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Abstract Today’s embedded systems are exposed to variations in load demand due
to complex software applications, dynamic hardware platforms, and the impact of
the run-time environment. When these variations are large, and efficiency is required,
adaptive on-line resource managers may be deployed on the system to control its
resource usage. An often neglected problem is whether these resource managers are
stable, meaning that the resource usage is controlled under all possible scenarios. In
this paper we develop mathematical models for real-time embedded systems and we
derive conditions which, if satisfied, lead to stable systems. For the developed system
models, we also determine bounds on the worst case response times of tasks. We also
give an intuition of what stability means in a real-time context and we show how it
can be applied for several resource managers. We also discuss how our results can be
extended in various ways.

Keywords control theory · stability criterion · adaptive real-time systems · utilization
control

1 Introduction

Today’s embedded systems, together with the real-time applications running on them,
have achieved a high level of complexity. Moreover, such systems very often are
exposed to varying resource demand (load demand) due to e.g. variable number of
tasks in the system or variable execution times of tasks. When these variations are
large and system efficiency is required, adaptive on-line resource managers may be
deployed to control the system’s resource usage. Such managers take the shape of
algorithms which run at key moments in time and adjust system parameters (task
rates, modes, offsets, priorities, etc.) subject to the measured variations. Among the
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goals of such a resource manager is to maximize the resource usage while minimizing
the amount of time the system spends in overload situations.

One, often overlooked, question is whether the deployed resource managers are
safe, meaning that the resource demand is bounded under all possible runtime sce-
narios. This notion of safety can be linked with the concept of stability of control
systems. In control applications, a controller controls the state of a plant towards a
desired stationary point. The combined system is stable if the plant’s state remains
within a bounded distance from the stationary point, under all possible scenarios. By
modeling the real-time system as the plant and the resource manager as the controller,
one may be able to reason about the stability of the combined system.

In this work, we consider a real-time system running a set of independent tasks
and resource managers that control the processor’s utilization. Our aim is to develop
general models of the system and determine conditions that a resource manager must
meet in order to render it stable (Sections 7 and 8). Our method has the advantage of
using a control theoretic setting, and thus the results are given in well defined terms
of stability. The conditions that resource managers must follow are simple and can be
applied to any controller, based on control theory or not. As an application of our the-
ory we show how to construct simple switching resource managers (Section 11) and
we prove the stability of several existing non-control theory based approaches (Sec-
tion 12). For the developed system models, we also determine bounds on the worst
case response times of tasks (Sections 9 and 10). We end with an extensive discus-
sion on how to interpret the presented results and how they can be extended in various
ways (Section 13).

This work is an extension of our previous results from [17]. The theory presented
there is augmented here by a number of discussions, test cases and examples, to give
a better insight into the discussed problems.

The theory presented in this paper has similarities with the theory on queueing
networks [21,22]. Apart from the resource manager which has no counter part in
queueing networks, our system may be modeled as a queueing network and our result
in Theorem 2 has a similar wording with a classical result on queueing networks (see
Chapter I from [22]). However, in this work we deal with absolute stability, that is,
we bound the behavior of the system in the worst case, while in queueing networks
theory stochastic stability is used, where only bounds on the expected behavior are
determined. Furthermore, the rest of the results presented in this paper use the concept
of resource manager, thus they have no counterpart in queueing networks theory.

2 Related Work

There exists a vast literature regarding resource utilization control, targeting differ-
ent types of real-time systems. Lee et al. proposed the QRAM algorithm in [1]. The
model consists of a number of resources that tasks use and a number of quality dimen-
sions. When the algorithm runs, it optimizes the overall quality subject to keeping the
resource constraints.

Buttazzo et al. [2] introduced the elastic model where each task’s rate can change
within a certain interval. Rates change when a task is added or removed from the
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system. Further work deals with unknown and variable execution times [3], opti-
mal control when the applications are controllers [4], and when dealing with energy
minimization [5]. In our previous work [16], we have proposed a number of con-
trol algorithms to deal with execution time variations in a uniprocessor system. Lu
et al. [6] described a framework for feedback control scheduling, where the source of
non-determinism is execution time variation, and the actuation method is admission
control and task rate change. Palipoli et al. [7,8] proposed a feedback based tech-
nique for adjusting the parameters of a resource reservation scheduling algorithm in
reaction to task execution time variations. Cervin et al. [13,14] proposed a method for
adjusting control performance of tasks that implement feedback controllers. Combaz
et al. [9] proposed a QoS scheme for applications composed of tasks, each described
as graphs of subtasks, where each subtask has a number of modes. Liu et al. [10,11]
presented a Recursive Least Squares based controller to control the utilization of a
distributed system by means of rate adjustment.

We may divide the related work in four classes based on the kind of adaptation
they propose (some works may fall in more than one class):

1. Job Flow adaptation: These are methods that adapt the incoming flow of task
instances (jobs) to the current state of the resource. The adaptation is done by
changing task rates or by admission control. Papers that fall in this class are [1,2,
3,4,5,6,12,13].

2. Resource adaptation: These methods adapt the resource depending on the current
usage pattern required by the application. They do so by changing the capacity
of the resource (e.g. through frequency scaling). Methods such as [5] fall in this
class.

3. Task Mode Adaptation: These are methods that adapt the way the already re-
leased jobs get to access the resource. Their adaptation mechanisms are task mode
change and job dropping. This class is comprised of methods such as the ones de-
scribed in [9,12].

4. Schedule adaptation: These are methods that try to adapt various parameters of
the scheduler to improve the performance of the running applications. Works such
as [7,8,9,10,11,14] fall in this class.

The methods in the first three classes achieve similar goals, they try to keep the
utilization of the resources at a prescribed level in the face of varying job execution
times and/or arrival patterns. While doing so they also try to maximize one or more
quality-of-service or performance metrics. Notable exceptions are [6] where the pro-
posed method also takes into account deadline miss ratios and [12] where the method
does not control utilization, but instead queues all arriving jobs and concentrates on
keeping the queue sizes at certain prescribed levels. With the exception of [12] the
works in the first three classes are lacking an explicit modeling of the system in the
overloaded state. Since resource utilization is a value that saturates at 100%, by the
time a resource manager realizes that the system is overloaded it may not know or it
may only have an imprecise estimate of the amount of overload. This makes adapta-
tion to the overload slow and inexact. Simply put, if execution times of jobs increase
drastically, the resource manager must wait (possibly for a long time) until these jobs
finish and their execution times are known. At this time, the resource manager knows
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the correct incoming load into the system and can decide on adjustments, however,
the system has already been loaded for a while and jobs have started to queue up.
Since this accumulation in queues is unknown to the resource manage, the decided
adjustments may not be sufficient to cure the overload and the system may need to
go through several iterations before the overload is solved.

In [1] the authors provide a mechanism for adapting task rates to varying resource
requirements such that an abstract notion of quality of service is maximized, however,
they do not talk about the specific functioning of the system, how and when an over-
load is detected. In [3,4,5], apart from the adaptation mechanism, the problem of
overloads is specifically addressed. The mechanism for solving overloads is based on
acting as soon as an overload has been detected and on delaying the next job release
of the overloading task until all pending jobs of this task get executed. This method,
however, may lead to very often actuation which may be a problem for some appli-
cations. In [6] the authors treat overloads by also following the deadline miss ratio
of the jobs that execute in a certain interval of time before the resource manager ac-
tuation. The deadline miss ratio, however, is also a parameter that saturates at 100%,
thus still not being suitable to accurately describe the evolution of the system when
overloaded. In [13] the authors propose to overcome the overload issue by using a
feedback-feedforward resource manager, where small variations in execution times
are handled by a feedback mechanism and large variations are handled, before they
happen, by a feedforward mechanism. This means that this method is only applicable
to systems where the application can warn the resource manager about large increases
of execution times in advance.

In [12] the authors propose a model where the state of the system is composed
of the sizes of queues where jobs accumulate before being executed and the goal of
the adaptation mechanism is to keep this queues at a certain level of occupancy. This
model is stemmed from the functioning of web servers. However, queue sizes are
values that saturate at 0 (they are positive values) and the proposed model linearizes
the behavior of queues to the region where they are not empty. This means that the re-
source manager must always keep the queues sizes at positive (not necessary small)
levels. Since non-empty queue sizes are generally associated with overloaded sys-
tems, this means that the system is always kept at a certain level of overload. This
behavior may not be acceptable for systems where it is important that end-to-end
delays are kept small.

