

LiTH-IDA-R-86-05
ISSN-0281-4250

January 1986

The Department of Computer and Information Science

Linköping University

Annual Research Report 1985

This report describes research on software (and to some extent hardware)
technology within the Department of Computer and Information Science at
Linköping Institute of Technology, which is a part of Linköping University.
Main areas of current research are programming environments, artificial
intelligence, application systems, computer-aided design of digital systems,
representation of knowledge in logic, complexity of algorithms, logic
programming, library and information science, and administrative data
processing. The department has a well organized integrated program for
graduate studies (PhD and Licentiate degree), with a large faculty engaged in
research and thesis supervision. In addition to the research organization and
the extensive undergraduate course program, there is also a knowledge transfer
program at the department where we cooperate with large Swedish companies
on medium to long term R&D issues.

Mailing address:
Dept. of Computer and Information Science
Linköping University
S-581 83 Linköping
Sweden
Tel: int + 46 13 28 10 00

Postadress:
Inst. för datavetenskap
Universitetet och
Tekniska Högskolan i Linköping
581 83 Linköping
Tel: 013 - 28 10 00

C O N TE N TS

1. Introduction .. 1
1.1 Organization of the department... 1
1.2 Objectives of the research programmes.. 2
1.3 Build-up of Research Areas... 3
1.4 Knowledge Transfer Activities... 5
1.4.1 Improvements in Undergraduate and Masters-level Teaching 5
1.4.2 The Knowledge Transfer Program .. 6
1.4.3 Spinoff Companies ... 6
1.5 Environment .. 8

2. The Programming Environments L a b o ra to r y 9
2.1 Programming Environments as a Research A r e a 9
2.1.1 The Different Schools of Computer Science .. 10
2.1.2 Programming Environments and Software In dustry 12
2.1.3 Future Development of the Area .. 14
2.2 Activities in PELAB ... 14
2.2.1 The DICE Project ... 15
2.2.2 Structure-Oriented Text Editor for Large Program s............................. 16
2.2.3 Static and Dynamic Program Flow A n alysis .. 18
2.2.4 Requirements for Version C on tro l.. 19
2.3 Next Research Area for P E L A B .. 20
2.3.1 Our A p p roach ... 22
2.4 PELAB Personnel .. 23
2.5 Selected P ublications... 23

3. The Application Systems Laboratory 25
3.1.Projects and Researchers... 25
3.1.1 Summary of research 1985 .. 25
3.1.2 Personnel, ASLAB, spring 1986.. 27
3.2.Background... 27
3.3 Overview of current research activities... 28
3.3.1 Knowledge-Based Application Software Environments........................... 29
3.3.2 Statistical information systems and database technology....................... 35
3.4 External cooperation... 38
3.5 Publications... 38

4. The Artificial Intelligence L ab o ratory 41
4.1 Research on knowledge representation ... 42
4.1.1 Laboratory members working in the knowledge representation area . 43
4.1.2 The ICONStraint project .. 43
4.1.3 The AIM project .. 44
4.2 Research in natural-language processing .. 49

4.2.1 Personnel .. 49
4.2.2 Parsing and semantic interpretation .. 49
4.2.3 Text generation .. 52
4.2.4 The integration of different knowledge bases in a NLI 52
4.2.5 NLIs and the human user ... 53

5. The Laboratory for Computer-Aided Design of Digital
Systems .. 55
5.1 Introduction .. 55
5.2 Current W o r k ... 56
5.3 VLSI layout and Timing Problems .. 57
5.4 Timing and the Exploitation of Natural Parallelism................................. 57
5.5 Extensibility and Specialization... 58
5.6 Hardware - Software Tradeoffs ... 59
5.7 Design Methodology and the Man-Machine Interface 59
5.8 Ongoing ASAP Projects ... 60
5.9 Progress During 1985 .. 62
5.10 Steps Towards the Formalization of Designing VLSI System s............. 63
5.11 Simulation and Evaluation of an ASAP Architecture 64
5.12 Cooperation With Other G rou p s ... 66
5.13 Industrial Significance... 67
5.14 Other Related Activities .. 67
5.15 Personnel... 67
5.16 Licentiate Theses ... 68

6. The Laboratory For Representation of Knowledge in
L o g ic .. 69
6.1 Researchers and Projects.. 69
6.1.1 Activities... 70
6.1.2 Laboratory M em bers ... 70
6.1.3 Main current achievements... 71
6.2 Non Standard L o g ic s .. 71
6.2.1 Non Monotonic L o g ic ... 72
6.2.2 Reason Maintenance ... 73
6.2.3 Fuzzy L o g i c ... 73
6.3.Office system s... 74
6.3.1 Theories of office software... 74
6.3.2 The case for non-integrated workstations... 76
6.3.3 Office Systems Components: the IM4 project 77
6.3.4 Experimental high level system: the LINCKS p r o je c t 78
6.4.Representation of Knowledge about Machinery 79
6.5 R eferences... 80

7. The Group for Logic P rogram m in g .. 81
7.1 Introduction .. 81
7.2 Researchers and Research Activities ... 81
7.2.1 Personnel and External Researchers .. 81
7.2.2 Background ... 82
7.2.3 Research in Efficiency of Logic Programming 82
7.2.4 Research in Theory of Programming .. 86
7.3 Contacts within the Department ... 86
7.3.1 Courses for Graduate Students ... 87
7.3.2 Direct C on ta cts .. 87
7.4 External Contacts ... 87
7.4.1 External Cooperation... 87

7.4.2 Conferences and Seminars .. 87

8. The Group for Complexity of A lg o r ith m s 89
8.1 Introduction.. 89
8.2 Group Members .. 90
8.3 Current Research .. 90
8.3.1 Efficient Data Structures on Bounded Domains (Rolf Karlsson) . . . 90
8.3.2 Geometric Decomposition Problems (Levcopoulos, L in g a s)................ 91
8.3.3 Graph Algorithms (Andrzej Lingas) ... 92
8.3.4 External co n ta c ts .. 92

9. The Library and Information Science Laboratory . . 95
9.1 Introduction.. 95
9.2 Cataloging and document description... 96
9.2.1 Project ESSCAPE ... 96
9.2.2 Other p ro je cts ... 97
9.3 Project H YPE R C A Talog... 98
9.4 Other activities.. 99
9.5 Personnel ... 99
9.6 List of pu b lica tions.. 100

10. The Administrative Data Processing G r o u p 103
10.1 Administrative data processing.. 103
10.2 Research activities... 104
10.3 Personnel: ... 104

Appendix A: The Knowledge Transfer Program... 105

Appendix B: Graduate Study Program... 109

Appendix C: Undergraduate Education.. 121

Appendix D: Computer Facilities... 127

Appendix E: Publications since 1980... 129

1.

Introduction

1.1 Organization of the department.

The Department o f Computer and Information Science (IDA) was formed in
1983, bringing together groups previously in the Mathematics and the
Electrical Engineering departments. It has presently about 110 employees
(about 15 with a PhD) and activities are divided approximately equally
between research and teaching. The research and graduate education program
is organized in common for the whole department, but research projects are
carried out within smaller groups, research laboratories, which typically consist
of five to ten persons. The undergraduate teaching encompasses the three
subject areas computer science [datalogi) , telecommunications and computer
systems (telesystem) and administrative data processing (administrativ
informationsbehandling).

The research program is coordinated by the board for research activities and
graduate education, headed by Erik Sandewall. The current laboratories are
PELAB (Lennartsson) for programming environments, ASLAB (Hägglund) for
application systems, AILAB (Tengvald) for artificial intelligence, CADLAB
(Lawson/Lyles) for computer-aided design of digital systems, RKLLAB
(Sandewall) for representation of knowledge in logic, and LIBLAB (Hjerppe)
for library and information sciences. In addition there are special research
groups for logic programming (Maluszynski) and for complexity o f algorithms
(Lingas), which are somewhat smaller but with a higher proportion of
researchers holding a PhD. The group for administrative data processing,
although primarily a group for undergraduate teaching, also includes some
research activities.

The major funding for our research is supplied by the Swedish Board for
Technical Development, STU, (85/86: 5.2 MSEK) In addition to the STU
support, funds are also provided by the Delegation for Technical and Scientific
Information Supply (DFI, 85/86: 0.8 MSEK), NFR (85/86: 0.08 M SEK), other
sources (85/86: 0.4 MSEK) and the ordinary university budget for research and
postgraduate studies (85/86: 2.6 MSEK). The joint program for knowledge
transfer to industry has an additional budget (85/86: 2.1 M SEK), provided by
the participating companies. At present 1 SEK is approximately 0.13 USD.

2 ID A AN N U A L RESEARCH REPORT 1985
Introduction

The recruiting situation at the department is presently very good. Faculty
include 1 5 persons with a PhD, all of whom are contributing also to
undergraduate education. Several of them have their PhDs from universities
abroad and there are many nationalities represented at the department,
contributing to an intellectually stimulating environment. There are also a
number of persons with a backgrund in industry working part time at the
department. The number of students applying for graduate studies is also very
high, including also a large number of applications from abroad.

1.2 Objectives of the research programmes.

The major part of the research is currently funded by the Swedish Board for
Technical Development, STU. The previous f i v e - y e a r programme for
knowledge development in in information processing 1980- 85 and the national
p ro g ra m m e fo r m icroelectronics have been of decisive im p o r t a n c e fo r the
build-up o f research in the department. The funding thus emphasizes not only
basic research, competence build-up, and development of excellency in selected
areas, but also that results from the work should be transferred to applications
in industry, commercial users of computer systems, public administration, or in
other areas of research.

These goals are sometimes competing or contradictory. We have tried to
balance our efforts so that the different goals would be achieved reasonably
well. The current state at the department combines a broad coverage of
different specialities in computer science, which provide the basis for
high-quality undergraduate and graduate education programmes, with
critical-size groups in several central areas, such as AI, expert systems,
programming environments, digital systems design, and theoretical computer
science.

Interaction with industry is promoted and taken care of in several ways, with
the intension to utilize our competence as efficiently as possible and to
maximize the mutual outcome, without becoming dependent upon industry
funds for financing of research. Our knowledge transfer program , which started
last year, has become a success and provides an ideal framework for people
from industry working together with the department’s personnel.

Still the most important success criterion is the quality of research and the
results produced. Important measures are the number of PhDs (and licentiates)
produced, the number (and quality) of scientific papers published in
international journals and conference proceedings, and the level o f the
interaction with the international research community, as measured by e.g. the
interest for cooperation, visits, exchange of results, etc. We feel the research at
the department has reached a size and q u a l i t y which gives it a high
in ternation a l visibility. The following chapters describing activities in the
individual r esearch groups, and the appendices listing publications, etc., should
substantiate this claim.

ID A A N N U A L RESEARCH REPORT 1985
Introduction

3

1.3 Build-up of Research Areas.

The research proposal in 1979 for the STU supported knowledge development
programme proposed research in two areas: programming environments and
application systems, the latter including the study o f application modelling,
dialogue systems, and office applications. Additional proposals were made later
for a laboratory for artificial intelligence, with an emphasis on expert systems
and for an LSI Design Center in cooperation with the Physics department, one
part of which has evolved into the current CADLAB.

Looking in retrospect, we observe that these were fortunate selections, and that
all these named areas are considerably more ’popular’ now than five years ago.
From the reports for the respective laboratories, we can also see that their
initial plans have provided useful guidance.

But as could be expected, we have also seen additional research areas during
this period that also were well worth covering, and which connect organically
to the existing areas of study. To some extent those new fields have been
assimilated within the existing laboratory structure:

- formal specification methods in the programming environments laboratory;

- statistical information systems in the application systems laboratory (Bo
Sundgren).

In other cases the connections have been established by organizational means:

- in 1983, the new Department of computer and information science (IDA) was
formed from the previous datalogi, telesystem, and ADP (Administrative Data
Processing) groups. This has led to rapidly increasing interactions between the
C.A.D. laboratory, where computer architecture and VLSI design techniques
are studied, and the other groups;

- also in 1983, we joined the inter-Nordic SYDPOL (System Development
environment and Profession-Oriented Languages) project, in cooperation with
researchers from the universities of Oslo, Aarhus, and Stockholm in the areas
of user interactions, and the effects of information systems on user milieu;

- since 1985, we participate in a European cooperation on A I and Pattern
Recognition under COST.

- during 1985 a planning and initial build-up of joint activities in the robotics
area has been carried out together with the department of mechanical
engineering and the department of physics.

Finally, new areas o f activities and new groups have been formed, under the
leadership of arriving researchers:

4 ID A AN N U AL RESEARCH R EP O R T 1985
Introduction

- logic programming and attribute grammars, started by Jan Komorowski and
continued with additional breadth by Jan Maluszynski, later joined by
Wlodzimierz Drabent;

- geometrical complexity, started by Andrzej Lingas, later joined by Christos
Levcopoulos and R olf Karlsson;

- library information science, in the laboratory started a few years ago by
Roland Hjerppe.

- administrative data processing, where Göran Goldkuhl and Annie Röstlinger,
previously in Stockholm and Göteborg, will restart research activities.

We also experience a split-up of existing laboratories, when subareas grow to a
critical size or when subgroups from several labs are brought together to form
a new productive constellation:

- representation of knowledge in logic, where parts of ASLAB together with
some persons from AILAB formed the new RKLLAB under Erik Sandewall.

- natural language processing, where we expect that one part of the AILAB
will form a new laboratory during 1986 (Ahrenberg, Wirén).

Through all o f these means, we now have a research environment with
considerable diversity, where at the same time the existence of a joint
department and a laboratory structure provides the cohesion or ’glue’ . In this
milieu, the graduate students are exposed to a multitude of research
specialities, so that they can make an informed decision about which area to
choose for themselves, and where interactions between specialities is an
everyday reality. Appendix B presents a list of the available advisors for the
graduate students in our department, and their background and present
research interests.

One significant aspect of the departmental build-up is that we are now able to
offer a comprehensive set of courses for graduate study. Both the necessary
requirements for such courses (teachers, and students) are present now to a
much larger extent than five years ago.Appendix B shows the courses that are
offered during the present academic year.

Another significant aspect of the department is that the base of computer
equipment has been strengthened, through the addition of a large number of
powerful workstations (such as Xerox Lisp-machines and SUNs) on an
Ethernet, as well as by the gradual extension of our previous DEC-oriented
system (DEC-20, P D P -11:s, DECNET). The existence and reliable operation of
this base has been significant, not only for our own work, but also for the
knowledge transfer. See also appendix D.

These things, taken together, represent the results of our efforts to build up a
viable research milieu and at the same time provide the basis for high-quality

ID A A N N U A L RESEARCH REPORT 1985
Introduction

5

undergradate and graduate study programmes in computer science.

1.4 Knowledge Transfer Activities

A main task for a research organization is to serve as a source of competence,
bringing together and distributing not only its own results but also to import
and collect state-of-the-art information from the international research
community. A great deal of attention is paid at our department to the issue of
organizing effective knowledge transfer procedures for the benefit of recipients
outside the university.

1 .4 .1 Im p rov em en ts in U n d ergra d u a te an d M a sters -lev e l T ea ch in g

In the long range, the most significant method for knowledge transfer is
through undergraduate and masters-level education. The development of our
research programme has contributed to that education in several ways.

Firstly, a new computer science ’line’ (datavetenskapliga linjen) was started in
1982 in addition to the computer science and engineering curriculum
(datateknik-linjen). This new line is in the school of engineering, but differs
from ordinary engineering curriculums (such as electrical engineering, or
mechanical engineering) in some significant ways:

= significantly more discrete mathematics, partly gained by reduction of
the calculus courses

= courses in theoretical branches of computer science

= courses in AI and AI-oriented subjects

= Lisp as the first programming language

= relevant humanities, such as psychology and linguistics, are significant
parts of the curriculum.

The first set of students from this curriculum are now in their fourth and last
year. It is already quite clear that these students develop a different ’culture’ ,
and in particular a more solid basis for graduate research in computer science,
than what students in our other lines do. While certainly our other lines will
continue to be of very high importance, the computer science line has provided
a significant addition.

Secondly, the set of courses that are available in the other lines has been
extended, and many of the courses have been improved. Technically, this has
often been done by making new courses from the computer science line

6 ID A AN N U AL R ESEARCH R EP O R T 1985
Introduction

available to other lines as well, but it is the STU funded research that has
provided the competence base for the new courses. In the computer science and
engineering line, a specialization for telematics has been added, relying partly
on our research in interactive systems and office systems.

Thirdly, the mechanical engineering line has been extended with a new
specialization that combines mechanical and computer engineering. We believe
that especially the STU-funded research in artificial intelligence will be
significant within that specialization.

Details about these curriculums and the set of courses there are given in
appendix C.

1 .4 .2 T h e K n o w le d g e T ransfer P rog ra m

Knowledge transfer via undergraduate education is efficient in the long run,
but slow to take effect. We have instituted a knowledge transfer program,
K T P , together with a limited number of industries:

Alfa-Laval
ASEA
Ericsson
S-E-Banken

(a few more may be added and there are presently several candidates wanting
to start in the near future). The goal of KTP is to ’inject’ competence derived
from research into the existing industrial organization. The method is that at
least one person, located on a middle level in the organization, comes to our
department for a period of one or a few years, in order to learn new
technology, and returns to his organization after that time. The participating
company also pays a yearly contribution that helps pay for researchers
(particularly guest lecturers) and equipment.

More details about K TP are given in appendix A.

1 .4 .3 S p in o ff C om pan ies

The significance of university spinoff companies for industrial growth is well
known. One part of our artificial intelligence laboratory, lead by Uwe Hein,
split off in the spring of 1984 and formed Epitec AB. The new company has
presently 15 employees. The main effort goes into development of a commercial
product for building expert systems based on experiences from the AILAB
research. The company is also engaged in consulting and is presently assisting
several Swedish companies in the development of knowledge-based systems.

A few years ago, Jerker Wilander and Kenth Ericson founded the company
Softlab AB in Linköping. Softlab is working in the area of compiler design, and
they have developed the front end for the PLEX compiler now used at LM

ID A A N N U A L RESEARCH REPORT 1985
Introduction

7

Figure 1.1. Undergraduate project courses are inspired by K T P companies.

Ericsson. The company is growing steadily and is also expanding its scope of
applications.

Recently G rafitec AB has been founded by Michael Pääbo and others from the
CADLAB group. Grafitec will be active in business graphics and, later on, in
scene animation. Another earlier spinoff from CADLAB was DIGSIM.

8 IDA ANNUAL RESEARCH REPORT 1985
Introduction

Some other spinoff companies in Linköping have required a considerable
number of software specialists, although their main business is something else.
In particular, Context Vision (formed in 1983, for building picture processing
systems) has recruited heavily from our department. The intensive
communication with the many developing high tech software companies around
the university is a vitalizing force for the department.

1 .5 E n v i r o n m e n t

During 1985 the department moved into a new building (E), connected to the
old building B. This new building is very well adapted to the needs of the
research and teaching groups and provides a very inspiring environment, which
promotes informal communicatation and cooperation. Unfortunately the
building was too small from the beginning. Although one third of the
department is left in the old building, we already have to rebuild some of the
new laboratories into office space.

Figure 1.2. Communication area in the E building.

IDA ANNUAL RESEARCH REPORT 1985
The Programming Environments Laboratory

9

2 .

P E L A B

T h e P r o g r a m m i n g E n v i r o n m e n t s

L a b o r a t o r y

Bengt Lennartsson

The concept Programming Environment is recognized and used in the research
community. For some years it has appeared in titles of conferences, workshops,
textbooks, and research reports. There is an increasing number of researchers
sailing under this flag, meeting to exchange ideas and experiences. In software
industry, on the other hand, the problems, methods, and tools are grouped
differently. Software Engineering Environment, life cycle support, configuration
management, etc., are terms frequently used. The grouping of problems and
methods in industry does not match the grouping of ideas and results in the
research community. We will here elaborate on the different views, their
backgrounds and their meanings. After that follows a presentation of activities
in PELAB.

2 .1 P r o g r a m m in g E n v i r o n m e n ts a s a R e s e a r c h A r e a

The background of programming environment research is the software
development situation in the sixties. There were several kinds of reactions to
the support systems of that time:

* They were complex and impossible to grasp. UNIX is a typical reaction
to that. The success of UNIX is to a high degree due to the simplicity
in its design.

* They were hindering rather than supporting the user. INTERLISP is a
typical reaction of this kind. The spirit of the INTERLISP
development was to investigate and demonstrate how supportive a
system could be. It was quite clear from the beginning that power was
the dominating interest. Simplicity was not. The functionality of
INTERLISP has been a source of inspiration for almost all later

The work in PELAB is mainly supported by STU, The Swedish Board for Technical
Development.

10 ID A AN N U AL R ESEARCH R EP O R T 1985
The Programming Environments Laboratory

programming environment projects.

The old systems were implemented ad hoc and not based on a formal
specification or on formal concepts. M ENTOR (IN RIA), The
Synthesizer Generator (Cornell), and The Programming System
Generator (Darmstadt) are typical projects aiming at using existing
results from automata theory, formal languages, etc., as a basis for the
development of support systems.

All programming environment research projects have been more or less
implementation oriented, and most fit into one or more of the three categories
listed above. SM ALLTALK is an example of system with a different origin. It
was from the beginning designed for naive users: very young children. In spite
of that, it has inspired specialists and researchers in programming
environments in general. The use of high resolution graphics combined with a
pointing device, its full integration of program, support system, and screen
objects, have been and will continue to be important inputs to research as well
as to industry.

2.1.1 The Different Schools of Computer Science

Among the researchers in computer science there is no general agreement on
methods or central problems. There are at least two approaches. We
temporarily assign the labels the formal school and the explorative school to the
two approaches.

The Formal School

Computer science is based on logic and mathematics. The central problem
is: how to transform formal abstract specifications to executable programs.
If this transformation is semantics preserving, then the program is correct.
Important subareas are: notations and their semantics, formal methods,
correctness proving, and general formal theoretical foundations.

The Explorative School

Computer science is an experimental discipline. Computer systems are
normally used by humans. Their needs and expectations are not available
as formal specifications. The user and the using organization will change
their behavior when a new system is introduced. There is a dynamic
mutual influence between the system and its users. The central problem is:
how to develop executable programs that matches the users concrete and
changing needs. Computer science is influenced by linguistics, psychology,
sociology, and application domain knowledge, as well as by logic and
mathematics.

Unfortunately the communication channel between the schools has a very low
bandwidth. The two sides do not in general appreciate each others methods or
results. The discipline computer science is unique in this respect as evidenced

ID A A N N U A L RESEARCH REPORT 1985
The Programming Environments Laboratory

11

by a study of statements from reviewers of research proposals to National
Science Foundation, USA.

One early use of the computer by scientists was as a calculator. They had
analytical formulas and, given some input data, the program terminated after
producing the corresponding set of output data. The analytical formulas served
as a specification of the program. The formal view of computer science is
highly relevant for this domain. In the explorative school interactive systems
were considered. The input and output data were interleaved in a dialogue.
Sometimes the user program ” never” terminates. In some systems the current
state is saved after each session, and this state is then resumed when next
session starts.

The location of the programming environment area is to some extent in the
battlefield between the two forces. The aim of many of the research project is
to give support for experimental, or explorative, programming. That is, to
make updates easy and cheap, to support updates of executing programs, and
to accept considerable software development in spite of lacking formal
specification of program under development. The software designer learns
about the application area and about the user. Software design includes the
selection of functions to be implemented. On the other hand, when the
explorative phase is over, that is, when there is a stable match between the
existing program and the needs and expectations of the users, then the system
should support activities recognized by the formal school. That is, activities
like extraction of abstract functional specification from the existing program
and support for transformation of this specification to an efficient and
maintainable executable program.

There are two reasons why the research area Programming Environments has
one foot in the explorative school.
Firstly, by tradition most systems discussed and developed in the area have
aimed at support for explorative programming. The design activity in general
maps better to the non-terminating and information saving view, than to the
terminating output producing program.
Secondly, the research area itself has to be explored. What kind of functionality
would be appreciated by users of programming environments, how should the
user interface be designed, etc.

During the last years, however, the area has matured, and today there is
sufficient experience gathered to allow formal specification of the functionality
o f programming environments. The trend is to rely on results and methods
from the formal school for the development of ” environment generators” . Thus
the second link between programming environments research and the
explorative school is weaker now than in the past. Instead, the link to the
formal school is becoming more important.

The second link between programming environments research and explorative
programming remains, however. Keywords as incrementality, support for
updates and re-use of information, appear in abstracts from most current

12 ID A AN N U A L RESEARCH R EP O R T 1985
The Programming Environments Laboratory

papers on programming environments.

To summarize, the research area programming environments has an origin in
the explorative school. Programming environments themselves are today often
implemented according to ideas in the formal school, but they are aiming at
support for software development also in the explorative tradition.

2 .1 .2 P ro g ra m m in g E nvironm ents and S oftw are In d u stry

The software crises is a well known phenomenon. Deadlines are broken and
cost estimates fail. Programs are erroneous. Different organizations try
different solutions. More people, new methods, new languages, new tools, new
management, etc.

The current view in industry of the software development process is normally
according to the life cycle model, where work and responsibility are divided
into pieces, phases. The output of one phase (say module specification) is the
input for the phase to follow (module design and coding). Backtracking is very
expensive (the waterfall analogy). Many companies are developing, or looking
for, a complete phase oriented tool set, a Software Engineering Environment.

The life cycle model is not consistent with the view of software development in
the programming environment research community. Explorative programming
considers requirement analysis, specification, coding, debugging, testing, and
field test to be integrated and interleaved activities. In a large scale industrial
project where hundreds of thousands, or millions, lines of code shall be
developed, a strict distribution of work and responsibility is necessary. A large
number of people will be involved. Persons will come and go. Such a project
can’t follow the explorative tradition. On the other hand, it can be assumed
that the major parts of the application area are well known for such a project.
Most functions can be specified correctly in advance and implemented
top-down. However, certainly some of the functions have to be ” explored” .
Bugs will occur and demand correction. During the lifetime of the system the
requirements will change. The system will grow. Even if it is necessary to base
the organization of the development work on a formal basis, support for
updates, undoing, etc., in the explorative tradition is required.

A full conversion in industry to the explorative style would require
reorganization of current activities. Such a reorganization o f the work would
make some of the existing problems disappear and also introduce some new
ones. Very few organizations are willing to take such a risk, in particular in a
critical situation. It is also difficult for anybody involved to understand the
consequences, as the programming environments obviously are lacking support
for some of the existing problems and giving support for others, not existing.

A very strong conservative force is the back-ward compatibility. Very few users
and organizations start from scratch. They want to improve or enhance current
systems, methods, or procedures. Use and maintenance of existing systems

IDA ANNUAL RESEARCH REPORT 1985
The Programming Environments Laboratory

13

dominate over development of new ones. At each separate decision point it is
assumed to be cheaper to add functions to an old system, to add people to an
existing organization, to buy yet another computer from the old vendor, etc.,
than to restart from scratch. Also the end users, and everybody else involved,
are conservative. They may have several years of experience of the existing
situation. Their skills, their value on the market, may consist of knowing how
to handle tricky tools and systems. A situation, where the problems they are
the experts to solve disappear, may not attract them.

One main idea in programming environment research has been, that at the
time the results will be exploited, hardware will be much cheaper than when
the research is done. Thus most implementation have been quite CPU
consuming. As much work as possible has been transferred from the user, the
software specialist, to the system. In many research projects it has been
assumed that the user, the software specialist, has a powerful personal
workstation on the desk. Today such equipment is available at a reasonable
price. Only one company, however, has a long time experience of the use of
personal workstations and powerful programming environments in a large
scale, Xerox Corporation.

At Xerox PARC powerful personal workstations have been in use since the
middle of the seventies. The support systems like Interlisp-D and the MESA
Environment, later Xerox Development Environment, have required computers
like the Dolphin or the Dorado. Today computers of the same power and
functionality are available on the market, at the same time as the bottleneck is
number of available software specialist.

An alternative to consider for those suffering from the software crises is to
learn from the experience at Xerox. There, powerful programming
environments have been used for several years in full scale product
development projects. We expect personal workstations having the power of at
least the Dorado, to be on every software specialist’s desk within very few
years. At least in companies able to recruit software specialists.

Another difference between the views in industry and in programming
environment research is about the educational level and the skills of the user.
In the programming environment research community it has often been
assumed that the user has a grade or degree in computer science. In industry,
the software designer often is an application domain specialist with some
rudimentary training in programming, or at least in one or more programming
languages. Just as in computer aided mechanical or electronics design, support
systems can’t create good designers. They can just improve creativity and
productivity for those who are skilled specialists already.

14 ID A AN N U A L R ESEARCH REPORT 1985
The Programming Environments Laboratory

2 .1 .3 F u tu re D ev e lop m en t o f the A rea

There are still several unexplored regions in the research area programming
environments. So far, the target languages considered have been LISP dialects,
SM ALLTALK, and block structured languages in the Algol family. Powerful
support systems for other types of languages have not yet been studied or
developed.

