Towards a Framework for the Abstract Interpretation of Logic Programs

by

Ulf Nilsson
PhD theses:

* Available at: University of Microfilms Intl., 300 N. Zeeb Road, Ann Arbor, MI 48106, USA.

(*Linköping Studies in Science and Technology. Dissertations.*)

No 77

No 94

No 97
Andreas Lingas: Advances in Minimum Weight Triangulation. 1983.

No 109
Peter Fritzson: Towards a Distributed Programming Environment based on Incremental Compilation. 1984.

No 111

No 155

No 165

No 170

No 174

No 192

Licentiate of engineering Theses:

(*Linköping Studies in Science and Technology. Theses.*)

No 48

No 52

No 60

No 71

No 72

No 73
Ola Strömors: A Structure Editor for Documents and Programs. 1986.

No 74

No 104

No 108

No 111

No 113

No 118

No 126

No 127

No 139

No 140

No 146

No 150
Towards a Framework for the Abstract Interpretation of Logic Programs

by

Ulf Nilsson
E-mail: urn@ida.liu.se

Abstract: A new framework for abstract interpretation of logic programs is presented. The idea is to take as the basis a simplified semantics that approximates the standard operational semantics of logic programs but still makes it possible to derive non-trivial abstract interpretations. The relative simplicity of the basic semantics facilitates systematic derivation of abstract interpretations and static analyses of logic programs. Sufficient conditions for termination and correctness of the derived interpreters are provided. The approach is illustrated by inferring groundness information for an example program.
Towards a Framework for the Abstract Interpretation of Logic Programs*

Ulf Nilsson
Department of Computer and Information Science
Linköping University
S–581 83 Linköping, Sweden

December 13, 1988

Abstract: A new framework for abstract interpretation of logic programs is presented. The idea is to take as the basis a simplified semantics that approximates the standard operational semantics of logic programs but still makes it possible to derive non-trivial abstract interpretations. The relative simplicity of the basic semantics facilitates systematic derivation of abstract interpretations and static analyses of logic programs. Sufficient conditions for termination and correctness of the derived interpreters are provided. The approach is illustrated by inferring groundness information for an example program.

1 Introduction

A logic program and a set of goal-clauses together describe a set of computations in a universe of substitutions. If we restrict our attention to definite programs and goals and adopt SLD-resolution as our operational semantics, they denote a set of SLD-derivations. A naïve approach to determine whether the program exhibits some run-time property would be to construct the set of all possible derivations and to explicitly test whether the property holds. Needless to say, the method would not, in general, terminate in finite time.

Abstract interpretation (e.g. [AH87], [Bru87], [CC77], [DW88], [MS88]) is a general method which allows us to effectively approximate the semantics of a program. In abstract interpretation the domain(s) of the concrete interpretation is replaced by some abstract domain(s) and the operations on the concrete domain(s) are replaced by abstract operations on the abstract domain(s).

* An earlier version of this paper appeared in [Nil88].
The aim of the paper is to provide a general and simple framework for abstract interpretation of logic programs, facilitating construction of different abstract interpretations in a simple and systematic way. We intend to exploit the ideas and results as the basis for efficient implementation of abstract interpretation in different abstract domains.

The approaches presented in the literature takes as a starting point some precise semantics of concrete interpretation — e.g. the static semantics of [CC77] and the collecting semantics of [JS87]. Such a semantics may become quite complicated. Therefore development of correctness proof for an abstract interpretation may be difficult. In this paper we suggest a concrete semantics which is in itself an approximation of the precise static/collecting semantics. Our semantics (which is called a static+ semantics) uses the same domain as the static semantics but is a superset of it. We then demonstrate how further abstractions may be achieved by replacing the concrete domain by an abstract domain and by giving abstract interpretations to the operations of the static+ interpretation. Because of the relative simplicity of the static+ semantics such abstractions can be obtained in a systematic way. We also formulate some simple sufficient conditions which guarantee the termination and correctness of abstract interpretations.

The rest of the paper is organized as follows — section 2 provides the necessary definitions and notation. Section 3 informally introduces the concept of abstract interpretation, assertions and contexts. Section 4 develops a static+ semantics based on the set of possible SLD-derivations. Section 5 presents some properties and requirements necessary to guarantee correctness and termination of abstract domains and operations. Section 6 gives an abstract domain and operations to infer groundness information for an example program. Section 7, finally, contains conclusions and comparisons with related work.

2 Preliminaries

If nothing else is said we adopt the notation and terminology of e.g. [Llo87] and [Apt87]. Below some of the most important concepts are outlined.

Without lack of generality we assume that the standard (leftmost) computation rule of Prolog is employed. Moreover, to avoid having to refer to "the i:th subgoal in the j:th clause" we assume, for notational convenience, that all literals in a program are unique.

The substitutions we consider in this paper are all idempotent. The composition $\theta' \circ \theta''$ of substitutions θ' and θ'' will be defined in the standard way (see [Llo87]).

Definition 2.1 Let $\theta = \{X_1/t_1, \ldots, X_n/t_n\}$ be a substitution and denote by $Var(x)$ the set of variables in a term/formula, x. Then $Dom(\theta) = \{X_1, \ldots, X_n\}$.
is called the domain of θ and $Range(\theta) = Var(t_1) \cup \ldots \cup Var(t_n)$ is called the range of θ.

