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Abstract

As the digital hardware systems grow in complexity and size, the trend in system design has been to
design at higher and higher levels of abstraction. Program transformation supports the idea of
designing at a higher level of abstraction which implies describing the behavior of the required
system and then transforming this into a structural and behavioral description at a low level,
possibly in a hardware description language. Such kind of design methodology can reduce the
overall design time and ensure the correctness of the implemented system. In this paper, recent
progress in the transformational development of complex hardware and HW/SW co-design systems
is reviewed. A brief review of the research activities in software design is also provided in the first
part of this paper.

1.  INTRODUCTION

1.1  Scope

This paper is a survey of the current state of the art of research on methods of transformational
techniques. The scope of this paper is restricted to the transformational techniques in hardware or
HW/SW co-design research area. However, a brief review of the research activities in software
design is provided in the first part of this paper. This survey does not claim to be fully exhaustive
although an attempt has been made to cover most of the main systems using transformational
design methodology in hardware or HW/SW co-design. Many of the technical details of the
different approaches discussed have been glossed over or simplified; full details may be found in
the cited references.

1.2  Program Transformation

Current hardware system design methods for specification, design and test are typically empirical
and informal. As hardware designs grow in size and complexity, this kind of design method is
proving less adequate. Formal system design methods which include a set of techniques based on
mathematical foundation and analysis will guarantee correct and efficient system design. Since
simulation for large designs is normally not exhaustive in reasonable time and post hoc verification
is extremely costly, it is advisable to design with program transformation method. This process is
based on a transformational approach that constructs the implementation by repeatedly applying a
set of semantic-preserving transformation rules. The transformation rules are based on the calculus
associated with the language used. System design constraints or optimization strategy can also be
introduced during this process. Therefore, this design method is quite different from what a
translator or compiler usually does. At the same time, the transformation approach has the potential
benefit that the verification of the resulting design is achieved by the application of a sequence of
correct transformation steps. That is, since each transformation step preserves the correctness of the
original function, the resulting design is guaranteed to be correct. And since the above development
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process can be automated because of the formal nature of program transformations. Therefore,
design productivity can be largely improved in this way.

2.  RESEARCH ACTIVITIES IN THE AREA OF SOFTWARE DEVELOPMENT

The concept of program transformation has its origin in Dijkstra’s top-down stepwise refinement
[Dijkstra68]. Program transformation methodology has been of great interest during the last three
decades with the trends of increasing size and complexity of the software systems. The following
are some of the intentions of these transformation systems: [Partsch83]

1. Program modification, such as optimization of program’s control structure and efficient
implementation.

2. Program synthesis, i.e. the generation of programs from a description of formal
specification of the problem. The specification may be in a restricted natural language or in
some formal languages.

3. Program adaptation. To change a program to some particular environments, such as change
the programming language of the system.

In this paper, we are mostly interested in the program transformation technique in hardware or
hardware/software co-design especially in the transformation of functional languages. The
following section will give a brief view in the research activities in software development.

2.1 Burstall and Darlington’s Work [Burstall75][Burstall77][Darlington81]

A great deal of the pioneering work in transformation systems was undertaken by Burstall and
Darlington. Their ideas have heavily influenced today’s transformation systems. Their system
transformed applicative recursive programs to imperative ones. The followings are six rules used in
their system:

• Definition - introducing a new recursion equation;
• Instantiation - introducing a substitution instance of an existing equation by replacing a

parameter by a value;
• Unfolding - a recursive call to one of the recursion equations is replaced by the body of that

equation;
• Folding - the body of an equation is replaced by a (recursive) procedure call;
• Abstraction - introducing a "Where" clause by deriving a new equation from a previous

equation by replacing specific values by parameters;
• Laws (Algebraic Replacement Rule) - which are any set of data structure specific rules such

as associativity, commutativity etc.
The recursive functions which have been transformed by the system are all fairly simple and mostly
mathematical. This system is very primitive and is limited to transforming from recursion equations
(imposing a restriction on the kinds of program that can be transformed) to improved recursion
equations.

