Stability Conditions of On-line Resource Managers for Systems with Execution Times Variations

Sergiu Rafiliu, Petru Eles, Zebo Peng

Department of Computer and Information Science, Linköping University, Sweden

July 29, 2011

▲ロト ▲母ト ▲ヨト ▲ヨト 三国市 のへで

Stability Conditions of On-line Resource Managers for Systems with Execution Times Variations

Stability Conditions of On-line Resource Managers for Systems with Execution Times Variations

Stability Conditions ofOn-line Resource ManagersforSystemswithExecution Times Variations

Stability ConditionsofOn-line Resource ManagersforSystemswithExecution Times Variations

On-line Resource Managers

- React to resource demand (variable execution times)
- Control the state of the system (response times, latency, jitter, throughput, load, ...).
- Other goals (e.g. Optimize some performance QoS metric)

On-line Resource Managers

- React to resource demand (variable execution times)
- Control the state of the system (response times, latency, jitter, throughput, load, ...).
- Other goals (e.g. Optimize some performance QoS metric)

Stability means that the Resource Manager controls the system such that the resource demand (state) is bounded.

Outline

- 1 System Description
- 2 Stability and Problem Formulation
- 3 Approach
 - System Model
 - Main Results
- 4 Applications
 - Usage
 - Stability of Existing Resource Managers
 - Bounds for Stable Systems
- 5 Conclusions and Future Work

proach Ap

Conclusions and Future Work

System Description

Execution times (c) vary in unknown ways

Task rates (ρ) are decided by the **Resource Manager** (RM)

- Jobs are scheduled through any scheduling policy that:
 - executes the jobs of each task in the order of their release
 - is non-idling.

Execution times (c) vary in unknown ways

Task rates (ρ) are decided by the Resource Manager (RM)

- Jobs are scheduled through any scheduling policy that:
 - executes the jobs of each task in the order of their release
 - is non-idling.

Tasks are modeled as queues of jobs, that wait to be executed by the scheduler.

Tasks are modeled as queues of jobs, that wait to be executed by the scheduler.

Resource Demand

Resource Manager

- Runs at key moments in time: $t_{[k]}, t_{[k+1]}, t_{[k+2]}, \cdots$
- Reacts to variations in resource demand (u^D) ,
- Adjusts task rates (ρ_i) to new values.

System Description	Stability and Problem Formulation	Approach	Applications	Conclusions and Future Work

2 Stability and Problem Formulation

- 3 Approach
 - System Model
 - Main Results

4 Applications

- Usage
- Stability of Existing Resource Managers
- Bounds for Stable Systems
- 5 Conclusions and Future Work

oproach Ap

Conclusions and Future Work

Stability - Definition (from Control Theory)

Definition (Stability in the sense of Lagrange)

A system is stable, if at any moment in time, the system's state is within a bounded distance from the set of stationary points.

Stationary Points are states where we wish our system to spend most of its time. In our case, any state where the **resource demand** (u^D) is 1 is a stationary point.

oproach Ap

Conclusions and Future Work

Problem Formulation

Determine a criterion that the Resource Manager must satisfy, in order for the system to be stable.

- 2 Stability and Problem Formulation
- 3 Approach
 - System Model
 - Main Results

4 Applications

- Usage
- Stability of Existing Resource Managers
- Bounds for Stable Systems
- 5 Conclusions and Future Work

System Model

System of difference equations

 $F(\overline{x}_{[k+1]},\overline{x}_{[k]})=0$

System Model

$$\sum_{i \in I} c_{i[k+1]} \cdot q_{i[k+1]} = h \cdot \max\{0, u_{[k+1]}^{R} - 1\}$$

$$\phi_{i[k+1]} = \phi_{i[k]} + \frac{1}{\rho_{i[k+1]}} \lceil \rho_{i[k+1]} \cdot \max\{0, h - \phi_{i[k]}\} \rceil - h$$

$$\overline{c}_{[k+1]} = f_{\rho}(c_{i[k]}) + \nu_{[k]}$$

$$\overline{q^{p}}_{[k+1]} = \overline{q}_{[k]}$$

$$\overline{\phi^{p}}_{[k+1]} = \overline{\phi}_{[k]}$$

$$\overline{\rho}_{[k+1]} = f_{c}(\overline{x}_{[k]})$$

System Model

resource manager

$$\overline{\rho}_{[k+1]} = f_c(\overline{x}_{[k]})$$

execution time prediction

$$\overline{c}_{[k+1]} = f_{p}(\overline{x}_{[k]}) + \overline{\nu}_{[k]}$$

model of the scheduling policy

$$\sum_{i \in I} c_{i[k+1]} \cdot q_{i[k+1]} = h \cdot \max\{0, u_{[k+1]}^R - 1\}$$

Stability - Criterion

Theorem 2 (Necessary condition)

A necessary condition for a system to be stable is:

$$\sum_{i\in I} \boldsymbol{c}_i^{\max} \cdot \rho_i^{\min} \leq 1$$

- All jobs of all tasks could have their worst-case execution times
- There must exist a setting for task rates, such that, in this conditions, the load does not exceed 1