Definition 2.2 The restriction $\theta|_V$ of a substitution θ to a set of variables V is the substitution $\{X/t \mid X/t \in \theta \land X \in V\}$.

The notation $\theta' \circ \theta''$ denotes the substitution $(\theta' \circ \theta'')|_{Dom(\theta')}$. Throughout the paper we assume that \circ binds stronger than \bullet, i.e. $\theta \bullet (\theta_1 \circ \ldots \circ \theta_n)$ is identical to $\theta \bullet (\theta_1 \circ \ldots \circ \theta_n)$ (\circ is associative). Usually \circ is omitted altogether.

Definition 2.3 A renaming (substitution) of a term/formula, x, is a substitution $\sigma = \{X_1/Y_1, \ldots, X_n/Y_n\}$ such that $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ are distinct variables and $Dom(\sigma) = Var(x)$.

Definition 2.4 Let P be a definite program and G_0 a definite goal. An SLD-derivation of G_0 is a sequence $(G_0, C_0\sigma_0), \ldots, (G_{n-1}, C_{n-1}\sigma_{n-1}), G_n$ where:

- σ_i is a renaming of $C_i \in P$ such that $C_i\sigma_i$ contains no variables used prior in the sequence, and

- if $C_i = (x \leftarrow x_1, \ldots, x_m)$, $G_i = (\leftarrow y_1, y_2, \ldots)$ and $\theta_{i+1} = mgu(x\sigma_i, y_1)$ then $G_{i+1} = (\leftarrow x_1\sigma_i, \ldots, x_m\sigma_i, y_2, \ldots)\theta_{i+1}$.

The computed substitution of the derivation above is the composition $\theta_1 \ldots \theta_n$ of all mgu’s in the derivation.

Definition 2.5 The (initial) connection graph\(^1\) of a program P (including one or more goal clauses) is the set

$$\{x \rightarrow y \mid (\ldots \leftarrow \ldots, x, \ldots) \in P \land (y \leftarrow \ldots) \in P \land \exists \theta(x\theta = y\sigma\theta)\}$$

where σ is a renaming of y such that $Var(x) \cap Var(y\sigma) = \emptyset$.

Example 2.1 The connection graph of the reverse/2-program below is depicted in Figure 1.

\(^1\)The definition given here diverges slightly from the one in e.g. [Kow79]
\text{\begin{flushleft}
\begin{align*}
\text{reverse}(X, Y) & \rightarrow \text{reverse}([], []) \\
\text{reverse}([X|Xs], Ys) & \leftarrow \text{reverse}(Xs, Zs), \text{append}(Zs, [X], Ys). \\
\text{append}([X|Xs], Ys, [X|Zs]) & \leftarrow \text{append}(Xs, Ys, Zs). \quad \text{append}([], Xs, Xs)
\end{align*}
\end{flushleft}}

Figure 1: Connection-graph of reverse/2-program

\begin{align*}
\text{reverse}(X, Y) & \\
\text{reverse}([], []). \\
\text{reverse}([X|Xs], Ys) & \leftarrow \text{reverse}(Xs, Zs), \text{append}(Zs, [X], Ys). \\
\text{append}([], Xs, Xs). \\
\text{append}([X|Xs], Ys, [X|Zs]) & \leftarrow \text{append}(Xs, Ys, Zs).
\end{align*}

We conclude the section with the following result due to [Tar55] and [Kle52].

\textbf{Theorem 2.1} Let \mathcal{D} be a complete lattice with bottom element \bot, f be a mapping $f : \mathcal{D} \to \mathcal{D}$ and denote by:

\begin{align*}
f \uparrow 0 & = \bot \\
f \uparrow (n + 1) & = f(f \uparrow n) \\
f \uparrow \omega & = \bigcup_{i=0}^{\infty} f \uparrow i
\end{align*}

If f is continuous then $f \uparrow \omega$ is the least fixed point of f.

\end{flushleft}
3 Abstract Interpretation

Operationally the body of a (definite) clause may be viewed as a sequence of procedure-calls. For each call there are two distinguished program points — the point immediately to the left of a call \(x \) will be referred to as the \textit{calling point} of \(x \), and the point to the right will be called the \textit{success point} of \(x \). The leftmost and rightmost points in a clause will be called the \textit{entry-} and \textit{exit points} respectively of the clause.

Let \(p \) be the calling point of some literal \(x \). We say that the program point \(p \) is \textit{current} (in a derivation \(d \)) when (an instance of) \(x \) is the selected subgoal in \(d \). For instance, the calling point of \(B_1 \) is current in the last goal of the derivation in Figure 2. By analogy the success point of \(x \) is current whenever \(x \) is immediately solved. Similarly entry- and exit-points may be current. Notice that several points may be current simultaneously — in the last step of Figure 3 the success point of \(A_i \), the calling point of \(A_{i+1} \) and the exit point of \((B \leftarrow \ldots \) are current (among others).

With every program point we want to associate some invariant assertion — i.e. an expression which is always true whenever the program point is current. Roughly speaking, the objective of abstract interpretation is to produce correct assertions for the program points of a program.

This idea is similar to [DM87] except that abstract interpretation generates assertions whereas [DM87] verify assertions. In contrast to [DM87] we are not going to introduce any specific meta-language for assertions. Another difference is that our assertions are associated with the program points — in [DM87] they are associated with the predicates.