Another sparsely explored area is knowledge-based facilities in programming
environments. Expert systems, however, require the expert’s knowledge and
experience as the starting point. Most expert systems have been based on
knowledge in specific application domains. The domain software design has, so
far, been to large to be described in terms of a reasonable number of heuristic
rules. For more narrow subareas, like configuration management, cost
estimates, etc., however, progress can be expected.

Most research projects in the past have considered the target computer to be a
mono-processor and regarded the target program as monolingual. An
important new area is programming environments for multilingual software
running on distributed targets.

The steps from the idealized world in programming environment research to
the real very large systems developed in industry have to be taken. The
interpretation of large system is today a system with about one million lines of
code. This figure increases roughly by an order of magnitude per decade. This
enormous size is in itself an argument for support for updates and for
incrementality. It is a challenge to the research community to study
architectures for systems supporting the development and maintenance of very
large software systems.

2.2 Activities in P E LAB

The research in PELAB is a continuation of the work in program manipulation
projects, that was done here during the seventies, and of the INTERLISP
experience in general. PELAB was established as a separate research group in
1980. Since then four PhD dissertations and one licentiate thesis have been
presented. The work has covered a large area, from partial evaluation and its
application to Pattern Matching and to Specification of an Abstract Prolog
Machine, to Compiler Writing Systems and Incremental Compilation. A very
successful projekt, DICE (Distributed Incremental Compiling Environment),
has been finished, and a new project, Software Development Environment for
Distributed Targets, has just started.

ID A A N N U A L RESEARCH REPORT 1985
The Programming Environments Laboratory

15

2.2 .1 T h e D IC E P ro je c t

Peter Fritzson, Johnny Eckerland, et.al.

The DICE project is based on experience from previous PELAB projects,
PATH CAL (Jerker Wilander) and Parser Writing System (Kenth Ericson).
PATH CAL was a very early investigation of integration of command language,
programming language, and debug language in an environment supporting
incremental development and execution of Pascal programs..

In the DICE project (Distributed Incremental Compiling Environment) we
have been aiming at the development of an appropriate architecture for a full
scale integrated environment supporting the development of programs coded in
block-structured languages.

A prototype of DICE has been implemented. The tools are running on a
DEC-20, the host, where also all the information of the developed program is
saved. The host is connected to a target, a PDP-11, where the developed
program is executed. Among the results should be mentioned that
the flexibility normally available in an interpreting system could be achieved in
a compiling system also, and that
the functionality of a high level target debugger can be obtained via the
incremental compiler without any target code instrumentation, and without the
existence of a target debugger at all.

The architecture of DICE has been developed under several constraints. The
system should be able to operate on compiled code and the developed program
should be kept separate from the development environment. Some of the more
important points of the DICE system are:

Rem ote debugging and maintenance is easy to achieve with the DICE
system configuration.

An incrementally compiling system like DICE which has a program
data base is especially suitable for the development of big programs, on
the order of 20 000 to 100 000 lines of code. Compiled code gives fast
execution and incrementality gives fast program update and powerful
debugging facilities.

Separability - the compiled program is separated from the source code
so that it can execute outside of the program development system.

Connectivity - the DICE system can be connected to a malfunctioning
production program in order to debug it or to correct it. This can be
done after the error has occurred and need not be planned in advance.

The results from the DICE project are currently used in the development of
the next generation of environment at SUN Micro Systems. Peter Fritzson, the
DICE architect, is on leave at SUN for one year and a half.

16 ID A AN N U AL RESEARCH REPORT 1985
The Programming Environments Laboratory

2.2 .2 S tru ctu re -O rien ted T ext E d itor for Large P rogra m s

Ola Strömfors

The ED3 editor designed and implemented by Ola Strömfors has been in use
for structured documents in general for several years. It has recently been used
as a template for a powerful language oriented editor-prettyprinter-syntax
checker. The language oriented features are available for Ada and Pascal.

Most program editing today is done with text editors. A compiler is then used
for both syntax checking and code generation. This means that detection and
correction of syntax errors take long time, especially for large programs. Some
text editors, e.g. EMACS , have modes for different programming languages.
Commands to insert templates for different programming language constructs
will save typing and avoid misspelled keywords. When the program text is
modified only limited syntax checks, such as parentheses matching, are
performed. For a language with simple syntax, e.g. Lisp, this perhaps can be
enough.

Many users find it difficult to handle large programs (or documents) with a
text editor. The reason is that most text editors only support a flat sequence of
characters or lines, and not the subprogram structure of a program (or the
paragraph and chapter structure of a document).

Some program editors are based on a parse tree representation of the program.
The editing commands interact with the parse tree and guarantees that no
syntax errors are introduced in the program. The ED3 editor is a bit different.
The tree structure is not used to build parse trees. Instead the user is free to
build any tree he wants. Often the structure follows the subprogram structure.
But the user often wants to divide a long sequence of procedures on the same
level into different groups. As head of each tree node he can put a comment
describing this group of procedures. This is useful for programming languages
without nested procedure declarations, such as C or even assembly languages.
Different nodes can even be written in different programming languages.

The following example will show how ED3 can be used to enter a program and
how syntax errors are removed interactively.

The user enters program text as usual, but does not care about
indentation or new lines. The user then hits the syntax check and
pretty-print key.

When a syntax error is found, the cursor will be placed just before the
first erroneous token. The error message will contain a list of legal
tokens at this position. The user then perhaps enters one of the
alternatives and hits the syntax key again. The text is parsed again
from the beginning (of the current text node).

ID A A N N U A L RESEARCH REPORT 1985
The Programming Environments Laboratory

17

If no syntax errors are found, the editor replaces the text with a
pretty-printed, copy. If the user does not like the result, he just has to
hit the undo key. He can also redefine the syntax key to just do syntax
check and no pretty-printing.

If the entered text contains more than one procedure, the user
normally will hit the split key, so that each text node contains only one
procedure.

The user has complete freedom how to cut his program (or document) into
text nodes and how to build a tree of them. ED3 just supplies a default.
Dividing the program into text nodes, with for instance a procedure in each,
gives the user a good overview of his program. The tree structure given by the
author may also help other people to understand the program.

The user will also feel more safe editing one procedure at a time. Replace and
delete commands then just affects the current node. Every time the text editor
is entered, a copy is taken of the current node. This makes it possible for the
user to get back the old version or to compare them.

The node structure also acts as well defined starting points for syntax check
(parsing) and pretty-printing. The speed of the parser and pretty-printer
(between 10 000 and 20 000 lines/minute) will make it possible for the user to
have text nodes with several hundred lines if he wants to. A syntax check will
still take only about one second to perform.

The structure editor in ED3 handles tree structures, which can be thought of
as hierarchical directories of nodes of different types. The structure editor has
commands to walk around in the tree, automatically displaying the current
node and its subnodes, and commands to copy, delete and move subtrees or
individual nodes.

ED3 must also contain an editor for each node type, like the text editor for the
text nodes and the graphics editor for picture nodes.

A syntax-directed editor could also be integrated to handle program nodes,
which can be parse trees for anything from a small program fragment to a
complete program. A procedure would be the most common choice as it is
today for text nodes.

The parser can transform a text node to a program node when the
syntax-directed editor is entered, and the pretty-printer could transform a
program node to a text node when the text editor is called (and when the
program is sent to a traditional compiler). The user will then have a free choice
between text editing and syntax-directed editing.

Both the text and parse tree representations could be kept until one of them is
modified to reduce the need for reparsing or pretty-printing.

18 ID A AN N U AL RESEARCH R EP O R T 1985
The Programming Environments Laboratory

Since the parse tree representation is space intensive, scanning and parsing is
time consuming and almost all compilers today only accepts program text as
input, a large program could be stored as tree of text nodes and only one node
at the time is parsed when the syntax-directed, editor is entered.

The parse tree representation will be chosen as the main representation as soon
as the compilers will accept it as input.

2 .2 .3 S ta tic and D y n a m ic P rog ra m F low A nalysis

Mariam Kamkar, Nahid Shahmehri

There is a growing attention paid to the reuse of already existing information
in programming environments. An important piece of information, for the user,
is indication of the consequences of an update. In the debugging situation it is
important to know whether it is meaningful to continue execution after a
change to a variable, or, in case of an incremental system, after a change in the
program. Such information is also important in the maintenance phase. Cross
reference information, or indications of dependencies in general, should be
interactively available when the user in editing mode is considering a change in
a program module.

The purpose of this project is to study methods and to develop algorithms and
interactive tools which can give the user the information required when needed'.
The system should be able to answer queries such as:

Which procedures/functions call a named procedure/function

Which objects are declared/referenced/modified by a named
procedure / function

Where can the value of a named variable affect the value of another
named variable

Such a tool is usually absent in programming environments designed for
block-structured languages.

The approach in the project is to specify language semantics in terms of an
attribute grammar and to store local information as relations for each
procedure. This approach enables incremental update of dependencies.

In a future step dynamic information, which depends on the current state of an
executing program, will be combined with static information. Such a
combination will, for instance in debugging and testing situations, sharpen the
answers given by the system to queries like:

ID A A N N U A L RESEARCH REPORT 1985
The Programming Environments Laboratory

19

Where may a variable have been assigned its current value

Where (and if) will the current value of a variable be used later on in
execution

2.2 .4 R eq u irem en ts fo r V ers ion C on tro l

Kristina Ernstsson

During its lifetime, software will exist in many versions. The reasons for this
can be variations in application demands, variations in hardware configurations
and the opportunity to improve a program, but still let the old versions exist
due to experimental improvements of algorithms. The differences between all
these versions are unavoidable and purposeful.

There are many approaches to the version control problem and there are great
differences between the systems implemented. The requirements vary with the
different desires that programmers, project managers, documentation writers,
and maintenance people have.

With the concept of VERSION CONTROL, we mean methods or models to

store different versions of an object and the relations between the
versions

give information about each version stored and the history of the
versions

retrieve some specific version

give support in producing and maintaining versions.

We will use the term VERSION as a general term for the objects we wish to
control. The versions are often described as being of two different kinds.

The first kind of versions is the result from the improvements of a program in
successive editing sessions, i.e. versions changing with time. We will call this
type of versions for REVISIONS. The term successors is also used in some
papers.

The second kind of versions results from the adaption of a program to a
specific use, for example for different hardware configurations or for different
application demands. Here we will call these adaptions of a program, for
different VARIANTS of a program.

In a program database we store different kinds of information about a
program. The program can simultaneously exist in various shapes, as source

20 IDA AN N U AL R ESEARCH REPORT 1985
The Programming Environments Laboratory

code, as machine code, etc. There are different representations o f a program.
We have also descriptions of the program, like cross reference information.
Therefore, it is important to augment the domain of version control normally
defined, to control representations and descriptions or, as we will call it,
ASSOCIATED INFORMATION.

In order to review existing systems and ideas about version control, we have
tried to make a classification of the different requirements that a user can have
on a tool for version control.

The most important requirement is to store different kinds of
information about the versions. To mention some of them: the version
history must be easy to access, the relations between variants and
revisions must be stored in a convenient way, creation and access to
the associated information must be available for the user or the system
in order to make different views of the program.

Of course the need for a sophisticated way of identifying the different versions
is also an important requirement.

With this basis for a version control tool, the following classification of the user
oriented requirements can be done:

supporting the technique of modularization, assisting when merging
and splitting versions, and when configuring a software system

supporting for reuse and change of old versions, and also for modifying
the existing version structure

support in assessing all the impacts of a modification to a specific
version, and advice on what has to be done

control and record authorizations to a specific version (A similar
problem to solve is simultaneous access of versions, both important
requirements in a software project)

The first step in this project is a review of existing systems and ideas on
version control.

2.3 N ext Research Area for PELAB

Lars Strömberg, Yngve Larsson, Bengt Lennartsson, et. al.

The area for PELAB research for the next period will be Programming Support
Environments for Distributed Targets. Software for distributed targets is a
topic highly relevant for Swedish industry. Critical applications could be found
in areas as industrial robots, process control, telecommunications, defense
systems, and for system software for office applications.

IDA ANNUAL RESEARCH REPORT 1985
The Programming Environments Laboratory

21

We have chosen this new profile for PELAB for three reasons. Besides its
relevance for Swedish industry, it raises a number of scientifically challenging
problems, and we have a very suitable background to attack this area. It is a
natural extension of the activities in the past. Taking the step, however, will
be far from trivial.

Figure 2.1. Support system for distributed target.

Among the specific problems to study are:
* How to extend the powerful incremental architecture developed in the

DICE project to handle the much more complex situation with
distributed targets.

* How to monitor, debug, and test concurrent programs in general.
* How to design an appropriate user interface for communication with an

executing concurrent system.
* How should the communication links between the host and the

distributed target be designed and used.
* How to compose a tool set supporting the code management for a

distributed target possibly consisting of different types of processors.

22 ID A AN N U AL R ESEARCH R EPO R T 1985
The Programming Environments Laboratory

The goal is not to give exhaustive contributions to every problem listed above,
but rather to focus on the architecture of the supporting host system and on
its communication with the target and the target processes. The research will
be based upon existing modern hardware (powerful work stations for the host,
high speed local area networks for the links, etc.). We will also use existing
programming languages and notations, for example, CCS, Edison, PASCAL,
MESA, or Ada.

2.3 .1 O u r A p p ro a ch

We will use the same approach for the new area as we have had for the DICE
project. In DICE we have developed an architecture for an environment
supporting development of software coded in a sequential language for a
mono-processor target. The basic idea in DICE is to define an abstract
machine maintained by the host system. The environment gives the user the
impression of an interpreting system, but the actual execution takes place in a
connected target with program compiled to machine code. The environment
maps the abstract machine, with concepts on the level of the supported
language, onto the target hardware and vice versa.

There are several advantages with this architecture. All hardware and software
below the supported language level are invisible and irrelevant for the
programmer. The user has the interactivity and incrementality normally
available in interpretive systems only, without having to pay by slow
execution. The abstract machine is a distinct and clean interface between the
user-oriented tools and the actual target hardware. The architecture enables a
very high degree of both rehostability and retargetability.

The abstract machine is also a proper interface between different thesis
projects. Some of the problems listed in the preceding paragraph are about
communication between the user and the abstract machine. The rest of the
problems only have to do with the mappings between the abstract machine
and the distributed target.

ID A A N N U A L RESEARCH REPORT 1985
The Programming Environments Laboratory

23

2.4 P E L A B Personnel

Bengt Lennartsson, Tekn. Dr, lab. leader
Gunilla Lingenhult, secretary

Supervisors:
Pär Emanuelson, Fil. Dr With EPITEC AB from July 1985
Peter Fritzson, Tekn. Dr At SUN March 1985 - July 1986
Anders Haraldsson, Fil. Dr

Employed graduate students:
Rober Bilos, Civ. Ing.
Kristina Ernstsson, Civ. Ing.
Mariam Kamkar, BSc
Yngve Larsson, Civ. Ing.
Nahid Shahmehri, BSc
Lars Strömberg, Civ. Ing.
Ola Strömfors, Civ. Ing.

Research engineer:
Ralf Nilsson With Ericsson from August 1985

KTP participant:
Tom Rindborg, Ericsson Information Systems

Associated persons:
Johnny Eckerland, Tekn. Lic., EPITEC AB
Kenth Ericson, Fil. Kand., SOFTLAB AB
Pär Emanuelson, Fil. Dr, EPITEC AB
Jerker Wilander, Fil. Kand., SOFTLAB AB

2.5 Selected Publications

J. Eckerland, Retargeting of an Incremental Code Generator, Licentiate
Thesis, Department of Computer and Information Science, Linköping
University, Linköping, Sweden. Nov. 1984.

P. Fritzson, A Systematic Approach to Advanced Debugging through
Incremental Compilation, Proc ACM SIGSO FT/SIG PLAN Software
Engineering Symposium on High-Level Debugging, in SIGPLAN Notices. Vol.
18, No 8, Aug 1983.

P. Fritzson, Adaptive Prettyprinting of Abstract Syntax applied to ADA and
PASCAL, LITH-IDA-R-83-08, Department of Computer and Information
Science, Linköping University, Linköping, Sweden. Sept 1983.

P. Fritzson, Symbolic Debugging through Incremental Compilation in an
Integrated Environment. Journal of Systems and Software 3, pp. 285-294,
(1984)

24 ID A AN N U AL RESEARCH R EPO R T 1985
The Programming Environments Laboratory

P. Fritzson, Towards a Distributed Programming Environment based on
Incremental Compilation, PhD Thesis, Department of Computer and
Information Science, Linköping University, Linköping, Sweden. April 1984.

P. Fritzson, The Architecture of an Incremental Programming Environment
and Some Notions of Consistency, Proceedings of the Workshop on Software
Engineering Environments for Programming-in-the-large. Harwichport,
Massachusetts. June 9-12, 1985. pp. 64-79.

O. Strömfors, L. Jonesjö, The Implementation and Experiences of a
Structure-Oriented Text Editor, SIGPLAN/SIGOA Symposium on Text
Manipulation, Portland, Oregon, June 8-10, 1981.

O. Strömfors, Editing Large Programs Using a Structure-Oriented Text Editor.
To be presented at the International Workshop on Advanced Programming
Environments. Trondheim, Norway. June 1986.

J. Wilander, An Interactive Programming System for PASCAL , BIT 20:2,
(1980). pp. 163-174. Also in Interactive Programming Environments. D.R.
Barstow, H.E.Shrobe, E. Sandewall, eds. McGraw-Hill Book Company. 1984.
ISBN 0-07-003885-6.

IDA ANNUAL RESEARCH REPORT 1985
The Application Systems Laboratory

25

3 .

A S L A B

T h e A p p l i c a t i o n S y s t e m s

L a b o r a t o r y

S ture Hägglund

The research program in the Applications Systems Laboratory (ASLAB) is
oriented towards the study of theory, methods and tools for the development
and maintenance of a non-trivial range of applications software with a
significant increase in productivity, maintainability, understandability and user
control. One important issue to be studied is how AI methodology and
software techniques, in particular knowledge-based expert systems, can be
integrated with more traditional information technology. Projects usually take
an experimental approach and emphasize participation in application-oriented
projects with industry and the public sector.

3 .1 P r o je c t s a n d R e s e a rc h e r s

This section summarizes the current achievements in the laboratory and lists
the personnel currently active in ASLAB research.

3.1.1 Sum m ary of research 1985

During the last year, the main efforts in the laboratory have been in the area
of investigating the prospects of using knowledge-based techniques in
application development. Our group has actively participated in the knowledge
transfer program at IDA and we have worked together with several industries
on applied projects.

Projects have been centered around the following issues:

The work in ASLAB is mainly supported by STU, The Swedish Board for Technical
Development.

26 ID A AN N U AL RESEARCH R EPO R T 1985
The Application Systems Laboratory

○ exploration of the advantages connected with a software architecture
where the control information needed for procedural execution o f the
program is separated from the domain knowledge expressing the rules
and facts of the problem. In particular the possibilities to improve
efficiency, focusing in problem solving and transparency in knowledge
representation, through the introduction of domain-dependent control
in the form of prototypes strategies based on typical cases from the
application area1. Another aspect is the reuse of knowledge bases for
other purposes than problem solving such as e.g. tutoring.

○ Study of knowledge base migration from environments supporting
knowledge acquisition and knowledge engineering into possibly diverse
delivery environments, including requirements on interfaces to existing
systems, such as e.g. databases. A practical case has been carried
through in cooperation with the medical informatics department, where
the Antibody Analysis Advisor (for giving expert advice on the
intelligent selection of analysis techniques for identifiction or irregular
antibodies in blood samples) has been migrated from the Lisp-based
EMYCIN into the database system MUMPS2.

○ Continued study of software architecture of knowledge systems tools
and of implementation techniques for rule-based inference engines, for
instance in connection with the implementation of an EMYCIN-
compatible system in MUMPS, to be used by the knowledge base
migration project. We have also had undergraduate students working
on experimental projects in this area: EMYCIN for a PC (Doherty)
and Expert-Trees (similar to Expert-Ease) on a Lisp Machine (Moen).
In this connection also short-comings of pure backward-chaining,
rule-based systems have been investigated, starting from the
experiences from a constraint-satisfaction configuration problem3.

○ Knowledge-based techniques and methodological issues in the area of
statistical information systems (SIS). The SIS group, under the
leadership of adj. professor Bo Sundgren, has conducted applied
projects involving the development of a PC-based consultation system
for statistical analysis, in particular the elimination of seasonal
variations in data (Block). Another project has studied the need for
more appropriate and precise methods for strategic interpretation of
administrative business data (Wallgren and Wallgren). More
theoretical issues are treated in the development of an algebra of
statistical operators, to be used as an extension of relational algebra for
databases4 (Sundgren, Nilsson).

1N ord in , On the Use of Typical Cases for Knowledge-Based Consultation and Teaching. LiTH
licentiate thesis No 48, 1985. Condensed version to appear in Proc of the 3rd Annual Conf. on
Applications of Expert Systems, Orlando, 1986.

2Sandahl et al., The Antibody Analysis Advisor and its Migration into a Production
Environment. Proc. of the 1st Int. Conf. on Expert Systems, London 1985.

3R ehm nert et al., Knowledge Organization in an Expert System for Spot-Welding Robot
Configuration. Proc. o f the 5th Int. Workshop on Expert Systems and their Applications,
Avignon, 1985.

4B o Sundgren, Outline of an algebra of base operators for production of statistics, ASLAB
Memo 85-04.

ID A A N N U A L RESEARCH REPORT 1985
The Application Systems Laboratory

27

More details on these and other activities within the laboratory are given in a
later section.

3 .1 .2 P erson n e l, A S L A B , spring 1986.

The following list presents persons currently active in ASLAB.

Project leadership/thesis supervision:

Sture Hägglund, PhD, Lab leader
Gunilla Lingenhult, seer.

Kevin Ryan, PhD, guest researcher 1985-86
Bo Sundgren, PhD, adj. professor

Graduate students:

Shamsul Chowdhury, BSc, MSc
Tim Hansen, MSc (starting spring 1986)
Henrik Nordin, Tekn. Lie. (at CMU 1985-86)
Ivan Rankin, M A (starting spring 1986)
Roland Rehmnert, MSc
Kristian Sandahl, MSc
Pål S^rgaard, MSc (visiting from Århus 1986-88)

Associated persons:

Lars Bengtsson, S-E-Banken AB, Stockholm
Hans Block, SCB, Stockholm
Patrick Doherty, undergraduate student
Ove Hanebring, Alfa-Laval Automation, Lund
Christer Hansson, undergraduate student
Christian Krysander, lecturer
Sven Moen, undergraduate student
Gösta Nilsson, Högskolan i Orebro
Pablo Lozan-Villegas, ASEA, Västerås
Lars Reshagen, Dept of medical informatics
Börje Rosengren, Alfa-Laval Automation, Lund
Nosrath Shasavar, undergraduate student
Toomas Timpka, Dept of medical informatics
Anders Wallgren, Dept of math/statistics
Britt Wallgren, Dept of math/statistics

3.2 Background.

There are strong indications that the next generation of computer and software
systems will support ” knowledge-based” approaches, i.e. systems containing a
body of generalized facts and rules which may form the basis for dynamically
adaptable problem solving mechanisms. In the near future we can expect

28 ID A AN N U AL RESEARCH REPORT 1985
The Application Systems Laboratory

exciting break-throughs for new approaches to information processing.
Hardware development (e.g. the japanese and other efforts on the next
generation computer systems), availability of inexpensive workstations
supporting broad-band human-computer interaction with voice I /O and
high-resolution color graphics, and AI-inspired software technology should
provide the basis for utilizing the computer as a powerful tool in many new
application areas.

A fundamental issue in this development is the software environment supplied
for the life-cycle support of information processing systems. We believe that
the ability to create this environment will depend on an integration of
experiences from many sources of knowledge. Important contributions will
come from areas such as formal specification techniques, programming systems,
database management and artificial intelligence, as well as from
application-oriented research on personal computing environments and office
information systems.

Contributions to this development from research in our laboratory can be
expected regarding those aspects of software architecture which have to do
with the combination o f the formalized structures of traditional data processing
with the management of unstructured informations in office systems. In
particular we pursue a deeper understanding of how program systems can be
created directly by users who are experts in their own application domain,
rather than specialists in the efficient organization of computations and storage
structures.

The importance of this development is reflected by the massive current interest
in tool systems for application development captured in such buzzwords as
” application generators” and ” forth generation software". Considerable increase
in software productivity has been demonstrated for tools which eliminate the
need to write application-independent parts in a general-purpose language. We
believe that this is an important trend which has to be matched by basic
research on the foundations for application modelling and automated
generation of software. In addition we believe that the next generation of
application development systems will incorporate important ideas from
artificial intelligence research on knowledge-based systems, and that
substantial contributions to this development can be made by research in our
laboratory. There also seem to be a unanimous agreement on the fact that
knowledge represented in the computer, in particular domain knowledge, is the
key to successful realisation of ” intelligent” application systems.

3.3 Overview of current research activities.

Work in the laboratory is organized in two subgroups, one for Knowledge-based
applications software environments, led by Sture Hägglund and one for
Statistical information systems and database technology, led by Bo Sundgren.

ID A A N N U A L RESEARCH REPORT 1985
The Application Systems Laboratory

29

3.3 .1 K n ow le d g e -B a se d A p p lica tion S oftw a re E n v iron m en ts .

(Hägglund, Nordin, Rehmnert, Sandahl, et al.)

This work is oriented towards the application of knowledge-based techniques
for software development, in particular the integration of methodology for
developing expert systems with more conventional information technology such
as database management and office information systems. In this process we
emphasize the potential benefits of A l methods for producing more useful,
easy-to-change and understandable software, rather than as a way to solve
computationally difficult problems, but also as a way to introduce the
following qualities in the software development, maintenance and use:

1. Interactive support for application modelling, through the use of
AI-inspired representation techniques which allow incremental
modification and maintenance knowledge stored in the system.

2. Advanced dialogue management, including (restricted) natural
language explanations, queries and result presentations.

3. Learning support, based on the fact that information inside the system
may be inspectable and also reusable for teaching purposes.

4. More maintainable systems, since the distance between what is stated
by the domain expert and what is entered into the system can be
shorter than in conventional programming.

5. Less rigid tools for application development than today’s fourth
generation languages, which can not represent and utilize non-trivial
domain knowledge.

We assume an architecture where the final system should run not only inside
the development environment but also on e.g. a personal computer or as a part
of a corporate database system. This implies that we have to study how a core
system can be realized in different environments and how the application
dependent part can be ” compiled” or migrated (automatically or through a
manually supervised transformation process) to the target system. Several
alternatives should be contemplated for the migration process in addition to
moving to an equivalent (Lisp) system, including such possibilities as
generating compilable programs in a suitable language or some kind of decision
tables to be interpreted. The purpose of migration may be:

- to promote target system independence,
- to interface to existing software,
- to improve economy,
- to increase efficiency,
- to hide development features, or
- to make the system more robust.

We will approach this problem by designing a development, or rather a
knowledge acquisition, environment for the Interlisp-D workstation, probably
using some existing software for building knowledge systems as the core of the

30 ID A AN N U AL R ESEARCH REPORT 1985
The Application Systems Laboratory

system. Each component in this development system will be designed under
the constraint that a counterpart, when appropriate, should be possible to
realize in the target environment. Part of the project is to define reasonable
target environments, with interfacing and integration with database
management as central topics. In fact, we expect to start with an investigation
of features, which are reasonable for a target system and then proceed to
design to corresponding development support needed in the knowledge
acquisition environment.

In order to further limit the task and make the problem area manageable, we
intend to restrict ourselves to consultation systems, i.e. systems providing
advice or decision support. In particular we will study initial-advice systems,
where the system supports a non-expert user in handling routine or
almost-routine cases while more exceptional cases to be forwarded to a human
expert are recognized as such. This basic pattern reappears in several
expert-systems projects, where we are engaged in external cooperation, which
makes it very promising as a study object. These applications are:

a) sales support in process industry,
b) financial and legal advice in banking and
c) medical treatment in primary health care.

In these areas we are, or has recently been, involved in projects, where the
main body of the application-oriented work is undertaken by persons from
industry or other departments. Our style of research is thus heavily oriented
towards participation in joint application-oriented projects with external
parties. We are however sincerely conscious about the importance of
emphasizing application-independent methodological issues in such work and
do not engage ourselves in projects which do not contribute to the
advancement of the research goals stated above.

Using typical cases for knowledge-based consultation and teaching.