2.2 The CIP Project in Munich [Partsch90]

This work was carried out in Munich since 1975 by Bauer, Partsch and many others. The CIP is the
acronym for Computer-aided, Intuition-guided Programming. Its main purpose is to produce a
system which allows the user to construct programs by transformation.

The issues that were addressed include:
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• To use a sound method (based on a formal calculus) for guiding the process of formal
reasoning in program development;

• To design and define formally a wide spectrum language, CIP-L, in order to provide a
uniform framework for the formulation and transformation of both specifications and
programs;

• To develop an interactive system for supporting the process by performing the
transformations mechanically, doing administration, and producing the documentation.

2.3 Other Works

A great many of program transformation systems are reported in [Partsch83], which also points to a
lot of useful references. Martin Ward [Ward87] developed a theory of program refinement and
equivalence, based on a wide spectrum language (WSL), which can be used as develop practical
tools for program development and modification. A program transformation system of Polya at
Cornell University is given in [Efremidis93] and [Efremidis94]. In [Mason94], transformation rules
are based on a theory of contextual equivalence for functional language with imperative features.
An overview of the program transformation methodology and future directions in this area is
provided in [Pettorossi96] and [Paige96].

3.  PROGRAM TRANSFORMATION TECHNIQUES IN HW OR HW/SW CO-DESIGN
SYSTEMS

Within the field of hardware or HW/SW co-design, transformation methodology is extensively
explored. Recent progress in the transformational development of complex hardware and HW/SW
co-design system is reported in this section. Many of these techniques are capable of handling some
experimental or industrial-sized examples.

As the digital hardware systems grow in complexity and size, the trend in system design has been
to design at higher and higher levels of abstraction. Some of the reasons are:

1. The modern electronic systems have become extremely complex due to the increasing
demand of higher performance and improved functionality. So, new design process or
methodologies are required to capture this situation.

2. The time-to-market pressure has demanded the design to be finished in a shorter design
cycle which also brings up the problem of design correctness. This is especially important
for safety-critical systems.

3. We now have hardware design languages such as VHDL and Verilog. However, these
languages are intended to be used at a relatively low level. And they have major drawbacks,
that is they have no formal semantics. It is difficult to prove properties of designs in these
languages.

Program transformation, however, supports the idea of designing at a higher level of abstraction
which implies describing the behavior of the required system and then transforming this into a
structural and behavioral description at a low level, possibly in a hardware description language.
Such kind of design methodology can reduce the overall design time and ensure the correctness of
the implemented system.

In this paper, we divide the hardware or HW/SW co-design systems using program transformation
into several groups based on the system specification notations or languages. That is:
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1. Imperative language based transformation systems;
2. Functional language based  transformation systems;
3. Logic language based  transformation systems;
4. Concurrent process based transformation systems.

Transformation systems with the imperative language as input usually have the advantage of
expressing the system specification much easier than others. However, imperative language
programs contain side-effects, i.e. they don't have the property of referential transparency. It is
difficult to perform semantic-preserving transformations on them directly. So, the specifications in
these languages have to be firstly translated into an internal representation which has a formal
notation of semantics. Then, the transformation will be performed on this internal representation.
Functional language as its name implies is based on the mathematical notation of functions. In
contrast to the logic programming language where underlying model of computation is the relation,
functional language has a more efficient operational behavior since functions allow more
deterministic evaluation than relations.

3.1 Transformation Systems Based on Imperative Language with Concurrency

3.1.1 CAMAD (Computer-Aided Modelling, Analysis and Design) at Linköping [Peng94]
[Hallberg95]

The CAMAD high-level synthesis system takes an algorithmic (behavioral) specification of a
digital system and a set of design constraints as input and generates register-transfer level
implementation (RTL).

The input specification is given in a Pascal-like language, called Algorithmic Design Description
Language (ADDL), which consists of a subset of Pascal with extensions to express parallelism and
hardware specific operations. The ADDL program specifies the functions the digital system is to
perform without prescribing the physical structure of its implementation. The RTL net-list
generated by CAMAD, on the other hand, specifies the hardware modules and their connection in
the final design which will implement the given algorithm under the control of the generated finite
state machine.