The methods in the fourth class adjust scheduler parameters in an attempt to
match the resource demand of each task to a specific share of the capacity of the re-
source, with the goal of minimizing deadline misses and maximizing various perfor-
mance or quality-of-service metrics. In [7,8] the authors consider resource-reservation
schedulers and propose methods based on adjusting the quota of tasks subject to their
demand. In [8] tasks share several resources and the quotas of tasks on all resources
are determined together, in order to minimize end-to-end delays. In [10,11] the au-
thors consider distributed systems where tasks are schedulable if the utilization on
each resource is kept at or below certain bounds. In [10] the load on one resource is
influenced by the load on the other resources via some coefficients which are esti-
mated on-line, while in [11] the model of the system is learned on-line. In [14] the
authors develop the control server model for scheduling and propose an approach to
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schedule control tasks in order to minimize jitter and latency. These methods tune the
scheduler parameters such that jobs are schedulable as long as the incoming load in
the system is below a certain bound (less or equal to 1) and they aim at gracefully
degrading the quality-of-service experienced by the user when the incoming load is
above the bound. However, if the system finds itself in a situation where the incoming
load is above 1 for extended periods of time, these methods are powerless at prevent-
ing accumulations from happening and possibly leading to system crashes. We view
these methods as being complementary with the ones from the former three classes.
This view is in agreement with the one presented in [10].

A natural question that arises in all works on adaptive real-time systems, is how
much variation can the proposed method handle. The best results that we are aware of
have been obtained in [11] where the proposed method for control remains stable for
variations where actual execution times are 7 times larger than the expected values.
By contrast, the modeling method that we propose in this paper directly embeds the
amount of variation existing in a system, and therefore, the stability criterion that
we obtain has the power of determining stability for systems with arbitrary large
variations.

3 Contributions

In this work we consider a uniprocessor real-time system running a set of indepen-
dent tasks. We assume that tasks can release jobs at variable rates and we require
knowledge of the intervals in which execution times of jobs of tasks vary. We allow
these jobs to be scheduled using any kind of non-idling scheduling policy. We con-
sider that the system possesses a resource manager whose job is to adjust task rates
subject to the variation in job execution times.

We develop a criterion for resource managers, that if satisfied, renders the adap-
tive real-time system stable under any load pattern (execution time variation pat-
tern). Stability, in our case, implies bounded load on the resource at all times and
can be linked with bounded worst-case response times for jobs of tasks and bounded
throughput.

With the criterion developed in this work we guarantee the stability of the sys-
tem in all possible cases meaning that the proposed framework is suitable even for
adaptive hard real-time systems.

The stability criterion that we propose in this paper is simple and intuitive. How-
ever, we must go through a somewhat involving modeling and stability proof for the
sake of completeness. We consider the modeling of the system very important and
we develop a detailed, non-linear model that we use in determining our stability cri-
terion. We develop the model in two steps, first a constrained model (in Section 7)
and then the general model (in Section 8). Apart of the fact that the constrained model
helps as an intermediate step, we also use it to compare the two models. Since the
general model considers the functioning of the system in more detail, it requires more
conditions on the resource manager in its stability criterion (Theorem 4) compared
with the constrained model (Theorem 3), thus highlighting the peril of not using de-
tailed enough models. Also, considering a resource manager that is stable under the
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assumptions of both models we show in Section 10 that the unrestricted assumptions
of the general model allow the resource manager to run in such ways that reduce
worst-case response times by as much as one order of magnitude. Our models are
geared towards describing the behavior of our system in overloaded situations, which
means describing the evolution of the job queues (one for each task) where released
jobs accumulate before they are executed.

In Section 10, we determine worst-case response times of tasks assuming an EDF
scheduler. We then further tighten these response times assuming further knowledge
about the type of resource manager used, by defining two subclasses of stable con-
trollers. We compare these classes in terms of their worst-case response times in
Section 10. The bounds developed here are different from the well known worst-case
response times derived in literature for EDF, since our system allows overload situa-
tions.

Unlike the previous literature (with the possible exception of [8]) in this paper we
do not present a particular, customized method for stabilizing a real-time system. We
do not present a certain algorithm or develop a particular controller (e.g. PID, LQG,
or MPV controller). Instead, we present a criterion which describes a whole class of
methods that can be used to stabilize the system. Also, in this work we do not address
any performance or quality-of-service metric, since our criterion is independent of
the optimality with which a certain resource manager achieves its goals in the setting
where it is deployed. The criterion that we propose may be used in the following
ways:

1. to determine if an existing resource manager is stable,
2. to help build custom, ad-hoc resource managers which are stable, and
3. to modify existing resource manager to become stable.

We give examples of the usage of our framework in Section 11 where we develop
two switching controllers (resource managers) and we prove that three resource man-
ager taken from literature are stable. In Section 12 we show several example runs of
adaptive systems with these resource managers.

Finally, we end this paper (Section 13) with a discussion on the stability theory
used in this work and final conclusions.

4 Preliminaries

4.1 System and Application

We consider a uniprocessor system running a set of independent tasks (Λ ):

Λ = {τi, i ∈ I}
where τi is a task and I is a finite index set. A task in the system is defined as a tuple:

τi = (Pi ⊆ [ρmin
i ,ρmax

i ],Ci ⊆ [cmin
i ,cmax

i ]), ρ
min
i ∈ Pi, cmax

i ∈ Ci
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where Pi is the set of possible job release rates for the task and Ci is the set of possible
execution times for jobs of this task. The response time of any job of a task represents
the interval of time between the release and the finish time of the job. We denote by
P = ∏i∈I Pi and C = ∏i∈I Ci the sets of rates and execution times for the tasks in Λ ,
and with ρ and c points in this sets. A job of a task in the system is defined as:

τi j =
(
ci j,ρi j,ri j

)
where: ci j, ρi j, and ri j, are the execution time, rate, and response time of the jth job
of task i.

The tasks in the system are scheduled using any scheduler which has the follow-
ing two properties:

1. it is non-idling: it does not leave the processor idle if there are pending jobs;
2. it executes successive jobs of the same task in the order of their release time.

A resource manager is running on the processor, whose goal is to measure execu-
tion times, and then adjust job release rates for all tasks, such that the CPU utilization
is kept high, and the amount of time spent in overload situations is minimized. We
consider the system stable if, under the worst possible run-time scenario, the overload
in the system is kept finite, meaning that the system does not keep accumulating jobs
without having a way of executing them.

4.2 Processor Behavior in Overload Situations

In overload situations jobs cannot be executed at the rate at which they are released.
In this condition, newly released jobs need to wait for the previous ones to finish. We
consider that newly released jobs queue up in queues, one for each task. A job τi j
gets executed only after all previous queued up jobs of task τi finished executing.

4.3 Resource Utilization and Schedulability

The resource considered in this paper is the CPU time. The resource utilization, in
any interval of time h, is the fraction of h when the CPU is non-idle. This is a positive
number less/equal 1:

u =
non-idle time

h
,u ∈ [0,1]

The resource demand, in an interval of time h, is:

uD =
Cprevious +Ccurrent

h
,uD ≥ 0

where Ccurrent is the sum of execution times of all jobs released during h and Cprevious
is the sum of execution times of all queued up jobs, released before the beginning of
the interval. The resource demand may be larger then 1. Figure 1 shows an example
with three tasks. At time instance t1, task τ1 has 2 jobs in its queue, τ2 has 4, and τ3
has 1. Cprevious will be the sum of the execution times of all these jobs. Between t1 and
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Fig. 2: A system is seen as a control loop,
where the resource manager controls the
resource demand by adjusting task rates.
The tasks constitute the controlled plant.

t2, τ1 releases 3 new jobs, τ2 releases 2, and τ3 1. In this case Ccurrent will be equal to
the sum of execution times of all these six jobs.

When the resource demand is less than or equal to 1, then it will be equal with
the resource utilization and the system will be schedulable; all the demand can be
executed. When the resource demand is above 1 the system is overloaded, only a
portion of the demand can be executed (namely 1), and jobs start accumulating in
queues. Also, we must note that execution times change with every job, and they
are unknown before the job’s completion. Therefore, at any moment, the resource
demand can only be predicted.

We consider that the employed resource manager controls the system by adjusting
job release rates and, thus, controlling the resource demand.

4.4 Control Theoretic View of a Real-Time System and its Parameters

The model of our system can be depicted as in Figure 2. While the tasks and the
resource manager run on the same CPU, from the modeling perspective the tasks
form the plant, and the resource manager is the controller controlling the resource
demand of the plant by means of adjusting task rates.

We are interested in describing the behavior of the our system at discrete moments
in time t[k], k∈Z+, when the resource manager (controller) actuates. Figure 3 presents
a example system with n tasks, and shows how it evolves during the time interval
[t[k], t[k+1]]. At t[k], the controller will choose new task rates ρi[k+1] (possibly based on
knowledge of queue sizes qi[k] and estimates of future average job execution times
ci[k+1]). For task τ1 it happens that new jobs get released immediately after the new
rate is available, however this is not the general behavior of the system. Jobs of tasks
are released only after the remaining parts of the period of the last released jobs finish.
We than say that the new jobs get released with an offset φi[k] after t[k]. This offset may
also be larger than the period of the controller h = t[k+1]− t[k], as it happens for τn.