This project started from the experiences in a small-scale project conducted
within the knowledge transfer program with the purpose to demonstrate how
an expert system for advising on legal and economical issues in a bank’s back
office could be built (Bengtsson). In that project it was clearly demonstrated
that a pure rule-based backward-chaining system (in this case EMYCIN) does
not provide an effective model of problem solving in the application domain.
One main drawback concerns the need for non-monotonic reasoning, i.e. the
need to allow new evidence to invalidate previous assumptions and conclusions.
(For instance, when a client learns about the tax effects of a suggested
transaction, he might change his mind on previously given information.)
Another obstacle is the difficulty to separate control information from domain
knowledge in the rule base, since pure rule-based systems often force you to
extend the rules with control information for efficiency purposes.

Starting with the objective to improve reusability of knowledge, a new design
of a system, POZZO, was made (Nordin). This generalized approach was based
on the use of prototypes derived from typical cases, as expressed by a domain

ID A A N N U A L RESEARCH REPORT 1985
The Application Systems Laboratory

31

expert. The typical cases and thus the prototypes represent the expert’s
experience, such as knowledge about strategies, i.e. how to work with the
domain knowledge to obtain a certain goal. Since the implementation was
made in a system supporting reasoned control of reasoning (W ATSO N by Jim
Goodwin), the prototype strategies could also involve non-monotonic problem
solving.

A major benefit with this approach is that it allows a more focused
consultation and improved efficiency in the reasoning process while avoiding to
pollute the domain knowledge base with irrelevant control information. The
reusability of the domain knowledge was then convincingly demonstrated by a
master’s thesis project (Christer Hansson), where the knowledge base was
reused as the basis for a teaching system. W A T T 1.

The task for the W A T T system was to generate a hypotetical case from
information in the POZZO knowledge base, extended with some additional
information defining reasonable ranges and constraints for different parameters,
and to run a consultation where the user asks the questions. The student, who
is assumed to be a person with some proficiency in the concerned area but not
a specialist, is expected to ask the system for various pieces of information,
which are relevant for reaching a conclusion and solve the hypotetical case.
When the sequence of questions diverge from those generated by the
concurrent internal reasoning guided by prototype strategies, the student is
informed and entertained in a dialogue with the purpose to make sure that he
knows and understands all the relevant information in the knowledge base.

The POZZO project was carried out by Henrik Nordin and reported in his
licentitate thesis. During the fiscal year 1985-86 he is at Carnegie-Mellon
University in Pittsburgh, working at the PRO D IG Y learning apprentice
project under Jaime Carbonell. His interest in methodology for expressing and
representing domain-dependent control information is important also for
continued work in ASLAB on the design of a knowledge acquisition and
development environment, as described above.

Expert systems tools and knowledge-base migration

A typical experience from successful implementations of expert systems, which
are taken into productive use, is that there is often a distinct step where a
satisfactory working prototype is reconfigurated or translated into the
production version of the system. In general the very nature o f the task to
develop a knowledge-based system is so unstructured and ill-defined, that it is
not surprising that a shift of technology is forced once the basic structure of
the solution has been developed, and also that optimizations for regular
production use should not be done at a premature stage.

In addition to the studies of systematic methods for migration, it is important
to study how core functions of inference engines, or the equivalent, can be

1H ansson, W ATT - A Knowledge-Based Case-Oriented Teaching System. Report
LiTH-IDA-EX-86-01 and ASLAB Memo 86-01.

32 IDA AN N U AL RESEARCH R EP O R T 1985
The Application Systems Laboratory

realized in different kinds of software environments, e.g. personal computers or
mainframe database systems. As a first step in the direction of gaining a
deeper insight into architectural issues involved in our approach, an
experimental implementation of a portable version of the EMYCIN knowledge
representation scheme and inference engine has been made (Rehmnert). The
implementation follows quite closely the original system and has been used as
the basis for the A3 migration project described below, as well as for a
PC-version of EMYCIN.

The Antibody Analysis Advisor, A3, is a medical expert system developed for
the purpose of providing guidance in the initial selection of analysis techniques
for antibody identification in blood samples1. The system was developed as a
joint effort between the departments of computer science, medical informatics
and the blood center at the regional hospital in Linköping. It is a medium-size,
quite typical rule-based consultation system in the MYCIN tradition, with
provisions for reasoning under uncertainty (with was however used only to a
very limited extent), explanations and a backward-chaining control regime.

Evaluation of the prototype system showed that it produced more reliable
recommendations than those actually carried out in a historical comparison
and that a 10% increase in efficiency (eliminating uninformative tests) could be
expected. Using the system on a routine basis would however presume a
migration from the current DECsystem-10 Interlisp-based implementation to
the existing laboratory systems environment using MUMPS on a Vax
computer. Then substantial parts of the interactive data entry process could
also be substituted by accesses to computer-stored patient data.

In a previous project (MEDICS) we successfully used a corresponding strategy.
In that system medical computer-aided learning programs (for simulation of
clinical decision making) to be run on a PC are generated from an
expert-system-like development environment.

3The first step in such a migration project has been undertaken for A . An
EMYCIN-compatible core system has been written for MUMPS and a
semi-automated translation system of the rule base from Lisp to MUMPS
makes the migration smooth2.

However the basic goal from our point of view is to develop a systematic
methodology and a general architecture supporting a division between a
knowledge acquisition and development environment and multiple target
environments. Central topics are which degree of automation can be achieved,
to what extent the rule system should be ” compiled” , how much flexibility
should be allowed for maintenance of the production knowledge base, etc. In
this migration project we also study how transparency, i.e. the ability to
display and explain the knowledge in the system, can be supported effectively

1Sandahl, Creating an Antibody Analysis Advisor as an Exploratory investigation into Expert
System Development. Report LiTH-ID A-R-8 5-20.

2Shasavar, Portering av A3 kunskapsbas från EMYCIN till MUMPS, Report
LiTH-ID A-Ex-85-26.

ID A A N N U A L RESEARCH REPORT 1985
The Application Systems Laboratory

33

also in routine use.

Knowledge-based human-computer interaction.

Previous work in ASLAB has emphasized the importance of human-computer
interaction in various respects. Thus we have worked on models for dialogue
management systems and their use for software prototyping, as well as on
authoring environments for eductional software, in particular for medical
simulations.

In our view, human-computer interaction can not be studied out of context. It
appears that generally applicable results concerning dialogue design guidelines
and interaction techniques are scarce and that the application-dependent
aspects of a particular human-computer interface are of prime importance. We
also believe that knowledge-based systems provide an appropriate background
for development of high-quality interfaces, where aspects of dialogue initiative,
sequencing, help and explanation facilitites, division of tasks between user and
system respectively, etc. are primary, while syntactic details of the language
used are secondary factors.

Important subjects for study in ASLAB are knowledge-based models of
human-computer interaction, effective methods for producing explanations of
system behaviour and results, and tutoring techniques for buildup and
maintenance of user competence.

Thus work on expert systems has e.g. clearly demonstrated the great practical
value of even simple schemes for producing natural language presentations of
facts and inference structures represented inside the system. There are at least
two areas which deserve to be studied further and where obvious applications
are available in industry-related projects at our department:

○ More effective ways of producing help and explanations. Most tools for
developing expert systems which provide support for explanations use
very simple techniques, e.g. display what is essentially a trace of the
computatation with a limited explanatory value for human. Thus the
translation of the internal representation for each piece of information
needs to be supplemented with an intelligent selection strategy based
on a model of the user’s cognitive understanding of what is going on.
Especially in the knowledge transfer applications where legal and
economic advicing in business and banking is studied, such topics are
of prime importance.

○ Alternative ways of presenting aggregated (numerical) information with
an emphasis on ” interesting” figures. Traditionally computers have
been used as a tool to summarise and present aggregated information
with the help of tables or graphical diagrams. However expert systems
such as e.g. PUFF1 have shown that very high quality interpretations
expressed as a piece of text, can be produced from time-series of data,

1Aikins, J .S ., et al., PUFF: An Expert System for the Interpretation of Pulmonary Function
Data, Report STAN-CS-82-931, Stanford University, 1982.

34 ID A AN N U AL R ESEARCH R EP O R T 1985
The Application Systems Laboratory

with a verbal summary of noteworthy deviations from normal figures
and conclusions based on the aggregated information. The development
o f such presentation techniques is relevant also for the group working
with statistical information systems (Sundgren), as well as for e.g. the
previously mentioned banking applications where financial data is to be
supervised and different trends identified and commented.

This area will be covered primarily by Ivan Rankin, who previously has been
affiliated with the natural language group in AILAB.

We also expect to continue efforts aiming at techniques for providing tutoring
capabilities in software systems, as demonstrated in the experiment conducted
by Henrik Nordin and Christer Hansson. (See the discussion of the POZZO
and W A T T systems above.) It should be an important motivation for the
approach to applications software development taken in ASLAB, that domain
knowledge motivated by problem solving needs could be reused with little
effort to provide tutoring and explanation capabilities.

Knowledge-based systems development

The impact of knowledge-based techniques on systems development
methodology can be twofold. Either we use these techniques to support the
development process, e.g. by introducing new tools or improving the old ones,
or else we change the methodologies, e.g. by substituting automated procedures
for work previously carried out manually.

We believe that a combination of those effects will happen in the near future.
Thus for instance the availability of powerful techniques to represent and
manipulate domain knowledge about objects, concepts and procedures, etc. will
in a decisive way improve the possibilities to employ methods in the tradition
o f the rapid prototyping approach to systems development1.

Other aspects of this issue are currently studied within the laboratory. During
1985-86 we have a guest researcher, Kevin Ryan, from Trinity College in
Dublin, who is working for the ESPRIT ToolUse project. That project is
concerned with the study of software engineering environments, and in
particular with the possibilities to integrate tools supporting method-based
software development. Dr Ryan’s work here is concentrating on the
investigation of knowledge-based support tools for a method-driven
environment. Problems studied involve support for requirements engineering
and knowledge-based systems design. Experimental implementations are
carried out, e.g. concerning support for systems design with the JSD method
using the KEE system on Xerox Lispmachines.

Starting January 1986, Pål Sorgaard from Aarhus has joined the group for two
and a half year to complete his doctorate studies. His background is in
systemeering and systems development practices, and his interest now is in the
study of potential impacts from knowledge-based techniques on the systems

1H ägglund, From Rapid Prototyping to Stepwise Structuring and Knowledge-Based Software
Development, ASLAB Memo 85-03.

ID A A N N U A L RESEARCH REPORT 1985
The Application Systems Laboratory

35

development process.

3 .3 .2 S ta tistica l in form a tion system s and da tabase te ch n o lo g y .

(Sundgren, Krysander, Block, Chowdhury, et al.)

This group was formed during 1983-84 when Bo Sundgren joined the
department as a part time adjunct professor. The group is partly funded from
separate sources. The following main issues for potential studies have been
identified:

1. U tiliz in g ad m in istra tive data fo r sta tistics p ro d u c t io n . The
idea is to study how existing data can be used also for statistical
purposes, without loss of quality.

2. M e to d s and too ls fo r au tom a ted p ro d u c t io n o f sta tistics
so ftw a re . This area can be seen as a specialization of query languages
and program generation techniques for databases in general.

3. H u m a n -co m p u te r in teraction in sta tistics p ro d u c t io n .

4. M a n a g em en t o f uncerta in and in com p lete data . Especially the
relation between quality measures in statistics production and
uncertainty as handled in expert systems will be studied.

5. S ystem eerin g m e th o d o lo g y for sta tistica l in fo rm a tion system s.
This area continues Bo Sundgrens earlier work on infological and
conceptual modelling.

6. M e d ica l ap p lica tion s o f statistica l in form a tion system s.

In these areas a basis of competence and partners for cooperation are available.
The areas also represent domains where significant research problems can be
identified. The work carried out so far has exphasized areas 1-3, as will be
explained in greater detail below.

The main area of study for this group is statistical information systems, i.e.
systems for observation, collection, entry, storing, processing and retrieval/pre­
sentation/distribution of aggregated information concerning groups of objects
(or higher level objects) in the current universe of discourse. Important aspects
here are problems regarding quality of information (e.g. incomplete, unreliable,
or misused data), support for selection of methods and tools for statistics
production, techniques for interpretation and presentation of results and formal
methods for description of statistical operators.

Reusing administrative data for statistics production.

Many companies experience a growing need to improve their ability to make
rapid and appropriate decisions in areas where the access to current and
correct information is crucial. For instance, large computer-stored databases of
administrative information might be used also for purposes regarding market
strategies, investment decisions, organizational planning, etc. However such a

36 ID A AN N U AL RESEARCH REPORT 1985
The Application Systems Laboratory

reuse of data collected for other purposes involves serious problems with
respect to data quality and interpretation. On the other hand, the costs for
collecting data exclusively for decision support purposes would be prohibitive.

In order to gain an understanding of current practices and problems involved,
a study has been carried out of the information systems within a few
manufacturing companies1. These studies indicate serious problems in the
companies with a systematic misinterpretation of trends in sales and invoicing,
due to a lacking understanding of the statistical methods underlying available
software.

Continued work involves the development of a statistical information system,
with a design which minimizes the problems with using data collected for
administrative purposes, selecting appropriate statistical methods and software,
and correctly interpreting the results. (Wallgren and Wallgren.) The part of
the work being done in ASLAB is primarily concerned with employing
knowledge-based techniques as explained below.

The Statistician’s Workstation.

Current efforts include the study of consultation systems for statistical
analysis. The background is the well-known problem of understanding how to
apply different tools for statistical analysis as correctly as possible on a given
data material. The broad availability of statistical library software as well as
computer-stored information bases will significantly increase the danger of
misuse or even making faulty conclusions due to a lacking understanding o f the
often intricate problems involved in the proper use and interpretation of
statistical data.

It should thus be important that intelligent advicing facilities are incorporated
in a computer-based environment for statistics production. Issues to be treated
include how to prepare the materials before processing, which methods to
apply, how to present the results in order to avoid misleading interpretations
and how to handle the data quality problem. The last aspect can be
exemplified with the desire to use already existing data produced for
administrative purposes as a substitute for making special inquires (which may
be costly or result in incomplete data). In this case it is extremely important to
be able to control problems relating to possibly different semantics for existing
and required data respectively (for instance, there are something like 30
different working definitions of the concept ” income” used in Swedish social
security systems).

The goal is to build an integrated environment to support the analysis and
effective presentation of aggregated information. Subtasks involve quality
control of available data, assistance for selection of appropriate statistical
methods, for adjustment of data, and for preparing parameters for the
corresponding analysis programs, support for interpretation of results and for

1W allgren , and W allgren, Företagets informationssystem. Statistisk analys med företagets
administrativa data. Memo LiU-MAI 86-01-16.

IDA A N N U A L RESEARCH REPORT 1985
The Application Systems Laboratory

37

tabular, graphical and verbal presentation of abstracted information. In a
preliminary study a knowledge-based assistant for eliminating seasonal
variations in statistical studies of industry and trade has been implemented on
a PC, using the SAGE shell system (Block). However, more advanced support
facilities would be needed, such as e.g. graphical interaction techniques at
various stages of the consultation session. The current project studies the
design of a statistician’s workstation implemented in Lisp on a Xerox
Lispmachine. Windowing techniques will be used to run standard library
software on backend computers in parallel with the preparation and analysis
session. (Sundgren, Chowdhury, et al.)

An algebra of base operators for production of statistics.

On a high level the statistical production process may be regarded as a system
of production functions like editing and correction of data, tabulation,
graphical presentation, and statistical analysis. Generalized statistical software
is usually developed for functions on this level. However, the high-level
functions may be defined in terms of simpler more general, and logically better
defined subfunctions like selection of certain objects on the basis of certain
criteria, creation of new variables in terms of existing ones by means of logical
and arithmetic operations, aggregations of data in accordance with
cross-defined and/or hierarchically defined aggregation structures, etc.

If these subfunctions were generally recognized, and common definitions were
widely accepted, it would pave the road for a much more powerful and
dynamical development o f generalized statistical software, in comparison with
the situation today, where packages differ significantly between themselves
with regard to the above-mentioned breakdown of major functions into
subfunctions, and where the subfunctions are often mixed up even within one
and the same, monolithically designed piece of software.

A relational database algebra containing the traditional set operations and the
special relational operations can be proven to be ” complete” in a certain sense.
However relational completeness is not enough to ensure that a language will
be practically (and probably not even theoretically) sufficient to formalize the
mechanics of statistics production, such as e.g. the typical statistical
aggregation processes (counting, summation, average calculation, etc.) if no
additional base operators were permitted.

A set of such statistical base operators is being defined in an international joint
effort with participation of Statistics Sweden. In connection with that work, we
are developing a theoretical framework in the form of an algebra, with the
purpose o f giving a firm basis for implementation and application of such
operators as well as a conceptual integration with current practices in the field
of relational databases. (Bo Sundgren, Gösta Nilsson.)

38 ID A AN N U A L R ESEARCH R EP O R T 1985
The Application Systems Laboratory

3.4 External cooperation.

Aslab projects emphasize joint efforts with other groups and industry. The
following are the main current involvements:

1. Department of Medical Informatics. Previous cooperation on advanced
CAI systems (MEDICS) is now followed by joint work on medical
expert systems (Gill, Reshagen, Timpka).

2. Alfa-Laval Automation. Joint work in the area of fault diagnosis and
maintenance expert systems within the Knowledge Transfer Program
(Rosenberg, Hanebring).

3. ASEA. Previous cooperation on a consultation system for robot
configuration is now followed by Knowledge Transfer Program
activities (Lozan-Villegas).

4. Ericsson Information Systems and S-E-banken. Joint activities in the
Knowledge Transfer Program with an emphasis on intelligent
knowledge-based consultation systems in business and banking and on
other end-user systems. (Bengtsson, et al.).

5. National Bureau of Statistics. Study o f the design of statistical
information systems. (Block, Nilsson, Wallgren and Wallgren. See also
above.)

6. Nordic cooperation with Oslo (Kristen Nygaard) and Å rhus (Lars
Mathiassen) in the SYDPOL programme (System Development
Environments for Profession-Oriented Languages.) This programme is
partly supported by Nordforsk and consists of national projects and
four inter-nordic working groups, where Aslab participates in the one
concerned with systems developments methods.

3.5 Publications

For a full listing of published papers, including departmental reports, see the
” publications” appendix. Below the most recent external publications are listed
for an easy reference.

E xtern a l p u b lica tion s :

1. Sture H ägglund et al., AI in Engineering Applications at Linköping University,
SIGART Newsletter, no 92, April 1985.

2. Sture H ägglund, Kunskapsbaserade expertsystem, rapport Sv. Mekanförbund,
86001.

3. H ägglund, N ordin , R ehm nert, Sandahl, Utveckling av kunskapsbaserade
expertsystem i samarbete högskola-näringsliv. (Collection of contributions to
NordDATA 85, Copenhagen, 1985.)

ID A A N N U A L RESEARCH REPORT 1985
The Application Systems Laboratory

39

4. H enrik N ordin : Using Typical Cases for Knowledge-Based Consultation and
Teaching. To appear in Proc o f the 3rd Annual Conf. on Applications o f Expert
Systems, Orlando, Fla., 1986.

5. R olan d R ehm nert, K ristian Sandahl: Knowledge Organization in an Expert
System for Spot-Welding Robot Configuration. In Proc. o f the 5th Int. Workshop on
Expert Systems and Their Applications, Avignon, 1985.

6. K ristian Sandahl, Sture H ägglund, Jan -O lof H ildén , R olan d R ehm nert,
Lars R eshagen: The Antibody Analysis Advisor and its Migration into a
Production Environment. To appear in Proc. o f the 1st Int. Conf. on Expert Systems,
London 1985.

7. B o S undgren : How to Satisfy a Statistical Agency’s Need for General Survey
Processing Programs. Proc. o f the 45th Session o f the International Statistical
Institute, Amsterdam, Aug 12-22, 1985.

In addition to external publications and departmental reports, ASLAB has
instituted a Memo series containing working papers etc. The following reports
have been issued up till now.

A S L A B M em o series 1984-
84-01 B rü er, C h ow dhu ry, F äldt, Gill and R önnquist: Office Models.

84-02 Sundgren, et al.,: Statistiska Informationssystem (Statistical Information Systems).

84-03 R önnqu ist: Customizing Command Languages Dialogues with the YAKI package.

84-04 M oen : En implementering av Expert Ease under Interlisp-D.

84-05 R eh m n ert, Sandahl: Implementing an Expert System for Spot-Welding Robot
Configuration.

84-06 H ägglund: Introduktion till kunskapsbaserade expertsystem i ekonomiskt-juridiskt
arbete.

84-07 H ägglund, N ord in , R ehm nert and Sandahl: Towards Knowledge-Based
Applications Software Environments. Project Proposal.

85-01 N ord in , Knowledge Reuse in a Back-Office Expert System.

85-02 B engtsson , LUCKY System Documentation.

85-03 H ägglund, From Rapid Prototyping to Stepwise Structuring and Knowledge-Based
Software Development.

85-04 Sundgren, Outline of an Algebra of Base Operators for Production of Statistics.

85-05 D oh erty , A Rule Interpreter for an EMYCIN-like Expert System Tool.

85-06 M oen : Expert-Trees User Manual

85-07 H ägglund et al., Feature Catalogue of Tools for Building Expert Systems. Draft
version.

86-01 H anson, W ATT - A Knowledge-Based Case-Oriented Teaching System.

40 IDA ANNUAL RESEARCH REPORT 1985
The Application Systems Laboratory

ID A A N N U A L RESEARCH REPORT 1985
The Artificial Intelligence Laboratory

41

4 .

AILAB
The Artificial Intelligence

Laboratory

E rik T en g v a ld , et al.

The research activity of AILAB is concentrated in two main research areas
namely: knowledge representation and natural language.

On the Knowledge representation side the mainstream of activities has focused
on the design of programming systems for A.I., as studied through applications
selected from Mechanical Engineering. A major early work is OBS an
operations planning system for turning [Tengvald 84]. This system was based
on the object oriented representation system PAUL [Hein 83]

Most of later and current research in knowledge representation at the AILAB
is based in the considerable experimental experience of the O B S/PAU L
project.

One o f the experiences of this project is that the mainly procedural
object-oriented programming systems are insufficient for handling geometrical
problems. The object-oriented programming system has to be supplemented
with a more declarative programming paradigm.

In the below described ICONStraint project Jalal Maleki has researched the
possibility of using the constraint programming paradigm as basis for such a
declarative system. The choice of constraints as opposed to other declarative
paradigms was based in another experimental experience of the OBS project,
namely the very great computational demands of geometric reasoning.

Preliminary findings from the ICONStraint project indicate that the
expressibility of constraints is indeed sufficient for handling most geometric
problems encountered in the OBS setting. Unfortunately it seems as if

T he work in AILAB is mainly supported by STU, The Swedish Board for Technical
Development.

42 ID A AN N U A L R ESEARCH R EP O R T 1985
The Artificial Intelligence Laboratory

constraint based systems running on todays machines is too slow to make the
explorative programming method applicable in a geometric reasoning context.

Constraint based systems are maybe the most efficient o f the declarative
programming systems. Consequently, our experience indicate that the the
possibility of constructing expert systems with a substantial content of
geometric reasoning is slim indeed.

Alas, if you do not increase the raw processing power of the hardware. This is
the intended method of attack chosen in the below described AIM project. The
AIM project is a major undertaking with eleven members in the project group.
The project was initiated in this summer after prodding from industry.

A subsidiary knowledge representation research activity at AILAB has been
Jim Goodwins extremely promising but more formal research on
non-monotonic logic. The formation of the RKLlab, a group with a research
program in the formal knowledge representation area, made it possible for Jim
Goodwin to pursue his work together with more like-minded colleagues.
Consequently, he left AILAB for RKLLAB. The continuation of his work is
reported under the RKLLAB heading.

During the years 82/83 and 83/84, the AILAB did not manage to create a
critical-size natural language activity. For example Carl Wilhelm Welin and
Ludmila Ohlsson left the group for Ericsson. However, we have always
considered it important to develop an appropriate research program in this
area, especially with research on the Swedish language.

This year has consequently been a year of recruiting activity. We have
succeeded in employing a total of five new researchers. The natural language
subgroup have increased from one to six persons. W ith this increase combined
with an appropriate spread of competence, including linguistics, psychology,
computer science and artificial intelligence, we consider the natural language
group as stably formed.

Due to the increase of both the natural language and knowledge representation
sides of the AILAB research group, we are planning to split AILAB into two
research laboratories in the middle of the coming summer. It is our experience
that too big research groups do not function well.

4.1 Research on knowledge representation

The knowledge representation research is primarily directed towards geometric
reasoning or more precisely on the combination of symbolic and geometric
reasoning.

During this year a project, ICONStraint, concerned with research within the
constraint programming paradigm has been carried through by Jalal Maleki.
This work will result in a Masters thesis, during the spring 1986.

ID A A N N U A L RESEARCH REPORT 1985
The Artificial Intelligence Laboratory

43

Furthermore a new large scale project, Artificial Intelligence for
Manufacturing, has been initiated. It is planned to run for 2.5 years. The
project can be seen as a new experiment in the OBS tradition.

It was our intention to invest more work in purely representational questions
before undertaking such major practical experiment again. However,
preliminary results from the ICONStraint project are so promising that we
consider it justified to restart a full scale project this early.

4 .1 .1
L a b o ra to ry m em bers w ork in g in the k n ow led ge rep resen ta tion area

AILAB members working on knowledge representation during 1985 has been:

Erik Tengvald, Ph.D., 75%
Bernt Nilsson, 30%
Jalal Maleki, B.Sc., 50%

New members joining AILAB for the aim project at January, 1th, 1986 will be:

Leif Finmo, M.Sc., 75%
Johan Andersson, B.A., 40%
Patrick Doherty, 75%
Peter Haneclou, 75%
Mikael Svensson, 75%
Anders Nyberg, 75%
Sven Moen, 25%
Jonas Wallgren, 25%
Håkan Jakobsson, 25%

4.1 .2 T h e IC O N S tra in t p ro je c t

ICONStraint is an interactive declarative programming language based on the
constraint model of computation. ICONStraint is a fourth generation language
which is quite similar to systems such as Visicalc systems, but is a more
general system. This language allows declaring a set of relationships
(constraints) that are to hold among a set of variables. Once a number of these
variables are known, the interpreter enforces the declared relationships and as
a result the values of other variables are computed. This process is called
constraint propagation.

In constraint based languages, objects (usually representing physical or
computational devices) are described in terms of a set of variables and the
constraint relationships that hold among them. Each variable is supplied with
a set of rules that compute its value when certain other variables are known.
The set of all rules defined for the variables of an object define the

44 IDA AN N U A L RESEARCH REPORT 1985
The Artificial Intelligence Laboratory

computation local to the object. Restricting computation to be local to objects
takes away the burden of defining the global control in the program (very
much like a logic programming language). The effects of local computation
within objects are passed to other objects via so called ” wires” that are
equality constraints that force variables to have the same values.

Restricting the computation to be local to individual constraints provides a
suitable model for parallel computation. The current system could with some
relatively small effort be modified for a parallel computer. This is possible
because the propagation process works by taking tasks from an agenda and
executing them. These tasks are independent rule applications, and therefore
carrying them out in parallel is possible. On the other hand, a disadvantage of
not having a global control in the system raises the problem of inconsistency.
An inconsistency occurs when two wired variables are assigned different values.
In order to facilitate resolution of such contradictory states, dependency
information concerning the way in which the value o f a variable was computed
is explicitly stored and is inspected when contradictions arise. This is done by
following the dependency chains to the premises of computed values, and then
retracting these premises either automatically or under the guidance of the
user until the contradictory state is resolved.

By keeping the dependency information we are also able to avoid unnecessary
computation. That is, under the same premises a given computation is only
done once. W e have applied this principle of avoiding unnecessary computation
for early detection of value assignments that cause contradictions. This is done
as follows: once a contradiction occurs, the premises of the contradiction, that
is the set of variable bindings causing the contradiction, are explicitly stored
for future use. The interpreter ensures that this set will never be allowed in
future. In this way, already visited blind alleys are not tried again. But one
question concerning the gained efficiency remains that we leave for future
research.

4.1.3 The A IM project

The purpose of the AIM-project is to significantly reduce the cost of the
majority of the knowledge production activities in the manufacturing industry.
The knowledge production activities is rapidly becoming the major part of the
industry’s overall activity. For an advanced product like a modern jet engine,
the specification and documentation can very well weigh more than the
product itself.

The majority of the knowledge production activities in the manufacturing
industry are based on reasoning processes where there is many and complex
interdependencies between the geometric and symbolic reasoning steps.

We have found it useful to coin a new word for this kind of reasoning, namely
geombolic reasoning. The characterizing trait of geombolic reasoning is the

IDA ANNUAL RESEARCH REPORT 1985
The Artificial Intelligence Laboratory

45

intense interdependence between the geometric and the symbolic reasoning
processes.