Instead of introducing a new meta-language for assertions we are going to use the object-language. This is not necessarily a restriction since assertions usually refer to the bindings of (local) variables of the object language. In logic programming variable bindings correspond to substitutions. Thus, instead of associating an assertion with a program point we may collect a set of substitutions — namely all substitutions, \(\theta \), such that there exists a derivation where the program point is current and the computed substitution is \(\theta \). However, this leads to three complications.

First of all we are usually not interested in the whole substitutions — only in bindings for variables in the clause where the program point appears. Secondly, assertions refer to the variables in a clause of the program whereas, in derivations, \textit{renamed} clauses are used. Consequently the substitutions contain bindings not for the program clause but for a renamed clause. Finally there are infinitely many ways to rename the variables in the clauses of a derivation. These problems will be handled as follows;

Consider a derivation \(\ldots, (G_i, C \sigma), \ldots, G_j \) and assume that one of the pro-
gram points in C is current in G_j. Then $\sigma \cdot \theta_1 \ldots \theta_j$ should be contained in the set of substitutions associated with the program point. This solves the first two problems — it gives us a substitution whose domain is exactly the variables in the program clause C. Such a substitution will be called an environment and \mathcal{E}_i designates the set of environments which may be associated with the program point i.

The third problem will not be dealt with — we shall simply not consider assertions which refer to the actual names of variables in the range of an environment. This is not a great restriction since no standard treatment is available how to rename the variables of a clause in a derivation.

Now, with every program point of a program we want to associate the set of all possible environments when the point is current. This set will be called a context.

If no restrictions are imposed on the use of a program practically any context may appear at each program point of the program and no useful assertions will be deduced. To limit the set of possible derivations we shall assume that the user provides information about the set of possible goals given to the program. Such a set will be called a call-pattern. To simplify the notation we assume that it is given on the form $\leftarrow p(X_1, \ldots, X_n), \{\theta_1, \ldots, \theta_m\}$ where X_1, \ldots, X_n are distinct variables, θ_i is a substitution and $\text{Dom}(\theta_i) = \{X_1, \ldots, X_n\}$ for $1 \leq i \leq n$. I.e. as a definite goal with distinct variables as arguments together with a context for the goal. For instance, $\leftarrow \text{reverse}(X,Y), \{\{X/\{a, b, c\}, Y/Y_1\}, \{X/\emptyset, Y/Y_1\}\}$ may be a possible call pattern of Example 2.1.

Let $\mathcal{C}_i (= \wp(\mathcal{E}_i))$ be the set of all contexts which may be associated with point i of a program. Then clearly $\langle \mathcal{C}_i, \subseteq, \cup, \cap \rangle$ is a complete lattice with \cup and \cap as least upper- and greatest lower bound respectively.

Let P be a program with n program points. The set $\mathcal{C}_0 \times \ldots \times \mathcal{C}_n$ of context vectors will be denoted \mathcal{CV}. It is easy to see that $\langle \mathcal{CV}, \subseteq, \cup, \cap \rangle$ where

\[
\langle x_1, \ldots, x_n \rangle \subseteq \langle y_1, \ldots, y_n \rangle \iff x_1 \subseteq y_1 \land \ldots \land x_n \subseteq y_n
\]

\[
\langle x_1, \ldots, x_n \rangle \cup \langle y_1, \ldots, y_n \rangle = \langle x_1 \cup y_1, \ldots, x_n \cup y_n \rangle
\]

\[
\langle x_1, \ldots, x_n \rangle \cap \langle y_1, \ldots, y_n \rangle = \langle x_1 \cap y_1, \ldots, x_n \cap y_n \rangle
\]

is also a complete lattice. We will use the symbol Θ to denote context vectors and refer to its components by subscripts. E.g. $\Theta_{\text{call}(x)}$ refers to the value of the calling point of x in the context vector Θ. Sometimes we use integers as indices.

4 A Static$^+$ Semantics

In this section we develop a semantics which associates with every program point of a program (at least) the set of all possible contexts which may occur in
a derivation whenever the point is current.

Consider the entry-point of a clause $B \leftarrow B_1, \ldots, B_n$. Clearly, in order for this point to become current there has to be a derivation like that depicted in Figure 2. For each such derivation the context $\delta \bullet \theta_1 \ldots \theta_j$ must be contained in $\Theta_{\text{entry}(B)}$.

It is straightforward to see that:

$$\delta \bullet \theta_1 \ldots \theta_j = \delta \bullet \theta_j = \delta \bullet \text{mgu}(A_i\sigma \theta_1 \ldots \theta_{j-1}, B\delta)$$

and since $A_i\sigma \theta_1 \ldots \theta_{j-1} = A_i\sigma \bullet \theta_1 \ldots \theta_{j-1}$ we get the following equation for each clause, $x \leftarrow x_1, \ldots, x_n$, of the program:

$$\Theta_{\text{entry}(x)} = \bigcup_{y=x} \{ \delta \bullet \text{mgu}(y\theta, x\delta) \mid \theta \in \Theta_{\text{call}(y)} \land \delta = \text{Ren}(x, y\theta) \}$$

where $\text{Ren}(x, y)$ returns a renaming substitution of $x \leftarrow x_1, \ldots, x_n$ whose range is disjoint from the variables in y. For the sake of brevity we shall use $f(\Theta, y \rightarrow x)$ to denote the set former.