The presentation here is only a qualitative description of the behavior of the sys-
tem, that we give in order to introduce the parameters of interest regarding its evolu-
tion. In Sections 7 and 8 we will develop concrete models of our system.
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Fig. 3: Parameters related to the resource demand, and the state of the system.

5 Problem Formulation

We consider any task set Λ and a resource manager whose job is to keep the resource
demand uD = 1 by adjusting task rates. Our goal is to model the resource demand, the
behavior of the real-time system and resource manager in order to determine condi-
tions under which the whole system is stable. By stability we mean that the resource
demand in the system is bounded and job response times do not grow infinitely.

6 Control Theoretic Notions of System Modeling and Stability

This section covers some background material that we use later in the modeling and
stability analysis sections of this paper.

6.1 System Modeling

We will model our real-time system as a discrete-time dynamical system which
evolves at discrete moments in time t[k]. The system is described by a system of
difference equations.

F(x[k+1],x[k]) = 0 (1)

where x[k+1] and x[k] are the state vectors of the system at the future (t[k+1]) and the
current (t[k]) time moments, and F is some function of the state vectors. In our real-
time system, the state is represented by the resource demand uD and, therefore, the
state vector will be comprised of the elements that determine it: queue sizes, task
rates, and execution times. In this work we model the ensemble of controller and
plant together, thus parameters that may be regarded as inputs (i.e. task rates) and
disturbances (execution times) are embedded in the state.

6.2 Stability of Discrete-Time Dynamical Systems

A discrete-time dynamical system is a tuple {T ,X ,A ,S } where T = {t[k]|k ∈
N, t[k] > t[k−1] > · · · > t[0] = 0} is the set of actuation times, X is the state space,
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A ⊂X is the set of all initial states of the system (x[0]), and S is the set of all trajec-
tories (all solutions of (1) : x[k] = p(k,x[0]) where t[k] ∈T and x[0] ∈A ). Also the state
space must be a metric space (X ,d), where d : X ×X →R+ is a distance function
between two state vectors in X . We use the notation d(x,M ) = infy∈M {d(x,y)} to
describe the distance from a state to a set M .

A dynamical system’s state is desired to belong to a preselected bounded set of
points M ⊂ A . Because of the noises in the system, this condition does not hold.
Under this premise a dynamical system is said to be stable if its state remains “close”
to M under all noise patterns and initial conditions.

For our real-time system, we will consider the notion of stability in the sense of
Lagrange [18], where a system is stable if all trajectories starting from states within
a ball of size δ around M are bounded in a larger ball of size γ(δ ) around M :
x[0] ∈ B(δ )⇒ p(k,x[0]) ≤ B(γ(δ )). To test for stability, we shall use the following
theorem described in [18]:

Theorem 1 (uniform boundedness) Let us consider the above described dynamical
system. Assume that there exists a function V : X → R+ and two strictly increasing
functions ϕ1,ϕ2 : R+→ R+ with limr→∞ ϕi(r) = ∞, i = 1,2, such that

ϕ1(d(x,M ))≤V (x)≤ ϕ2(d(x,M )) (2)

for all x ∈X whenever d(x,M )≥Ω , where Ω is a positive constant.
Also, assume that V (p(k,x[0])) is non-increasing for all trajectories p(k,x[0]) from

S whenever d(p(k,x[0]),M )≥Ω . Assume that there exists a constant Ψ ≥Ω such
that d(p(k +1,x[0]),M )≤Ψ whenever d(p(k,x[0]),M )≤Ω .

If the above assumptions hold, then the system is uniformly bounded.

Any system that satisfies the above theorem is stable, and this means that its
state becomes trapped in the ball of size Ψ around the set M , after a certain amount
of time (possibly infinite), regardless of the initial state x[0]. In practice however,
only initial states within Ω will be of relevance to us, making Ψ a measure of the
worst-case performance of the system. We shall give further insight into this stability
condition in Section 13.1.

In Sections 7 and 8 we demonstrate stability by showing uniform boundedness ac-
cording to Theorem 1. Given the definition of the state for our models (Sections 7.2
and 8.1) such a stability implicitly means that queue sizes, response times, and re-
source demand are bounded.

7 Constrained Model of the Real-Time System

In this section we develop a simple but constrained model for our system and deter-
mine conditions under which it is stable. In Section 8 we will derive a generalized
model of the system.
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7.1 Assumptions

The constrained model is based on the assumption that the time interval between two
successive actuations of the controller (the controller’s period) h = t[k+1]−t[k] is much
larger then the largest possible offset in the system:

φmax < max
i∈I

{ 1
ρmin

i

}
� h

Since h is large, we can neglect offsets in this model. Systems described by this model
will be called constrained systems.

7.2 Model

We will start to model our systems from the definition of resource demand (Sec-
tion 4.3). By disregarding task offsets, the formula is:

uD
[k] =

1
h

(
∑
i∈I

ci[k] ·qi[k−1]︸ ︷︷ ︸
Cprevious

+∑
i∈I

ci[k] ·ρi[k] ·h︸ ︷︷ ︸
Ccurrent

)
(3)

The first sum represents the accumulation of execution times from previously re-
leased, but not executed (queued up) jobs. The second sum represents the accumu-
lation of execution times from jobs that are released during [t[k−1], t[k]]. We note that
ci[k] represents the average execution time of the jobs of τi that were executed during
[t[k−1], t[k]].

As we can observe from Equation (3), the model of our system must contain
states for the queue sizes, execution times, and rates. The task queues evolve in time
depending on the actual arrival time of jobs, on the actual execution times of each
job, and on the schedulers used in the system. In between any two moments of time
t[k] and t[k+1], the value h ·uD

[k+1] represents the number of jobs, given as an amount of
execution time, that need to be executed. The resource can execute only an amount
equaling to at most t[k+1] − t[k] = h. The rest will then remain as jobs in the task
queues. We thus have:

∑
i∈I

ci[k+1] ·qi[k+1] = h ·max
{

0,uD
[k+1]−1

}
(4a)

qp
[k+1] = q[k] (4b)

We use the notation q[k] for the vector of queue sizes, and qp
[k] for the vector of queue

sizes at the previous time instance. Equation (4b) is only needed because we wish to
write the resource demand as a function of the state of the system uD

[k]
not= uD(x[k]).

Next, we model the average execution time of the jobs that will be executed in the
current interval of time [t[k], t[k+1]], as being some function fp : X →C of the previous
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state. This function is unknown to us because execution time are disturbances that
vary in unknown ways.

c[k+1] = fp(x[k]) (4c)

By the assumptions made in Section 4.1, we know that c[k+1] ∈C and this is sufficient
knowledge for us.

Equations (4a) to (4c) represent the model of the plant. We complete the model
of the system with the model of the controller (resource manager). The controller’s
job is to compute new rates:

ρ [k+1] = fc(x[k]) (5)

Here we simply model the control law as being any function of the state of the system.
The state vector of the system is:

x[k] =
(

q[k],qp
[k],c[k],ρ [k]

)T
.

Equations (4a) to (4c), and (5) represent the model of our real-time system. It is a
model of a discrete-time dynamical system {T ,X ,A ,S } where T is defined as
in Section 6.2, X = Rn

+×Rn
+×C×P, A = X and S is the set of all solutions of

equations (4a) to (4c), and (5). We make the observation that X ⊂R4n where n is the
number of tasks in the system and, therefore, is a metric space for the usual distances.
Throughout the rest of this paper we will use the Chebyshev distance [19]:

d(x,y) = sup
i=1,4n

{|xi− yi|}

The above model describes a class of systems, namely the systems generated by
all combinations of existing fp and fc functions, and all allowable schedulers (see Sec-
tion 4), for all instances of applications Λ . Our goal is to determine the class of
controllers that leads to stable systems.

7.3 Stability

In this section we want to determine conditions that our controller must satisfy, in
order for the system to be stable (satisfy Theorem 1). We first define the notions
involved in Theorem 1 and then we determine the stability conditions.

We define the set of states M as being all the states where uD = 1. The following
lemma determines that M is bounded.

Lemma 1 The set Mα = {x ∈X |uD(x) = α} is bounded, where α > 0 is an arbi-
trary constant.

Proof From equation (4a), (4b) and (3) we have

∑
i∈I

ci ·qp
i = h

(
α−∑

i∈I
ci ·ρi

)
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and it quickly follows that the largest distance between two states in Mα is bounded
by

dα = max
j∈I
{|qα

j −0|, |qp
j
α −0|, |cmax

j − cmin
j |, |ρmax

j −ρ
min
j |}

where:
qp

j
α =

h
cmin

j

(
α−∑

i∈I
cmin

i ·ρmin
i

)
,

and
qα

j =
h

cmin
j
·max

{
0,α−1

}
, ∀ j ∈ I

ut
Since M = M1, M is bounded as well.
The following theorem gives a necessary condition for a system to be stable.