The intended mode of attack on the geombolic reasoning research topic is by
the classic Al approach of creating a proper research vehicle. In such a research
vehicle one is able to perform experiments to acquire experience grounded in
real world problems. The goal of the AIM-project is to create such a research
vehicle.

Figure 4.1. The overall structure of the research vehicle.

It is immediately apparent that the geombolic reasoning topic is situated in the
middle ground between the two poles of geometric modelling and knowledge
engineering.

The geombolic reasoning problem is an almost open problem. To our
knowledge there is only one paper [Ballard 84] which addresses the problem in
a systematic manner. Because of the subject’s importance there are of course
many papers which touch on the geombolic reasoning problem.

We believe that the main reason behind the lack of research on the problem of
geombolic reasoning is the lack of sufficient computing resources. An increase
of at least two or three orders of magnitude over the computing power of
today’s AI machines will most certainly be needed.

Consequently, the research vehicle will have to be supported by a parallel
processing machine. We have been searching the market for a suitable
machine, but have not found any. Currently, there is no machine which can
meet the general computation needs of the geometric representation system
and knowledge engineering environment together with the special graphics

46 ID A AN N U A L RESEARCH R EPO R T 1985
The Artificial Intelligence Laboratory

capability requirements of the geometric presentation system. At least not at a
reasonable price. We will have to build the hardware ourselves.

The software requirements of the knowledge engineering environment are
considerable. Knowledge engineering environments are complex systems
containing a plethora of detail. If we were to implement the knowledge
engineering environment directly in assembler or even a systems programming
language like C or Occam, our chances of meeting the project deadline would
be slim indeed. Consequently, we must introduce system software defining an
intermediate language higher than the systems programming languages. We
call this system software: The hardware hider.

A hardware hider is basic systemware, which hides the complexity of the
hardware. More precisely, it frees the programmer from the tedious tasks of
memory and process management. This must be done without introducing any
unnecessary restrictions in the use of the hardware. Metaphorically: A
hardware hider is hiding the nitty gritty details of the hardware, without
hiding it’s soul. This is illustrated in Fig. 4.1.

Based on the above considerations we have found it appropriate to divide the
AIM project into four main subprojects, namely:

1. Powershape: The hardware

2. Hideshape: The hardware hider

3. Solidshape: The geometric modeler

4. Knowledgeshape: The knowledge programming environment

Powershape.

The parallel hardware will have a message based architecture. We will
probably use the now available Inmos T414 transputers as processors in our
first machine. This has four on chip inter-processor links. Our main candidate
net topologies is cross connected cube connected cycles and toroidal square
mesh.

We are designing for a net of 64 transputers. The nominal execution speed will
be 640 Mips. But only 3.2 Mflops. According to Inmos’s, maybe a bit slanted
benchmarks, the power of a transputer is 4 times that o f a M otorola 68020.
Taking this at face value we can say that our machine will execute 256 times
faster than a Sun-3. Extending this with the Dhrystone benchmarks of
[Olafsson 85] we can say that our machine is: 562 times faster than a V A X
11/780, 989 times faster than a V A X 11/750, 2872 times faster than a
IB M P C /X T .

In a later version we will replace the T414 with the announced but currently
unavailable Inmos F424 transputer. This will result in something like a tenfold
increase of the floating point capacity up to 32+ MFlops.

IDA ANNUAL RESEARCH REPORT 1985
The Artificial Intelligence Laboratory

47

Figure 4.2. Cross connected cube connected cycles and toroidal square mesh.

The T414 version is planned to be up and running in October 1986. Inmos
hopes to be able to introduce the F424 in the first quarter of 1987, we should
have the F424 version up and running 2 weeks after deliveries.

Hideshape.

The hardware hider is called Hideshape, since it hides the complex shape of the
hardware. It is responsible for memory and process management. Its two main
components are a garbage collector and a process allocator.

The hideshape system defines a programming language. More precisely, it is
the interpreter/compiler for this language. This language can be viewed as a
very high level assembler, in which the higher levels of the knowledge system
are to be implemented. Our current working hypothesis is that this language
should be a functional language with assignment. The language is intended for
systems programming and should be close enough to the hardware.

Solidshape.
Our geometric modeler is to be a standard Constructive Solid Geometry
system with Euler capability. It is to be implemented in Hideshape. Thus it
will be easily extendable as need for more esoteric geometric operation arise.

Knowledgeshape.

Our knowledge engineering environment is intended to be pluralistic
environment supporting many programming paradigms under an integrated
debugging environment. During the AIM planning period, up to 1 july 1988 ,
we hope to incorporate the object oriented and constraint programming
paradigms.

48 IDA AN N U A L R ESEARCH R EPO R T 1985
The Artificial Intelligence Laboratory

Figure 4.3. The knowledge engineering environment

Object oriented programming is very natural when describing systems of
interacting things. Such systems are very common in the manufacturing
industry. Moreover the window interface is best implemented using object
oriented programming. Constraints are perfect for describing invertible
relationships. Most relationships of physics and geometry are invertible.

We hope to establish practical cooperation with logic programming groups at
our department and at SICS with the intent to begin incorporating the logic
programming paradigm in knowledgeshape during the later half o f the planning
period.

Research cooperation.

We participate in the COST-13 project number 21, Advanced Issues in
Knowledge Representation. We are members of the PARSYM computer mail
group and regularly get the PARSYM digest via the computer mail network.

We are in contact with the companies: SAAB, Sandvik, M cAuto and
Computer Vision. Hopefully we will be able to establish contacts with other
companies during the planning period.

ID A A N N U A L RESEARCH REPORT 1985
The Artificial Intelligence Laboratory

49

4.2 Research in natural-language processing

The research of the group for natural-language processing (the NLP group) is
primarily directed towards the development and use of natural-language
interfaces (NLIs) to computer systems. The emphasis is put on communication
in the Swedish language. Most of this research is carried out within the project
” Analysis and Generation of Natural-Language Texts” , financed by STU.

The following four research areas are of special interest to us:

1. Parsing and semantic interpretation;

2. text generation;

3. the integration of different knowledge bases — linguistic knowledge,
pragmatic knowledge, domain knowledge — into a working system
having a high degree of transportability; and

4. NLIs and the human user.

In conjunction with the first area we maintain a library of standard NLP
software with Swedish applications, and sometimes other languages as well.
Work during this year has mainly gone into the first area with a concentration
on syntactic and morphological processing, while plans for work in the other
areas have been developed to the point of implementation. Results and plans
for the future are reported in more detail below, for each of the four areas.

4.2 .1 Personnel

The members of the NLP group during 1985 have been:

Erik Tengvald, Ph.D., 25%
Mats Wirén, M.Sc., B.A., 50%
Nils Dahlbäck, B .A., 85%
Bernt Nilsson, 30%
Arne Jönsson, M.Sc., B.A., 50% (joined AILAB 1985-07-01)
Lars Ahrenberg, B.A., 85% (joined AILAB 1985-07-01)
Magnus Merkel, B .A., 75% (joined AILAB 1985-07-01)

In addition, two C-line students — Lotta Månsbacka and Ivan Rankin — have
worked part-time with the group during 1985.

4.2.2 Parsing and semantic interpretation

A . Processing of Swedish Morphology

Any natural-language project concerned with the Swedish language has to pay
considerable attention to morphology since the Swedish language is
substantially more complex in this respect than e.g. English. Thus, one
important project of ours has been to explore different theories and techniques

50 ID A AN N U A L R ESEARCH REPORT 1985
The Artificial Intelligence Laboratory

for processing Swedish morphology. The ultimate goal of this work is to
develop a robust and efficient morphological analysis and synthesis component,
which could be part of a more general system for natural-language processing.

The most important concrete result so far has been the completion during 1985
of the implementation of a parser based on Hellberg’s system for Swedish
morphology, described in Hellberg (1978). (The system has been implemented
in Interlisp-10 and Interlisp-D.) Hellberg’s system provides a highly explicit
description of Swedish inflectional, derivational, and compounding morphology,
all collected in 235 different ” paradigms” . In particular, with respect to
inflections the description is the most substantial so far and could be regarded
as exhaustive. The current dictionary (in the description as well as in our
implementation) consists of some 8,600 word stems together with paradigm
information. (The dictionary and the paradigm information was kindly
provided in machine-readable format by the Department of Computational
Linguistics in Göteborg.)

The experiences of the system and the implementation has been reported at
the Fifth Meeting of Nordic Computational Linguists in Helsinki, December
10— 12, 1985 (Rankin 1986 a). There is also a user’s guide available for the
program (Rankin 1986 b).

Another very promising candidate for a morphological component is the so
called twolevel model, the general morphological theory of Koskenniemi
(Koskenniemi 1983), which has so far been tested for about fifteen languages.
During 1985 we received Lauri Karttunen’s and Kimmo Koskenniemi’s joint
Interlisp-D implementation of the theory (i.e., a morphological parser and
generator), together with a fairly substantial description of Swedish developed
by Blåberg (Blåberg 1984). We are currently looking at this system to see if it
can be further developed to the kind of component we are looking for.

B . LEG and The Grammar W riter’s Workbench.

The Grammar Writer’s Workbench, a system developed at Xerox PARC by
Ron Kaplan for writing and debugging lexical-functional grammars (LFGs),
has been available to the group since March 1985. We have used it to develop
a small Swedish grammar and have tested it on a variety of Swedish
constructions. Present findings indicate that the theoretical constraints
imposed on LFGs by its creators (Bresnan 1982) are too restricted to allow for
efficient use in a NLI, although the general framework could well be kept. We
have presented our findings about LFG at the Fifth Meeting of Nordic
Computational Linguists in Helsinki, December 10— 12, 1985 (Ahrenberg
1986). A larger Swedish LFG is currently being developed as part of a Master’s
thesis by Lotta Månsbacka.

C. Additional parsing systems

As a basis both for continued work on natural-language processing, as well as
for undergraduate courses in this field, several standard parsers have been put

IDA ANNUAL RESEARCH REPORT 1985
The Artificial Intelligence Laboratory

51

Figure 4.4. Working with a Swedish LFG grammar.

together by Wirén, to some extent using ideas of Winograd (1983). Wirén has
also implemented a parser based on semantic grammar in the LIFER tradition
(Hendrix 1977), using a simplified database as a background system. Semantic
grammars, however, are only applicable when a relatively small subset of a
whole language needs to be recognized, and it seems that the only way to make
use of this technique in a more general system would be to regard it as just one
of several accessible parsing strategies.

In addition to this, we have incorporated a number of systems from other
institutions, most notably the LFG Grammar Writer’s Workbench from Xerox
PARC (see above), the ProGram system (a GPSG workbench from University
of Sussex) (Evans & Gazdar 1984), Thompson’s MCHART (a modular chart
parser) (Thompson 1983), and Karttunens HUG (a chart parser with a

52 ID A AN N U A L RESEARCH R EPO R T 1985
The Artificial Intelligence Laboratory

unification package).

4 .2 .3 Text generation

Work on generation of natural language has until recently been a more or less
neglected area in A l and computational linguistics (cf. Mann 1982). Although
the interest in the field is growing, it is still a small area compared to language
understanding.

Needless to say, understanding and generation of natural language are not two
completely separated research areas. Especially for ” lower” linguistic levels, the
theories, models, and formalisms will be basically the same. (In fact, some of
the work in this area, such as functional grammar (Kay 1979) is explicitly
aimed at building a system which will work both ways.) However, as has been
pointed out by McKeown (1985), generation of a text poses some important
problems of its own. McKeown mentions different aspects of the planning
process, i.e. what information to communicate, when to say what, and which
words and syntactic structures to use to express the intended meaning. (Of
course, there is every reason to believe that more sophisticated understanding
systems will have to make use of this sort of knowledge as well.)

While our group maintains a strong interest in text generation, we do not
actively pursue any research in this area, mainly due to lack of resources.
However, as has been suggested in the previous paragraph, work in pragmatics
is highly relevant to this area, and this means that the work in the group on
integration o f different knowledge bases in a NLI, as well as the work on
coherence mechanisms described below, means that we are building up our
competence in this area, as a preparation for future work.

4 .2 .4 The integration of different knowledge bases in a NLI

Most existing NLIs have no or only rudimentary capabilities for handling
dialogue. A reason for this is that NLIs primarily have been used as translators
between natural language and an existing query language of a database, and
that the user therefore has not been allowed to do anything else but ask one
question at a time and be satisfied with the answer. For NLIs to be useful, in
particular if we have an expert system as the background system, they must be
much more flexible than that. But this means that there must be much more
knowledge built into them, in particular knowledge about how to behave in a
dialogue, knowledge of the user (user models) and knowledge of the dialogue
that the system is presently engaged in. We refer to this as pragmatic
knowledge.

Research is now underway which attempts to build pragmatic knowledge into
NLIs. A problem with pragmatic knowledge is that its content is not all too
well known and even less is known about how it is used in conjunction with
linguistic and factual knowledge in interpretation and generation. We therefore

ID A A N N U A L RESEARCH REPORT 1985
The Artificial Intelligence Laboratory

53

plan to approach these problems in a stepwise fashion.

The first pilot project will be an NLI to a simple database, a calendar. Entries,
deletions as well as queries will be performed in (a subset of) natural language.
The system will incorporate a primitive user model, a primitive dialogue
memory and a fairly simple strategy of dialogue behaviour. The purpose of the
project is (a) to study such dialogue phenomena as ellipsis, anaphoric and
deictic reference, in particular temporal deictic reference, and (b) to study the
integration and moduling of the different knowledge bases.

4.2.5 NLIs and the human user

Basic research in this area is being conducted by Nils Dahlbäck as a part of his
thesis project on cognitive and computational aspects of text coherence. The
aim of the project is to study the interplay between structure and content in
the construction o f coherence relations in descriptive texts. In the first phase
(which is the project for a licentiate thesis), methods from experimental
psycholinguistics are used to uncover the basic factors influencing human
subjects construction of coherence within a text. In the second phase, the
intention is to use the acquired knowledge from the first phase in the
implementation of a system for establishing coherence relations in a NLI.

Psychological theories and methods can also be used in other ways in research
on NLIs. First, in the initial phase of a project, simulations in which
prospective users of a NLI communicates via terminal with a human actually
simulating the NLI, may be very valuable. These simulations can show what
the dialogue will look like, which in turn determines the necessary linguistic
capacity of the system to be built.

Secondly, once the system or a prototype thereof is built, psychological
assessment methods may be used to evaluate the system in a systematic way,
giving important suggestions on what to improve, as well as determining the
system’s applicability to different prospective domains.

Methodologically, the first type poses no particular problems, as far as the
collection of data is concerned. The analysis of these, however, requires
extensive linguistic knowledge, especially on discourse processes, and is (as is
all discourse analysis) a very time consuming work. For the second type of
investigation, several methods are possible, or even necessary, as they
supplement each other. A rough classification could be in ” objective” measures,
of which there are two types, on line and result measures, and subjective
measures, o f which there also are two types, interviews and questionnaires.

We plan to work in both these areas. As a first step, we will run an experiment
of the first type the coming spring, as a part of the NLI pilot project. Research
o f the second type obviously will have to wait a while, but some of the
methods being developed for or used in Dahlback’s thesis work, such as a text
presentation system for on-line measurement of readability by Jönsson and

54 ID A AN N U AL R ESEARCH R EP O R T 1985
The Artificial Intelligence Laboratory

Dahlbäck, will also be useful here.

References

[Hein 83] U. Hein, PAUL - the kernel of a representation and reasoning system for knowledge
engineering tasks. 1983

[Tengvald 84] E. Tengvald, The Design of Expert Planning Systems. An Experimental
Operations Planning System for Turning. 1984

[Ballard 84] D. Ballard, Task Frames in Robot Manipulation, Proceedings A A A I-84. 1984

[Olafsson 85] Computer mail from: M. Olafsson, University o f Alberta, Edmonton, Alberta
Canada. 1985

Ahrenberg, Lars. Lexikalisk-funktionell grammatik på svenska. Proc. o f the Fifth M eeting o f
Nordic Computational Linguists, Helsinki 1986. [Forthcoming]

Blåberg, Olli. Svensk böjningsmorfologi: en tvanivåbeskrivning. Pro gradu-avhandling i allmän
språkvetenskap, Helsingfors universitet 1984.

Bresnan, Joan (ed.). The Mental Representation o f Grammatical Relations. M IT Press 1982.

Evans, Roger, och Gerald Gazdar. The ProGram Manual. Cognitive Studies Programme,
University o f Sussex 1984.

Hellberg, Staffan. The Morphology o f Present-Day Swedish. Almkvist & W iksell International
1978.

Hendrix, Gary G. The LIFER Manual. A Guide to Building Practical Natural Language
Interfaces. SRI Technical Note 138 1977 a.

Kay, Martin. Functional Grammar. Proc. 5th Ann. Meeting o f the Berkeley Ling. Soc. 1979.

Koskenniemi, Kimmo. Two-level Morphology: A General Computational Model for Word-form
Recognition and Production. University o f Helsinki, Department o f General Linguistics,
Publication 11.

Mann, William. Text Generation. American Journal o f Computational Linguistics 8:2 1982.

McKeown, Kathleen R. Discourse Strategies for Generation o f Natural-Language Text.
Artificial Intelligence vol. 27 1985.

Rankin, Ivan. On the Implementation of Hellberg’s M orphology System. Proc. o f the Fifth
M eeting o f Nordic Computational Linguists, Helsinki 1986 a. [Forthcoming]

Rankin, Ivan. SM ORF User’s Guide. IDA 1986 b. [Forthcoming]

Thom pson, Henry. M C H A RT: A Flexible, Modular Chart Parsing System. A A A I 1983.

W inograd, Terry. Language as a Cognitive Process. Volume I: Syntax. Addison-W esley 1983.

IDA ANNUAL RESEARCH REPORT 1985
The Laboratory for Computer-Aided Design of Digital Systems

55

5 .

C A D L A B

T h e L a b o r a t o r y f o r

C o m p u t e r - A i d e d D e s i g n o f

D i g i t a l S y s t e m s

H arold W. Lawson, J r .
Professor of telecommunications

and computer systems.

5 .1 I n t r o d u c t i o n

The laboratory for Computer Aided Design of Digital Systems, CADLAB, is
concerned with the behavioral and structural aspects of the specification,
design, simulation, optimization, partitioning, synthesis and evaluation of
digital systems, especially those involving very large scale integrated circuits
(VLSI).

CADLAB was formed from Professor Harold Lawson’s Telesystem group when
Telesystem, Datalogi and ADB merged to form IDA in 1983. In addition to its
being part of IDA, CADLAB also cooperates with Professor Christer
Svensson’s group in IFM (Physics) and the Applied Electronics group in ISY
(Electrical Engineering) to form the VLSI Design Center at Linköping.

The first years of VLSI Design Center were devoted to building competence
and acquiring basic software. The year 83/84 marked the transition from the
building phase to initiating new research. The ”fruits” of these early years are
now being harvested and CADLAB is able to report on some significant
progress made during 1985. This progress will be highlighted in a later section.
CADLAB is broadly concerned with many aspects of the problem of silicon
compilation; the process of translating a high level description of a system to a

The work in CADLAB is mainly supported by STU, The Swedish Board for Technical
Development.

56 ID A AN N U AL R ESEARCH R EP O R T 1985
The Laboratory for Computer-Aided Design of Digital Systems

silicon layout. One model of the silicon compiler is that of a translator which
takes a high level description of a chip and transforms the semantic content of
the description into a machine as indicated in Fig. 5.1.

Figure 5.1. Silicon Compiler Model.

We do not expect a single programming language to be equally useful for all
applications, a single uni or multi-processor machine architecture to run all
applications equally well, or a single set of compiler optimizations to match all
languages and machine architectures. We still have need for LISP, COBOL
and ADA; for VAXs and CRAYs and IBMs as well as newer languages and
architectures for parallel computation. Likewise, we should not expect a single
hardware description language and its associated silicon compiler to solve all
problems.

5.2 Current Work

CADLAB is currently engaged in a research project called ASAP (An
Architectural Strategy for Asynchronous Processing) which is an attempt to
provide an architectural basis for a new generation of sophisticated CAD tools.
Specifically, we are interested in exploring the implications of asynchronous
design and distributed control. Rather than attempting to compile systems
that are general purpose, we are interested in special purpose systems that are
embedded in a wide variety of products such as telecommunication systems,
electronic and biological instruments, robots and automatic control systems.
The basic assumption is that in embedded, or special purpose systems, the
structure o f the application is well defined. In such environments, we are faced
with only a small number of programs and the payoff in being able to
specialize the system is quite high. In sections 5.3 to 5.7, we now identify the
major premises of the ASAP project.

ID A A N N U A L RESEARCH REPORT 1985
The Laboratory for Computer-Aided Design of Digital Systems

57

5.3 VLSI layout and Timing Problems

Shrinking VLSI geometries promise both denser chips and decreased switching
times at the gate level. Unfortunately, while gate delays scale linearly, the
RC-line delay for communications between gates does not scale, thus leading to
a situation where the chip speed is limited by the interconnections. Even with
today’s technology ” it takes about as long for a signal to cross a chip of side
.5mm as it does to go along a coaxial cable 75cm long.”

The constant propagation delays and decreasing gate delays mean that a
system-wide clock whose rate is proportional to the gate delay is not possible if
we are to maintain propagation delays at a small (five to ten percent) fraction
of the clock period. However, within regions of a VLSI circuit, called
isochronous or equipotential, the system may be considered synchronous at the
maximum clock rate permitted by the circuit technology. The problem is then
to synchronize independent isochronous regions. This may be implemented as
either a self-timed discipline or based on a hierarchy of clocks.

The concept of isochronous regions on a chip is generalizable to that of a
packaging hierarchy for computers. Conventional packaging groups circuits
into chips, sometimes chip carriers, printed circuit boards, and cabinets.
Current high performance technologies group the chips into modules and the
modules into frames. Future technologies, including wafer scale integration and
3-D structures, should be thought of as extensions of the goal of optimizing
machine performance by minimizing communications costs.

What is lacking is a framework for a design system in which machines can be
designed without regard to the implementation or packaging of their
component modules. The design system should allow the designer to explore
the performance and cost implications of different implementations or attempt
to automatically provide an ” optimized” solution from a library of function
implementations.

5.4 Timing and the Exploitation of Natural Parallelism

Typical tasks to be performed in embedded systems are data capture,
processing, control signal generation, display maintenance and possibly
statistics gathering. These heterogeneous tasks when implemented for a
processor (which we shall abbreviate as pr) are viewed as processes (which we
shall abbreviate to ps). For conventional general purpose p r ’s (including
microprocessors), the p s ’s are programmed in a ” language” suitable for the pr
and mapped into the sequential execution domain of the pr. The treatment of
timing idiosyncrasies of the application domain are placed under the
jurisdiction of a real time operating system (also operating in the sequential
execution domain o f the pr). Thus, the potentially highly parallel environment
of the application tasks is placed into the procrustean limits of the sequential
execution o f a single pr under an operating system with a potentially

58 ID A AN N U AL R ESEARCH REPORT 1985
The Laboratory for Computer-Aided Design of Digital Systems

complicated interrupt and process management structure. Any potential
parallelism implicit in the application tasks is thereby lost.

In embedded systems, it would be desirable to exploit the inherent and natural
parallelism o f the application tasks. In order to accomplish this property and to
eliminate the complexities and eventual problems with centralized real time
operating systems, we require asynchronous processing (at potentially very
high levels of granularity) and distributed processing logic.

5.5 Extensibility and Specialization

Instead of binding the solution of ps realization to a single general purpose pr,
we establish the possibility o f selecting the best specialized form of pr for
accomplishing the task of the ps. A family of potential pr realization methods
should be available in the library of the accompanying CAD system. In the
simplest case, the pr could be a combinatorial network of logic and/or an
analogue circuit. We shall term such logic as base logic p r ’s. Above this level,
we introduce programmed logic p r ’s which in their simplest form could be
programmable logic arrays (PLA ’s) or some form of structure resembling
various microprogrammed architectures. Further, the notion of programmed
logic p r ’s is to be interpreted in its widest meaning to include logic for finite
state machines, extended finite state machines, as well as instruction set
processors for concrete realizations of programmed logic at any level of
abstraction.

One can potentially think of a specialized pr for each and every ps o f the
application. This specialization may even be the case in certain realizations;
however, when the nature of the problem (including timing constraints)
permits, several p s ’s may indeed be multiplexed onto a single programmed
logic pr. The individual p s ’s are suitably decomposed into the execution
representation required by the pr. In this case, local scheduling logic for
allocating the use of the pr must be provided.

By distributing the processing logic and utilizing the asynchronous approach to
timing, extensibility is easier to attain. New processing tasks of ps’s can be
added without making new demands upon the processing capability of a single
pr upon which all ps’s are multiplexed. The extensibility is provided in the
framework of the asynchronous processing strategy, by the use of generalized
interprocess communications which can be automatically ” tailored” to the
requirements of the p s ’s of the embedded system.

ID A A N N U A L RESEARCH REPORT 1985
The Laboratory for Computer-Aided Design of Digital Systems

59

5.6 Hardware - Software Tradeoffs

By providing an environment where the selection of ps:pr pairings is based
upon the criterion of finding the best pr for a given ps, and where timing is
handled by the asynchronous strategy, we have an ideal environment for
evaluating hardware-software tradeoffs. The nature and complexity of the
algorithm of the ps will be the dominant factor. Simple algorithms may result
in base logic pr solutions; whereas, complicated ps algorithms may require one
or more levels of programmed logic p r ’s.

CAD tools must provide various forms of synthesis and support functions for
the potential variations o f programmed logic p r ’s. These tools must include
simulation and evaluation mechanisms so that insight and potential expert
advice can be extracted for local ps:pr mappings as well as for the entire set of
p s ’s with associated p r ’s of potential embedded system realizations.

ASAP is concerned with the design of systems rather than single chips. With
increasing clock rates as a result of decreasing gate delays, packaging plays an
increasingly important role in determining the performance of a computer
system. Given performance goals for a system and packaging constraints such
as limited real estate on a chip or printed circuit board, we want to find
” optimal” system solutions.

ASAP is based on decoupling the specification of functions from the
implementation of those functions. Asynchronous processing has been quite
widely used in order to resolve problems of interfacing computing elements
which operate at different rates of speed or for which a common clock cannot
be established. Asynchronous processing decouples the implementation of a
process from its communications.

5.7 Design Methodology and the Man-Machine Interface

Designs utilizing previously defined parts and designs undertaken by groups
benefit from an asynchronous design style since the design efforts are
decoupled. However, it is important that the different design teams agree on
the external behavior of the various parts. Thus an important aspect of the
future CAD systems being explored is to conveniently provide for various views
of design that can be illustrated graphically as well as database philosophy
which permits automatic updating of various design views. These aspects of the
CAD system should also, in addition to specification and design, influence such
issues as the testing and evaluation of various design alternatives.

60 ID A AN N U AL RESEARCH R EP O R T 1985
The Laboratory for Computer-Aided Design of Digital Systems

5.8 Ongoing A SA P Projects

The following concrete project areas have been identified and are being actively
pursued by members of CADLAB.

Process Description

Specification, Synthesis and Analysis

To support architectural specification, synthesis and analysis; a specification
language has been proposed in an ongoing licenciate thesis project by Tony
Larsson. The language will support synthesis, analysis and simulation tools. A
set o f calculus- hiding- binding and event reduction-rules are indented to form
a framework for the design of higher level verification and synthesis tools.
Enabling semantic preserving syntactic transformations, the rules will support
deductive verification methods; however, exhaustive verification methods may
also be tractable if hiding and binding rules are used to prune a design
description.

Simulation

As part of the overall goal of studying architectures and silicon compilers, this
project aims at a detailed description of the main components in the ASAP
architectural strategy. A related goal is to study the various trade-offs a
designer can consider when designing an asynchronous design based on these
components. These trade-offs are studied as an attempt to uncover which
sub-parts of components must be treated with the full generality of
asynchronous communication and which may be treated via simpler direct
synchronous communications that can be compiled out as isosynchronous
regions in specific instances o f the ASAP architecture. Finally, it is also a
study of the programming language OCCAM and its usability for this type of
application. A register level simulator for a family of architectures has been
produced.

Optimization and Partitioning

This subproject o f ASAP has been concentrating on the problem of how to
optimize and partition a design during the synthesis process of VLSI systems.
For this purpose, a unified design representation model, called extended timed
Petri net (ETPN), has been developed. This design representation consists of
separated, but related, models of control and data part. It allows formal
manipulation of the design space and different optimization trade-offs between
performance and cost. Partitioning of systems into submodules is provided
both on the data part and on the control part, producing a set of pairs of
corresponding data subparts and control subparts. As such, asynchronous
operation of the designed systems as well as physical distribution of the

ID A A N N U A L RESEARCH REPORT 1985
The Laboratory for Computer-Aided Design of Digital Systems

61

modules is possible. The use of such a formal representation model also leads
to the effective use of CAD and automatic tools in the synthesis process and
the possibility of verifying some aspects of a design before it is completed.
CAM AD, an integrated design aid system, has been partially developed based
on the ETPN model.