Next we consider the success-point of a body literal, x. To reach this point there has to be a derivation which first "passes" the calling point of x with some computed substitution θ. Then $x\theta$ must be unified with a clause head and all subgoals in the body of that clause must be satisfied (i.e. we have to reach the exit-point of the clause). In other words there has to be a derivation like the one depicted in Figure 3. For each such derivation $\sigma \bullet \theta_1 \ldots \theta_k$ must be contained in $\Theta_{\text{succ}(x)}$.

7
\[A_\sigma \leftarrow A_1\sigma, \ldots, A_m\sigma \]

\[(\leftarrow A_i\sigma\theta_1 \ldots \theta_{j-1}, \ldots, A_m\sigma\theta_1 \ldots \theta_{j-1}, \ldots) \]

\[B\delta \leftarrow B_1\delta, \ldots, B_n\delta \]

\[(\leftarrow A_{i+1}\sigma\theta_1 \ldots \theta_{j-1}, \ldots, A_m\sigma\theta_1 \ldots \theta_{j-1}, \ldots)\theta_j \ldots \theta_k \]

Figure 3: Success-point of \(A_i \) is current

\textbf{Theorem 4.1} For the derivation in Figure 3 it holds that:

\[\sigma \bullet \theta_1 \ldots \theta_k = (\sigma \bullet \theta_1 \ldots \theta_{j-1}) \circ \text{mgu}(B\delta \bullet \theta_1 \ldots \theta_k, A_i\sigma \bullet \theta_1 \ldots \theta_{j-1}) \]

\textit{Proof}: Initially we observe that:

\[B\delta\theta_1 \ldots \theta_k = B\delta\theta_j \ldots \theta_k = A_i\sigma\theta_1 \ldots \theta_k \]

Now let

\[B' = B\delta\theta_j \ldots \theta_k = B\delta \bullet \theta_j \ldots \theta_k \]

\[A'_i = A_i\sigma\theta_1 \ldots \theta_{j-1} = A_i\sigma \bullet \theta_1 \ldots \theta_{j-1} \]

Clearly \(B' \) is an instance of \(A'_i \) and thus:

\[B' = A'_i\alpha \text{ where } \alpha = \text{mgu}(A'_i, B') \]

Consequently

\[\text{Dom}(\alpha) \subseteq \text{Var}(A'_i) \subseteq \text{Range}(\sigma \bullet \theta_1 \ldots \theta_{j-1}) \]

and

\[A'_i\alpha = A'_i\theta_j \ldots \theta_k \]

8
Thus, $\alpha |\text{Var}(A'_t) = (\theta_j, \ldots \theta_k) |\text{Var}(A'_t) = \alpha$.

Now $\theta_j, \ldots \theta_k$ is obtained by satisfying the goal $\leftarrow A'_t$. Consequently the domain of $\theta_j, \ldots \theta_k$ will contain only variables in $\text{Var}(A'_t)$ and some new variables which do not appear in $\text{Range}(\sigma \cdot \theta_1, \ldots \theta_{j-1})$. Thus:

$$\text{Dom}(\theta_j, \ldots \theta_k) \cap \text{Range}(\sigma \cdot \theta_1, \ldots \theta_{j-1}) \subseteq \text{Var}(A'_t)$$

and finally

$$\sigma \cdot \theta_1, \ldots \theta_k = (\sigma \cdot \theta_1, \ldots \theta_{j-1}) \circ (\theta_j, \ldots \theta_k)|_{\text{Range}(\sigma \cdot \theta_1, \ldots \theta_{j-1})}$$

$$= (\sigma \cdot \theta_1, \ldots \theta_{j-1}) \circ (\theta_j, \ldots \theta_k)|_{\text{Var}(A'_t)}$$

$$= (\sigma \cdot \theta_1, \ldots \theta_{j-1}) \circ \alpha$$

It is worth noticing that if there is a derivation like the one in Figure 3 then $B \delta \cdot \theta_1, \ldots \theta_k$ has to be an instance of $A_t \sigma \cdot \theta_1, \ldots \theta_{j-1}$. Thus for each body literal, x, we get the equation:

$$\Theta_{\text{succ}}(x) = \bigcup_{x \rightarrow y} \{ \theta \circ \text{mg}(y\delta, x\theta) | \theta \in \Theta_{\text{call}}(x) \land \delta \in \Theta_{\text{exit}}(y) \land \exists \omega(y\delta = x\theta\omega) \}$$

The set former will be abbreviated $g(\Theta, x \rightarrow y)$.

Since all points in a program are either entry- or success-points we may formulate an equation for every point of the program. However, the entry point of the goal given in the call pattern needs special treatment since its context is already provided in the call pattern.