Theorem 2 A necessary condition for a system to be stable is:

∑
i∈I

cmax
i ·ρmin

i ≤ 1 (6)

Proof We prove this by contradiction. We allow Equation (6) not to hold and we will
show that this leads to an unstable system. If equation (6) does not hold, then we
have:

∑
i∈I

cmax
i ·ρmin

i −1 = β > 0

In the case that ci[k] = cmax
i , ∀k≥ 0, even if the controller sets the smallest rates (ρ [k] =

ρ
min), for all k ≥ 0, we have from above, and from equations (3), and (4a) that:

uD
[k+1]−1 = uD

[k]−1+β ⇒ uD
[k+1] = uD

[0] +(k +1) ·β

and thus limk→∞ uD
[k] = ∞. ut

Theorem 2 implies that, in order to achieve stability, there must exist at least a rate
vector (the rate vector consisting of the smallest rates for each task), that the controller
can choose such that, when jobs have worst case execution times, the contribution
to resource demand in each time interval is not more than 1. Otherwise, the queue
sizes will continue growing irrespective of the controller and scheduler used, and the
resource demand will be unbounded. For the rest of the paper, we will only consider
systems that satisfy Theorem 2. We continue by defining the set:

Γ? =
{

ρ
? ∈ P

∣∣∣∑
i∈I

cmax
i ·ρ?

i ≤ 1,
}
6= /0 (7)

which is the set of all rate vectors that, if chosen, guarantee that job queue sizes do
not continue growing, irrespective of the execution times of the jobs. If the system
satisfies Theorem 2, Γ? contains at least one rate vector.

Next, we determine sufficient conditions for the controller, in order to render the
system stable.
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Theorem 3 For any constrained system that satisfies Theorem 2 and for any uD
Ω

> 1
a sufficient stability condition is that its controller satisfies:

ρ [k+1] ∈
{

Γ?, if uD
[k] ≥ uD

Ω

P, otherwise
(8)

Proof Ultimately, stability means that queue sizes (q and qp) have upper bounds. We
first proceed on defining the function V (x[k]) (noted V[k] henceforward) and finding
the two function ϕ1(d(x[k],M )) and ϕ2(d(x[k],M )) such that equation (2) holds.
Considering the model of queue sizes (equations (4a) and (4b)), and considering the
worst-case noises in the system (noises are due to inaccuracies in predicting execution
times and in measuring queues), we define V[k] as:

V[k] = max
{

0,
1
h ∑

i∈I
cmax

i · (qp
i[k] +1)+∑

i∈I
cmax

i ·ρi[k]−1
}

(9)

To determine ϕ1 we observe that V[k] ≥max{0,uD
[k]−1} and we construct the set

VαV =
{

x ∈X
∣∣uD(x)−1 = αV

}
= M1+αV

where αV > 0 is an arbitrary constant. We observe that a bound on the largest distance
between a state in VαV and a state in M is given by d1+αV , and that:

d1+αV =
h

min j∈I{cmin
j }

(
αV +1−∑

i∈I
cmin

i ·ρmin
i

)
for all d1+αV ≥ d1. We can also say that d(x[k],M )≤ d1+αV and V (x)≥αV , ∀x∈VαV .
Since αV was chosen arbitrarily and the above expression of d1+αV , as a function
of αV , is invertible, we obtain ϕ1(d(x[k],M )) in equation (10) which satisfies the
conditions in Theorem 1.

ϕ1(d) =


min j∈I{cmin

j }
h ·d +∑i∈I cmin

i ·ρmin
i −1, if d ≥Ω > d1(min j∈I{cmin

j }
h + 1

Ω

(
∑i∈I cmin

i ·ρmin
i −1

)) ·d, otherwise
(10)

To determine ϕ2 we construct the set of all states at a distance αd or less from M :

Mαd = {x ∈X |d(x,M )≤ αd}= {x ∈X |d(x,y) = αd , ∀y ∈M }

where αd > 0 is an arbitrary constant. We than determine which of the states in Mαd
has the highest value of V . If

y =
(

q,qp,c,ρ
)T ∈M and

x =
(

q+dq,qp +dqp,c+dc,ρ +dρ

)T ∈Md
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then we have

V (x) = max
{

0,∑
i∈I

cmax
i
(qp

i +dqp
i +1

h
+ρi +dρi

)−1
}

(11)

≤ αd

h ∑
i∈I

cmax
i +max

{
0,∑

i∈I
cmax

i
(qp

i
αd +1

h
+ρ

max
i
)−1

}
,∀ x ∈Mαd

and since αd was chosen arbitrarily, we obtain ϕ2(d(x,M )) as being the right half of
the inequality (11).

To determine Ω , we construct the set VuD
Ω
−1 and we observe that Ω = duD

Ω . It

seems that we can only choose uD
Ω

sufficiently large such that duD
Ω ≥ d1, however

in practice, we can build an equivalent model of the system by applying a linear
transformation to the state space, where this condition always holds, thus this is a
non-issue.

Next, we proceed on showing that V[k+1] ≤V[k], ∀d(x[k],M )≥Ω . In this case, we
have from equations (4a), (4b), (8), and (9):

V[k+1] = max
{

0,∑
i∈I

cmax
i

qi[k] +1
h

+∑
i∈I

cmax
i ·ρi[k+1]−1︸ ︷︷ ︸

≤0

}

When the value inside the max function is larger than 0, we observe from equa-
tions (4a) and (3) that qi[k] = qp

i[k] +ρi[k] ·h−ei[k], where ei[k] ≥ 0 is the number of jobs

of τi executed during the time interval [t[k−1], t[k]], and 1
h ∑i∈I ci[k] · ei[k] = 1. ei[k], for

all i ∈ I depend, amongst others, on the scheduler used, and are typically unknown.
Regardless of their value, however, inequation (12) holds.

V[k+1] ≤∑
i∈I

cmax
i

qi[k] +1
h

= ∑
i∈I

cmax
i
(qp

i[k] +1

h
+ρi[k]

)− 1
h ∑

i∈I
cmax

i · ei[k] ≤V[k] (12)

To complete the proof, we must show that there exists a value Ψ > 0 such that
for all states with d(x[k],M )≤Ω we have d(x[k+1],M )≤Ψ . Since qi[k] ≤Ω , ci[k] ≤
cmax

i , and ρi[k] ≤ ρmax
i , ∀i ∈ I, we then have

uD
[k+1] ≤∑

i∈I
cmax

i
(Ω +1

h
+ρ

max
i
)

= uD
Ψ (13)

All subsequencent states x[k′], k′ ≥ k +1 will have uD
[k′] ≤ V[k+1] + 1 if uD

Ψ
≥ uD

Ω
or,

otherwise uD
[k′] ≤ uD

Ω
. Then we have Ψ = ϕ

−1
2 (max{uD

Ψ
,uD

Ω
}).

With the above, the proof of Theorem 3 is complete. ut
Any controller that satisfies the above theorem guarantees the system to be stable.

Observe that the condition (8) is a condition for the controller used in the system. As
long as the task execution times and rates are such that uD

[k] < uD
Ω

, the controller is free
to chose any rate ρi[k+1] ∈ [ρmin

i , ρmax
i ]. The controller will choose rates according

to the particular control goals requested by the application (e.g. keeping processor
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utilization high, providing QoS guarantees, reducing energy consumption, etc.). Once
uD

[k] ≥ uD
Ω

(which means that the system reached a certain critical level of overload),
the controller will have to choose rate vectors from the set Γ?, and keep doing so until
a time instance t[k′], when uD

[k′] < uD
Ω

.

8 General Model of the Real-Time System

In this section we extend the previous model of a real-time system, by considering
task offsets. This will allow us to consider controller periods which are arbitrary,
therefore removing the limitation of the previous model (Section 7). Systems de-
scribed according to this model will be called general systems.

This section is organized as the previous one: we start by giving a model of the
system and, then, we analyze its stability.

8.1 Model

We first describe the resource demand in the system:

uD
[k] = ∑

i∈I
ci[k] ·

qi[k−1] +
⌈
ρi[k] ·max{0,h−φi[k−1]}

⌉
h

(14)

In the above definition the quantity
⌈
ρi[k] ·max{0,h− φi[k−1]}

⌉
describes the exact

number of jobs of each task τi released during [t[k−1], t[k]]. The ceiling function appears
because this number is an integer value. For the constrained model, we have used
ρi[k] ·h in (3) as an approximation.