The first step of CAMAD is to map the ADDL specification into the Extended Time Petri Net
representation (ETPN). The ETPN design representation is based on a parallel model with the
data/control flow notations, augmented with timing information. The data flow part of the model is
captured as a data path. The control flow dictates the partial ordering of data operations and is
modeled by a Petri Net notation.

The generated ETPN model can be viewed as a primitive implementation to which correctness-
preserving transformations are then applied successively until the final implementation is created.
During these transformations, design tradeoffs are made to optimize either the cost or the
performance under a set of design constraints.

The set of transformations used can be divided into three groups based on their functions:
• Operation Scheduling Oriented Transformations which deals with a) determining the

serial/parallel nature of the design, b) dividing or grouping operations into time steps, and c)
changing the order of operations.
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• Data Path Oriented Transformations which include vertex merger transformation and constant
merger transformation.

• Control Oriented Transformations which include control merger and condition-signal grouping
merger transformations.

The transformation process is guided by a heuristic design-search strategy into which designer
interaction can also be added.

The transformation of an ETPN data path to a
RTL design is carried out by a net-list
generation procedure, which assumes that each
ETPN data path vertex has a module in a
module library which directly implements its
function.

The overall structure of CAMAD is shown in
the figure to the right.

As stated in [Peng94], the current version of
CAMAD can run in an automatic mode or an
interactive one. In the interactive mode, the designers interact with the synthesis algorithms and
guide the synthesis process.

3.1.2 Cosmos/Solar at Grenoble, France [Marchioro97] [Marchioro98]

G. F. Marchioro et al. presented a semi-automatic methodology for hardware and software co-
design system. The approach covers the co-design process through a set of user-guided
transformations allowing semi-automatic partitioning. The transformations are based on a powerful
set of primitives for functional partitioning, structural reorganization and communication
transformation.

Cosmos starts with a system-level specification given in SDL and produces a distributed C-VHDL
model that may be mapped on a distributed hardware/software architecture. Within Cosmos,
codesign is decomposed into four major steps.

• Functional decomposition: this is aimed to split large behaviors that need to be executed on
several processors.

• The virtual processor allocation fixes the number of processors and assigns an execution
processor to each function.

• Communication transformation where processors communicating through high-level
communication schemes are transformed into processors communicating signals.

• Prototyping. This includes the generation of C-VHDL models of the architecture and the
mapping of this model onto the target architecture.

The transformational methodology is user-guided
and assumes that the designer starts with an
initial specification and an architectural solution
in mind. System design from specification to
implementation is performed through a set of
primitives allowing the designer to transform the
system, following an incremental refinement
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scheme, in a distributed model that matches with the architectural solutions. Each step reduces the
gap between specification and realization by fixing some implementation details (communication
protocol, generating software or hardware code) or by preparing future implementation steps
(merging and scheduling several processes to execute them in a single processor).

In Cosmos, the user-guided transformational approach makes use of three specification formats,
SDL, Solar and C-VHDL. The initial specification is given in the system-level specification
language SDL. The user controls the refinement process through a set of transformation primitives.
The whole refinement process is based on an intermediate form called Solar. The output is a virtual
prototype of the architecture given in a distributed C-VHDL model.

Within Cosmos, the partitioning steps are implemented through a set of primitives that performs
basic transformations such as split, merge, move, flat and map. The system provides three sets of
primitives working on the system structure, behavior and communication. The designer guides the
interaction process and chooses the transformations needed in order to obtain the desired solution.

The organization of the partitioning into several small steps reduces the complexity of the problem.
The designer controls the partitioning history within an interactive environment, through a fine
grain control of the synthesis process. This methodology can be seen as a human guided
compilation where the designer spends an additional effort to produce an efficient implementation.

3.1.3 Olympus at Stanford [Micheli88] [Micheli90]

Olympus Synthesis System is a vertically integrated design tool for specification and synthesis of
digital circuits. The system has the following features:
1. A hardware design language, HardwareC, for design specification. HardwareC has C-like

syntax, and a cycle-based semantics. It supports concurrency, structural and timing constraints,
and has a unambiguous hardware semantics.