Example 4.1 Denote by A the literal $\text{reverse}(X, Y)$ in Example 2.1, by B the literal $\text{reverse}([], [])$ etc. We then get the following set of equations:

$$\Theta_{\text{call}}(A) = \{X/[a, b, c], Y/Y_1], \{X/[], Y/Y_1]\}$$

$$\Theta_{\text{succ}}(A) = g(\Theta, A \rightarrow B) \cup g(\Theta, A \rightarrow C)$$

$$\Theta_{\text{entry}}(B) = f(\Theta, A \rightarrow B) \cup f(\Theta, D \rightarrow B)$$

$$\Theta_{\text{entry}}(C) = f(\Theta, A \rightarrow C) \cup f(\Theta, D \rightarrow C)$$

$$\Theta_{\text{succ}}(D) = g(\Theta, D \rightarrow B) \cup g(\Theta, D \rightarrow C)$$

$$\Theta_{\text{succ}}(E) = g(\Theta, E \rightarrow F) \cup g(\Theta, E \rightarrow G)$$

$$\Theta_{\text{entry}}(F) = f(\Theta, E \rightarrow F) \cup f(\Theta, H \rightarrow F)$$

$$\Theta_{\text{entry}}(G) = f(\Theta, E \rightarrow G) \cup f(\Theta, H \rightarrow G)$$

$$\Theta_{\text{succ}}(H) = g(\Theta, H \rightarrow F) \cup g(\Theta, H \rightarrow G)$$
For the general case, we want to find a \(\Theta \) such that
\[
\{ \Theta_1 = \Delta_1(\Theta), \ldots, \Theta_n = \Delta_n(\Theta) \}
\]
This is equivalent to finding a fixed point of the function \(cv : \mathcal{CV} \to \mathcal{CV} \)
\[
sv(x) = (\Delta_1(x), \ldots, \Delta_n(x))
\]

Obviously \(cv \) may have several fixed points (corresponding to several solutions to the set of equations). All solutions contain the set of all possible contexts at each point. Clearly we want to find the the most accurate of the solutions, i.e. the least fixed point of \(cv \) (assuming the existence of a least fixed point).

It can be shown that \(cv \) is continuous and since we know that \(\mathcal{CV} \) is a complete lattice we conclude that \(cv \uparrow \omega \) is the least fixed point of \(cv \). The fixed point \(cv \uparrow \omega \) will be called the static\(^+\) semantics of the program. The static\(^+\) semantics is similar to the static semantics of [CC77]. However, the latter gives precise information about the set of possible environments whereas the static\(^+\) semantics may be seen as an approximation (i.e. a superset) of the static semantics.

5 Abstract Domains

Unfortunately it is usually not possible to compute the static\(^+\) semantics of a program in finite time. The natural way to avoid this problem is to find some abstract domain \(\mathcal{CV}' \) which corresponds to a suitable subset of \(\mathcal{CV} \). In this section some general guidelines are outlined how to find such an abstract domain.

Let \(C_1 \times \ldots \times C_n \) be the set \(\mathcal{CV} \) of context vectors of some program. The set of abstract context vectors \(\mathcal{CV}' \) is the set \(C'_1 \times \ldots \times C'_n \) where each \(C'_i \) corresponds to a subset of \(C_i \).

The first requirement is that \(\mathcal{CV}' \) is a complete lattice. For this to hold, \(\langle C'_i, \subseteq_i, \sqcup_i, \sqcap_i \rangle \) should be a complete lattice and there should be a monotonic mapping
\[
\gamma_i : C'_i \to C_i
\]
which will be called the concretization mapping (of \(C'_i \)).

Clearly \(\langle \mathcal{CV}', \subseteq, \sqcup, \sqcap \rangle \) is a complete lattice if
\[
\begin{align*}
x \subseteq y & \iff x_1 \subseteq_1 y_1 \land \ldots \land x_n \subseteq_n y_n \\
x \sqcup y & = (x_1 \sqcup_1 y_1, \ldots, x_n \sqcup_n y_n) \\
x \sqcap y & = (x_1 \sqcap_1 y_1, \ldots, x_n \sqcap_n y_n)
\end{align*}
\]
Furthermore, there is an injection
\[
\gamma : \mathcal{CV}' \to \mathcal{CV}
\]
based on the concretization of the components. It is easy to see that γ is
monotonic, i.e.
\[x \sqsubseteq y \Rightarrow \gamma(x) \sqsubseteq \gamma(y) \]

Definition 5.1 Let there be two lattices $\langle A, \leq \rangle, \langle B, \sqsubseteq \rangle$ and a monotonic injec-
tion $\gamma : B \to A$ (i.e. $x \sqsubseteq y \Rightarrow \gamma(x) \leq \gamma(y)$). We say that $f' : B^n \to B$ is a safe
γ-approximation of $f : A^n \to A$ iff
\[\forall x_1, \ldots, x_n \in B^n \ (f(\gamma(x_1), \ldots, \gamma(x_n))) \leq \gamma(f'(x_1, \ldots, x_n))) \]

Informally this definition states that $f'(x_1, \ldots, x_n)$ contains at least as much
information as f applied to the objects denoted by x_1, \ldots, x_n.

For instance, it is easy to show that the restriction $\sqcap : CV \times CV \to CV$ above is a safe γ-approximation of $\sqcup : CV \times CV \to CV$ — because of the mono-
tonicity of γ we have that $\gamma(x) \sqsubseteq \gamma(x \sqcup y)$ and $\gamma(y) \sqsubseteq \gamma(x \sqcup y)$. Hence,
$\gamma(x \sqcup y) \sqsubseteq \gamma(x \sqcup y)$.