Pipeline Extraction

Pipelining is a fundamental technique in computer design, but since it today
usually is a manual process, it is prone to design errors. This project tries to
find a way of describing a system so that extraction of ” pipelinable” parts can
be done automatically. One needs to describe both the communication between
the pipeline stages, as well as the computations performed, i.e., formalisms for
process definition also need to be developed.

A pipeline can be described in terms of processes (ps’s) and processors (pr’s).
There are two fundamental views:

1. The computation stages are processes, exchanging data.
2. The computations are processes, moving over the stages.

The first view facilitates description of communication, while the second
simplifies description of the state of the computations. This project is trying to
combine these features into a single view, and then use this description as the
basis for a CAD tool for designing pipelined systems.

Representation and Reasoning

To support the ASAP architecture approach o f VLSI System Design,
knowledge and design representation should be such that architectural
decisions may be reasoned about both manually and automatically.

The Representation and Reasoning subproject of ASAP aims at embedding the
ASAP methodology into A l based tools, such as Design Assistants (Expert
Systems), on different levels and phases in the design project.

One particular problem is the representation of the design itself, the design
task, and the design knowledge. A number of international research groups are
very active in this area, e.g. PALLADIO design environment at Stanford
University COM PUTER, Dec. 1983, pp. 41-56 and the Knowledge-based
Design System at Carnegie-Mellon University.

Through the use of design representation in the form of dependency networks,
it is possible to reason about the interaction between subparts and their
interrelation so that partitioning is possible. Thus support can be provided to
the partitioning task in the Optimization and Partitioning subproject of ASAP.

62 ID A A N N U A L R ESEARCH R EP O R T 1985
The Laboratory for Computer-Aided Design of Digital Systems

The Representation and Reasoning project is currently in the state of
investigating these issues and the different A l based strategies for Design
Assistants and Automation.

Now that we have considered the general course of research activities, let us
highlight the progress mode during 1985.

5.9 Progress During 1985

The CADLAB group made several important advances on the ASAP project
during 1985. This has resulted in the completion of two licentiate theses and
significant progress on a third licentiate to be presented in the spring o f 1986.
Further, four papers have been accepted for publication and presentation and
two more have been submitted for conference publication.

We feel that we have made progress in all of the areas mentioned in the
previous section. However, based upon the two licentiate theses, we can
identify some more specific progress.

Via the licentiate of Peng, we have an experimental CAD framework for
further research on many ASAP issues. Peng has developed a ” granularity”
independent view of control and processing activities that can be utilized as a
basis for optimization and partitioning algorithms (the main contribution of his
thesis). The highlights of this work are presented in section 5.10.

Via the licentiate of Fagerström, we have a proposed model for the
asynchronous view of design that has been put forth as an ASAP goal.
Further, a simulator for the model has been expressed in the OCCAM
language thus providing a simulator for the model. In the process, a deeper
understanding of the advantages of and problems with OCCAM has been
developed. The highlights of this work are presented in section 5.11

In the areas of CAD database design, the work performed by a previous guest
researcher Piotr Siemienski has been spread to other groups in Sweden,
particularly the NMP CAD project in Kista. The ideas expressed by Siemienski
about methods of maintaining design consistency will undoubtedly be useful in
the Kista project, as well as influencing our further work on Design
Methodology and Man-Machine Interface issues. Siemienski, who will submit
his doctoral thesis on this subject in Poland in the spring of 1986, will be
invited to join the NMP CAD project in 1986/87.

ID A A N N U A L RESEARCH REPORT 1985
The Laboratory for Computer-Aided Design of Digital Systems

63

5.10
Steps Towards the Formalization of Designing VLSI Systems

The design of VLSI systems has been, by and large, the province of skilled
engineers; recently, however, automatic and computer-aided tools have been
and are being developed to accomplish some aspects of these complex design
tasks, making the province of VLSI available to larger groups of designers. The
present research is an attempt to formalize the design process as a sequence of
semantics-preserving transformations such that automatic synthesis of VLSI
systems from a program-like behavioral description into a structural
description is possible. The produced structural description may then also be
partitioned into several modules with well-defined interfaces.

The proposed strategy is based on a formal design representation model
derived from timed Petri net and consisting of separated, but related, models
o f control and data part. One small example of such design representation is
illustrated in Fig. 5.2. Petri nets are used here to represent the control flow,
which permits explicit expression of concurrency and parallelism. Such a
control structure can be later transformed into control sequencing realizations
including a microprogram, or several microprograms. We have also developed a
set o f transformation algorithms to manipulate both the data part and control
structure so as to obtain optimal designs. One of the important properties of
such model is that it can be represented graphically; therefore it is possible to
develop a graphic design tool based the present approach.

Figure 5.2. A n Example o f the Design Representation.

The data part of this design representation consists of data nodes which can be
in different levels of granularity. Therefore, the representation can directly
supports a hierarchical design approach. Further, partitioning of systems into
submodules is provided both on the data part and on the control part, which
produces a set of pairs of corresponding data subparts and control subparts. As

64 ID A AN N U A L RESEARC H R EP O R T 1985
The Laboratory for Computer-Aided Design of Digital Systems

such, it allows potential asynchronous operation of the designed systems as
well as physical distribution of the modules. Each of the modules can also be
implemented independently, thus reducing the complexity of design to a
manageable scale.

In the present approach, the control/data path allocation and module
partitioning problem is formalized as an optimization problem. This differs
from previous approaches where ad hoc algorithms and predefined
implementation structures are explicitly or implicitly used, and where a
centralized control strategy is assumed. To solve the optimization problem, a
set of design space exploration strategies and heuristic algorithms have been
developed.

Based on the present research, CAMAD, an integrated design aid system, has
been partially developed. The overview of the CAM AD is illustrated in Fig.
5.3. Our ultimate goal is to construct a design environment in which VLSI
systems can be first specified by its high level behavioral description without
regard to the detailed implementation or packaging of the modules. This
behavioral description will first be transformed into a data flow representation
and then into the proposed intermediate representation. This design
representation is then manipulated by a set of semantics-preserving
transformation algorithms, which collapse the possible data elements or control
elements to reflect the decision to share hardware resources. The module
partitioner, on the other hand, will help the designers to choose a partitioning
which divides the system into submodules.

Finally, the problem of how to automatically design control structures from the
Petri net description has been studied by Krzysztof Kuchcinski and Zebo Peng.
A set o f algorithms have been implemented as part of CAM AD which analyzes
the properties o f a control part and creates a microprogram to implement the
control function.

5.11
Simulation and Evaluation of an A SA P Architecture

ASAP, is an architectural strategy based on function unit composition via
communication. There can be various implementations of this strategy. The
components of the architectural strategy are introduced via a Fig. 5.4:

(The last units, the bus and the bus interface, are used only as a glue to
connect system components.) Furthermore, all of the elements of the strategy
do not have to be present in every design; simplification is possible. An ASAP
system can consist of a number of system elements, among these are ports,
function units, buses and bus interfaces, schedulers and gateways. A short
description of each type of component is given.

Port: This type of module provides an abstraction of a function. By function
abstraction we mean that a port ” abstracts out” specific behaviours from a

IDA ANNUAL RESEARCH REPORT 1985
The Laboratory for Computer-Aided Design of Digital Systems

65

Figure 5.3. Overview of the CAMAD Design Aid System.

particular implementation of a function. We set up virtual circuits between
ports by storing pointers in special registers associated with a port. Each port
consists of a port controller, a queue for buffering and an output pointer used
for virtual circuits. Data is thus sent to the port via some communication
structure (e.g. bus 1 in the figure), processed by the function unit and finally
sent to the port which the output pointer points at.

Control unit: When switching contexts, an explicit machine state is needed;
therefore, the need for a control unit arises. A program executing in the control
unit is responsible for initiating and setting up virtual circuits and sequencing
a computation by transmitting values. When a computation has terminated, a
value is ultimately stored back into the control unit, a state which we call a
”clean point”. It is when a clean point is reached that there is no outstanding
computation and the control unit can store the necessary state and switch to a
new job.

Scheduler/resource manager: This unit is responsible for scheduling processes
onto the control unit with which it communicates. The scheduler also acts as a
resource manager since it is possible to create different pipelines at different
times; thus, there is a possibility of deadlock.

Function unit: These units implements functions, for example a FFT. The unit
is intended to be an autonomous module which, when supplied with data,

66 IDA ANNUAL RESEARCH REPORT 1985
The Laboratory for Computer-Aided Design of Digital Systems

Figure 5.4 Component of the ASAP Architectural Strategy.

functions independently of the rest of the system.

Gateway: Gateways are used to connect ”computing engines” consisting of the
above mentioned system components. Each such engine is a self-contained
system capable of useful computations. Gateways provide various services such
as naming services. It is thus very natural to regard a computing engine
connected to a gateway as a single component. A silicon compiler can, when
partioning a system, use this component for implementing self-contained
sub-parts of a design.

The system shown in the figure has been simulated in the language OCCAM, a
language where parallel processes communicate by sending values on channels.

5 .1 2 C o o p e r a t io n W ith O th e r G ro u p s

CADLAB has cooperated with the Computer Systems Laboratory at Uppsala
as well as with Piotr Debinski in Gothenburg in applying the formal design
techniques developed for description of control and processing structures and
communications protocols to the description of integrated circuits. The
CADLAB group, in November, visited the new Swedish Institute for Applied
Computer Science (SICS) in Kista and presented the ASAP project. We expect
to follow their progress and make our results available to various SICS

ID A A N N U A L RESEARCH REPORT 1985
The Laboratory for Computer-Aided Design of Digital Systems

67

projects. Further, we have had contacts with Gunnar Carlstedt of HYLAB AB
concerning the exchange of ideas for VLSI design.

5.13 Industrial Significance

Many VLSI experts have come to the conclusion that the possibility to design
and implement complex systems composed of heterogeneous processes will
require wide spread use of asynchronous control strategies (see ” Logic
Designers Toss Out the Clock” , Electronics December 9, 1985). Thus the
asynchronous approach which has for many years been a premise for the
architectural research and development of Professor Lawson is becoming wide
spread. The industrial relevance of this research for future complex system
construction is rapidly increasing.

During 1985, CADLAB has met with the defense products group at Ericsson
Radio Systems (Kista). After studying the requirements for future on-board
computer systems for the JAS airplane, it was determined that the ideas being
studied and experimentally evaluated in ASAP can very likely provide a design
approach for future products in this area where the control and potential
interaction of many complex heterogeneous processes are ” modus operandi”
prerequisites.

Mr. Rob Ragan-Kelly, the architect of Pyramid Computer Products has
expressed an interest in exploring asynchronous methods as a functional
complement of commercially available Reduced Instruction Set Computer
(RISC) architectures. Mr Ragan-Kelly has preliminary plans to join CADLAB
in 1986 in order to further explore asynchronous control and to pursue a
doctoral degree.

5.14 Other Related Activities

As a result of Professor Lawsons assistance to the Prime Minister of Malaysia
Dr. Mahathir in planing a National Microelectronic Programme, a new
institute MIMOS (Malaysian Institute of Microelectronic Systems) was
established and inaugurated during 1985. Professor Lawson presented a paper
on the project at the ERSA (Economic Relations between Scandinavia and
ASEAN) conference at Stockholms University in October 1985. Further
contacts between MIMOS and various Swedish Institutes and the Ericsson
Corporation are being pursued.

5.15 Personnel

Professor Harold W. Lawson Jr., Ph.D.
J. Bryan Lyles, Ph.D.

68 IDA AN N U AL RESEARCH R EP O R T 1985
The Laboratory for Computer-Aided Design of Digital Systems

Britt-Marie Ahlenback, secr.
Johan Fagerstrom, Tech.Lie.
Bjorn Fjellborg, MSE
Tony Larsson, MSE
Mikael Patel, Tech.Lic .
Zebo Peng, Tech.Lic .
Krzysztof Kuchcinski, Ph.D. (Guest Researcher September-December)

Professor Harold Lawson has been acting laboratory leader from July 1985
after the departure of Dr. Bryan Lyles. As of January 1986, Michael Patel will
actively participate in the leadership of CADLAB. Further, we are negotiating
with a new potential leader for the group. We expect that 2 new doctoral
students will be added to the group during 1986.

5.16 Licentiate Theses

Vojin Plavsic, Interleaved Processing of Non-Numerical Data Stored on a
Cyclic Memory.

Arne Jönsson and Mikael Patel, An Interactive Flowcharting Technique for
Communicating and Realizing Algorithms.

Zebo Peng, Steps Towards the Formalization of Designing VLSI Systems.

Johan Fagerström, Simulation and Evaluation of an Architecture based on
Asynchronous Processes.

ID A A N N U A L RESEARCH REPORT 1985
The Laboratory For Representation of Knowledge in Logic

69

6.

RKLLAB

The Laboratory for
Representation of Knowledge in Logic

Erik Sandewall
Professor of computer science

The area of interest for RKLLAB is theoretical aspects of knowledge based
systems. The activity of ” knowledge engineering” , or the design o f expert
systems and other knowledge based systems, is at this time a rather ad hoc
activity, but there seems to be good opportunity to apply and extend logic
(and discrete mathematics) so as to strengthen the theoretical basis for
knowledge engineering. It is the objective of RKLLAB to contribute in that
respect.

6.1 Researchers and Projects.

RKLLAB was formed in January, 1985 from the office systems project
previously in ASLAB and the reason maintenance systems project previously
in AILAB. During the previous years, the office systems project had gradually
extended into formal specification aspects and knowledge engineering aspects of
office systems. In particular it started studying the topic of non-monotonic
logic, which of course is closely related to reason maintenance. This explains
the reason for the reorganization, and the name of the new laboratory.

The work in RK LLAB is mainly supported by STU, The Swedish Board for Technical
Development.

70 ID A AN N U A L RESEARCH R EP O R T 1985
The Laboratory For Representation of Knowledge in Logic

6.1 .1 Activities.

The activities in RKLLAB during 1985 have been in the following areas:

Non-standard logics, in particular:
non-monotonic logic (written NML in the table below)

- reason maintenance (RM)
- fuzzy logic (FL)

Work on office systems, in particular:
- theories of office software (ThOS)
- office systems components (equipment and software) (OSC)
- startup of a new project, called LINCKS

Work on representation of knowledge about machinery, particularly the
representation and analysis of action-plans that involve concurrent actions with
a duration in time. (RKM)

6.1.2 Laboratory Members

The following researchers have been members of RKLLAB during 1985:

Activities

Laboratory leadership:
Erik Sandewall NML, RKM
Lillemor Wallgren, secr.

Project leaders and senior graduate students:
Dimiter Driankov FL, LINCKS
Jim Goodwin RM, RKM
Lin Padgham LINCKS
Ralph Rönnquist ThOS, LINCKS

Graduate students and masters thesis students:
Johan Andersson OSC, LINCKS
Peter Haneclou RM, LINCKS
Johan Hultman RKM
Per Leander RKM
Stefan Wrammerfors ThOS

Technical services:
Jan Axing OSC
Leif Finmo OSC
Arne Fäldt OSC

ID A A N N U A L RESEARCH REPORT 1985
The Laboratory For Representation of Knowledge in Logic

71

6.1.3 M ain current achievements.

The major achievements during 1985 have been:

a) a characterization of non-monotonic reasoning in terms of a four-valued
logic, and an application to inheritance with exception (Sandewall)

b) a fast algorithm for calculating some admissible probability assignment for
propositions, based on given probabilities for some logically related
propositions (Driankov)

c) a set o f linguistically motivated estimates for belief intervals, which are
needed because for stability reasons, conventional numerical estimates of
probabilities appear to be ” too precise” (Driankov)

d) a characterization of a relation over binary networks which can be seen as
the relation of ” containing more information” (Rönnquist)

e) a characterization of the relationship between schema and relations in
relational data bases, using binary networks for expressing the schema
(Rönnquist)

and (not yet published):

f) a systematic treatment of meta level reasoning in the same framework as
object level reason maintenance (Goodwin)

g) an analysis of recurring cycles composed of actions with duration and
parallellism (Sandewall et al)

6.2 Non Standard Logics

The term ” non-standard logic” is popularly used for ” everything except first
order predicate logic” . In a more positive vein, we are interested in two kinds
of extension over the ” standard” :

- special semantics, such as ” fuzzy” semantics and ” multiple world”
semantics;

special reasoning mechanisms, such as non-monotonic reasoning (which is
able to backtrack when it reaches an inconsistency), and reason-maintenance
mechanisms (where inference steps are stored in a data base, in such a way
that the property o f being a theorem can be turned on and off as logical
support arises and is lost).

There is ample evidence that such extensions are necessary for the further
development of knowledge-based systems.

72 IDA AN N U AL RESEARCH R EPO R T 1985
The Laboratory For Representation of Knowledge in Logic

6 .2 .1 Non Monotonic Logic

Ordinary logic is monotonic in the sense that if A is a set of propositions, and
Th(A) is the set of theorems that are derivable from A, and A is a subset of
A ’ , then Th(A) is a subset of T h (A ’). In other words, the function Th is an
(increasing) monotonic function of its single argument. Non-monotonic logic is
the popular term for variants of logic which violate that property, and is
widely recognized to be of crucial importance for A.I.

The standard way whereby non-monotonicity arises is through the use of the
Unless operator (first introduced in [Sandewall 1972]), where one may write for
example

if A
and Unless B
then C

meaning that if A has been proven, and if B can not be proven, then C may be
obtained as a theorem. (References are at the end of the RKL-lab section).

Non-monotonic logic has turned out to be an enigmatic problem. In ref. 9, Erik
Sandewall analyzed non-monotonic reasoning in terms of a four-valued logic,
with the four ” truth-values” true, false, undefined, and contradiction. Very
briefly, one of the results in the paper was that one may computationally
re-interpret a rule using the Unless operator, as, in the example: if A has been
proven, and if B has not yet been proven, then consider C as proven and B as
disproven (i.e. ” not B” is added to the set of assumptions, and is treated just
as if it had been proven). However, one must take one precaution: if a
contradiction arises later on during the derivation process, for example of the
form ” B and not B” , then one must be prepared to backtrack.

More technically, the paper shows that the following property of monotonic
logic:

if A is a set of axioms, and A ’ which is a superset of A is a minimal
fixpoint for the operator defined by the inference rules, then there exists a
derivation from A to A ’

does not apply for non-monotonic logic of Reiter’s ” default logic variety, but if
the minimality criterion is strengthened so that A ’ is furthermore an
approachable fixpoint, in a sense defined in the paper, then a derivation exists.

In a later paper (ref 10), these results have been applied to a particular but
very common case, namely inheritance in posets (e.g. classification structures)
where exceptions are allowed. For example, one may wish to state in a
biological data base that ” elephants are gray” but also that ” albino elephants
are white, constituting an exception” , and there may be exceptions from the
exceptions etc. The paper shows how the ” obvious” deductions with such
exceptions can be formulated as a straightforward special case of the
non-monotonic logic developed in the previous paper.

ID A A N N U A L RESEARCH REPORT 1985
The Laboratory For Representation of Knowledge in Logic

73

6.2.2 Reason Maintenance

Work on reason maintenance has primarily been done by Jim Goodwin, who is
now finishing his Ph.D. thesis. This work was described in last year’s progress
report, and we refer to it and to (ref. 4).

Also during 1985, Peter Haneclou has started a project to express reason
maintenance operations in terms of Sandewall’s four-valued logic as described
in the previous section.

6.2.3 Fuzzy Logic

In fuzzy logic, the classical truth-values 0 and 1 (false and true) are replaced
by number between 0 and 1, or other entities which provide a measure of
certainty level. Dimiter Driankov is doing research in this area.

One paper (ref. 1) considers the case where the truth-values are replaced by
probabilities between 0 and 1. Suppose probabilities of some propositions are
known, and probabilities of some other propositions (usually containing the
same atomic propositions as the given ones do) are to be calculated. This
problem is in general under-determined, and algorithms have been proposed, in
the research literature, for calculating a ” most likely” probability for the new
proposition(s). Such algorithms are however so resource consuming that they
are probably not practical. Mr. Driankov has developed an algorithm which
merely calculates one admissible probability assignment, i.e. one which is
consistent with the given probabilities, but which can do so fairly rapidly,
namely by solving a set of linear inequalities. Also, if there is no admissible
probability assignment, meaning that the given probabilities are inconsistent,
then the algorithm indicates which subset of the given probabilities is culpable,
which of course is of significant value for ” debugging” the set.

In some other papers (ref. 2-3), the truth values were instead replaced by belief
intervals which are pairs of probabilities, and therefore represent some segment
of the interval [0,1], A calculus of belief intervals was proposed where
disjunctive and conjunctive operators are based on the Dubois family of
parameterized T-norms and T-conorms, where the parameter was interpreted
as a measure of the independence between the respective evidence.

One o f the problems which arises in such systems is that small changes in the
numerical values given by the user, may significantly change the derived values
for other propositions, and in particular, it may change admissible situations to
unadmissible ones. This suggests that numerical values are ” too precise” , and
that cruder estimates might be desirable for stability reasons. Mr. Driankov
introduces a set of nine linguistically based estimates - a kind of nine-valued
logic - and analyzes under which conditions the resulting system is ” well
behaved” with respect to introducing contradictory belief intervals.

74 ID A AN N U AL RESEARCH R EP O R T 1985
The Laboratory For Representation of Knowledge in Logic

6.3 Office systems

Our work on office systems has the following long-term goals:

- development of appropriate representations of office knowledge, i.e. such
knowledge as is processed in office work;

- development of models for ” office procedures” , or representation o f knowledge
about office work;

- development of appropriate designs for knowledge based office systems,
particularly through experimental implementations;

- development of a theory that (in an empirical sense) accounts for observed
phenomena in conventional office software (e.g. editors, formatters).

The first three of these goals are obviously in line with the overall focus of
RKLLAB; the fourth goal is a necessary complement in order to obtain a full
understanding of office systems. Besides these research goals, software, and
sometimes even equipment, is developed if that serves to advance us towards
the research goals.

Some of the development during previous years have been:

- development of a theory of information flow, which provides a good model for
albeit fairly simple forms of office procedures.

- development of a theory of information management systems, or IMS theory,
which provides a basis for formal characterization of office software. In
particular, the semantics of editing operations in hierarchical structures was
defined using IMS theory.

Both of these developments have been accompanied by experimental
implementations. The objectives for 1985 were to approach ” representations of
office knowledge” , in the above sense; also to extend the approach for ” office
procedures” so as to deal with much more flexible routines than in the
information flow model; and finally to pursue the theoretical work.
Experimental implementations should continue to play an important role.

6.3 .1 Theories of office software.

The effort during the reported period was based on the previously developed
IMS theory. The key idea in this theory is to view a data structure or data
base as a simple binary network, with nodes, arcs from nodes to nodes, and
arcs from nodes to attribute values. Such networks are viewed as
interpretations for propositions in a variety of three-valued first order logic
(with undefined as a truth-value because interpretations may be partial). At
the same time, algebraic operations are defined for composing networks into

ID A A N N U A L RESEARCH REPORT 1985
The Laboratory For Representation of Knowledge in Logic

75

larger networks. There is of course an analogy with the propositional and
algebraic ways of treating relational data bases.

The main framework as well as the rationale for it were outlined in a set of
lecture notes (ref. 8). For earlier work on IMS theory, see also last year’s
progress report.

This line of research has been continued during 1985 as follows:

a) Relational Algebra in IM S Theory (Ralph Rönnquist, ref. 5).

The relational database model, particularly the relational algebra, is given an
interpretation in terms of an underlying semantic network, which is then
viewed as a kind of ” deep structure” for the relation. The relation is
understood as a composition of a categorizing pattern (the relation schema)
together with augmentations as given by the tuples constituting the relation
contents. The network database is thought of as containing each schema-tuple
combination explicitly, so that the schema part is a recurrent pattern. In light
of the relational view however, a set of such schema-tuple pairs is abstracted
into a schema-relation pair by allowing the combination to distribute over set
formation.

The operations o f relational algebra are then extended to schema-relation
aggregates, and are defined in terms of network operations. It is shown that
each operation on relations has a corresponding operation on schemas. The
schema operation yields a new schema, the relation operation yields a new
relation, and the combination of these forms a schema-relation pair that is the
outcome of the extended operation.

b) The Information Lattice of Networks Used for Knowledge
Representation (Ralph Rönnquist, ref. 6).

Networks are viewed as information containers, so that a network contains as
much information as can be interpreted from it. One network then contains
more information than another if there is a way to increase the information
contents from the latter so as to obtain the former.

Addition of constituents, such as arcs and nodes, to a network is one way to
increase its information contents. In other words, a network contains at least
as much information as any of its sub-structures.

Another, and perhaps less obvious way to increase the information in a
network is by identification of nodes. When a network is created for expressing
some amount of information, it may happen that the same ” thing” is
represented by two or more, distinct nodes in the network. Typically, this
happens if the information is given piece-wise and a ” thing” is referred to in
different ways. The addition of information that identifies two nodes as the
same one, is an information increase. Operationally, it results in a network

76 ID A AN N U A L RESEARCH R EPO R T 1985
The Laboratory For Representation of Knowledge in Logic

contraction, i.e. the identified nodes are brought together into a single node
while retaining all their arcs.

Taken together, the extension and contraction operations form a transitive
relation between networks. It defines a lattice of equivalence classes of
networks. Each such class consists of networks which are equivalent with
respect to information contents. It is shown that we can choose a canonical
element in each class, such that all other networks within the same class are
extensions of the canonical one, i.e. can be obtained by adding nodes and arcs.
Therefore, the canonical element is the ” smallest” one among the networks
that contain the same information. In some special cases, the structure of the
lattice has been identified in detail.

c) Formal definition of formatting operations (Stefan Wrammerfors)

An idealized text formatter is defined using two mechanisms:
editing operations on attributed trees, as defined in the IMS theory and as

implemented in the IM4 system (see below);
attribute propagation, as used e.g. in attribute grammars.

This work is still in progress.

6.3.2 The case for non-integrated workstations

Before we proceed to descriptions of the actual implementation experiments,
let us remark on a choice of strategy that underlies those experiments, namely
the case for non-integrated workstations.

The trend during the last decade has been towards integrated office
workstations, i.e. the single computing system which provides high quality
services in several dimensions: strong computing power, large working memory,
high resolution screen, etc. We believe that the time is now ripe to work on the
opposite concept. The ” workstation” should be seen as a place where a person
works, rather than as a computer box, and it should be explicitly recognized
that different types of equipment, with different levels of capability, will
co-exist in workstations. The challenge of course is to arrange the total system
so that the best possible use can be made of both the more capable and the less
capable computer systems.

The emergence of portable computers is one of the strong reasons for
non-integrated workstations. Portable computers are very convenient to have,
especially for people who travel much. However, weight is a very significant
convenience factor in portable computers. It is likely that users will be happy
to stay with the classical, 24x80 character screen type services, if that can help
to cut down on weight. But when the portable computer is brought back to the

ID A A N N U A L R ESEARCH REPORT 1985
The Laboratory For Representation o f Knowledge in Logic

77

office, the work that started in the portable must be able to continue on higher
quality, stationary computers in the workstation.

Also, many types of offices may continue to use special purpose computer
equipment, related to the specific business at hand. Again, general purpose
equipment must be able co-exist peacefully and constructively with the special
purpose equipment.

Furthermore, the present uncertainty about the medical effects of working with
CRT screens, may make it necessary to increasingly use other display
technologies where high resolution is more difficult to achieve.

For these reasons we have started to address the issue of how to design office
systems in a non-integrated way, so that there are several computing systems
which in some sense ” know about” each others’ capabilities and are able to
relate to them. We also wish these relationships between participating
computing systems to be visible for the user, and to be expressed in terms of
high level concepts.

6.3.3 Office Systems Components: the IM 4 project

The IM4 project was started in 1983 as an implementation experiment of an
office information system based on (an early variant of) IMS theory. The core
o f the system is a data base organized as an attributed tree structure, and an
interactive editor with powerful macro facilities for operating on the data base.
The original plan called for several lines of growth from that core: ” high level” ,
building on the facilities in the core for implementing high-level services; ” low
level” providing interface to operating services (such as forms, windows, and
computer mail transmission) using the attribute mechanisms; and ” towards
theory” by using attribute propagation models for various types o f office
systems software (such as formatters).

During 1984 and the first half of 1985, the IM4 project focussed mostly on the
” low level” direction of growth, and it therefore resulted in a library of office
systems components, including some associated hardware. The project of
Stefan Wrammerfors (previous section) represents work ” towards theory”
during 1985. We returned to the ” high level” direction of work through the
LINCKS project that was started in October (next section).