2. High-level synthesis tools, Hercules and Hebe for
performing behavioral and structural synthesis. Hercules
takes HardwareC and passes results to Hebe, which
performs the tasks of scheduling and binding, and
outputs a logic-level description of the design.

3. A technology mapping tool, Ceres, which translates a
logic-level description into a technology dependent
netlist.

4. Two simulators, Venus and Mercury for performing
behavioral and logic level simulation.

The Block Diagram of the Olympus Synthesis System is
shown in the right.

In Olympus, two internal models, Sequencing Intermediate
Form (SIF) and Structural/Logic Intermediate Form (SLIF),
are used to represent the hardware at different levels of
abstraction and to provide a way to pass design information
between the different tools. SIF is used in the behavior
level and SLIF is used in the structural and logic level.

The objective of Hercules is to identify the maximal
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parallelism that exists in the input description. Here, the input HardwareC description is parsed and
translated first into an abstract syntax tree representation, which provides the underlying model for
semantic analysis and behavioral transformations. The transformations are categorized into user-
driven and automatic transformations.

User-driven transformations include the following:
• Selective in-line expansion of model calls;
• Selective operator to library mapping;

Automatic transformations include the following:
• For-loop unrolling, where fixed-iteration loops are unrolled to increase the scope of the

optimizations.
• Constant and variable propagation, where the reference to a variable is replaced by its last

assigned value.
• Reference stack resolution, where multiple and conditional assignments to variables are

resolved by creating multiplexed values that can be referenced and assigned.
• Common sub-expression elimination, where redundant operations that produce the same

results are removed.
• Dead-code elimination, where operations whose effects are not visible outside the model are

re-moved.
• Collapse conditional, where conditionals with branches containing only combinational logic

are collapsed to increase the scope in which logic synthesis can be applied.
• Dataflow analysis, where data and control dependencies among the operations are

identified.
Upon completion of the automatic transformations, the behavior is optimized with respect to the
data-dependencies that exist among the operations.

Olympus system has been used to design 3 ASIC chips in Stanford University and it has been
tested against benchmark circuits for high-level and logic synthesis [Micheli90].

3.2 Functional Language Based Transformation Systems

3.2.1 DDD at University of Indiana [Bose94] [Johnson90]

DDD (Digital Design Derivation System) is a transformation system that implements a basic design
algebra for synthesizing digital circuit descriptions from high-level functional specifications. The
system is a formalization of digital design based on a functional algebra. The system is
implemented in the Lisp dialect Scheme as a collection of transformations that operate on s-
expressions.
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Specifications are written in Scheme which are written in a purely functional style where there are
no side effects. Descriptions are built from applicative terms, constants, identifiers, conditional
expressions, and function definitions, and express globally synchronized systems.

In DDD, there are two classes of specifications, behavioral and structural. A construction from
behavior to structure establishes the equivalence between the two classes of specification.

Design derivation in the DDD system has three major phases in which a typical design may
undergo many iterations. Behavioral transformations manipulate the behavioral specification.
These transformations usually involve manipulating control and architecture in a tightly integrated
relation. Some examples include folding and unfolding transformations to achieve a proper
scheduling of operations and transformations to move operations between control and architecture.
The structural transformations manipulate the sequential system description which was built from
the behavior description. These transformations are intended to refine the structural specification to
an architecture. Projection transformation is a mechanism of incorporating representations of a
more abstract type by another more concrete type. Projection allows the derivation of real hardware
from concrete behavioral specifications. The result of these transformations is then passed to logic
synthesis tools to generate hardware realization.

3.2.2 Works at University of South Wales [Cheung96, 97, 98]

A transformational co-design methodology was presented in their papers. The refinement process is
separated into two levels, the algorithmic and the structural. Within each level, refinement is
accomplished by applying sequences of transformations that preserve the functionality of the initial
specification. Different algorithmic design and different spatial structures with different resources
and performance costs are explored at algorithmic level and structural level.