It is now possible to prove the following

Theorem 5.1 If the monotonic operation cv' is a safe (γ-) approximation of cv
and CV' is a finite height lattice then

- There exists an $n \geq 0$ such that $cv' \uparrow (n + 1) = cv' \uparrow n$, and
- for that n, $cv \uparrow \omega \sqsubseteq \gamma(cv' \uparrow n)$

Proof: The first proposition is proved using the monotonicity of cv' and the finite
height of the domain. The second proposition follows from the more general
result that $cv \uparrow \alpha \sqsubseteq \gamma(cv' \uparrow \alpha)$ for any ordinal α. The latter is shown via
transfinite induction.

It is easy to see that $cv'(x) = (\Delta'_1(x), \ldots, \Delta'_n(x))$ is a safe approximation of
$cv(x) = (\Delta_1(x), \ldots, \Delta_n(x))$ if Δ'_i is a safe approximation of Δ_i for $1 \leq i \leq n$.
Notice that $\Delta_i : CV \to C_i$ and by "safe approximation" we mean that
\[\forall x \in CV \ (\Delta_i(\gamma(x)) \sqsubseteq \gamma_i(\Delta'_i(x))) \]

A sufficient condition for safeness of Δ'_i (wrt. Δ_i) follows

- $\Delta'_i \in C'_i$ is a safe approximation of $\Delta_i \in C_i$ if $\Delta_i \sqsubseteq \gamma_i(\Delta'_i)$.

11
\[\Delta'_i = f'(x, 1) \cup \ldots \cup f'(x, m) \text{ is a safe approximation of } \Delta_i = f(x, 1) \cup \ldots \cup f(x, m) \text{ if } f'(x, y) \text{ is a safe approximation of } f(x, y) \text{ for each edge } y \text{ of the connection graph.} \]

\[\Delta'_i = g'(x, 1) \cup \ldots \cup g'(x, m) \text{ is a safe approximation of } \Delta_i = g(x, 1) \cup \ldots \cup g(x, m) \text{ if } g'(x, y) \text{ is a safe approximation of } g(x, y) \text{ for each edge } y \text{ of the connection graph.} \]

The last two points are easy to prove using the fact that \(\sqcup_i : C'_i \times C'_i \rightarrow C'_i \) is a safe \(\gamma_i \)-approximation of \(\sqcup : C_i \times C_i \rightarrow C_i \).

6 Groundness Analysis (Example)

In this section we use the results above to derive groundness information for the reverse/2-programs. I.e. to determine whether some predicate is always called with some specific argument being ground, or succeeds with some argument always being ground.

Let \(V_i \) denote the set of variables in the clause containing the program point \(i \). Then \(C'_i \) shall be the set \(\wp(V_i) \) and \(\gamma_i \) is defined thus

\[\gamma_i(x) = \{ \theta \in E_i \mid X \in x \Rightarrow \text{ground}(X\theta) \} \]

Now, obviously \(\langle \wp(V_i), \cup, \cap, \sqcup \rangle \) is a complete lattice of finite height (with \(V_i \)

and \(\emptyset \) as bottom and top elements respectively). If \(C V' = C'_1 \times \ldots \times C'_n \) then \(\langle C V', \sqcup, \cap, \sqcup \rangle \) is a complete lattice when the operations apply component-wise.

Next, consider the abstract operations \(f' \) and \(g' \). The core of both operations is the unification of the literals in the second argument. Let \(x \) and \(y \) be two literals and assume that \(x \) and \(y \) contain no common variables. What can be said about the mgu of \(x\sigma \) and \(y\sigma \) if our only knowledge about \(\sigma \) is that for some \(X/t \in \sigma \), \(t \) is ground? Clearly, in order for \(x\sigma \) and \(y\sigma \) to unify \(x \) and \(y \) must be unifiable. Let \(\theta \) be an mgu of \(x \) and \(y \) and let \(v = \{ X \mid X/t \in \sigma \land \text{ground}(t) \} \) be the set of variables which are known to be bound to ground terms in \(\sigma \).

Now there are two cases to consider — if \(X/t \in \theta \) and \(X \in v \) then all variables in \(t \) are definitely bound to ground terms as a result of unification between \(x\sigma \) and \(y\sigma \) (obviously this is only true if unification of \(x\sigma \) and \(y\sigma \) succeeds).

Example 6.1 Let \(x = p(X, Y) \) and \(y = p(f(Z), g(V, W)) \) and assume that \(v = \{ X, Y \} \) — i.e. we know that \(X \) and \(Y \) are always bound to ground terms when the two atoms are unified. Then \(\theta = \{ X/f(Z), Y/g(V, W) \} \). Thus, we conclude that \(Z, V, W \) are all ground after unification of \(x\sigma \) and \(y\sigma \).
Secondly, assume \(X / t \in \theta \) then if (i) \(t \) is ground or (ii) all variables in \(t \) are either in \(v \) or are ground due to case 1 then \(X \) will be ground as a result of unification between \(x\sigma \) and \(y\sigma \).

Example 6.2 Let \(x = p(f(X,Y),g(Y)) \) and \(y = p(Z,W) \) and assume that \(v = \{X,W\} \). Then \(\theta = \{Z/f(X,Y),W/g(Y)\} \). Clearly, \(Y \) must be ground as a result of case 1 and consequently \(Z \) is ground due to case 2.