Stability - Criterion

Theorem 2 (Necessary condition)

A necessary condition for a system to be stable is:

$$\sum_{i\in I} \boldsymbol{c}_i^{\max} \cdot \rho_i^{\min} \leq 1$$

The set of all rate vectors that guarantee that the resource demand drops is: $\Gamma_{\star} = \left\{ \overline{\rho} \in \mathbf{P} \middle| \sum_{i \in I} c_i^{\max} \cdot \rho_i \leq 1 \right\}$

Stability - Criterion

Theorem 3

For any general system that satisfies Theorem 2 a sufficient stability condition is that the Resource Manager satisfies:

$$\overline{\rho}_{[k+1]} \in \begin{cases} \Gamma_{\star}, & \text{if } u_{[k]}^{D} \ge u_{\Omega}^{D} \\ \mathbf{P}, & \text{otherwise} \end{cases}$$

$$\rho_{i[k+1]} \le \rho_{i[k]} & \text{if } u_{[k]}^{D} \ge u_{\Omega}^{D}, \quad \forall i \in I$$
(2)

Main Results

Stability Criterion – Proof

Theorem 1 (Uniform boundedness)

A system is uniformly bounded if:

■
$$d(\overline{x}_{[k]}, \mathcal{M}) \ge \Omega \Rightarrow \exists V : \mathcal{X} \to \mathbb{R}_+ \text{ and } \varphi_1, \varphi_2 : \mathbb{R}_+ \to \mathbb{R}_+; \varphi_1, \varphi_2 \uparrow,$$

 $\lim_{r \to \infty} \varphi_i(r) = \infty, i = \overline{1, 2}$
 $\varphi_1(d(\overline{x}, \mathcal{M})) \le V(\overline{x}) \le \varphi_2(d(\overline{x}, \mathcal{M})) \text{ and}$
 $V(\overline{x}_{[k+1]}) \le V(\overline{x}_{[k]})$
■ $d(\overline{x}_{[k]}, \mathcal{M}) < \Omega \Rightarrow$
 $\exists \Psi > 0 \text{ s.t } d(\overline{x}_{[k+1]}, \mathcal{M}) < \Psi$

 $\begin{array}{ll} u^D_\Omega \Rightarrow \Omega, \Psi & \Omega - \text{ultimate bound} \\ u^D(\overline{x}) \Rightarrow V(\overline{x}) \text{ (upper bound)} & \Psi - \text{bound on the real-time} \end{array}$

Main Results

Stability Criterion - Proof

Theorem 1 (Uniform boundedness)

A system is uniformly bounded if:

$$d(\overline{x}_{[k]}, \mathcal{M}) \geq \Omega \Rightarrow \exists V : \mathcal{X} \to \mathbb{R}_+ \text{ and } \varphi_1, \varphi_2 : \mathbb{R}_+ \to \mathbb{R}_+; \varphi_1, \varphi_2 \uparrow, \\ \lim_{r \to \infty} \varphi_i(r) = \infty, i = \overline{1, 2}$$

$$\boxed{\begin{array}{|c|c|} \varphi_1(d(\overline{x},\mathcal{M})) \end{array}} \leq \boxed{\begin{array}{|c|} V(\overline{x}) \end{array}} \leq \boxed{\begin{array}{|c|} \varphi_2(d(\overline{x},\mathcal{M})) \end{array}} \text{ and} \\ V(\overline{x}_{[k+1]}) \leq V(\overline{x}_{[k]}) \end{array}$$

 $d(\overline{x}_{[k]},\mathcal{M}) < \Omega \Rightarrow$

$$\exists \Psi > 0 \text{ s.t } d(\overline{x}_{[k+1]}, \mathcal{M}) < \Psi$$

 $egin{aligned} & u_\Omega^D &\Rightarrow \Omega, \Psi \ & u^D(\overline{x}) &\Rightarrow V(\overline{x}) ext{ (upper bound)} \end{aligned}$

 Ψ – bound on the real-time performance of the system

 Ω – ultimate bound

System Description	Stability and Problem Formulation	Approach	Applications	Conclusions and Future Work

- 2 Stability and Problem Formulation
- 3 Approach
 - System Model
 - Main Results

4 Applications

- Usage
- Stability of Existing Resource Managers
- Bounds for Stable Systems

System Description	Stability and Problem Formulation	Approach 0000000	Applications	Conclusions and Future Work
Usage				

Three ways:

- Select u_{Ω}^{D} and construct a resource manager,
- Take an existing resource manager and show that there exists a u^D_Ω, or
- Modify an existing resource manager by considering a u^D_Ω

 $u_{\Omega}^{D} \Rightarrow \Psi$ – bound on the real-time performance of the system.

Stability of Existing Resource Managers

Stability of Existing Resource Manager

QRAM¹

- Corner-Case²
- QoS Derivative²

¹ C. Lee, J. Lehoczky, R. Rajkumar, D. Siewiorek. *"On Quality of Service Optimization with Discrete QoS Options."* In proceedings of Real-Time Technology and Applications Symposium, pp.276, 1999.