The specification is written in a single high level functional
notation called form, which provides for co-design a unfied
system specification device.  Form is based on a variant of FP
with extensions to support multi-dimensional structured
streams, delay functional and synchronized concurrent forms.

Algebraic rules which are a set of syntactic transformations
that define a calculus for form are used in the transformation
process. The rules permit symbolic manipulation of form
expressions during structural transformation. Other
transformation mechanism used include: recursion removal,
conditional resources sharing, multiplexor reduction,
parallelisation, serialization and loop unfolding
transformation.

The transformational co-design process is shown in the figure
to the right. It starts with a form specification of a task and
constructs an algorithm that computes the desired function.
The resulting implementation function is to be partitioned into
hardware and software parts which satisfy the cost
constraints. The final structural forms are mapped into the
target implementation technologies to produce high level
pseudo-code for the software components and applicative
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descriptions for the digital hardware components.

3.2.3 STRIDE by Burns et al. [Burns91, 94][Koelmans91]

A prototype interactive design tool, which is called STRIDE, has been implemented that allows
easy use of a database of formally correct transformations. The language used in STRIDE is
STRICT, which is a conventional hardware description language with features similar to VHDL.
However, STRICT’s behavior descriptions are mandatory and are written in a functional style.

STRIDE makes use of the fact that Boyer-Moore rewrite rules
can be used as transformations. The Boyer-Moore logic is a
quantifier-free, first-order logic with equality and function
symbols. STRIDE works in the following way: Specifications
written in STRICT are translated into an internal data structure,
Boyer-Moore functions. Then STRIDE uses a set of Boyer-
Moore library files to present the possible transformations to the
designer. If the designer selects one, it will be applied by the
making the appropriate changes to the internal data structure.
Only Boyer-Moore rewrite rules are allowed as transformations.
So, it is impossible to introduce bugs into the design. The block
diagram of STRIDE is shown in the figure to the right.

3.3 Logic Language Based Transformation Systems

3.3.1 Ruby [Jones90, 91][Sharp93]

Ruby is a relation based language intended for specifying VLSI circuits. A circuit is described by a
binary relation between appropriate, possibly complex domains of values, and simple relations can
be combined into more complex relations by a variety of combining forms. The Ruby relations
generate an algebra which defines a set of equivalences.

The algebra has been implemented in a rewriting tool called T-Ruby, which allows the user to
rewrite Ruby terms according to pre-defined rules. The T-Ruby system enables the user to perform
the desired transformations in the course of a design, to simulate the behavior of a class of
implementable relations, and to translate the final Ruby description of such relations into a VHDL
description for subsequent synthesis by high-level synthesis tools.

3.3.2 Larsson'd Work [Larsson93]

A transformational approach to the digital system design based on HOL proof system is reported in
[Larsson93]. There are two levels of design representation. The first level is a design specification
in logic (HOL) that is used for formal reasoning and the second level is a set of design annotations
that are used to support design analysis and design checking.

The key component of their approach is the use of window inference package in HOL to model the
transformational design process. Window inference is a style of reasoning where the user may
transform an expression or restrict attention to a sub-expression and transform it. The window
inference package is extended in their work since it doesn't support the design annotation. This is
done in the following way. First design annotation is implemented as an abstract data type (ADT)
in the ML meta-language. Then the definition of a window is extended with the design annotation
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ADT and interface functions for accessing and update a windows design annotation component are
added. The final implementation is also in HOL logic.

3.4 Concurrency Process Based Transformation Systems

3.4.1 Work by Barros [Barros94]

In paper [Barros94], a hardware/software partitioning methodology is proposed. It uses Occam as
the source programming language and performs the partitioning by applying a series of algebraic
transformations on the source program. The result is still an Occam program which consists of a set
of parallel processes, one of which will be implemented in software and others in hardware. Its
structure reflects the hardware and software components, and how they interact to achieve the
overall goal. The software and hardware components generated by the process can then be
compiled for further use.