Using this we may define the abstract operations \(f' \) and \(g' \) as follows

\[
\begin{align*}
 f'(\Theta, x \rightarrow y) &= \text{close}(\text{mgu}(x\sigma,y\delta), \Theta_{\text{call}(x)}\sigma, y)
 \\
 g'(\Theta, x \rightarrow y) &= \Theta_{\text{call}(x)} \cup \text{close}(\text{mgu}(x,y\delta), \Theta_{\text{call}(x)} \cup \Theta_{\text{exit}(y)}\delta, x)
 \\
 \text{close}(\theta, x, y) &= \text{Var}(y) \cap (\text{case1}(\theta, x) \cup \text{case2}(\theta, \text{case1}(\theta, x) \cup x))
 \\
 \text{case1}(\theta, x) &= \{X | Y/t \in \theta \land Y \in x \land X \in \text{Var}(t)\}
 \\
 \text{case2}(\theta, x) &= \{X | X/t \in \theta \land \text{Var}(t) \subseteq x\}
\end{align*}
\]

where \(\sigma \) (\(\delta \)) is a renaming of \(x \) (\(y \)) such that \(x\sigma \) (\(y\delta \)) and \(y \) (\(x \)) contain no common variables. By \(\{X_1, \ldots, X_n\}\sigma \) we denote \(\{X_1\sigma, \ldots, X_n\sigma\} \).

In addition to taking the union of the two cases, \(\text{close} \) also restricts the resulting set of "ground" variables to those which appear in the third argument. The definition of \(f' \) simply is a call to \(\text{close} \) whereas \(g' \) is the union of \(\text{close} \) and the variables which are known to be ground before the call (clearly variables which become bound remain bound while executing the subgoals to the right of the point where they become bound).

The mapping \(\text{cv}' \) is now defined as \(\text{cv}'(x) = (\Delta'_1(x), \ldots, \Delta'_n(x)) \) where (cf. Examples 2.1 and 4.1)

\[
\begin{align*}
 \Delta'_1(x) &= \{X\}
 \\
 \Delta'_2(x) &= g'(x, A \rightarrow B) \cap g'(x, A \rightarrow C)
 \\
 \vdots
 \\
 \Delta'_9(x) &= g'(x, H \rightarrow F) \cap g'(x, H \rightarrow G)
\end{align*}
\]

Here the first equation says that the program is always called with the first argument being ground. It does not say anything about the second argument — it may be any term.

Clearly, the bottom element in \(\text{CV}' \) is

\[
\text{cv}' \uparrow 0 = \{(X,Y), \{X,Y\}, \theta, \{X,Xs,Ys,Zs\}, \{X,Xs,Ys,Zs\}, \{X,Xs,Ys,Zs\}, \{Xs\}, \{X,Xs,Ys,Zs\}, \{X,Xs,Ys,Zs\}\}
\]

\[\text{2This is based on the assumption that } \theta \text{ is an idempotent mgu.}\]
and the fixed point of cv' is reached after four iterations (where "\ldots" denotes components which do not change)

\[
\begin{align*}
cv' \uparrow 1 &= \{X\}, \ldots, \ldots, \{X, Xs, Ys\}, \ldots, \ldots, \ldots, \ldots, \\
cv' \uparrow 2 &= \{\ldots, \ldots, \ldots, \{X, Xs\}\ldots, \ldots, \ldots, \ldots, \\
cv' \uparrow 3 &= \{\ldots, \ldots, \ldots, \{X, Xs, Zs\}\ldots, \ldots, \ldots, \ldots, \\
cv' \uparrow 4 &= \{\ldots, \ldots, \ldots, \ldots, \{X, Xs, Ys\}\ldots, \ldots, \ldots, \ldots, \\
cv' \uparrow 5 &= cv' \uparrow 4
\end{align*}
\]

As a result of the analysis we may conclude e.g. the following "assertions":

- if $reverse/2$ is called with the first argument being ground, then the second argument is ground on success (second component of $cv' \uparrow 5$).

- whenever $reverse/2$ is called the first argument is ground (components 1 and 4).

- all calls to $append/3$ are made with the first two arguments being ground (components 5 and 8).

7 Conclusions

A theoretical framework for the abstract interpretation of logic programs was presented. We developed a static$^+$ semantics for definite programs to provide a basis for further abstractions. The static$^+$ semantics plays the rôle of the static semantics in [CC77] and the collecting semantics in [JS87]. However, the static$^+$ semantics is an approximation (a superset) of these two.

From the static$^+$ semantics further abstractions are possible. This is achieved by constructing abstract domains and by giving alternative, abstract interpretations to the operations used to define the static$^+$ semantics. The first step towards an abstract interpretation would be to construct an abstract domain. By selecting a complete lattice of finite height as domain, termination can be ensured. Secondly if there exists a monotonic mapping, γ, from the abstract domain to the concrete one and if there is a monotonic mapping, cv', which safely approximates cv wrt. γ, then for some finite n, $\gamma(cv' \uparrow n)$ approximates (contains) $cv \uparrow \omega$ — i.e. the static$^+$ semantics (and of course as a consequence also the static semantics). We also showed how safeness of cv' wrt. cv can be broken down to safeness of more primitive operations (like f' and g' in our case).

Roughly speaking, the consequence of having only a static$^+$ semantics is that we do not keep full track of "where information originates from". More precisely, two different calls to a clause may give different contexts at the exit point of that
clause, however, when we compute the success point of a call we take into account all contexts at the exit point — not just the ones which were due to the call. This leads to three consequences

- The result of abstract interpretation may become worse. That is, the approximation may be less accurate;

- The efficiency (speed) of the analysis is usually improved;

- The formulation of the concrete semantics becomes less complicated.