The following equations give the model of the plant:

∑
i∈I

ci[k+1] ·qi[k+1] = h ·max{0,uD
[k+1]−1} (15a)

qp
[k+1] = q[k] (15b)

c[k+1] = fp(x[k]) (15c)

φi[k+1] = φi[k] +
1

ρi[k+1]

⌈
ρi[k+1] ·max{0,h−φi[k]}

⌉−h (15d)

φ p
[k+1] = φ [k] (15e)

Equations (15a) to (15c) have the same meaning as for the constrained model.
Equation (15d) models the evolution of offsets in the system and equation (15e) has
the sole role of allowing us to write uD

[k] as a function of the state. To understand
equation (15d) we invite the reader to take a look at Figure 3 on page 9. In any interval
of time [t[k], t[k+1]], jobs of any task τi are released in the interval [t[k] + φi[k], t[k+1]],
if, of course, t[k] + φi[k] ≤ t[k+1]. The number of released jobs is an integer and is⌈
ρi[k+1] ·max{0,h−φi[k]}

⌉
. The interval of time over which these jobs spread starts

at t[k] +φi[k], has a length of 1/ρi[k+1] ·
⌈
ρi[k+1] ·max{0,h−φi[k]}

⌉
, and will in general

finish after t[k+1]. By considering that t[k+1]− t[k] = h we obtain φi[k+1] as in (15d).
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We assume the same model for the controller as in Equation (5). The general
model of a real-time system is, thus, given by equations (15a) to (15e) and (5).

Since the number of states has grown, the state space is larger but is again of
the form Rn and we shall again use the Chebyshev norm. Also note that offsets are
bounded by φi ∈ [0,1/ρmax

i ], ∀i ∈ I.

8.2 Stability

Theorem 4 For any general system that satisfies Theorem 2 and for any uD
Ω

> 1, a
sufficient stability condition is that its controller satisfies:

ρ [k+1] ∈
{

Γ?, if uD
[k] ≥ uD

Ω

P, otherwise
(16)

ρi[k+1] ≤ ρi[k] if uD
[k] ≥ uD

Ω , ∀i ∈ I (17)

Proof Compared with the constrained model, we have an extra condition that the
controller must satisfy (equation (17)). We want to show that the conditions are suf-
ficient to make q[k] and qp

[k] bounded.
We define the function V as in the following equation:

V[k] = max
{

0,∑
i∈I

cmax
i

qp
i[k] +1+

⌈
ρi[k] ·max{0,h−φ

p
i[k]}
⌉
+1−ρi[k] ·φi[k]

h
+ µ−1

}
= max

{
0,

1
h ∑

i∈I
cmax

i
(
qp

i[k] +η
)
+∑

i∈I
cmax

i ·ρi[k]−1− 1
h ∑

i∈I
cmax

i ·ρi[k] ·φ p
i[k]

}
(18)

where

µ =

{
0 , if ρ [k] ∈ Γ?

∑i∈I cmax
i , otherwise.

, η =

{
2 , if ρ [k] ∈ Γ?

3 , otherwise.

At any moment of time t[k], the function V represents the accumulation of execu-
tion times, that should have been executed by t[k]1. Since in each queue we consider
the whole execution time of all released jobs, we must remove the part of each job
that should be executed after the end of the resource manager’s period (this is done
by the term − 1

h ∑i∈I cmax
i ·ρi[k] ·φ p

i[k]).

We want to show that the function V decreases in value when uD
[k′] ≥ uD

Ω
, ∀k′ ≥ k.

This should be true because we only select rate vectors in Γ? (because of condi-
tion (16)) which satisfy equation (6). However, we observe that whenever new rates
are computed, they only take effect after their offset. Since the offsets for the differ-
ent tasks are different, there is an interval of time when some of the tasks have the
new rates and some of them have the old rates. We must make sure that also the rate
vectors during this interval of time belong to Γ? as well, or the V (·) function might
increase otherwise. We show an example of this in Figure 4 for a system of two tasks.

1 Strictly speaking, V represents a load value. To obtain the accumulation of execution times, one must
multiply the function with h.



18 Sergiu Rafiliu et al.

t[k] t[k+1] t[k+2] t[k+3] t[k+4]

[time]

[time]

T1 T2
T3 T4 T7 T8 T9

T6 T10
T5

τ1
τ2

Fig. 4: Behaviour of a system with two tasks, when uD
[k′] ≥ uD

Ω
, ∀k′ ≥ k.

During intervals of time T3, T5, T7, T9, . . . the accumulation of execution times added
in the system is less than the size of the respective intervals, therefore the total ac-
cumulation drops. Condition (17) ensures that the same happens over the transition
intervals T4, T6, T8, T10, . . . The accumulation of execution times from the intervals
T1 and T2 may be larger than T1 + T2 because ρ [k] /∈ Γ?, however, it is bounded by
∑i∈I cmax

i . This explains the two cases in the definition of V (·). Otherwise, since the
function V is very similar to the one defined in equation (9), all the steps of this proof
are very similar with the proof of Theorem 3 and in the interest of brevity we shall
not discuss them here.

For determining Ψ , we use a similar reasoning as in Theorem 3 and we obtain
that:

uD
[k+1] ≤ uD

[k+1] ≤∑
i∈I

cmax
i
(Ω +1

h
+ρ

max
i
)

= uD
Ψ (19)

Thus, any general system satisfying the conditions in Theorem 4 is stable. ut

We observe that, because of Condition (17), for the general model, the stability
criterion is more restrictive than for the constrained model. This is because, including
offsets, the general model considers in more depth the transition between different
rates, which leads to an additional condition that needs to be satisfied to ensure that
this transition is done safely. For both models, we have required that V (x[k+1]) ≤
V (x[k]) holds. This means that if the starting point of the system is outside Ω , the
system may never reach Ω within a finite amount of time. This is not a problem
in practice, because systems usually start with empty queues, thus from within Ω .
However, Γ? can easily be modified such that stronger assumption for V hold. We
will further discuss this aspect in Section 13.1.

9 Worst Case Response Time Bound

For any controller that satisfies the stability condition in Theorem 4 there exists a
finite response time for each task. The actual value of the response time depends
on the concrete scheduling policy and the controller ( fc) used in the system. In this
paper we will develop bounds on the worst case response time for tasks considering
an EDF scheduler [15] and two classes of controllers. The bounds developed here
are different from the well known worst case response times derived in literature for
EDF, since our system allows overload situations. The EDF scheduler considers as a
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τ1

τ2

τi

[time]

[time]

[time]

σD
[?]:

t[?]

τn
[time]

τ2[?]

τ1[?] τ1[?+1]

τi[?]

τn[?]

Fig. 5: Accumulation of execution times

working deadline for each job τi j, the sum of its release time and 1/ρi j, where ρi j is
the current job’s rate.

For the following analysis, we will consider that the system always starts from a
state where the queues are empty.

A =
{

x[0] ∈X
∣∣q = 0

}
(20)

In this case d(x[0],M )≤ d1≤Ω , ∀x∈A holds. According to equations (13) and (19)
(for the constrained and general model respectively), uD

Ψ
is the highest resource de-

mand ever achieved in the system. This result is important, since it allows us to bound
the overload in the system.

At a certain moment in time t[?], a new job of a task τ j is released and we wish
to compute its response time. We will denote this job with τ j[?]. In the system, at t[?]
there already exists a certain number of un-executed jobs and their total accumulation
of execution times is:

σ
D
[?] = ∑

i∈I
ci[?] ·qi[?]

where qi[?], ∀i ∈ I are the queue sizes of each task and ci[?] are the average execution
time for the jobs in the queues (these averages are unknown, but c[?] ∈ C). Figure 5
illustrates this situation for a system of n tasks. All the jobs depicted in the figure
are not yet executed at the moment t[?], when τ j[?] is released. The dark shaded jobs
represent the last released jobs of the tasks, before the moment t[?]. The light shaded
jobs have been released before the dark shaded ones, and their deadlines are guaran-
teed to be prior to t[?]. σD

[?] is the sum of execution times of the light and dark shaded
jobs. Since in overload situations EDF executes jobs non-preemptively, in the order
of their working deadline, all light colored jobs in the figure will be executed before
τ j[?], since their deadlines are before t[?]. The execution times of these jobs represent
∑i∈I ci[?] · (qi[?]−1) out of σD

[?]. From the rest of the jobs considered in σD
[?] (the dark

colored ones), the ones with deadlines smaller than that of τ j[?] will be executed be-
fore it (τ1[?] and τ2[?] in the figure), and the rest will be executed after τ j[?] (τn[?] in
the figure). Also there may exist other, not yet released jobs, that have their deadlines
prior to the deadline of τ j[?] (e.g. τ1[?+1] in Figure 5) which also need to be consid-
ered. Taking all of this into account, and considering that ρi[?], ∀i ∈ I are the release
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rates of all jobs, the response time of τ j[?] is:

r j[?] = ∑
i∈I

ci[?] · (qi[?]−1)+∑
i∈I

ci[?] ·
⌊ 1

ρ j[?]
+ 1

ρi[?]
−φi[?]

1
ρi[?]