Occam, a small and formally based language which incorporate concurrency, is developed from
CSP. Like CSP Occam obeys a large set of algebraic laws which can be used to carry out
programming transformation with the preservation of semantics. This is also one of the reasons
why Occam is chosen. However, the partition approach described in the paper deals only with a
subset of this language.

The partitioning is done in the following steps. The first step is the splitting of the description into a
set of communication processes using the transformation rules. Then the joining of processes in
clusters takes place when building the clustering tree and placing the cut line at each clustering
stage using a clustering algorithm. Transformation is also involved in this stage, which is
equivalent to apply rules for joining processes.

The main emphasis of this work is to utilize the formal property of Occam, which result in a
justified transformation through the use of algebraic laws. However their work is still limited. First,
only a small part of the Occam is used in programming. So it still need to be expanded. Second, the
underlining target architecture is too specific, which is predefined as consists of one software
component and several hardware components.

3.4.2 TRADEs: a System for Transformational Design [Middelhoek93, 97]

TRADES (Transformational Design System), which has its
origin in the ESPRIT SPRITE project of the EU, is developed
at the University of Twente. The system is built around the
single-token signal flow graph language (CDFG like) SIL
(SPRITE Input Language), which combines control and data
flow into a single graph format. The input to the system is
VHDL code.

The design methodology of TRADE is based on the designer-
driven application of small, local, behavior-preserving design
transformations which include optimization transformation, refinement transformation, space-time
transformation, composite transformation and so on. It is the responsibility of the designer to select
between these possibilities.  The design flow is shown in the figure above. The initial design
specification is written in VHDL, which is first translated into SIL design representations. The
transformation engine then provides a user interface that allows the designer to select a series of
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transformations from a designer defined hierarchical list of transformations. After the
transformation, a SIL to VHDL Translator will generate the VHDL codes, which can be
synthesized using commercial RT-level synthesis tools.

3.4.3 Self-Timed Circuit Design [Plosila99]

An action systems based design method for asynchronous self-timed VLSI circuits is presented in
the thesis [Plosila99]. The action systems formalism is a framework for specification and
correctness preserving development of concurrent programs, which is based on an extended version
of the guarded command language of Dijkstra.

The design process consists of four main phases: initial derivation, handshake expansion, circuit
extraction and implementation. The result of the system is circuit netlist.

3.4.4 FORMAT (Formal Methods in Hardware verification) Project [Grass95]

Werner Grass et al. have developed a system which
transforms timing diagram specifications into VHDL
code within the scope of FORMAT project which
pursues a comprehensive system level design
approach for communication hardware. Timing
diagrams with data and timing annotations are used
as a language for specifying interface circuits in their
system.

System specifications are given exclusively as
graphical timing diagrams with data and timing
annotations. Timing diagrams are formalized in
terms of a process calculus (T-LOTOS). This leads to a pure behavioral T-LOTOS description of
the system. From any T-LOTOS representation a VHDL translation may be generated
automatically. However, to improve the quality of the final result, the system also offered to
introduce structure into the present behavioral specification. Provided a library of previously
defined module descriptions (T-LOTOS and corresponding VHDL code), a user may apply a
sequence of formal transformations to structurize his design. Such a procedure is know as
interactive bottom-up synthesis in FORMAT. The synthesis path of FORMAT is shown above.

In FORMAT, the harpo tool automatically translates T-LOTOS specifications to VHDL. The
translation model maps each of the T-LOTOS structures to VHDL.

3.5 Other Works in This Area

SynGuide [Samsom93,94] have been developed at IMEC, Belgium. Transformations are performed
on Silage and can be used in an interactive and automatic mode. The most important
transformations implemented in SynGuide are loop transformations, which can have a major
impact on both memory requirements and number of cycles needed. The HYPER system developed
at the University of Berkley provides a set of transformation for automatic algorithmic level design
optimization. In HYPER [Hyper], Silage is used as the specification language and the
transformations include retiming, loop unrolling and software pipelining. SHE (Software/Hardware
Engineering) [Voeten96] [Putten98] is based on formal specification language POOSL (Parallel
Object Oriented Specification Language) [Voeten98]. During analysis and design, POOSL
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specifications are gradually transformed to incorporate architectural decisions and to satisfy design
constraints. In [Pandey99], the semantics of VHDL is formalized in a declarative style using
interval temporal logic. This makes it possible to validate transformations on VHDL programs and
to formally reason about the timing aspects of VHDL.

