayeresult fromLinkLayerby means of inheritance. They are also depicted in the
Linkersobject diagram.

On top of those layer 2 entities tiRLKLayerclass is built. It models theadio resourcelink. This
layer 3 entity implements an association thiakLayerobject (actually to one ofinkLayersubclasses). The
RRLKLayelinterface consists of two events:

» evSendL3Message(RRMessage *message)
» evGotMessage(BitAddressableBuffer *message).

The former event is sent by tHRRLkLayerexterior (is a command), while the latter is sent by the
lower layerLinkLayerwhich actually only forwards the same event received froninkReceive(is a notifica-
tion). WhenRRLKLayerreceives arevGotMessagé calls theinterpret method to interpret the contents of the
messageaccording to the radio resource protocol. This is simply modelled by associating to the radio resource
protocol procedures numerical values which in turn are associatedBitAddressableBuffer

There exist two specialization of tHRRLkLayerclass:RRLkLayerFromBS@nd RRLkLayerToBSC
Actually, they only add some relations to other entities in the model creating thus layer 3 links between them.
RRLKLayerFromBS@ends layer 3 messages from sieell(which plays the role of the environment, implicitly
of the BSC) toconfig->noOfFreq TRX TheRRLkLayerToBS€onveys messages from tli&Xresponsible of
the beacon carrier to tt&hell

3. A Possible Scenario

An evAccesgvent is sent to th8hell(which plays the role of a mobile station is this cashg Shell
will set theaccessAttemptoolean variable of th@ RXresponsible of the beacon carrier. Upon access attempt
detection, th& RXwill request the transmission of a layer 3 message froRRtkLayerToBSGNVhen the mes-
sage arrives, th8hell(which plays the role of the BSC now) is notified. Next, the user will sendvarant(int
trx, int timeslot, ChannelMode mod)theShell. The Shellwill request the transmission of an allocation layer 3
message frolRRLkLayerFromBSGNhen the message arrives, RRRLkLayerFromBS@otifies theTRXspeci-
fied in the message. Next, ti&Xallocates the channel, and updates its member variable vallesatedetc.).
Next, whenever a burst or block arrives for the newly allocated channel timeslot, the burst or block is finally dis-
patched to théunctional units after being “guided” and perhaps buffered by iysical channelandbaseband
controllers. This whole scenario is depicted in tannel Activation Protocadequence diagram. An intuitive
GUI (BTSExec/bts.exavas built in order to support this scenario.

	Implementation Notes for the GSM BTS Model
	1. General Description
	2. Description of Packages
	2.1 The Shell Package
	2.2 The Globals Package
	2.3 The Radio Package
	2.4 The Abis Package
	2.5 The Functional Units Package
	2.6 The BasebandCtrl Package
	2.7 The TRX Package
	2.8 The PIs Package

	3. A Possible Scenario