In line with the design hypothesis of non-integrated workstations, the IM4 core
system was viewed as a supervisor which would direct a number of lower level
processes, on several processors. The core system was implemented in Lisp
(Elisp for DEC-20), and the subordinate processes would be both separate
DEC-20 processes, and processes in M68000 series computers, particularly for
display purposes (both on screens and on paper). It was also intended that the
entire system (including the services in the subordinate processes and
computers, and the protocols) should eventually be formally characterized as a
part of the ” towards theory” line of work.

78 IDA AN N U A L R ESEARCH REPORT 1985
The Laboratory For Representation of Knowledge in Logic

The following are the major results of work on IM4 during 1985:

- the (previously implemented) protocol for communication with display
processors was extended to allow incremental update of the screen, using a
window concept;

- the protocol was also made available using function calls in Elisp;

- the existing ’Aform ’ text formatter, implemented in Pascal, was modified so
that it allows incremental formatting. This was done by establishing a link
from Elisp to Aform whereby Elisp can sense and set the parameter settings of
the formatter (current left margin setting, current spacing, etc.), and whereby
Elisp can also request Aform to format a segment of text relative to the
current setting of the parameters, and to exit non-destructively from the
formatting process when the text segment is done;

- in order to implement the previous, a general purpose interface between
Elisp and Pascal was implemented;

- all documentation about IM4 code was stored in the IM4 data base itself,
where it was closely intermeshed with the actual program code. This was an
interesting experiment, as a step towards easier maintenance and
re-organization of documentations.

These activities in the IM4 project did not in themselves result in an
operational system, but they prepared the way for the next project and
provided a number of tools for it.

6.3 .4 Experimental high level system: the L IN C K S project

During the period of October - December, the ” high level” project was
initialized and its goals were defined. The new project is called LINCKS, for
Linköping Intelligent Knowledge Communication System, and is led by Lin
Padgham. Since the project has just started, and the goal statement for the
project was confirmed in mid-December, we will only give a very brief outline
here.

LINCKS takes as its primary goal to support communication, in the sense of
creating, transmitting, and receiving information. For example, if
communication takes place using a book, then the authoring, the publishing,
and the reading activities represent those three stages. Each stage may consist
of a number of ” smaller” communication tasks. For example, publishing a book
may involve a number of letters between the author and the publisher.

The goal of the LINCKS project is now to build a system which supports
communication in such a way that some of the low-level communication acts
can be automated, using the technology of knowledge-based systems. One of
the requirements is then that the goal structure, where higher level actions are

ID A A N N U A L RESEARCH REPORT 1985
The Laboratory For Representation of Knowledge in Logic

79

decomposed into lower level actions, is stored in the computer system. Only
then can the built-in ” expert systems” have a chance to ” understand” the
context of what they are supposed to do, and apply whatever common sense
they have been endowed with.

LINCKS uses a multi-level structure for office knowledge, where one level is a
” notecard” database, i.e. a database where each object may contain attributes,
and where typical objects have a ” text content” (also represented as an
attribute) whose length is one or a few paragraphs. A longer text is
constructed as a set of notecards, where links between them are represented
using some of the other attributes. A message in computer mail may be a
single notecard; one user’s mail file will be a structured set of notecards.

Such a notecard structure strikes a balance between two possibly conflicting
goals: the representation structure should be so rich that the user can
conveniently express himself in it, and at the same time the structure should
be so uniform and clear that the ” expert system” type software in LINCKS is
able to manipulate the structure.

6.4 Representation of Knowledge about Machinery

Besides the office application, we have also started to work on the application
area of ” machinery” , with the following concrete examples in mind:

- machines that do manufacturing operations automatically
(NC-machines, industrial robots, etc)

- machines that move around - unmanned vehicles

- machines that lift cargoes (cranes, trucks, etc)

We are particularly interested in one aspect of machinery, namely that in order
to form an adequate description of its behavior we must use action structures,
in the following sense: An action structure is a generalization of an action
sequence, where actions may take place simultaneously as well as sequentially,
and where each action lasts for some time (not just momentarily). A good
formal way of dealing with such action structures was the first priority. Based
on theoretical work in early 1985, an experimental software tool called HIAS
(for ” handlingsplanering i intelligenta autonoma system” , i.e. action planning
in intelligent autonomous systems) has been implemented by Jim Goodwin and
Per Leander. (The publication for this work is still in the pipeline).

The problem of modelling such action structures is shared with many other
types of applications, and occurs also in the office systems application,
particularly when portable computers are used. There are however some other
aspects o f machinery which are also important, and more specific: the need for

80 IDA AN N U A L RESEARCH R EPO R T 1985
The Laboratory For Representation of Knowledge in Logic

handling geometry, and the need for integrating the action-plan with the
sensorics and the motorics that occurs when each elementary action is
performed. During 1986 we are also beginning to address these issues.

6.5 References

The following are those RKLLAB publications referenced in the text above.
For the full set of publications, please refer to the appendix of this progress
report.

1. Dimiter Driankov: Inference with consistent probabilities in expert systems.

2. Dimiter Driankov: A calculus for belief-intervals representing uncertainty, to appear in Proc
o f the Int. Conf. on Information Processing and Management o f Uncertainty, Paris, June 1986.

3. Dimiter Driankov: A calculus with verbally defined belief-intervals.

4. Jim Goodwin: A Process Theory o f Non-Monotonic Inference. Proceedings o f IJCAI-85.

5. Ralph Rönnquist: Relational Algebra in I.M.S. Theory. Report LiTH-IDA-R-85-06.

6. Ralph Rönnquist: The Information Lattice o f Networks Used for Knowledge Representation.
Report LiTH-IDA-R-86-02.

7. Erik Sandewall: A n approach to the frame problem, and its implementation. In Meltzer and
Michie (eds): Machine Intelligence 7. Wiley, New York, 1972.

8. Erik Sandewall: Theory o f Information Management Systems. Report LiTH-IDA-R-83-03.

9. Erik Sandewall: A Functional Approach to Non-Monotonic Logic. Proceedings of IJCAI -85,
and Computational Intelligence, Vol. 1, No. 2, pp. 80-88.

10. Erik Sandewall: Non M onotonic Inference Rules for Inheritance with Exception. T o appear
in Proceedings o f the IEEE, special issue on Knowledge Representation.

IDA ANNUAL RESEARCH REPORT 1985
The Group for Logic Programming

81

7 .

T h e G r o u p f o r

L o g i c P r o g r a m m i n g

Jan M aluszynski

7 .1 I n t r o d u c t i o n

The Group for Logic Programming was created in spring 1985 as a result of
division of the former Group for Theoretical Computer Science into two
independent research groups. The research program is oriented towards the
development of more efficient methods of execution of logic programs. The
research concentrates on the foundations of logic programming systems and on
the relation of logic programming to other computational paradigms.

An important objective of the group is also to contribute to the research
activities of the other laboratories by offering courses and seminars on logic
programming, theory of programming and formal language theory.

7 .2 R e s e a r c h e r s a n d R e s e a rc h A c t iv i t ie s

7.2.1 Personnel and External Researchers

The following persons were involved in the research activities of the group:

Jan Maluszynski , Ph.D. group leader
Wlodzimierz Drabent, Ph. D. visiting researcher

Some of the research was done in external cooperation with:

The work in the Logic Programming Group is mainly supported by STU, The Swedish Board
for Technical Development.

82 IDA AN N U A L RESEARCH R EPO R T 1985
The Group for Logic Programming

Piotr Dembinski at Chalmers
Pierre Deransart at INRIA, France
Jan Komorowski at Aiken Computation Lab., Harvard

The following undergraduate students contributed to the research:

Håkan Jakobsson
Simin Nadjm-Tehrani
Ulf Nilsson

The main research activity concentrated around the project Research in
Efficiency of Logic Programming” funded by STU-F (grant 85-3166).

7.2.2 Background

Research in logic programming at IDA was initiated by Jan Komorowski who
in his Ph.D. thesis specified an abstract Prolog machine and described some
experiments with partial evaluation of logic programs. In 1982 Jan Maluszynski
joined the department and investigated relations between van Wijngaarden
two-level grammars and logic programs. It was shown that two-level grammars
can be considered logic programs where many-sorted terms are used instead of
the terms of the Herbrand universe. A continuation of this research was a joint
project with Pierre Deransart aiming at a formal comparison of attribute
grammars and logic programs.

7.2.3 Research in Efficiency of Logic Programming

We are searching for methods of static analysis and optimization of logic
programs. The suggested approach is based on the formal comparison of
Attribute Grammars and logic programs by Deransart and Maluszynski. We
specifically focus on possible transformation of a logic program into an
equivalent Attribute Grammar. Such a transformation makes it possible to use
the dependency relation of the Attribute Grammar for data-flow analysis of the
logic program. Furthermore, it opens for application of attribute evaluation
techniques for execution of logic program. A long range objective is
development of a logic programming environment implementing these ideas.

Preliminary Results

We recall first the motivation for our work, as presented in the original
proposal.

The attractive characteristics of logic programs is their declarative semantics.
The logic programmer provides the logic part of a problem while the
interpreter is supposed to supply the control. This approach has proven very
convenient for writing small executable specifications but suffers seriously from
inefficient execution. Since the interpreter which supplies the control
component has to be very general it is unlikely to be very efficient. The

ID A A N N U A L RESEARCH REPORT 1985
The Group for Logic Programming

83

motivation for our work is the conviction that there is no need to pay the cost
of a very general procedure for executing specialized programs. Therefore, we
are searching for properties of logic programs that allow more efficient
execution, and for method of static analysis which check whether a given
program has such properties. Our approach assumes that the declarative
reading of a logic program cannot be sacrificed. We share the opinion
expressed by Mellish in the recently published paper that many logic programs
” are not radically different in kind from programs written in conventional
languages. For those programs it should be possible for a compiler to produce
code of similar efficiency to that of other compilers.” For this it is necessary to
develop methods of static analysis of logic programs. Mellish suggests the use
of abstract interpretation techniques. This assumes sequential execution with a
fixed control strategy. However, more flexible control strategies may be
worthwhile for some applications, e.g. coroutining. Furthermore, AND-parallel
execution is sometimes advocated as a way of improving efficiency. We are
searching for methods of analysis of logic programs applicable also for these
execution models. Since the execution of a logic program relies on the
proof-theoretic semantics, what we really need is a proof technique that makes
it possible to prove properties of the trees constructed for a given program by a
resolution procedure. We suggest to adapt for this purpose the techniques for
proving properties of attribute grammars discussed by Katayama and by
Deransart.

The research in 1985 concentrated on foundations of our approach. The results
are summarized below.

A formal comparison of logic programs and attribute grammars.

Logic programs are closely related to the attribute grammars defined by
Knuth. This fact is sometimes pointed out in the literature without discussing
the nature of the relationship between these formalisms. Logic programming
proved to be useful for implementation of attribute specifications. Our
objective was to give a more formal account of the relations between the
formalisms to facilitate transfer of expertise. Research on this topic was
completed and the results were published in:

Deransart,P. and Maluszynski,J.: Relating logic programs and attribute
grammars Journal of Logic Programming 3, No. 2 (1985) 119-158

We now summarize some results of this paper.

Both attribute grammars and logic programs refer to similar notions of labeled
trees. These are proof trees of logic programs and decorated parse trees of
attribute grammars. It was shown that it is often possible to transform a logic
program into an attribute grammar whose decorated trees are isomorphic to
the proof trees of the program. A construction implementing such a
transformation was described and discussed. This opens for application of proof
techniques known for attribute grammars for static analysis of logic programs.

The paper discusses also some differences between the formalisms. It is an
interesting question whether the features of attribute grammars which
distinguish them from logic programs could be possibly used in logic

84 IDA AN N U AL R ESEARCH R EPO R T 1985
The Group for Logic Programming

programming.

The most important differences between attribute grammars and logic
programs can be summarized as follows:

Semantic domains

According to the model-theoretic semantics the semantic domain of a logic
program is its Herbrand universe. However, this may be rather inconvenient,
since this means that any data type used in an application should be in
principle implemented by terms, while its operations should be expressed as
predicates of the program. Prolog implementations introduce ” evaluable
predicates” , e.g. arithmetic, which facilitate programming but cannot be
described in terms of Herbrand models. On the other hand, attribute grammars
may use arbitrary data types. These are, however, assumed to be specified and
implemented outside the grammar. The grammar itself can be seen as a
mechanism for combining such external specifications during a computational
process. The operations of the external data types are referred to by the
operator symbols used in the semantic rules of the grammar. To make possible
a proper interaction between external specifications and the grammar some
restrictions on the form of the semantic rules should be observed. This
concerns a many-sorted type discipline and the structure of the semantic rules
related to the splitting of attributes into ” synthesized” and ” inherited” . This
classification of attributes resembles to certain extent the idea of mode
declarations for predicates of logic programs.

Construction of the tree

Proof trees of a logic program are constructed by resolution. The construction
is based on unification. Construction of a decorated tree of an attribute
grammar is in principle done in two phases (which may be merged in some
implementations). First a skeleton parse tree is constructed for a given
terminal string. For this a context-free parser is used. Then an evaluation
procedure is called to decorate the tree.

Decoration of the tree

Partial proof trees of logic programs are constructed and updated during
subsequent resolution steps. One label may be updated many times during
different steps. Backtracking may also change labels. Decoration of a parse tree
by attribute values is controlled by data flow. The value of each attribute
position is determined by a semantic rule associated with this position.
Formally a semantic rule is a term whose variables denote some attribute
values. The term cannot be evaluated as long as the values of its variables are
unknown. Evaluation of the term determines a value of the attribute which
may enable evaluation of some other attributes. Thus, attribute grammars
apply the concept of data dependency for controlling computations.

Some interesting subclasses of logic programs

The proof technique for attribute grammars has been exploited to formulate

ID A A N N U A L RESEARCH REPORT 1985
The Group for Logic Programming

85

sufficient conditions for some runtime properties of logic programs. This
research is not yet completed. We plan to use the experience from this
experiments to give a more comprehensive account of this proof technique and
to search for more properties of logic programs which may be relevant for the
efficiency of execution. The preliminary results are published in the following
papers:

Maluszynski,J. and Komorowski,J.: Unification-free execution of logic
programs, 1985 IEEE Symposium on Logic Programming, Boston July 1985,
IEEE Computer Society Press, 78-87

This paper gives a sufficient condition to replace runtime unification in a
Prolog program by term matching. This seems to be important for efficiency
since it opens for use of parallel term matching instead of unification. The class
of programs satisfying this condition is non-trivial. The paper discusses also a
methodology of using this condition as a programmer’s tool.

Dembinski,P. and Maluszynski,J.: AND-parallelism with intelligent
backtracking for annotated logic programs, 1985 IEEE Symposium on Logic
Programming, Boston !u ly 1985, IEEE Computer Society Press, 29-38

This paper gives an improved scheme of AND-parallel interpretation for a class
of logic programs with a particularly simple scheme of data-flow. The class
corresponds to a well-known subclass of Attribute Grammars. The advantage
of the scheme over well-known Conery’s approach is that the data flow analysis
can be performed in compile time. However, the class of the programs is
restricted. Presently it is the subject of an experiment which aims at checking
how often people write programs outside this class and what are the
programming techniques which require violation of our restrictions.

Continuation of the Research

The preliminary results mentioned above give a theoretical framework for
development of implementation principles for a logic programming system
based on the concept of attribute evaluation. Development of such a system
should be preceded by :

1. Implementation of algorithms for static analysis of logic programs. These
include:
- data-flow analysis; checking whether a given program can be transformed into
an attribute grammar of some special type;
- unification analysis-, checking whether the program fulfills some conditions
which allow to compile-out unification, to replace unification by one-way
pattern matching, to avoid occur-check, etc.
- mode analysis; checking whether ” evaluable predicates” and external
functional procedures satisfy some conditions for the run-time instantiation of
their arguments.

2. Implementation of a many-sorted type system for logic programs and
algorithms for static type checking.

86 ID A AN N U A L R ESEARCH R EP O R T 1985
The Group for Logic Programming

3. Implementation of a bottom-up parser for Definite Clause Grammars.

The group is currently engaged in the following activities:

- development of an improved model of parallel execution of logic programs (H.
Jacobsson, J. Maluszynski). This is a continuation of the previous work.

- development of programs for static analysis of logic programs (W . Drabent,
S. Nadjm-Tehrani). One of the aims is also to check what programming
techniques are used in logic programming. Presently we have a program that
checks whether a given Prolog program fulfills some restrictions concerning
data flow upon which our scheme of AND-parallelism is based. An experiment
with a sample of logic programs shows that many of them fulfill the restriction
and discloses some programming techniques specific for logic programming.
The results of the experiment are being prepared for publication.

- development of an alternative implementation of D C G ’s (Ulf Nilsson). The
objective is to extend well-known table-driven bottom-up parsing techniques
for context-free grammars for the case of D C G ’s. This should allow to deal
with the case of left-recursive grammatical rules which cannot be handled by
Prolog systems, and to avoid backtracking in parsing when the underlying
context-free grammar of a DCG is a deterministic grammar.

7.2.4 Research in Theory of Programming

This was a continuation of the previous work of Wlodzimierz Drabent. An
attempt to find another construction of domains for denotational semantics
was undertaken. The traditional, so called P-omega, approach is not easily
comprehensible. It seems that domain construction is a main obstacle in good
understanding of denotational semantics. W. Drabent’s work on this subject
was connected with his previous work on building operational definitions which
were close to denotational ones. The basic idea of the approach is to determine
a domain element through its finite, “ representable-in-computer” ,
approximations. Domains are built from so called kits which are quasi-ordered
sets of such approximations. Informally, the quasi-order reflects the “ amount
of information” carried by single kit elements. Domain operations and
equations may be expressed in terms of kits what gives a gain in simplicity.
The approach is similar to that known as Scott’s information systems.

7.3 Contacts within the Department

An important objective of the Group for Logic Programming is to contribute
to the activities of the other laboratories by organizing courses presenting
mathematical theories relevant for these activities, and by informal discussions.

ID A A N N U A L RESEARCH REPORT 1985
The Group for Logic Programming

87

7.3.1 Courses for Graduate Students

The following courses were given in the academic years 1984/85 and 1985/86
by the members of the group or by visiting lecturers invited by the group:

Formal Language Theory (J. Maluszynski)

Introduction to Logic (J. Maluszynski)

Introduction to Logic Programming (J. Maluszynski, W. Drabent)

Formal Methods in the Design and Verification
of Microprogrammed Hardware (P. Dembinski)

Attribute Grammars and Attribute Evaluation (P. Deransart)

Edinburgh LCF (J. Leszczylowski)

Algebraic Specifications (seminar J.Maluszynski)

Logic Programming (research seminar)

7.3.2 Direct Contacts

The major area of interaction have been with CADLAB (esp. regarding
parallel architectures and specification techniques) and PELAB (esp. regarding
theory of programming languages). There are also some plans for possible
cooperation with AILAB concerning logic programming.

7.4 External Contacts

7.4.1 External Cooperation

A great deal of the results has been obtained in cooperation with researchers
abroad (see p .7.2.1.). We hope to continue such a cooperation also in the
future. We consider also a possibility of starting new joint projects.

7.4.2 Conferences and Seminars

During 1985 the work of our group was presented at the following conferences:

IEEE Symposium on Logic Programming, Boston, July 1985 (2 papers)

The 3d Japanese-Swedish Workshop on Fifth Generation , Tokyo,
N ov.1985

88 ID A AN N U AL R ESEARCH R EP O R T 1985
The Group for Logic Programming

The Workshop on Programs as Objects of Computation, University of
Copenhagen, Oct. 1985

We have regular contacts with the logic programming group at the
Department of Computer Systems of the Royal Institute of Technology in
Stockholm. These contacts are supported by mutual presentations of the
current research at the research seminars of both groups.

ID A A N N U A L RESEARCH REPORT 1985
The Group for Complexity of Algorithms

89

8.

The Group for
Complexity of Algorithms

Andrzej Lingas

8.1 Introduction.

The group for Complexity of Algorithms is concerned with the design and
analysis of efficient algorithms and data structures for combinatorial and
geometric problems arising in computer science, and the study of the inherent
complexity of these problems in simple models of computation. Members of the
group believe that work on algorithm and data structures efficiency can often
give greater gains than the development of new, faster computers.

The group originated from a part of the former Group for Theoretical
Computer Science in the spring of 1985, when dr. R olf Karlsson extended its
research scope to include data structures.

The first year of the group has been mainly spent on a project called Efficient
Algorithms and Data Structures for Geometric and Graph Problems funded by
STU. The objectives of the project fall into three mutually interrelated
categories o f data structures, computational geometry and graph algorithms.
The idea of the project has been to concentrate on the problems in which the
group members have already gained international recognition like data
structures on bounded domains, geometric decomposition problems and
subgraph isomorphism. The considered problems have applications among
others in VLSI chip design and fabrication, graphics, robotics, numerical
analysis, chemistry and optimization.

In addition to the research, the group undertakes important consulting and
educational tasks in the aspects of algorithm analysis and complexity theory
within the department, and it is open to cooperate with other groups.
Interactions with other groups are a source of new research problems for the

The work in the Group for Complexity of Algorithms is mainly supported by STU, The
Swedish Board for Technical Development.

90 ID A AN N U A L R ESEARCH R EPO R T 1985
The Group for Complexity of Algorithms

group members. For instance, the problem of minimum number rectangular
covering (see 8.3.2) has been posed by CADLAB, and the group has recently
become interested in a parallel processor allocation problem and a trajectory
problem posed by AILAB, and graph-theoretic concepts in network semantics
considered by RKLLAB.

8.2 Group Members

% 84/85 % 85/86

Group leadership : Andrzej Lingas, Ph.D. 100 80

Bodil Mattsson-Kihlstrom, secr. 7.5

Supervisors: Rolf Karlsson, Ph.D 70

Graduate Students: Christos Levcopoulos 85 85

8.3 Current Research

8.3.1 Efficient Data Structures on Bounded Domains (Rolf Karlsson)

Computational Geometry on a Grid

Computational geometry studies the computational complexity of finite
geometric problems. This research focuses on problems where geometric objects
are defined by edges between points taken from multi-dimensional grids.
Typical problems we consider are: finding closest points, determining point
containment, and computing all line segment intersections. The efficient
methods we present should be useful within computer graphics and VLSI. For
instance, when implementing geometry routines in computer graphics the
domain is a moderate sized raster. Our attention is concentrated on orthogonal
objects (the edges are parallel to one of the coordinate axes). VLSI technology,
for example, often uses only a fixed number of orientations for the object
boundaries and wires. Some of the results have been published or submitted for
publication in the proceedings of international conferences.

Inherent Problem Costs on Bounded Domains

The research focuses on designing a realistic lower bound model suitable for
problems that use a bounded domain. We have developed a segment graph
model, where a single-source directed graph represents an algorithm solving the
problem under consideration. Using versions of this model, we proved lower
bounds for the dictionary (support insert, delete and search) and nearest

ID A A N N U A L RESEARCH REPORT 1985
The Group for Complexity of Algorithms

91

neighbor (support insert, delete and find closest) problems. These results have
been published in the proceedings of international conferences. In future
research, it would be worthwhile to further unify these problem-oriented
techniques, and to make the lower bound model we have introduced more
general.

8.3.2 Geometric Decomposition Problems (Levcopoulos, Lingas)

Fast Heuristics for Decomposing Polygons into Rectangles

(Christos Levcopoulos)

We have considered heuristics for two problems concerning rectangular
decompositions of polygons: (1) Covering general polygons with minimum
number of rectangles, and (2) Partitioning isothetic polygons into rectangles by
drawing edges of minimum total length. Both problems have applications in
VLSI, the first in fabrication and the second in the design of VLSI chips. The
only result concerning the computational complexity of the first problem is
that its decision version is decidable, thus only suggesting a double-exponential
algorithm for computing the optimal solution. The second problem is NP-hard
if the polygons have holes.

For the first problem, we proposed and analyzed a heuristic which produces
results within a logarithmic factor of the optimum in time 0 ((n + theta(P))
log theta(P)), where theta(P) is the minimum number of rectangles required
to cover the input polygon, and n is the number of vertices. A part of our
results has been published the proceedings of an international conference.

For the second problem, we proposed an square-time heuristic. The solutions it
produces are in worst case within the constant factor 5 of the optimum, but
they are much better in practice. Also, we presented and analyzed an
O(nlogn)-time heuristic which produces solutions within a constant factor of
the optimum. Finally, some heuristics have been presented for certain
non-trivial classes of polygons. A part of these results has been published in the
proceedings of an international conference, and another part has been
submitted for publication.

G e om etr ic P a rtit io n P rob lem s w ith ou t S tein er P o in ts

(Andrzej Lingas)

Partitioning planar figures by drawing straight-line segments without
introducing new vertices (called Steiner points) has been considered. In
particular, a simple proof for the known theorem on polygon cutting often used
in divide-and-conquer geometric algorithms, and generalizations of the theorem
to include polygons with polygonal holes have been derived. On the other
hand, the research from previous years on the minimum weight triangulation
problem has been continued. Among others, a linear-time heuristic for

92 IDA AN N U A L RESEARCH REPORT 1985
The Group for Complexity of Algorithms

minimum weight triangulation of convex polygons, and novel, more efficient
implementations o f the greedy triangulation method have been obtained. Also,
several combinatorial properties of greedy triangulations o f convex polygons
have been derived which have made it possible to perform a non-trivial
analysis of the approximation behavior of the greedy method for convex
polygons. Two of the mentioned results have already appeared in proceedings
of international conferences.

8.3.3 Graph Algorithms (Andrzej Lingas)

Efficient algorithms for computationally feasible instances of so called subgraph
isomorphism problem have been developed. The problem consists in
determining whether a graph is isomorphic to a subgraph of another graph, it
is NP-complete and has a wide spectrum of applications in computer science. A
general algorithm for the problem has been designed. When the input graphs
are connected, have a good separator (e.g. planar graphs) and relatively small
valence, the algorithm runs in subexponential or even pseudopolynomial time.
Also, a separate algorithm for subgraph isomorphism constrained to
biconnected outerplanar graphs running in cubic time has been designed, in
contrast to a published, false proof of NP-completeness of this particular
problem. Both algorithms have appeared in proceedings of international
conferences.

8.3.4 External contacts

Rolf Karlsson: Written a paper together with Mark Overmars, Rijksuniversiteit
Utrecht, The Netherlands. The joint research took shape during a visit he
made in Utrecht in November. Joint research to extend a previous conference
paper is under way with Ian Munro, University of Waterloo, Canada, and Ed
Robertson, Indiana University, USA. Presented papers at the Snd Symposium
on Theoretical Aspects of Computer Science in Saarbrucken, West Germany
(January), and at the 12th International Colloquium on Automata, Languages
and Programming in Nafplion, Greece (July).

Christos Levcopoulos: Presented papers at the 5th International Conference on
Foundations of Computation Theory, Cottbus, East Germany (september), and
at the 83rd Allerton Conference on Communication, Control and Computing,
Urbana, Illinois, USA (October).

Andrzej Lingas: Presented papers at the 1st Symposium on Computational
Geometry in Baltimore, USA (June), at the Dept, of Comput. Sci. o f Penn
State University, USA (June), at the 11-th Workshop on Graph-theoretic
Concepts in Computer Science , West Germany (June), and at the Dept, of
Compt. Sci. of Dortmund University , West Germany (June). A cooperation
with Dr. J. Sack from Carleton University, Ottawa, Canada, has been
established in the area of geometric partition problems. A longer visit to
Carleton University and a revisit of Dr. Sack are planned.

ID A A N N U A L RESEARCH REPORT 1985
The Group for Complexity of Algorithms

93

On a domestic level, the group has established contacts through mutual visits
with an active research group (Svante Carlsson, Arne Andersson) at the
Computer Science department, Lund University.

Courses for Graduate Students

An important task of the group is to spread the knowledge of algorithm
analysis and complexity theory among graduate students within the
department. The following graduate courses are offered for the academic year
85/86:

Search Structures

Analysis and Complexity of Parallel Algorithms

Previously, the following courses were given by the group members:

Algorithm Analysis and Complexity Theory (83,84/85)

Mathematical Aspects of VLSI (84)

94 IDA ANNUAL RESEARCH R E PO R T 1985
The Group for Complexity o f Algorithms

IDA ANNUAL RESEARCH REPORT 1985
The Library and Information Science Laboratory

95

9 .

L I B L A B

T h e L i b r a r y a n d I n f o r m a t i o n S c i e n c e

R e s e a r c h L a b o r a t o r y

Roland Hjerppe

9 .1 I n t r o d u c t i o n .

LIBLAB, which is a joint project of the Department of Computer and
Information Science and the University Library, is funded by the Delegation
for Scientific and Technical Information.

Two major themes Document description and representation, and Users and
library (systems), and one minor, Networking, especially questions of central
vs. local handling are specified in the research program for LIBLAB.