⌋
(21)

The following theorem gives an upper bound on the response time of the tasks in
the system.
Theorem 5 An upper bound on the worst-case response time of task τ j in the system
can be computed using the following equation:

rmax
j =

1
ρmin

j
+h · (uD

max−1)+∑
i∈I

cmax
i · bρmax

i

ρmin
j
c (22)

Proof The proof follows from equation (21) by observing that:

1. σD
[?] = h · (uD

[?]−1)≤ h · (uD
max−1) (from equation (15a), since the system is over-

loaded);
2. When uD

max occurs at time instance t[?], the last released job of task τ j is released
with at most 1/ρmin

j before t[?].
ut

Up to this point, we have concerned ourselves with the scheduler used, and we
have determined a formula for the worst-case response time for EDF assuming knowl-
edge of the largest resource demand in the system (uD

max). One should note that the
largest resource demand in the system typically depends on the scheduler and the
controller ( fc) used in the system. The value computed in equation (19) is an upper
bound on the largest resource demand, since it is independent on these parameters.
By adding extra constraints on the scheduler or the controller one may be able to
tighten this bound. We will now consider two classes of controllers for which we will
determine uD

max. The two classes of controllers are:

C1 =

{
fc : X → P

∣∣∣ρ[k+1] ∈
{
{ρmin}, if Γ α

[k] = /0

P, otherwise

}
(23)

C2 =

{
fc : X → P

∣∣∣ρ[k+1] ∈
{
{ρmin}, if Γ α

[k] = /0

Γ α

[k] , otherwise

}
(24)

where Γ α

[k] is

Γ
α

[k] =
{

ρ ∈ P
∣∣∣∑

i∈I
cp

i[k] ·
qp

i[k] +
⌈
ρi ·max{0,h−φi[k]}

⌉
h

= α, cp
[k] = fp(c[k])

}
(25)

and α > 1 is an arbitrary constant (φ p is obtained from equation (15e), according
with the chosen ρ). Γ α

[k] is the set of all rate vectors which will lead to uD
[k+1] = α (see

equation (14)).
The intuition behind the two classes of controllers is the following: C2 always

tries to take decisions such that uD is kept very aggressively around α . When uD
[k] 6= α ,

the resource demand will be brought back to α as soon as possible (uD
[k+1] = α if the

prediction is correct). C1 is a class of more general controllers, which includes C2 as
a particular case. We first show that both classes of controllers lead to stable systems.
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Lemma 2 Any system for which fc ∈ C1 is stable and C2⊂ C1.

Proof Since Γ α

[k] ⊂ P and {ρmin} ⊂Γ?, C2⊂C1 follows directly. Also condition (17)
is satisfied.

We will now show that for any system having fc ∈ C1, fc also satisfies condi-
tion (16) for a certain uD

Ω
. We want to show that there exists a finite uD

Ω
such that,

whenever uD
[k] ≥ uD

Ω
, it also happens that Γ α

[k] = /0. We can then say that uD
Ω

is larger
than the largest value of uD

[k] for which Γ α

[k] 6= /0. From equation (15a) we have that
1
h ∑i∈I ci[k] ·qi[k] = uD

[k]−1 when the system is overloaded. From this and (25) we have
that the largest value of uD

[k] happens when c[k] = cmax and fp(c[k]) = cmin and is:

uD
[k] ≤V[k] +1 =

1
h ∑

i∈I
cmax

i ·q∗

where q∗ is obtained by solving the following linear programming problem:

maximize ∑
i∈I

cmax
i ·qi subject to

qi ≥ 0, (26)

1
h
·∑

i∈I
cmin

i ·qi +∑
i∈I

cmin
i ·ρmin

i = α

where that last constraint enforces that Γ α

[k] 6= /0 (see equation (25)). Since uD
Ω

exists,
the proof follows. ut
Lemma 3 For any system {T ,X ,A ,S } with fc ∈ C1 and A defined as in equa-
tion (20), the largest possible value of the resource demand is given by

uD
max = ∑

i∈I
cmax

i
(q∗i +1

h
+ρ

max
i
)

(27)

where q∗ is the solution of the linear programming problem (26).

Proof For any state for which Γ α

[k] 6= /0, uD
[k] ≤ uD

max since c[k] ≤ cmax and ρ [k] ≤ ρ
max,

∀i ∈ I.
For any state for which Γ α

[k] = /0 and Γ α

[k−1] 6= /0, we have that the system is over-
loading (uD

[k] ≥ 1) and therefore uD
[k] ≤V[k] +1≤V[k−1] +1≤ uD

max.
For any state for which Γ α

[k] = /0 and Γ α

[k−1] = /0, there exists a previous time mo-
ment t[k−p] ≤ t[k−1] such that either Γ α

[k−p] 6= /0 when uD
[k] ≤V[k−p] +1; or t[k−p] = 1 and

Γ α

[k−p] = /0 when uD
[k] ≤V[1] +1 = ∑i∈I cmax

i ·ρmax
i (since qp

[1] = q[0] = 0). In both cases
uD

[k] ≤ uD
max. From the above cases, since k is arbitrary, the proof follows. ut

Lemma 4 For any {T ,X ,A ,S } with fc ∈C2 and A defined as in equation (20),
the largest possible value of the resource demand is given by

uD
max = max

{
α ·max

i∈I

{cmax
i

cmin
i

}
, ∑

i∈I
cmax

i ·ρmax
i

}
(28)
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Proof We have two cases to analyze. When Γ α

[k−1] 6= /0 then we have from equa-
tions (25) and (24):

∑
i∈I

cp
i[k−1]

(qi[k−1]

h
+ρi[k]

)
= α

and there exist the quantities ui[k] ∈ [0,α] with ∑i∈I ui[k] = α such that:

ui[k] = cp
i[k−1]

(qi[k−1]

h
+ρi[k]

)
From the above it follows that:

uD
[k] ≤V[k] +1 = ∑

i∈I
cmax

i
(qi[k−1] +1

h
+ρi[k]

)
(29)

= ∑
i∈I

cmax
i

cp
i[k−1]

·ui[k] ≤ α ·max
i∈I

{cmax
i

cmin
i

}
On the other hand, when Γ α

[k−1] = /0, there must exist a previous time instance

t[k−p] ≤ t[k−1] with Γ α

[k−p+r] = /0, ∀r = 0, p−1. In this case there are two possibilities:
either t[k−p] = 1 when uD

[k] ≤ V[1] + 1 = ∑i∈I cmax
i ·ρmax

i ; or there exists Γ α

[k−p−1] 6= /0.
In this second case we have that uD

[k] ≤V[k−p] +1 and inequality (29) applies. ut
The bound on the worst case response time (for an EDF scheduler) can be calcu-

lated using the equation (22) where uD
max is computed according with equation (27)

for controllers in C1, and equation (28) for controllers in C2. These results were de-
termined considering that the system is modeled using the general model. For the
constrained model, the classes of controllers C1 and C2 can also be defined as in
equations (23) and (24), where Γ α

[k] is:

Γ
α

[k] =
{

ρ ∈ P
∣∣∣∑

i∈I
cp

i[k]

(qi[k]

h
+ρi

)
= α; cp

[k] = fp(c[k])
}

(30)

By a similar reasoning, these classes of controllers can also be shown to be stable,
and their worst case resource demand are the same as for C1 and C2 for the general
model (equation (27) for C1 and equation (28) for C2).

10 Worst-Case Response Time Example

In the previous sections we have developed models and stability conditions, first for a
constrained system and then for a general one. Obviously, eliminating the constraint
on the controller period is very important since it allows to adapt controller rates to
the particularities of the application and, thus, to improve the quality of management.
In order to provide further insight, we will now compare the controllers generated
with the two models in terms of the bounds on the worst case response time of the
tasks. We will consider the classes of controllers C1 and C2 for both models.

We will construct two test-cases, both consisting of two tasks. The first is charac-
terized by small variations of execution times (cmax

i /cmin
i = 2) and rates (ρmax

i /ρmin
i =

2) and the fact that the rates of both tasks have the same order of magnitude. The sec-
ond test-case will have large variations (cmax

i /cmin
i = 10, ρmax

i /ρmin
i = 10) and the

tasks will have rates of different orders of magnitude.
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Table 1: Response times for our examples, considering three different controller periods

Model Controller Example 1 Example 2
h rmax

1 rmax
2 h rmax

1 rmax
2

Constrained C1 20 48 53 5000 91200 97050
C2 20 28 33 5000 46200 52050

General

C1 4 19 24 1000 19750 25600
C2 4 12 17 1000 10200 16050
C1 2 15 20 100 3550 9400
C2 2 10 15 100 2100 7950

Example 1 We consider a task set Λ1 = {τ1,τ2}, where:

τ1 = {P1 = [0.5,1],C1 = [0.5,1]}
τ2 = {P2 = [0.25,0.5],C2 = [1,2]}

Example 2 We consider a task set Λ2 = {τ1,τ2} where:

τ1 = {P1 = [0.01,0.1],C1 = [5,50]}
τ2 = {P2 = [0.001,0.01],C2 = [50,500]}

For the constrained model, as explained in Section 7.1, the controller period must
be much larger than the largest task period in the system. Let us consider that this
assumption holds if h is no smaller than 5 times the largest task period. For the general
model this constraint disappears, and we can choose smaller controller periods as
well. In Table I we present the response time bounds rmax

i for our chosen examples,
considering three controller periods h:

5 ·max
i∈I

{ 1
ρmin

i

}
; max

i∈I

{ 1
ρmin

i

}
; and min

i∈I

{ 1
ρmin

i

}
the first period is used for the constrained model, and the following two for the general
one.