LAMBDA (Logic And Mathematics Behind Design Automation) [Wang91] is a general-purpose
theorem-proving based CAD tool that integrates design and verification. It is based on higher-order
logic and implemented in the functional programming language ML. Busch [Busch91] use the
LAMBDA system to design digital hardware with a transformational technique where various
design aspects like parameterized retiming of synchronous systems and constrained refinement are
formalized in a uniform framework. The derived design is not a specific implementation but a
space of valid solutions. In [Wang91], a subset of VHDL has been formalized that a VHDL design
description can be transformed into a design description in LAMBDA function specification
language via a state-machine model of the design. Then, the LAMBDA/DIALOG system is used to
synthesis correct implementation.

3.6 A Comparison of Different Systems

Table 1 shows the systems that we have reported at previous sections. The columns outlined in this
table are: input (what's the languages or notations used in system specification), output (what's the
final result of the transformation), internal representation (what kind of internal representation is
used if applicable), user guidance (if the designer can direct the transformation steps), automatic
(can the system work without the guidance of designer) and formal (are the languages and
transformation rules used based on formal semantics).

INPUT OUTPUT
INTERNAL

REPRESENTATION
USER

GUIDANCE
AUTOMATIC FORMAL

CAMAD at Linköping ADDL RTL Netlist ETPN YES YES YES
Cosmos/Solar at

Grenoble
SDL C-VHDL SOLAR YES NO NOIMPERATIVE

LANGUAGE BASED
Olympus at Stanford HardwareC

Logic-level
Implementation

SIF and SLIF YES YES -

DDD at Univ. of
Indiana

SCHEME
A Collection of

Boolean Subsystems
NO YES NO YES

Cheung’s work Form Structural Forms NO - - YES
FUNCTIONAL

LANGUAGE BASED
STRIDE by Burns et

al.
STRICT STRICT

Boyer-Moore
functions

YES NO YES

Ruby Ruby Circuits - YES - YESLOGIC LANGUAGE
BASED Larsson’s work HOL HOL - - - YES

Barros’ Work OCCAM Structural OCCAM NO - - YES
TRADES at Univ. of

Twente
VHDL VHDL SIL YES NO -

Self-Timed Circuit
Design

Action Systems
Formalism

Circuit Netlist - - - YES

CONCURRENT
PROCESS BASED

FORMAT Project Timing Diagram VHDL T-LOTOS YES YES -

Table 1. Example Transformation Based HW or HW/SW Codesign Systems

4.  POSSIBLE TRENDS IN THE FUTURE RESEARCH

Though a lot of progress has been made in the program transform techniques in recent years,
transformational methodology is still not in large scale usage nowadays. This is possibly because
the efficiency and real-time requirements are very stringent in HW design and also the design space
in HW design is very large since the target architecture is always a design variable.

However, compared with other design methodology, the benefits of transformational design
methodology are still very attractive. For example, for large and complex digital designs, post hoc
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verification or exhaustive simulation is still not feasible now. Here we give out some of the
possible trends in this research area.

• System that supports incremental specification. Specifications of large systems are not
written as one homogeneous document. This process should be supported by a technique
that allows the designers to add, modify and remove some part of the specification without a
large impact on the rest of the specification.

• System that supports the verification of the transformational steps. The system specification
should based on a formal semantics which can guarantee the correctness of transformation
steps.

• System that supports model checking at the specification level.
• System that supports transformational optimization to the design. Timing, spatial and other

constraints should be used in the guidance of transformational design for system
optimization purpose.

• System that has functional language as the specification language to simplify the design. In
[Jantsch98], it suggests that specification languages based on functional paradigm can be
more suitable than others. Because of the formal mathematical bases of functional language,
it is also very suitable in the transformational design.
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