²S. Rafiliu, P. Eles, and Z. Peng. "Low Overhead Dynamic QoS Optimization Under Variable Execution Times." Proceedings of 16th IEEE Embedded and Real-Time computing Systems and Applications, pp. 293-303, 2010.

Stability of QRAM

Each time QRAM runs, it takes the following steps:

- set all rates to ρ_i^{\min} and compute u^D with the assumed rates.
- if $u^D < u^D_{\Omega}$ select a tasks τ_i according with some given QoS curves
- increase τ_i 's rate to the next defined rate point on the curve, or until $u^D = u_{\Omega}^D$
- repeat this process until $u^D = u^D_\Omega$ or the rates of all tasks are ρ_i^{max}

Observation $u^D > u^D_\Omega \quad \Leftrightarrow \quad \overline{\rho} = (\rho_1^{\min} \rho_2^{\min} \rho_3^{\min} \cdots)^T \in \Gamma_\star \quad \Rightarrow \text{the system is stable.}$

Stability of QRAM

Each time QRAM runs, it takes the following steps:

- set all rates to ρ_i^{\min} and compute u^D with the assumed rates.
- if $u^D < u^D_{\Omega}$ select a tasks τ_i according with some given QoS curves
- increase τ_i 's rate to the next defined rate point on the curve, or until $u^D = u_{\Omega}^D$
- repeat this process until $u^D = u^D_\Omega$ or the rates of all tasks are ρ_i^{max}

Observation			
$u^D > u^D_\Omega$	\Leftrightarrow	$\overline{\rho} = (\rho_1^{\min} \rho_2^{\min} \rho_3^{\min} \cdots)^T \in \Gamma_\star$	\Rightarrow the system is stable.

Bounds for Stable Systems

Bounds for Stable Systems

Assume

- EDF scheduler
- Stable system, with $u^{D}_{[k]} \leq u^{D}_{\Omega}$

Results

Bound on queue sizes:

$$q_j^{\max} = rac{h}{c_j^{\min}} \cdot u_{\max}^R(u_\Omega^D)$$

Bound on response times:

$$r_{j}^{\max} = \frac{1}{\rho_{j}^{\min}} + h \cdot \left(u_{\max}^{R}(u_{\Omega}^{D}) - \frac{1}{h} \sum_{i \in I} c_{i}^{\max} \right) + \sum_{i \in I} c_{i}^{\max} \cdot \left\lfloor \frac{\rho_{i}^{\max}}{\rho_{j}^{\min}} \right\rfloor$$

Conclusions

- Proposed a stability criterion for a uniprocessor system with independent task set.
- Shown how to apply the criterion for a number of existing Resource Managers.
- Shown how the stability criterion can be linked with real-time properties (e.g. bound on execution times).

- more classes of schedulers
- tasks with different task modes
- allow job dropping
- more flexible release method
- different real-time goals

Distributed architectures composed of

- several resources (CPUs, buses, ...)
- task graphs distributed on the resources

Distributed architectures composed of

- several resources (CPUs, buses, ...)
- task graphs distributed on the resources

Distributed architectures composed of

- several resources (CPUs, buses, ...)
- task graphs distributed on the resources

Questions???

Stability - Theorem

Theorem 1 (Uniform boundedness)

A system is uniformly bounded if:

■ $d(\overline{x}_{[k]}, \mathcal{M}) \ge \Omega \Rightarrow \exists V : \mathcal{X} \to \mathbb{R}_+ \text{ and } \varphi_1, \varphi_2 : \mathbb{R}_+ \to \mathbb{R}_+; \varphi_1, \varphi_2 \uparrow,$ $\lim_{r \to \infty} \varphi_i(r) = \infty, i = \overline{1, 2}$

$$arphi_1(d(\overline{x},\mathcal{M})) \leq V(\overline{x}) \leq arphi_2(d(\overline{x},\mathcal{M})) ext{ and } V(\overline{x}_{[k+1]}) \leq V(\overline{x}_{[k]})$$

$$d(\overline{x}_{[k]},\mathcal{M}) < \Omega \Rightarrow$$

$$\exists \Psi > 0 \text{ s.t } d(\overline{x}_{[k+1]}, \mathcal{M}) < \Psi$$
(3)

Comparison of Models

Model	Controller	Example 1		Example 2			
		h	r_1^{max}	$r_2^{\rm max}$	h	r_1^{max}	$r_2^{\rm max}$
Constrained	C1	20	48	53	5000	91200	97050
	C2	20	28	33	5000	46200	52050
		h	r_1^{\max}	$r_2^{\rm max}$	h	$r_1^{\rm max}$	r ₂ ^{max}
General	C1	4	19	24	1000	19750	25600
	C2	4	12	17	1000	10200	16050
	C1	2	15	20	100	3550	9400
	C2	2	10	15	100	2100	7950

Response Time Result

32/28