During the first three years, 1983-1985, all of the themes and their subthemes
have been looked into but the focus has mainly been on the first theme,
Document description and representation.

The first year was spent on surveys, learning available systems and resources,
finding personnel, and planning. In the second year document description and
representations in the form of rules for cataloging and catalog records were
studied by building expert systems.

In 1985 the activities have been concentrated on finishing the work on expert
systems for cataloging and starting the long-range HYPERCATalog project, in
which a gradual convergence towards one specific area, extended and enhanced
catalogs on the basis of hypertext ideas, has taken place, and in which all of

The work in LIBLAB is mainly supported by DFI, The Swedish Delegation for Scientific and
Technical Information.

96 ID A AN N U A L R ESEARCH R EP O R T 1985
The Library and Information Science Laboratory

the themes have important roles.

9.2 Cataloging and document description.

The interest in document description and representation arises from the
observation that in searching for something in a collection of representations,
examining these instead of the items, it is impossible to search for that which
is not explicitly described and represented. Our descriptions predetermine what
we can find, and how we can find it. Representations as carriers of descriptions
have each their own structural limitations, hence modulating the descriptions.

9 .2 .1 P r o je c t E S S C A P E

In project ESSCAPE (Expert Systems for Simple Choice of Access Points for
Entries) a number of versions of small expert systems have been built using
EMYCIN and Expert-Trees (a version of Expert-Ease). The results and
experiences from these activities are discussed in the reports listed at the end
of this chapter but some general observations can be reiterated.

Documents, which exist in a large number of forms and types, can, for each of
these, be described in various ways and for various purposes. In LIBLAB we
have for the moment concentrated on published documents since these are the
major concern of libraries. We have furthermore delimited our studies to the
problems encountered in cataloging, in which the objective is to enable access
to items in a collection, as distinct from bibliography in which the the goal is
the comprehensive enumeration and description of documents having
something in common, and where one of the needs is to show similarities as
well as facilitate distinction.

There are a number of descriptive elements that are universally used for
identifying a published document. Among these are the author, the title, the
date and place of publication, and the publisher. Even within these few
dimensions a bewildering variety can be found, creating problems in the
description and representation of documents. The problems arise because
ideally one would want to have a single unique description for each item, and
one which will be the same irrespective of by whom it is done, so that we can
be assured that we are referring to the same item. (One way of accomplishing
that is through enumeration, as in the use of the International Standard Book
Number, ISBN. The problems with ISBNs are that they, naturally, do not
describe the item in a way that is useful to most people, they just represent it.)
Hence the need for rules for description and for cataloging.

Cataloging is traditionally described as consisting of three tasks: description,
choice of headings (access points which determine under which heading the
item will be put, and hence can be found, in the linear file that a catalog
usually is), and choice of the form of names. Subject description in the form of
classification or subject heading is usually performed separately though part of

ID A A N N U A L RESEARCH REPORT 1985
The Library and Information Science Laboratory

97

cataloging.

In building the ESSCAPE-systems we chose to implement parts of the
Anglo-American Rules for Cataloging, Second edition, (A A C R 2), as the
knowledge base. In AACR2 are codified procedures for description of items in a
collection according to a view in which authorship, or, generalizing,
responsibility for the creation of the item, is the preferred first identifier, the
main heading.

Some of our findings are:

The structure of AACR2, although well conceived, raises more questions
than it solves, viz. accepting the model with a general frame for decription,
as in chapter 1, which is then applied on different types of materials, one
soon finds occasion to ask 1) how should such a frame be used?, (mainly
referring to it as is now the case?), 2) what should be done in the frame
and what in the application? (e.g. should the frame have provisions which
are used in only two of a dozen applications?), and 3) why immediately
and consistently break the pattern of the model in the applications?

Three different structures have been found for the rules, a ” logical” and
hierarchical, which is the one used in presenting the rules in AACR2, a
” pruning” , decision flow based which is used in learning the rules, and a
” normal case and exceptions” which is the one used in daily practice.

The really difficult tasks, e.g. recognizing and interpreting a ” title page” ,
are not attended at all but rather taken as granted.

In description decisions are made that later influence the choices for access
points.

9 .2 .2 O th er p ro je c ts

Names, of people, places, and organizations, are encountered in the description
of every document. Names can be more or less complete or correct, they
change, there are differing naming customs, not to mention languages and
scripts. Control of names, in the form of selecting one name, and one form of it
as the authoritative, preferred one, is an onerous burden that libraries have
taken upon themselves in order to be able to provide access to e.g. everything
published by a specific person or institution. Authority control is the
designation of this activity which LIBLAB has become interested in as a
general problem. A system called LINS (LIblab Name handling System) has
been built by three students. In LINS those of the rules in A ACR2 concerning
choice of form of names that are operationalizable are used as a knowledge
base that is consulted in the updating of a database of names. Rules for
transcription from Russian to several languages are used to provide access to
different transcription when only one has been available.

98 ID A AN N U A L RESEARCH R EP O R T 1985
The Library and Information Science Laboratory

The problems encountered in authority control and in building LINS are
instances of a more general problem. Thesuri and classification schedules can
be regarded as two other different solutions to the same problem. In project
H YPERCATalog this general class of problems will be attacked as a sub-area.

9.3 Project H YPERCATalog

Project HYPERCATalog, which is outlined below), will be the main focus of
the activities at LIBLAB during the next four years, with all the staff
participating. H YPERCATalog is also a joint project with the Scool of Library
and Information Science at Tampere University in Finland, and Informatics
Management and Engineering Ltd. in London as participants at present.
Additional participants are expected from Norway and Denmark during 1986.

The objective in project HYPERCATALOG is to design and build a system
for (library) catalogs that integrates the following principles:

The catalog as a knowledge organization tool, and a private
information resource handler.

The catalog as a hypertext structure, implying navigation and
browsing as the primary modes of use.

The basic building blocks are data elements, links and a collection
concept. Each data element has links, each link has data, collections
have subcollections.

Maps and graphic illustrations of structures as tools for visualization of
database structure, which mirrors conceptual structures.

Integration of text and structure editor with other functions.

The database grows with use, enabling capitalization of the use made
of it.

Multiple views o f the database and its structure.

Private, modifiable versions of the database and the collective views.

Different interaction modes, user models and customization needed to
accomodate a wide range of users.

Some of the activities foreseen are:

Studying mappings of database structures and conceptual structures.

Studying and experimenting with semi-automatic methods for
structuring of the database, e.g. clustering, citation networks.

Studying problems of orientation in conceptual spaces, information and
database architecture.

ID A A N N U A L RESEARCH REPORT 1985
The Library and Information Science Laboratory

99

Studying relations between collections of hypertexts/-media and
hypercatalogs.

Studying maintenance, updating and re-structuring of the database,
and relations to private views.

Studying problems of application to large databases, i.e. collections of
millions of documents, which implies gigabyte databases.

9.4 Other activities.

Whereas the HYPERCATalog-project is a rather long-term program, and with
a basic research slant, cooperation has been initiated with the Department of
Medical Informatics in a joint project on paradigm integration in systems for
decision support (DSSs) to General Practitioners (GPs) in primary care, also
briefly described in a separate appended paper. This latter project is in part
from LIBLAB’s point of view regarded as a test bench and application area,
but also as means for providing important feedback. It is from the point of
view of the Dept. o f Medical Informatics concerned with basic problems of
decision making in primary care, and with tools to support the problem solving
of GPs. Most o f the staff in this project are hence from the Dept, o f Medical
Informatics, and participating GPs.

Additionally, both LIBLAB and Dept. of Medical Informatics are part o f a
cooperation between the University and County council in a project developing
an information network for primary health care as a part of establishing a
medical education program in Linköping that is called the Health University to
indicate its commitment to health rather than disease, and that integrates
education for people at various levels in medical and health care.

The other areas that will be investigated at LIBLAB are formalization of
bibliographic description and catalogs, using ideas and formalism from SGML,
Standard Generalized Markup Languages and abstract editors, and
bibliometrics and citation analysis.

9.5 Personnel

LIBLAB is now fully staffed and an interesting mixture has been achieved. The
personnel of LIBLAB is briefly presented below, most of them participate in all
projects but with different emphases.

R o la n d H je rp p e , MSE, Laboratory leader, spends, apart from planning,
coordination and administration etc., most of the time on the HYPERCATalog
project and on the building of a model for bibliographic representation.

L isbeth B jö rk lu n d , B.Sc., library assistant in the interlending department of
Linköping University Library, began her doctorate studies at LIBLAB the fall
o f 1985.

100 IDA ANNUAL RESEARCH REPORT 1985
The Library and Information Science Laboratory

Bodil Gustafsson, BA, librarian, head of the cataloging department of
Linköping University Library, has worked 50% of her time in LIBLAB, mostly
on the project surveying the forms of representations, and on the
HYPERCATalog project.

Hans Holm gren, MSE, divides his time equally between LIBLAB and
teeaching at Administrative Data Processing, concentrating on bibliograhic
description, and on the HYPERCATalog project.

B irg itta Olander, BA, librarian, former head of the acquisitions department,
worked 50% of her time in LIBLAB on the ESSCAPE-project. BO is also
pursuing doctorate studies at University of Toronto, Faculty of Library and
Information Science and spent the later half of 1985 with LIBLAB in the
HYPERCATalog project, before going back to finish her studies in Toronto
during 1986.

A rja Vainio-Larsson, MA, former lecturer in psychology, began her doctoral
studies at LIBLAB the fall of 1984 and has mostly been taking courses but
participated also mainly in user modelling and in the HYPERCATalog project.

Anne-M arie Jacobson, is the part time secretary for LIBLAB.

A s s o c ia te d p e o p le :

The following have various associations to LIBLAB:

K ristian W allin, student, responsible for local systems at the university
library and for the NYTTFO-project in Linköping, will join LIBLAB as a
doctoral student on a half-time basis after finalizing his BA-paper, and devote
most of his time to the HYPERCATalog project.

M anny J ägerfeld, BA, who has a research scholarship from DFI for studying
computerization in libraries, will also concentrate on HYPERCATalog and has
started his doctorate studies at LIBLAB the fall of 1985.

Hans-Ove Frid , BA, who also has a research scholarship from DFI, but for
studying catalog use, will be involved in the survey of representations and in
the HYPERCATalog project.

9 .6 L is t o f p u b l ic a t io n s

R e p o r t s :

(i.e. more extensive writings, reprints, etc.)
LiU-LIBLAB-R-1985:l

Hjerppe,R. and Olander,B: Artificial Intelligence and Cataloging:
Building Expert Systems for Simple Choice of Access Points For
Entries; Results and Revelations Juni 1985, 29+61p.

IDA ANNUAL RESEARCH REPORT 1985
The Library and Information Science Laboratory

101

LiU-LIBLAB-R-1985:2
Hjerppe, R.; Olander, B. and Marklund, K.: Project ESSCAPE -
Expert Systems for Simple Choice of Access Points for Entries:
Applications of Artificial Intelligence in Cataloging Juni 1985,16+37p.
(Presented at IFLA 51st Conference in Chicago, 18-24 Aug. 1985)

LiU-LIBLAB-R-1985:3
Hjerppe, R.: Project HYPERCATalog: Visions and preliminary
conceptions of an extended and enhanced catalog Sept. 1985, 20+7p
(Presented at IRFIS 6 (International research Forum in Information
Science 6) Sept. 16-18, 1985, Frascati, Italy.

W o rk in g p a p e r s :

(i.e. usually preliminary, smaller papers, distributed as requested and from
separate mailing list)

1. LiU-LIBLAB-WP:27 Gustafsson, B.: En studie av bibliografiska
representationer i LiUbs förvärvsregister Febr. 1985, lip

2. LiU-LIBLAB-WP:28 Gustafsson, B.: En fördjupad studie av
bibliografiska representationer i LiUbs förvärvsregister Juni 1985, 7p.

3. LiU-LIBLAB-WP:29 Hjerppe, R.: Vad vet datorn? Kunskapsöverföring
via dator Juni 1985, 9p. (Presentation vid Tekniska Träffen i
Linköping 6-7 juni 1985)

4. LiU-LIBLAB-WP:30 Hjerppe,R.: LIBLAB. Planer för verksamheten
1986 - 1988 Oktober 1985, 8p.

5. LiU-LIBLAB-WP:31 Hjerppe, R.: En modell för
informationsresurshantering (IRM) med tillämpning på
Hälsouniversitetets bibliotek Oktober 1985, 9p. (Underlag för ett inlägg
vid ett av Hälsouniversitetet anordnat ideseminarium de 2 oktober
1985.)

6. LiU-LIBLAB-WP:32 Timpka, T.; Strömberg, D.; Möller, I.; Gill, H.;
Bjurulf,P.; Hjerppe,R.; Mattsson, p.; Wigertz, O.: Three Approaches to
Decision Support for General Practitioners: Hypertext, Knowledge
Base and Electronic Library November 1985, 15p.

102 IDA ANNUAL RESEARCH REPORT 1985
The Library and Information Science Laboratory

ID A A N N U A L RESEARCH REPORT 1985
The Administrative Data Processing Group

103

10.

ADP
Administrative

Data Processing

G öra n G o ld k u h l

10.1 Administrative data processing

Including management information systems analysis and
information systems analysis and design.

The subject area covered by this group deals mainly with social aspects of
design and use of software for administrative applications in private companies
and public services. Essential problems are the transition from natural to
formal languages and vice versa together with prerequisites for, constraints on,
and effects o f computerized support for activities where teamwork, personal
judgement and experience traditionally have been, and are expected to be, of
great importance. This topic comprises systems development and tools for
analysis of information requirements and tools for prototyping, the drawing up
of technical requirements specifications and other kinds of user-oriented
documentation and evaluation of effects caused by the use of computerized
systems. It does also contain - from a general point of view - social
methodology for describing administrative professional activities, for
implementation, maintenance and evaluation of user-oriented computerized
support.

The undergraduate study programme for Systems Analysis takes the main part
of the group’s teaching efforts. Beyond that we give separate single-subject
courses to the level of postgraduate studies as well as courses in other study
programmes.

104 ID A AN N U AL RESEARCH REPORT 1985
The Administrative Data Processing Group

10.2 Research activities.

Post-graduate and research activities related to the ADP undergraduate
programs have previously mainly covered problems of formalization at the
interface between formal logic and social science, including cognitive
psychology. Through the recent arrival of Göran Goldkuhl and Annie
Röstlinger from Gothenburg, we foresee a strengthening and an expansion of
research within the ADP group.

The following areas of research will be covered within the ADP group:

Change analysis, i.e. the decision concerning computerization and/or
other change actions in organizations.

Information requirements analysis and the development of professional
languages of different user groups.

Knowledge development during information systems development with
a special emphasis on critical analysis, creativity and authentic
communication.

Utilization of information systems and end users’ language use and
knowledge formation.

Information systems and quality of working life.

Qualitative research methods and humanistic foundations for
information systems science.

There is currently no formal subject-oriented research organization within the
humanities and social sciences faculty (research is organized into
interdisciplinary ” themes”). This explains the present comparatively small size
of research activities within the ADP group. However a graduate study
programme in administrative data processing is currently being proposed.

10.3 Personnel:

Göran Goldkuhl, PhD, senior lecturer
Eva-Chris Svensson, MSc, director of undergraduate studies
Carina Björkman, secretary
Anne-Marie Jacobson, secretary

Dahlgren, Birgitta, assistant
Hans Holmgren, MScE
Rolf Nilsson, BSc, lecturer
Tommy Ohlsson, assistant
Lise-Lotte Raunio, lecturer
Annie Röstlinger, BSc , lecturer
Dan Strömberg, MScE, lecturer (now at Foa)
Roger Zollner, BSc, assistant
Per Övernäs, BSc, lecturer

Appendix A

The Knowledge Transfer Program.

During the last years we have experienced a growing concern in industry about
the rapid development in the information technology area and also a
considerable increase in the interest for what is going on at the university. For
instance, the following observations are made:

* Software competence is becoming an increasingly critical resource

* Software costs pose serious problems

* Computerized systems are difficult to change and maintain

* There is a fast international development with joint programs for R&D

This development has resulted in a demand for a rapid expansion of
educational programs, a pressure on university staff from the labor market,
requests for direct assistance in industry projects and in general in an increased
volume of contacts between industry and the university.

Thus we have made conscious efforts to improve our contacts with industry,
especially to make knowledge transfer more effective. The outflow of personnel
from our research program to industry positions has been maintained at a
reasonable level. We regret that some who leave, do it without finishing their
degrees, but although the value of a licentiate or PhD is rapidly improving in
industry, we still have to accept that the salary structure does not give the
desired incentive to complete a degree in all cases.

One way to achieve knowledge transfer is to accept commissions from industry
in research-related projects. It is our opinion that we should be restrictive
about undertaking such commissions in order to maintain the fundamental
goals of a research department. Again the differences in salaries are such that
we can not expect our personnel to stay at the university doing similar work as
they might do in industry. Such commissions are then preferably forwarded to
the consulting firms, which are rapidly establishing themselves in the
university environment.

For our industry knowledge transfer program (K TP) we have chosen a third
alternative. We have inaugurated a joint program where a small number of
large industries, which are heavily dependent on proficiency in information
technology, are invited to participate in knowledge transfer activities at the
department.

The goal for this program is to:

* Promote an effective use of the results from the STU program for
knowledge development.

106 ID A AN N U A L R ESEARCH REPORT 1985
The Knowledge Transfer Program

* Provide a knowledge base for industry.

* Secure the availability of qualified competence within novel
information technology areas of high importance.

* Contribute to an awareness about industry needs within the university.

The fundamental assumption is that the university guarantee that research
projects of a high international standard is carried out within areas of common
interest. In connection with this research the university undertake to organize
projects for medium term visitors from industry with an emphasis on learning,
technology evaluation and other forms of knowledge transfer. The obligation for
each participating company is to:

assign one person full time or two persons half time working on the
joint projects at the university, with the primary objective to learn and
evaluate novel technologies and methods.

Contribute 600 000 SEK a year to the K TP budget administered by
the university.

The joint activities are organized in close contact with the research projects in
the laboratories. Presently we have established two areas for the program:

○ A I an d exp ert system s,
including, methodology for knowledge acquisition and expert systems
development, evaluation of tools, theoretical foundations and basic
techniques, applications e.g. in robotics, manufacturing, technical
maintenance, office systems, etc. (ASLAB, AILAB, RKLLAB)

○ P r o d u c t io n tech n o log y fo r softw are,
with an emphasis on programming environments, especially
incremental tools for languages in the A lgol/Pascal/A da family.
(PELAB)

We have been contacted by companies both with an interest primarily in
commercial applications and companies concerned with technical systems. The
program started in 1984 and at present S-E-Banken Ericsson Information
Systems, ASEA and Alfa-Laval are participating. The model preferred by the
companies has been to have two persons working halftime at the university.
We expect to be able to accomodate a few more participants in the program
within the near future and negotiations are presently carried out with
interested companies.

The key ideas of the KTP effort are:

1. The university carries out research projects relevant for industry in
aeras which are expected to have high future potential.

2. The program engages companies highly dependent upon advanced
information processing.

3. The emphasis is on next-generation software technology.

4. Novel and advanced equipment and software tools are used in
experimental settings.

ID A A N N U A L RESEARCH REPORT 1985
The Knowledge Transfer Program

107

5. The research content of the program should be of high international
quality.

6. The ulitimate goal of joint activities is to supply participating
companies with a qualified background for strategic decision making,
internal use, and internal training within the information technology
area.

We feel that the following are the main benefits for the participating
companies:

- The immediate availability of powerful enviroments for
experimentation with new software technologies.

- Support for evaluation of new trends, methodologies and products.

- Sharing o f resources, especially critical-size research teams in areas
where competent personnel is a scarce commodity.

- Participation in pilot projects near the edge of the research front line.

- Education of own personnel.

- Basis for recruiting students after undergraduate education.

The program presents a highly efficient way of communicating results to
industry and to provide immediate access to the international research
community. We have also experienced that the demonstrated industry
relevance of our research program improves the possibilities to recruit the best
students for graduate education.

108 IDA ANNUAL RESEARCH REPORT 1985.
The Knowledge Transfer Program

Appendix B

Graduate Study Program.

Figure B .1 below indicates the levels of degrees in the Institutes of Technology
(i.e. schools of engineering) in the Swedish university system. The figures
indicate the nominal numbers of years for the studies in each step.

Fig B .1. Levels o f degrees

The graduate study program provides the studies from the level of master of
engineering, to the licentiate and/or PhD degrees. The courses given by our
department for the undergraduate education, up to the master’s degree level,
are described in appendix 3.

Graduate studies in the department of Computer and Information Science are
organized as a program consisting of courses and project participation. The
course program is planned at the department level and consists of basic
courses, each of which is given every third year (if possible), and occasional
courses which depend on the profile and interests of current faculty and
visiting scientists. Project work is always done within one of laboratories or
research groups.

110 IDA ANNUAL RESEARCH REPORT 1985
Graduate Study Program.

F a c u l t y e n g a g e d in g r a d u a t e s tu d y p r o g r a m .

Douglas Busch, PhD (Rockefeller 1973,
associate professor in logic and theoretical
computer science. Previous affiliation Mcquarie
University, Sydney, Australia). Application of
theories from formal logic to problems in
theoretical computer sience and artificial
intelligence; algebraic specification theory,
intuitionistic type theory non-monotonic logic;
philosophical questions in artificial intelligence.

Wlodzimierz D rabent, PhD (Warszawa 1985,
on leave from Institute of Computer Science,
Polish Academy of Sciences). Logic programming,
programming language semantics.

P är Emanuelson, PhD (Linköping 1980,
previous affiliation Uppsala), Senior lecturer in
computer science. Now at Epitec AB. Part time
thesis supervision in PELAB during 1985.
Functional languages, program verification,
program analysis and program manipulation,
programming environments, software engineering.

P eter Fritzson, PhD (Linköping 1984),
researcher. (On leave for Sun Micro Systems
1985/86.) Thesis supervision in PELAB. Tool
generation, incremental tools, programming
environments.

IDA ANNUAL RESEARCH REPORT 1985
Graduate Study Program.

111

Göran Goldkuhl, PhD (Stockholm 1980,
previous affiliation Göteborg), senior lecturer.
Group leader in ADP research. Information
requirement analysis, behavioral aspects of
information systems, research methodologies,
information systems and quality of working life.

Anders Haraldsson, PhD (Linköping 1977,
previous affiliation Uppsala), senoir lecturer and
director of undergrade studies in computer
science. Thesis supervision in PELAB.
Programming languages and systems, pro­
gramming methodology, program manipulation.

Roland Hjerppe, (previous affiliation KTH, DFI
and expert mission Tanzania,) researcher. Group
leader, LIBLAB. Library science and systems,
citation analysis and bibliometrics, fact
representation and information retrieval,
hypertext, human-computer interaction and
personal computing.

Sture Hägglund, PhD (Linköping 1980,
previous affiliation Uppsala), researcher. Group
leader, ASLAB. Expert systems and artificial
intelligence applications, database technology,
human-computer interaction.

112 IDA ANNUAL RESEARCH REPORT 1985
Graduate Study Program.

Rolf Karlsson, PhD (Waterloo 1984, previous
affiliation Lund), researcher. Data structures,
algorithm analysis, computational complexity,
computational geometry.

Harold W. Lawson J r ., PhD (Stockholm,
several previous affiliations, also in industry),
professor of telecommunication and computer
systems. Computer architecture, VLSI,
Computer-aided design, methodology of
computer-related education and training.

Bengt Lennartsson, PhD (Göteborg 1974,
previous affiliation Luleå), researcher. Group
leader, PELAB. Programming environments,
real-time applications, distributed systems.

Andrzej Lingas, PhD (Linköping 1983, previous
affiliation Warszawa and MIT), researcher. Group
leader in geometric complexity. Complexity
theory, analysis of algorithms, geometric
complexity, graph algorithms, logic programming,
VLSI theory.

ID A A N N U A L RESEARCH REPORT 1985
Graduate Study Program.

113

B ry an Lyles, PhD (Rochester 1982), acting
professor of telecommunications and computer
systems and group leader, CAD LAB, 1984-85.
Now at Rochester. Computer architecture, VLSI,
user interfaces, distributed systems.

Jan M aluszynsk i, PhD (Warszawa 1973, several
previous affiliations), docent and group leader in
theoretical computer science. Logic programming,
software specification methods.

K ev in R y a n , PhD (Trinity College, Dublin),
guest researcher in ASLAB 1985-86. Software
engineering methods and environments.
Educational and social issues.

E rik Sandew all, PhD (Uppsala 1969), professor
of computer science. Group leader in RKLLAB.
Representation of knowledge with logic, theory of
information management systems, office
information systems, autonomous expert systems.

114 IDA ANNUAL RESEARCH REPORT 1985
Graduate Study Program.

Linda C. Smith, PhD (University of Illinois at
Urbana-Champaign), guest researcher in
LIBLAB, spring 1985. Information retrieval and
artificial intelligence.

Bo Sundgren, PhD (Stockholm 1973, previous
affiliation Uppsala, also at Statistics, Stockholm),
adj. professor. Group leader in statistical
information systems. Database design and
database-oriented systemeering, conceptual
modelling, statistical information systems.

Erik Tengvald, PhD (Linköping 1984),
researcher. Group leader, AILAB. Artificial
intelligence, knowledge representation, planning
and problem solving, expert systems.

Associated faculty in other departm ents:

Jan-O lof B rüer, PhD, researcher in information theory. Office information
systems, especially security issues.

Ingem ar Ingem arsson, PhD, professor of information theory. Information
theory, security and data encryption, error correction codes and data
compression.

Ove W igertz, PhD, professor of medical informatics. Medical information
systems, expert systems.

ID A A N N U A L RESEARCH REPORT 1985
Graduate Study Program.

115

Graduate Study Course Program 1984-85

B asic an d O ccas ion a l G rad u ate C ourses:

A I and Expert Systems (Erik Sandewall)

Formal Methods in the Design and Verification o f Microprogrammed
Hardware. (Piotr Dembinski)

Distributed Computing. (Bryan Lyles)

Parallel Machines and Message-Based Architectures (Bryan Lyles)

Introduction to Logic Programming (Jan Maluszynski)

Sequential Algorithm Analysis and Computational Complexity
(Andrzej Lingas)

Attribute Grammars and Attribute Evaluators (Pierre Derensart)

Information Retrieval and Artificial Intelligence (Linda C. Smith)

Dependency-Directed Reasoning (Jim Goodwin)

Computer Related Education and Training: Content and Methodology
(Harold W. Lawson)

Edinburgh LCF (Jacek Leszczylowski)

Incremental Programming Systems (Bengt Lennartsson)

R e sea rch -R e la ted C ourses and Sem inars:

Program databases (Bengt Lennartsson)

A I Programming. (Erik Tengvald)

Information Retrieval and Library Systems. (Roland Hjerppe)

Expert System Tools - comparative analysis and evaluation
(Sture Hägglund)

Robotics o f today and the future (Peter S. Nilsson)

S pecia l C ourses fo r the K n ow led g e T ransfer P ro g ra m :

The Structure and Interpretation of Computer Programs
(Roland Rehmnert) (Fall and spring)

116 IDA AN N U AL RESEARCH R EPO R T 1985
Graduate Study Program.

Graduate Study Course Program 1985-86

(A number of courses, previously offered as graduate courses, are now
part of the undergraduate computer science curriculum and given for the
first time this academic year. For that reason, the of fering of specific
graduate courses is somewhat more restricted this year, than what could
else be expected.)

B asic an d O cca s ion a l G radu ate C ourses:

Theory of systems development (Göran Goldkuhl)

Non-Standard Logics for Artificial Intelligence (Erik Tengvald)

Software Engineering (Benny Odenteg, Kevin Ryan)

Search structures (Rolf Karlsson)

Computer Architecture / VLSI (Harold W Lawson)

Change analysis (Göran Goldkuhl)

Knowledge organization (Roland Hjerppe)

Analysis and Complexity of Parallel Algorithms (Andrzej Lingas)

R e sea rch -R e la ted C ourses and Sem inars:

Debugging of programs with parallel processes (Bengt Lennartsson)

The A IM project (Erik Tengvald)

The HYPERCATalog project (Roland Hjerppe)

Authority control (Roland Hjerppe)

Expert System Tools - comparative analysis and evaluation (Fall.)
(Sture Hägglund)

A I and software engineering (Spring) (Sture Hägglund)

Statistical Information Systems (Bo Sundgren)

RKLLAB seminars on non-standard logics, office systems and
representation of knowledge about machinery. (Erik Sandewall)

Future CAD Systems (Harold W Lawson)

ID A A N N U A L RESEARCH REPORT 1985
Graduate Study Program.