We have two observations to make:

1. in both examples the class of more aggressive controllers (C2) is able to control
the system such that response times are reduced considerably when compared
with C1; this is due to the fact that C2 is more aggressive in controlling the
resource demand of the system.

2. in Example 1, the best performing controller (in terms of response time), C2 with
h = 2, leads to worst case response times that are 21% (for τ1) and 28% (for τ2)
of the worst case response times with the worst performing controller (C1 with
h = 20). In the second example, the performance gap is much more dramatic, and
C2 with h = 100 leads to worst case response times that are 2.3% and 8.2% of
the worst case response times of C1 with h = 5000. This is largely due to the fact
that for the worst performing controllers (modeled according with the constrained
model) the period of the controller h must be much larger than the largest period
in the system (our assumption from Section 7.1), and in overloaded conditions, a
task with high rate will release a high number of jobs, during the interval h, that
will only queue up.
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The general model removes this constraint and the controllers for this model, can
take advantage of much smaller controller periods, in order to reduce response times
by very large amounts.

11 Case Study

In this section we will show how to apply our stability criterion for several resource
managers. First we develop two simple ad-hoc resource managers and we show how
they trivially satisfy our stability criterion and then we show how our stability crite-
rion can be applied to three existing resource managers.

11.1 Stability of Ad-Hoc Resource Managers

In this section we give two examples of resource managers, which might be used
to control the resources in a given system, and we shall use them to illustrate the
effectiveness of our stability criterion.

Let us assume that we have a system working as described in Section 4.1 for
which the designer has knowledge about the expected execution times (noted ce

j, j ∈
I) of each task in the system. This system produces its desired runtime performance
when tasks are running at certain known rates, noted ρ

e, and these rates do not lead
to increasing task queues, if execution times for jobs of tasks are the expected ones.
Furthermore, worst-case execution times for all tasks are known, and there exists
a set of rates ρ

min which satisfy Theorem 2. For this system, one may imagine a
resource manager which measures task queue sizes at certain moments in time and,
assuming expected execution times, computes the resource demand. If the resource
demand is larger than a predefined bound, the task chain rates are switched to ρ

min,
otherwise, they are kept to ρ

e. We can trivially show that this resource manager leads
to a stable system according to Theorem 4. The algorithm for this resource manager
is the following:

Algorithm 1 Switching Resource Manager
1: /* measure q j[k],∀ j ∈ I */
2: /* compute uD

[k] */

3: if uD
[k] ≥ uD

t then
4: ρ [k+1]← ρ

min

5: else
6: ρ [k+1]← ρ

e

7: end if

The qualitative transfer function for this resource manager is given in Figure 6a.
Intuitively it is easy to accept that such a resource manager must lead to a stable
system. However, since we deal with a switching control policy, demonstrating the
stability of this controller with established methods from control theory is by far not
straightforward.



Stability of Adaptive Resource Managers 25
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Fig. 6: Qualitative transfer function (ρ [k+1] = f (uD
i[k])) of the two resource managers.

For the above described resource manager, it might happen, in practice, that the
resource demand always remains around the bound, and there is a lot of switching
between the two sets of task rates. To mitigate this problem the algorithm can be
modified as in Algorithm 2, where uD

t2 < uD
t1. The qualitative transfer function of this

Algorithm 2 Switching Resource Manager with Hysteresis
1: /* measure q j[k],∀ j ∈ I */
2: /* compute uD

[k] */

3: if uD
i[k] ≥ uD

t1 and ρ [k+1] = ρ
e then

4: ρ [k+1]← ρ
min

5: else
6: if uD

i[k] ≤ uD
t2 and ρ [k+1] = ρ

min then
7: ρ [k+1]← ρ

e

8: else
9: /* do nothing */

10: end if
11: end if

resource manager is given in Figure 6b and we can observe that it exhibits hysteresis.
This is an even harder problem to analyze using established methods. However, it is
still trivial to check, using our stability criterion, that this resource manager leads to
a stable system according to Theorem 4.

11.2 Stability of Existing Resource Managers

In this section, we take three resource management policies, presented in previous
literature, and determine if they lead to stable real-time systems. We will consider the
QRAM algorithm described in [1], and the corner-case and QoS derivative algorithms
described in [16].

The QRAM and corner-case algorithms work in similar ways. They consider as a
resource the processor utilization and, when the control algorithms are executed, they
initially select task rates such that the perceived resource demand (computed based
on estimations of future job execution times, and task queues) is minimum (ρmin).
Then, if resources are still available in the system, the algorithms select tasks whose
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rates are increased until all available resources are used. These tasks are selected
such that the value of some quality-of-service function is maximized. If no resources
are available, the new task rates are ρ

min. From this behavior we can observe that
QRAM and corner-case satisfy Theorem 4 and, therefore, these resource managers
lead to stable systems. More specifically, they belong to the class C2, introduced in
Section 9.

The QoS derivative algorithm works in a different way. At the beginning it deter-
mines the resource demand in the system, assuming current rates. Then, the manager
solves a convex optimization problem, whose goal is to select new task rates such
that some quality-of-service function is maximized, with the constraint that the re-
source demand with the new rates is equal with the amount of available resources. If
a feasible solution (a solution that satisfies the constraint) exists, the system is stable.
However, if the constraint cannot be satisfied by any ρ ∈ P, it cannot be demonstrated
that the selected rates will satisfy Theorem 4. A straight forward approach would be
to test the solution of the optimization to determine if it is feasible, and if not, to
select ρ ∈ Γ?. However, for the convex optimization to find a feasible solution, it is
required that the starting point satisfies the constraint2, otherwise no feasible solution
will be found and, in practice, the straight forward approach always sets rates in Γ?,
which will keep the processor load unnecessarily low.

Our solution is to modify the QoS derivative algorithm to start from a feasible
point (if one exists):

Algorithm 3 Modified QoS derivative Algorithm
Input: ci[k], qi[k], ρi[k], h
1: /* here we assume that uD

[k] is computed according to Equation (14) */

2: uD
i ← 1

h · ci[k] ·qi[k] + ci[k] ·ρi[k]

3: ∆u← u−uD
[k]

4: while i < n and ∆u 6= 0 do
5: /* change ρi[k] to ρi∗ such that the absolute value of ∆u is reduced */
6: ∆u← ∆u− ci[k] ·ρi[k] + ci[k] ·ρi∗
7: i← i+1
8: end while
9: ρ [k+1]← QoS derivative(ρ∗)

10: return ρ [k+1]

The algorithm changes the initial rates to a new vector ρ∗ (line 4−8). The origi-
nal manager is then called (line 9 in the algorithm) with this rate vector, as a starting
point If there are ρ ∈ P for which the constraint is satisfied, then the algorithm has a
feasible solution, otherwise, the algorithm will set ρ [k+1] = ρ

max when the system is
underloading and ρ [k+1] = ρ

min when the system is overloading. From this behavior
we can observe that the QoS derivative resource manager, with the above modifica-
tion, is also stable and belongs to C2. Also note that if quality-of-service is not an

2 In addition to this the Karush-Kuhn-Tucker matrix must be non-singular at the starting point, but it
can be shown that this condition holds for any ρ ∈ P. See [20] Sec. 10.2 for an in depth treatment of these
conditions.
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issue, the above algorithm, with line 9 changed to ρ [k+1]← ρ∗ is also guaranteed to
be stable and belonging to C2.

12 Stability Examples

In this section we will show several graphical examples illustrating stable and unsta-
ble systems. The examples consist of two tasks, whose jobs are scheduled with EDF.
The behavior of these systems, however, is representative for any real-time system
accepted by this framework.

Example 3 Let us consider the system Λ3 = {τ1,τ2} where:

τ1 = {P1 = [0.015,0.1],C1 = [5,50]}
τ2 = {P2 = [0.0015,0.01],C2 = [50,500]}

We can observe that it does not satisfy Theorem 2 since:

∑
i∈I

cmax
i ·ρmin

i = 50 ·0.015+500 ·0.0015 = 1.5.

As a consequence, no controller will be able to keep the system stable in the worst
case.