To some extent accuracy can be traded against efficiency in our approach by performing “unfolding” in the connection graph. Clauses which are called from several body literals may be copied. Thus, avoiding some imprecision at the expense of extra analysis time.

Some previous attempts to provide general frameworks for abstract interpretation are available (e.g. [Bru87], [JS87], [Mel87], [DW88]). Like [Bru87] we have based our framework on the standard operational semantics (SLD-resolution) of definite programs. This is by no means the only possibility — in [JS87] denotational semantics is used and in [MS88] a bottom-up fixed point semantics.

In one respect [Mel87] and [DW88] distinguish themselves from the other three. Neither of them records the set of contexts associated with (what we call) program points. Instead they record the set of all calls and successes of each predicate. For some important run-time properties this information is not sufficient. It is e.g. not possible to deduce whether two subgoals in the body of a clause are always independent (contain a common variable) during run-time. However, both [Mel87] and [DW88] are primarily interested in, so called, mode analysis of logic programs.

In [JS87] contexts are recorded only at the entry point of each clause.

The aim of this paper was to provide a theoretical framework for efficient implementation of abstract interpretation in different abstract domains. Some preliminary tests indicate that cv' can be implemented efficiently in a language with constant access time to arrays (to represent the context vector). This follows from the observation that $cv' \uparrow (n + 1)$ and $cv' \uparrow n$ usually only differ in some of their components. Therefore it is not necessary to compute a completely new context vector in each iteration — some (most) components will remain the same.

This paper covers only static analysis of definite program. However, it would not be very hard to include also some of the extralogical features of most Prolog implementations. For instance, taking the operational semantics of most Prolog systems into account we know that for a subgoal $t_1 < t_2$ all of the variables in t_1 and t_2 are ground on success. However, some built-in predicates cause additional problems — in particular those which modify the database (assert/1
and retract/1) and those which are implemented in terms of call/1 (setof/2, not/1 etc).

Acknowledgements

The author is grateful to Jan Maluszyński for his continuous support and advice. S.Bonnier, M.Bruynooghe, W.Drabent and H.Søndergaard provided many useful and constructive comments on previous versions of the paper. Fundings were supplied by the Swedish National Board for Technical Development (STU).

References

Title: Towards a Framework for the Abstract Interpretation of Logic Programs

Author: Ulf Nilsson

Abstract: A new framework for abstract interpretation of logic programs is presented. The idea is to take as the basis a simplified semantics that approximates the standard operational semantics of logic programs but still makes it possible to derive non-trivial abstract interpretations. The relative simplicity of the basic semantics facilitates systematic derivation of abstract interpretations and static analyses of logic programs. Sufficient conditions for termination and correctness of the derived interpreters are provided. The approach is illustrated by inferring groundness information for an example program.
A Selection of Previous Research Reports.

LiTH-IDA-R-88-34 Arne Jönsson, Nils Dahlbäck: Talking to a computer is not like talking to your best friend. Also in Proc. of the First Scandinavian Conference on Artificial Intelligence, March 9-10, 1988, Tromsö, Norway.

LiTH-IDA-R-88-30 Erik Sandewall: Future Developments in Artificial Intelligence. Also in Proc. of European Conference on Artificial Intelligence (ECAI), Munich, August, 1988.

LiTH-IDA-R-88-18 Nils Dahlbäck: Mental Models and Text Understanding - a Commented Review.

The Department of Computer and Information Science
Linköping University

organizes undergraduate and graduate studies in Computer Science, Telecommunication and Computer Systems, and Administrative Data Processing. Research activities have an emphasis on advanced software technology and computer systems design and are organized in a number of research laboratories:

- **ACTLAB - Laboratory for Complexity of Algorithms**, which is concerned with the design and analysis of efficient sequential and parallel algorithms, and complexity theory, especially in the areas of computational geometry, data structures on bounded domains and graph algorithms.

- **ASLAB - Application Systems Laboratory**, which studies design of advanced support systems for interactive use of computers, including tools for automated construction of applications software.

- **CADLAB - Laboratory for Computer-Aided Design of Electronics**, which concentrates its research activities around tools for integrated development of hardware and software, graphics-based modelling and simulation techniques.

- **LIBLAB - Laboratory for Library and Information Science**, which studies methods for access to documents and the information contained in the documents, concentrating on catalogs and bibliographic representations, and on the human factors of library use.

- **LOGPRO - Laboratory for Logic Programming**, which concentrates its research activities around foundations of logic programming, relations to other programming paradigms and methodology.

- **NLPLAB - Natural Language Processing Laboratory**, which conducts research related to the development and use of natural language interfaces to computer software.

- **PELAB - Programming Environments Laboratory**, which works with design of tools for software development, specific functions in such tools and theoretical aspects of programs under construction.

- **RKLLAB - Laboratory for Representation of Knowledge in Logic**, which covers issues and techniques such as non-monotonic logic, probabilistic logic, modal logic and truth maintenance algorithms and systems.

Research Reports 1988

LiTH-IDA-R-88-44 Ulf Nilsson: Towards a Framework for the Abstract Interpretation of Logic Programs.