Let us consider that this system has a resource manager which keeps the task rates
constant at the minimum rates and runs with a period of 500 time units. Let us further
consider that the execution times for the jobs of the tasks are distributed such that the
expected execution time for jobs of τ1 is ce

1 = 40 and for jobs of τ2 is ce
2 = 400 time

units. For this case, the resource demand, as a function of time, is plotted in Figure 7a.
We can observe that this system is not stable because the resource demand grows as
time progresses. This is to be expected since the expected load in the system is:

∑
i∈I

ce
i ·ρmin

i = 40 ·0.015+400 ·0.0015 = 1.3 > 1

Of course, it is possible for certain runtime scenarios to be stable, despite the
system being unstable in the worst case. For instance if execution times are distributed
such the the average execution times are ce

1 = 30 and ce
2 = 300 time units, the system

will be stable. The behaviour of this system is plotted in Figure 7b. Although as
t[k] → ∞ the system is stable and achieves an average utilization of 0.9, we can see
that for several intervals of times the resource demand of the system is substantially
higher and increasing. This happens because for these intervals the execution times
of jobs of tasks are higher than the expected ones and the system may be subjected to
poor performance.

Example 4 Let us now consider the system Λ4 = {τ1,τ2} where:

τ1 = {P1 = [0.008,0.1],C1 = [5,50]}
τ2 = {P2 = [0.0008,0.01],C2 = [50,500]}
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(b) Underloaded System
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(a) Switching Controller with uD
t = 4
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(b) Switching Controller with uD
t = 2
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(c) Switching Controller with uD
t = 1
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(d) QoS derivative Controller

Fig. 8

which satisfies Theorem 2 since 50 · 0.008 + 500 · 0.0008 = 0.8. Let us further con-
sider that the execution times of the jobs of these tasks are distributed such that their
expected execution times are ce

1 = 40 and ce
2 = 400 time units. Let us consider five

resource managers that control the system, as follows:
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1. a manager which chooses rates randomly such that the expected rates are ρe
1 =

0.015 and ρe
2 = 0.0015,

2. the resource manager presented in Algorithm 1 with ρ
e = (0.0125,0.001)T and a

threshold of uD
t = 4,

3. the resource manager presented in Algorithm 1 with ρ
e = (0.0125,0.001)T and a

threshold of uD
t = 2,

4. the resource manager presented in Algorithm 1 with ρ
e = (0.0125,0.001)T and a

threshold of uD
t = 1, and

5. the uniform QoS resource manager described in Algorithm 3 with Γ α

[k] = Γ 0.9
[k] (We

remind the reader that the uniform QoS resource manager belongs to the C2 class
of resource managers, described in Section 9 by equations (24) and (25)).

In all cases, the resource managers actuate with a period of 500 time units and use an
execution time prediction function which always predicts the expected values.

For the first controller we can observe that the expected load in the system is
0.015 · 40 + 0.0015 · 400 = 1.2 > 1, therefore the system behaves similar to the pre-
vious example, as in Figure 7a.

The system behavior for the next three resource managers (cases 2, 3, and 4
above) is illustrated in Figures 8a, 8b, and 8c respectively. Their behavior is simi-
lar because in their average case they keep a resource demand of 0.0125 ·40+0.001 ·
400 = 0.9. However, we can observe the effect of the different thresholds. The re-
source demand overshoot is lower for lower thresholds but for too low thresholds the
system acts too aggressively and undershoot occurs more frequently in the system.

The last resource manager is an algorithm of the class C2 with a chosen Γ α

[k] =
Γ 0.9
[k] , that is, it tries to keep uD

[k] = 0.9 (see Section 9). In the average case this resource
manager does the same as the previous three cases, but due to the more evolved
nature of the control algorithm it produces better (smaller) over- and under-shoot
characteristics. The behaviour of this resource manager is illustrated in Figure 8d.

13 Discussion

The presentation up to this point has been terse and mathematically involving and has
served the purpose of deriving our main result presented in Theorem 2, Theorem 3
and Theorem 4. In this section we address potential limitations of these results, and
we show how they can be extended in various ways. Also we discuss our choice of
stability.

13.1 Ultimate Uniform Boundedness

The concept of stability used in this paper is Uniform Boundedness which means that
there is a final bound in the system (Ω in Theorem 1), independent of the starting
point x[0], such that all trajectories tend towards it and finally become bounded in a
larger ball of size Ψ around the stability region M (see Figure 9). However, this may
happen only when t[k]→∞, because we allow in Theorem 1 that V (x[k+1])≤V (x[k]). If
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Fig. 9: Illustration of the Uniform Boundedness
stability concept.
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Fig. 10: Behavior in time of the V (.) and uD(.) func-
tions.

the system evolves such that V (x[k+1]) =V (x[k]), then it never reaches Ω orΨ . This is,
in general, not a problem, because systems typically start with empty queues, and all
these starting points are within the ball of size Ψ . If, for a certain application, this is a
problem, one is forced to use the stronger concept of Ultimate Uniform Boundedness
instead. This concept requires that there exists a constant β > 0, β bounded away
from 0, such that Theorem 1 holds with the modification that V (x[k+1])≤V (x[k])−β .
In the interest of brevity we do not go into the details of the proof, however, one may
show that a modified version of Theorem 4 where, instead of Γ?, we use:

Γ
β =

{
ρ

? ∈ P
∣∣∣∑

i∈I
cmax

i ·ρ?
i ≤ 1−β

}
is a stability criterion for our system, in the stronger sense. The set Γ β is obviously a
subset of Γ? and of course it must be non-empty if we want to use it as a replacement
for Γ? in the stability criterion given in Theorem 4. The choice of β is, thus, limited
to the range: β ∈ (0,β max] where:

∑
i∈I

cmax
i ·ρmin

i = 1−β
max ⇒ β

max = 1−∑
i∈I

cmax
i ·ρmin

i

Let us now describe the meaning of β with the help of Figure 10. In our analysis
we have defined V (x[k]) as the worst case behavior of uD(x[k]) so if at time t[k0] these
values are known and above Ω , we can expect that the system’s evolution from t[k0]
onward is as presented in the figure. We can see that between any two successive
time instances t[k] and t[k+1] the drop in V (.) is at least3 β . By knowing β and the
initial overload, one may be able to determine how long it will take for the system to
stabilize. Since a reduction in resource demand is linked with reduction in response
times, this factor also determines how fast response times of jobs drop. In general, the
system reduces its resource demand when the state is outside the ball B(Ω) but inside
B(Ψ). In this case, the resource demand (and also response times) in the system is re-
duced in at most (Ψ−Ω) ·h/β time. A large value of β will then mean fast reduction
in overload, but since a system, in general, does not exibit its worst case behavior for
a long time, the fast reduction of resource demand may lead to underloading instead.

3 The values V (x[k]) and V (x[k+1]) depend on the state of the system. If the system did not have its
worst-case behavior between t[k] and t[k+1], then the drop in V (.) is higher than β .
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The designer of the system must then choose an appropriate value for β , according
with the goals of the system.

13.2 Alternative Metrics

The stability criterion that we derive in this paper is bound to the metric used here,
namely the resource demand (equation (14)) which is a load metric. However, one
may wish to use different metrics, for instance metrics based on throughput, jitter, or
end-to-end delays. To this end we provide the following lemma.

Lemma 5 In Theorem 4, the metric uD may be changed by any other function ρ :
X →R+ provided that there exist two strictly increasing functions f1, f2 : R+→R+
with limx→∞ fi(x) = ∞, i = 1,2 such that:

f1

(
uD(x)

)
≤ ρ(x)≤ f2

(
uD(x)

)
,∀x ∈X (31)

Proof The first half of inequality (31) guarantees that ρ(x) grows if uD
i (x) grows:

lim
d(x,M )→∞

ρ(x) = ∞. The second half of the inequality allows us to construct the Vρ(x)

function necessary for the stability proof, as Vρ(x) = f2(V (x)). This completes the
proof. ut

14 Conclusions

In many real-time systems with variations in execution times, it is important to regu-
late the utilization of system resources at runtime. An important issue at design time
is to verify that the real-time system is stable when using a certain adaptive resource
manager. Stability means that the resource demand is bounded under all runtime sce-
narios. We have developed a model for real-time systems and used it to derive com-
prehensive conditions that resource managers must comply with, in order to render
the system stable. For the derived models we also derived bounds on the response
times of tasks. We have applied our results to existing resource managers to verify
their correctness in terms of stability.

Our stability criterion applies to uniprocessor adaptive real-time systems which
employs task rate adaptation. It is composed of an exact test to determine if the system
is at all stabilizable (Theorem 2), and a sufficient test on the resource manager to
determine if it stabilizes the system (Theorem 4). The criterion has been designed
to be easy to apply in a variety of contexts due to the generality of our model and
the simplicity of our conditions. As future work we wish to extend this model to
include distributed adaptive real-time systems comprised of task graphs mapped on a
heterogeneous set of resources that use various scheduling policies, and allowing for
different methods of adaptation.
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