117

Logic Programming (Jan Maluszynski)

Complexity of algorithms (Andrzej Lingas)

Robotics of today and the future (Peter S. Nilsson)

Special Courses for the Knowledge Transfer Program:

Knowledge Engineering with EMYCIN. (Kristian Sandahl)

Introduction to KEE. (Roland Rehmnert)

118 ID A AN N U AL R ESEARCH R EPO R T 1985
Graduate Study Program.

A Selection of Seminars 1985

General seminars spring 1985

18/1 Ralph Rönnquist, IDA, RKLLAB, Relational algebra in I.M.S. Theory

29/1 John Walters, SRI International, Menlo Park: Current trends in
AI and expert systems.

12/2 Örjan Ekeberg, NAD A, KTH. Experiences of Smalltalk.

25/2 Rolf Karlsson, IDA. Proximity on a grid.

26/2 Harold Lawson, IDA, ” Sabbatical Report”

5/3 Gunnar Carlstedt, Göteborg, ” High Level CAD Tools”

11/3 Nicholas J. Belkin, The City University, London,” Using problem
structures for driving human-computer dialogues”

11/3 Piotr Dembinski. Logic Programming Seminar - Intelligent Backtracking.

12/3 Sven Mattisson, Lund, CONCISE: A Concurrent Circuit Simulator

18/3 Wlodek Drabent, IDA. Logic Programming Seminar - Memory management of
Prolog implementations.

19/3 Linda C. Smith, Liblab. ” From Memex to Procognitive Systems to Expert
Systems: Information Retrieval as an Application Domain for
Artificial Intelligence” .

25/3 Andrzej Ciepielewski, KTH. Or-parallel execution of logic programs

29/3 Peter Buneman, Univ of Pennsylvania. Inheritance, Data Models and
Data Types

17/4 Hans Block. SCB. Redskap för expertsystem - Presentation och
demonstration av SAGE

19/4 P.P. Bonissone, A.L. Brown, General Electric, Schenectady. Expanding
the Horizon of Expert Systems. GE’s Approach to AI.

26/4 Andri Ariste, Inst of Cybernetics, Tallinn. Activities in the Computer
Field in Estonia

29/4 Andrzej Lingas, IDA. Algoritmgruppen - The Complexity of the Subgraph
Isomorphism Problem

21/5 Per Gunningberg. Presentation of current work.

General seminars fall 1985

3/9 Kevin Ryan: ToolUse and other ESPRIT projects

ID A A N N U A L RESEARCH REPORT 1985
Graduate Study Program.

119

17/9 Gregor Snelting, Darmstadt. The PSG - Programming System
Generator

20/9 Erik Tengvald, IDA. AILAB:s AIM-projekt

23/9 Jan Maluszynski, IDA. Logic Programming Seminar. Research in
Efficiency of Logic Programs

30/9 Håkan Jacobsson, LiTH. Logic Programming Seminar - AND Parallelism
and Nondeterminism in Logic Programs

1/10 A. Ström, Context Vision: The programming environment for GOP-300

7/10 Wlodek Drabent, Simin Nadjm-Tehrani, IDA. Logic Programming Seminar -
Classes of Logic Programs: An analyzer of logic programs ...

11/10 Johan Fagerström, IDA. OCCAM, a Concurrent Language

14/10 Yngve Bohlin. Logic Programming Seminar - Implementing prolog
- compiling predicate logic programs

15/10 Svante Carlsson, Lund. Heaps of Heaps

17/10 Lars Kahn, SU-TVT Infologics AB. Teknowledge’s Si och M l

22/10 Tom Reps, University of Wisconsin, The Synthesizer Generator

24/10 Kenneth Zadeck, IBM, Yorktown Heights, Attribute Propagation
by Message Passing

25/10 F. Kenneth Zadeck, IBM, Yorktown Heights, Compiler Optimization

28/10 Ivan Rankin, IDA. Logic Programming Seminar. Introduction to the
YACC compiler

28/10 Carl-Wilhelm Welin, Ericsson. Erfarenheter av OPS 4/5 och derivat

29/10 Bertil Svensson, Högskolan i Halmstad. Associativa, parallella
datorer

4/11 Andrzej Ciepielewski, KTH. KTH approach to OR Parallelism

25/11 Ulf Nilsson, LiTH. Logic Programming Seminar - An alternative
implementation of Definite Clause Grammars

26/11 Thomas Nilsson, SOFTLAB AB: DAISY- a distributed debugger for
Ericsson

27/11 ZeBo Peng, IDA. Licentiatseminarium - Steps Towards the Formalization
of Designing VLSI Systems

29/11 Jan Maluszynski, IDA. Logic Programming Seminar - Report from the
Swedish-Japanese Workshop

29/11 Charles Meadow, Toronto: Intelligent online assistance in
information retrieval.

3/12 Kenth Ericson, SOFTLAB AB: PWS - The Parser Writing System

120 IDA ANNUAL RESEARCH REPORT 1985
Graduate Study Program.

9/12 Toomas Timpka, IMT. Logic Programming Seminar - A demonstration
of the POPLOG system

10/12 Pär Emanuelson, EPITEC AB: EPITOOL - an environment for building
knowledge systems

16/12 Wlodek Grudzinski, KTH. Logic Programming Seminar - Databases and
Logic Programming

17/12 Henrik Nordin, CMU: ”Prodigy, a learning apprentice”.

Appendix C

Undergraduate Education.

1. Undergraduate teaching in the school of engineering

The group for undergraduate teaching (the UDD-group) is responsible for
courses in the two subjects Computer Science and Telecommunication and
Computer Systems given in the undergraduate study programs at the Institute
of Technology at Linköping. These curriculums are (figures give number of
students accepted annually):

Computer Science (C) for 30 students
Computer Science and Technology (D) for 120 students
Industrial and Management Engineering (I) for 180 students
Mechanical Engineering (M) for 120 students
Applied Physics and Electrical Engineering (Y) for 180 students

These curriculums are four-year programmes and lead to a Master of
Engineering or (for the C-programme) a Master of Science degree.

There are also single-subject courses from these programmes given as part-time
and evening courses, and external courses given directly to companies and
organizations. There has started a programme for ” continuing education” of
engineers in computer science. The programme has been developed by the
department of computer science in cooperation with a coalition of Swedish
engineering industry (Oktogonen). A first 2 year course has started during
1985 for 20 students at Ericsson, Stockholm.

Courses. During 85/86 we will give a total of approx 70 different courses. In
these curriculums we give 50 courses with a total o f 3500 participants, 10
single-subject courses and about 10 external courses for industry with about
400 participants.

These curriculums have at least one introductory course in computer science
and programming.

In the C- and D-programmes and in the variants towards computer science in
the M- and Y-programmes (which students can choose after the second year)
there are courses in

- p ro g ra m m in g m e th o d o lo g y
- a ssem bly p rog ra m m in g
- da ta stru ctu res

122 IDA ANNUAL RESEARCH REPORT 1985
Undergraduate Education

- d a ta bases
- compiling techniques
- principles of program m ing languages
- concurrent program m ing
- operating systems
- artificial intelligence
- com puter networks
- com puter architecture
- com puter aided design of electronics
- discrete sim ulation

The C-and D-programmes include two software projects. One individually the
first year and one in a group during the third year. The projects require of
both oral presentations and written reports.

In the C-programme we give a number of human-oriented courses:

- linguistics I and II
- psychology, in troductory course
- psychology of communication
- in teractive systems

We give also courses in theoretical computer science;

- logic, in troductory course
- form al languages and au tom ata theory
- program m ing theory
- logic program m ing

and courses in artificial intelligence:

- in troduction to AI
- AI program m ing
- Knowledge representation
- N atu ra l language processing

Computer facilities. A variety of computer systems are available to our
students. Most courses use a DEC-20 computer running the TOPS-20
operating system at the Computer Centre at Linköpings University. It
supports ca 60 terminals running concurrently.

The department has a PDP11/70 with UNIX for teaching purposes with 15
terminals. There are two PC laboratories with Macintoshes and Ericsson PC’s.
In project courses and courses in artificial intelligence they use Xerox LISP
machines.

ID A A N N U A L RESEARCH REPORT 1985
Undergraduate Education

123

There are 11 terminal rooms (8-9 terminals per room) and a network for
connecting terminals to the various computer systems available for educational
purposes.

Staff. The teaching is made by full or half time employed lecturers, by other
persons with research appointment, by graduate students with teaching
assistantships, and by the students themselves as part-time course assistents.

During 85/86 the staff consists of

6 full time and 2 half time senior lecturers (associate professors)
5 full time and 2 half time lecturers (assistant professors)
14 other persons, professors and research assistents
16 postgraduate students with 25% - 50% teaching assistantships
ca 4 teachers from other subjects and from industry
ca 40-50 part-time course assistents

Personnel.

Anders Haraldsson, PhD, associate professor in computer science,
director of undergraduate studies

Barbara Ekman, secretary

The following persons are teaching one or more courses:

C o m p u te r S cien ce :
Lars Ahrenberg, BSc
Rober Bilos, MSc
Nils Dahlbäck, BSc
Wlodek Drabent, PhD
Pär Emanuelsson, PhD
Christian Gustafsson, BSc
Anders Haraldsson, PhD
Sture Hägglund, PhD
Arne Jönsson, MSc
Rolf Karlsson, PhD
Andrei Lingas, PhD
Bengt Lennartsson, PhD
Jalal Maleki, MSc
Jan Maluszynski, PhD
Magnus Merkel, BSc
Benny Odenteg, BSc
Kerstin Olsson, MSc
Tommy Olsson, MSc
Mikael Patel, MSc
Roland Rehmnert, MSc
Kevin Ryan, PhD
Kristian Sandahl, MSc

124 IDA A N N U A L RESEARCH REPORT 1985
Undergraduate Education

Erik Sandewall, PhD
Nahid Shahmehri, MSc
Ola Strömfors, MSc
Katarina Sunnerud, MSc
Eva-Chris Svensson, BSc
Lars Wikstrand, BSc
Olle Willén, MSc
Mats Wiren, MSc
Per Övernäs, BSc

T e le co m m u n ica tio n and com p u ter system s:
Johan Fagerström, MSc
Björn Fjellborg, MSc
Harold W Lawson, PhD
Mikael Patel, MSc

Listing of Undergraduate Course Program 1985-86

Datateknisk översiktskurs (C 1, D 1)
Databaser (D3, I4)
Databaser (C3, Y3, Y4, Md4)
Programmeringsspråk (C4, D4)
Programmering i Ada(C4, D4)
Programmeringsmiljöer (C4, D4)
Systemutveckling, teroi och tillämpning (C4, D4)
Al-programmering (C4)
Logik, grundkurs (C 1, D4)
Psykologi grundkurs (C2)
Naturligt språkbehandling (C4)
Operativsystem (D3tk, D4, Y4, I4)
Programmering Y , grundkurs (Y l)
Algoritm och komplexitetsteori (C4)
Programmeri ng Y, fortsättningskurs (Y3, Y4)
Kompilatorer och interpretatorer (Y4, I4)
Programmeringsteori II (C4)
Administrativ databehandling (Y4, I4)
Cobol (Y4, I4)
Logikprogrammering (C3, D4)
Programmeringsteori (C3)
Processprogrammering (D3pv, D4, Md4, Y4, I4)
Operativsystemteori (C3, D3pv, M4d)
Programmering och projektarbete i Pascal (C 1, D 1)
Lagringssstrukturer (C2, D2, Md3)
Assemblyprogrammering (C2, D2, Md3, I4)
Programutvecklingsmetodik (D2, Md3)
Programutvecklingsmetodik och programmeringsprojekt II (D3)
Programutvecklingsmetodik och programmeringsprojekt C (C3)
Data och programstrukturer D (D3)

IDA A N N U A L RESEARCH REPORT 1985
Undergraduate Education

125

Data och programstrukturer C (C2)
Datorspråk (C3, D3, I4)
Artificiell intelligens C (C3)
Artificiell intelligens D (D4)
Programmering Y (Y2)
Programutveckling (II)
Datastrukturer och programutvecklingsmetodik (I2)
Datorsystem och programmering (M 1)
Programmering i inkrementellt system (C l)
Interaktiva system (C 1, D3pv, D3tk)
Lingvistik I (C l)
Formella språk och automatateori (C2)
Lingvistik II (C2, C3)
Kommunikationspsykologi (C3)

Diskret simuleringsteknik (D3, Y3)
Datornät (D4, Y4, I4, Md4)
Datorarkitektur (D4, Y4)
Datorstödd elektronikkonstruktion (D4, Y4, I4)

Datalogi - baskurs (Fristående enstaka kurs Norrköping)
Programmeringsprinciper (Fristående enstaka kurs Norrköping)
Programmering i Ada (Fristående enstaka kurs Linköping)
Datakunskap (utbildningsradion)
Datalära

2. Undergraduate course program in systems analysis,
in the school of humanities and sciences

The educational programme for systems analysis ranges over three years of
fulltime studies. This aims at professional activities of design, evaluation and
implementation of computer-based information systems. Because of that,
ADP-systems analysis dominates the programme. Nevertheless great
importance has been attached to other subjects in order to give the programme
the necessary breadth and also to ensure that the students will become aware
of the complexity of the community where computers can be used.

The first two years of the programme constitute a common core of basic
studies for all students. Within the subject of ADP-systems analysis there are
courses in systems development and systems theory as well as courses in
programming and computer science. The courses about systems development
and systems theory deal with formal methods and prototyping. For the
programming courses Pascal has been chosen as the main language but, of
course, other languages are taught as well. Within the field of computer science
the students take courses in database design, development o f interactive

126 ID A A N N U A L RESEARCH REPORT 1985
Undergraduate Education

systems, methodology for program development, communication, evaluation of
computer systems, programming methodology, etc. Other subjects that are
given within the common core of basic studies are:

business economics and management, to get basic knowledge about the
organization of corporations and public services and their
” commonday” routines.

human factors, industrial and social psychology, including ergonomics,
work environment, co-determination and participative management,
group dynamics etc.

There are also courses in practical swedish language for professional use, social
science, matematics and statistics. The second year ends with about five
months of on the job training.

During the last year the students can choose between one of the following three
specializations:

Methods for data analysis (data analysis), aimed at statistical
methodology and statistical analysis methods. This specialization
includes documentation and presentation of projects where storage and
retrieval of data are crucial.

- Development of computer programs and program systems (program
development) aimed at program development, methodology and
technology. This specialization contains courses about operating
systems, compilers, interpreters etc.

- Development of information systems (systemeering), aimed at
methodology for design and evaluation of information systems. The
program includes in-depth studies o f budgeting and accounting and
their relation to project management and systems budgeting.

All three specialisations end with a term-paper reporting the development and
implementation of an individual project.

Appendix D

Computer Facilities.

The department has a policy of giving high priority to the supply appropriate
computing resources for research and education. We have also during the years
been able to modernize and keep in pace with the rapid development in the
area, e.g. regarding the emergence of powerful workstations with
high-resolution graphics and high-performance CPU. Our orientation towards
experimental computer science makes such a policy especially important and
we believe that adequate computer equipment is essential for the quality of
research and education.

Our main computer resources for research are a DECsystem-2060 (there are
additional systems for undergraduate education), a V A X 780 (which is shared
with the Physics department) and a Xerox Ethernet with eight 1108/1109 Lisp
Machines, file server and laser printer. (We expect to add an additional
number of Xerox 1186 workstations in the near future.) We have also recently
acquired a few SUN workstations. In addition there are lots of smaller
computers (MicroVax, P D P -ll:s , Macintosh and other PC:s of various kinds.)
There is also special purpose equipment, especially for text processing.

The schematic picture on the next page shows the local network and the
accessible computer systems.

128 IDA ANNUAL RESEARCH REPORT 1985.
Computer Facilities

N
et

w
or

k
vi

si
bl

e
fro

m

ID
A

LiU

8
6

0
1

1
0

Appendix E

Publications since 1980.

D ISSE R TA TIO N S:

(Linköping Studies in Science and Technology. Dissertations.)

No 51 E rland Jungert: Synthesizing Database Structures from a User Oriented Data
Model, 1980.

No 54 Sture H ägglund: Contributions to the Development of Methods and Tools for
Interactive Design of Applications Software, 1980.

No 55 P är Em anuelson: Performance Enhancement in a Well-Structured Pattern
Matcher through Partial Evaluation, 1980.

No 58 B engt Johnsson, B ertil Andersson: The Human-Computer Interface in
Commercial Systems, 1981.

No 69 H. Jan K om orow sk i: A Specification of an Abstract Prolog Machine and its
Application to Partial Evaluation, 1981.

No 71 R ené R eboh : Knowledge Engineering Techniques and Tools for Expert Systems,
1981.

No 77 Ö sten Oskarsson: Mechanisms of Modifiability in Large Software Systems, 1982.

No 94 H ans Lunell: Code Generator Writing Systems, 1983.

No 97 A n drzej Lingas: Advances in Minimum Weight Triangulation, 1983.

No 109 P eter F ritzson : Towards a Distributed Programming Environment based on
Incremental Compilation, 1984.

No 111 Erik T engvald : The Design of Expert Planning Systems. An Experimental
Operations Planning System for Turning, 1984.

LIC E N TIA TE THESES:

(Linköping Studies in Science and Technology. Theses.)

No 17 V ojin P lavsic : Interleaved Processing of Non-Numerical Data Stored on a Cyclic
Memory. 1983.

No 28 A rn e Jönsson , M ickael Patel: An Interactive Technique for Communicating
and Realizing Algorithms. 1984.

No 29 Johnny E ckerland: Retargeting of an Incremental Code Generator. 1984.

No 48 H enrik N ord in : On the Use of Typical Cases for Knowledge-Based Consultation
and Teaching. 1985.

No 52 Z ebo Peng: Steps towards the Formalization of VLSI Design Systems, 1985.

No 60 Johan F agerström : Simulation and Evaluation of an Architecture based on
Asynchronous Processes. 1986.

130 IDA AN N U A L R ESEARCH REPORT 1985
Publications since 1980.

E X T E R N A L PUBLICATION S.

(Papers published in books, journals or international conference proceedings.)

1. P io tr D em binski, Jan M aluszynski: And-Parallelism with Intelligent
Backtracking for Annotated Logic Programs, in Proc o f the IEEE Symposium on
Logic Programming, pp 29-38, Boston 1985.

2. P ierre D eransart, Jan M aluszynski: Relating Logic Programs and Attribute
Grammars. Journal o f Logic Programming, vol S, No. 2, pp 119-158, 1985.

3. D im iter D riankov, An outline of a fuzzy sets approach to decision-making with
interdependent goals, Proc. o f the First IFSA Congress, Palma de Mallorca July,
1985. To appear in Fuzzy Sets and Systems, An Int. Journal.

4. D im iter D riankov, Inference with single fuzzy conditional proposition, to appear in
Fuzzy Sets and Systems, (1985).

5. D im iter D riankov, A calculus for belief-intervals- representation of uncertainty, to
appear in Proc o f the Int. Conf. on Information Processing and M anagement o f
Uncertainty, Paris, June 1986.

6. Johan E lfström , Jan Gillqvist, Hans H olm gren, Sture H ägglund, Olle
R osin , Ove W igertz: A Customized Programming Environment for Patient
Management Simulations. Proc. o f the 3rd World Conf. on Medical Informatics,
Tokyo, 1980.

7. P är Em anuelson, A nders H araldsson: On Compiling Embedded Languages in
Lisp. Proc. o f the 1980 LISP Conf., Stanford, Calif, 1980.

8. P är Em anuelson: From Abstract Model to Efficient Compilation of Patterns. Proc.
o f the 5th Int. Conf. on Programming, Turin, 1982. Revised version to appear in
Science o f Computer Programming.

9. Johan F agerström : Experiences with Occam: A Simulator for Asynchronous
Processes. In Proc. o f the Hawaii Int. Conf. on System Sciences, HICSS-19, 1986.

10. P eter Fritzson : A Systematic Approach to Advanced Debugging through
Incremental Compilation. Proc o f the A C M SIGSOFT/SIGPLAN Symposium on
High-Level Debugging, Pacific Grove, CA., March 1983.

11. P eter Fritzson : Symbolic Debugging through Incremental Compilation in an
Integrated Environment. The Journal o f Systems and Software 3, 285-294, (1983).

12. P eter Fritzson : Preliminary Experience from the DICE System - A Distributed
Incremental Compiling Environment. Proc. o f the A C M SIGSOFT/SIGPLAN
Symposium on Practical Software Development Environments, Pittsburgh, PA. April
1984.

13. P eter Fritzson : The Architecture of an Incremental Programming Environment
and some Notions of Consistency. In Proc. o f the G TE Workshop on Software
Engineering Environments for Programming-in-the-large, Harwichport, MA. June
10-12, 1985.

14. Jam es W . G oodw in : Why Programming Environments Need Dynamic Data
Types. IEEE Trans. Software Eng., vol SE-7, no 5, 1981. Also in Barstow et al.
(eds.) Interactive Programming Environments, McGraw-Hill, 1984.

15. Jam es W . G oodw in and U w e Hein: Artificial Intelligence and the Study of
Language. Journal o f Pragmatics, 6, pp 241-280, North-Holland, 1982.

16. Jam es W . G oodw in : WATSON - A Dependency Directed Inference System, In
Proc. o f the A A A I Workshop on Non-Monotonic Reasoning, New Palz, NY, 1984.

17. Jam es W . G oodw in : A Process Theory of Non-Monotonic Inference, in P roc. o f

ID A A N N U A L R ESEARCH REPORT 1985
Publications since 1980.

131

the Int. Joint Conf. on Artificial Intelligence, IJCAI, 1985.

18. S ture H ägglund: Dialogue Models for Human-Computer Communication. A
Practitioner’s View, in Proc. o f the Workshop on Models o f Dialogue: Theory and
Application. Linköping 1981.

19. Sture H ägglund, Johan E lfström , Hans H olm gren, Olle R osin , Ove
W igertz : Specifying Control and Data in the Design of Educational Software.
Computers & Education, vol 6, no 1, 1982.

20. Sture H ägglund, and R oland Tibell: Multi-Style Dialogues and Control
Independence in Interactive Software. In Green et al. (eds.) The Psychology o f
Computer Use, Academic Press, 1983. Previous version in Proc. o f the 1st European
Conf. on Cognitive Engineering, Amsterdam, 1982.

21. Sture H ägglund: On the Design of a Query Environment for Office Use. P roc. o f
the 2nd Scandinavian Seminar on Information Modelling and Database M anagement,
Tampere, 1983.

22. U w e H ein: Interruptions in Dialogue. Also in D. Metzing (ed), Dialogmuster und
Dialogprozesse. Hamburg, Buske, 1981.

23. U w e H ein: Natural and Artificial Communications. - Some Reflections -. in Proc.
o f the Workshop on Models o f Dialogue: Theory and Application. Linköping 1981.

24. U w e H ein: Constraints and Event Sequences. Proc o f the N A T O symp. on Artificial
Intelligence, Lawrence Erlbaum, 1982.

25. U w e H ein: PAUL - A Programming Language for Knowledge Engineering
Applications. Proc. o f the International Conference on Artificial Intelligence,
Leningrad, October 1983.

26. R olan d H jerppe: What artificial intelligence can, could, and can’t, do for libraries
and information services. Proc. 7th IOLIM, Learned Information Ltd. London.
December 1983.

27. H ans K arlsson, R oland Lindvall, Olle R osin , Erik Sandew all, Henrik
Sorensen and Ove W igertz: Experience from Computer Supported Prototyping
for Information Flow in Hospitals. Proc. o f the A C M SIG SO FT Second Software
Engineering Symposium: Workshop on Rapid Prototyping, Columbia, Maryland,
April 19-21, 1982.

28. H ans (K arlsson) G ill, B ertil K ågedahl, Erik Sandew all, H enrik Sörensen,
Lennart T egler, and Ove W igertz: A Notation for Information Flow Models
Supporting Interactive System Development. Proc o f the 6th Annual Symposium on
Computer Applications in Medical Care, Washington DC, nov 1982.

29. R o lf K arlsson, Ian M unro, Proximity on a Grid, in the P roc. o f 2nd Symposium
on Theoretical Aspects o f Computer Science (1985), Springer-Verlag Lecture Notes
on Computer Science 182, 187-196

30. R o lf K arlsson, Ian M unro, Ed R obertson , The Nearest Neighbor Problem on
Bounded Domains, in the Proc. o f 12th Int. Colloquium on Automata, Languages and
Programming (1985), Springer-Verlag Lecture Notes on Computer Science 194, PP
318-327.

31. H . Jan K om orow sk i: QLOG - The Software for Prolog and the Logic
Programming. Proceedings o f the Logic Programming Workshop, Debrecen, Hungary,
1980. Also in Clark, Tärnlund (eds.) Logic Programming, Academic Press, 1982.

32. H . Jan K om orow sk i: Partial evaluation as a means for inferencing data structures
in an applicative language: a theory and implementation in the case of Prolog. Proc
o f the Symp. on Principles o f Programming Languages, Albuquerque, 1982.

33. H . Jan K om orow sk i: An Abstract Prolog Machine. Proc. o f the European Conf.
on Integrated Interactive Computing Systems, Stresa, 1982.

132 ID A AN N U AL RESEARCH REPORT 1985
Publications since 1980.

34. H . Jan K om orow ski: A Prototype Compiler for Prolog. Poster version presented
at the 6th Int. Conf. on Software Engineering, Tokyo, 1982.

35. H arold W . Law son Jr.: New Directions in Micro- and System Architecture in the
1980’s, in Proc. o f the National Computer Conference, NCC-81, Chicago, 111., 1981.

36. H arold W . Law son Jr.: An Approach to Improving Computer Literacy, in
Teaching Informatics Courses: Guidelines for Trainers and Educationalists, (ed. by
A.L.W. Jackson), North-Holland, 1982.

37. H arold W . Law son Jr.: The Holistic Approach in Introducing Computer Systems,
in The Computing Teacher, vol 10, no 7, October 1982. Also in Japanese translation
in Nikkei-Computer, Niekkei-McGraw-Hill, Tokyo, 1982.

38. H arold W . Law son Jr.: An Architecture-Based Strategy for Improving Computer
Education, in Proc. o f the Euromicro 82 Symposium, Brussels, September 1982.

39. H arold W . Law son Jr.: Some Consequences of Tomorrows Electronics CAD
Systems, in Proc. o f Mantech 83, Discoveries Int. Symp., London, 1983.

40. H arold W . Law son Jr.: Computer architecture education, a chapter in Tiberghien
(Ed.): New Computer Architectures, pp 224-285, Academic Press, 1984.

41. H arold W . Law son Jr.: Impact of CAD and Integrated Circuit Developments on
Telecommunication. Proc. o f the EUTECO Conference, Oct 1983, Varese, Italy.

42. H arold W . Law son Jr.: Ingrediants and Implications of Tomorrows CAD Systems.
Integrated Circuit Seminar, July 18-22 1983, Singapore.

43. H arold W . Law son Jr.: Architecting VLSI Systems. Integrated Circuit Seminar,
July 18-22 1983, Singapore.

44. H arold W . Law son, Jr.: Addressing Fundamental Problems in Computer Related
Education and Training. In Proc. o f the 4th World Conf. on Computers in
Education, Norfolk, 1985.

45. H arold W . Law son Jr., Bryan Lyles: An Architecturial Strategy for
Asynchronous Processing, in Concurrent Languages in Distributed Systems:
Hardware-Supported Implementation, (ed. by Reijnsand, Dagless), North-Holland,
1985.

46. C hristos L evcopou los, A ndrzej Lingas: Covering Polygons with Minimum
Number of Rectangles, Proceedings o f the STACS Symposium, Paris (1984),
Lectures Notes in Computer Science, vol 166, Springer Verlag.

47. C hristos Levcopou los: On Covering Regions with Minimum Number of
Rectangles, Proceedings o f the Workshop on Parallel Computing and VLSI, Amalfi,
Italy, (1984) North-Holland Publ. Co.

48. Christos Levcopoulos, Andrzej Lingas: Bounds on the Length of Convex
Partitions of Polygons, in the Proc. o f the 4th FST-TCS Conference, Bangalore,
India, (1984), Lectures Notes in Computer Science, vol 181, Springer Verlag.

49. C hristos L evcopou los, Minimum Length and ” Thickest-First” Rectangular
Partitions of Polygons, in the Proc. o f the 23rd Allerton Conf. on Comm., Control
and Computing, Illinois, October 1985.

50. C hristos L evcopou los, A Fast Heuristic for Covering Polygons with Rectangles, in
the Proc. o f 5th Int. Conf. on Foundations o f Computation Theory, GDR, (1985),
Lectures Notes in Computer Science, vol 199, Springer Verlag.

51. C hristos L evcopou los: Fast Heuristics for Minimum Length Rectangular Partitions
of Polygons, to appear in Proc o f the 2nd A C M Symposium in Computational
Geometry, Yorktown Heights, June 1986.

52. A ndrzej Lingas: Heuristics for Minimum Edge Length Rectangular Partitions of
Rectangular Partitions of Rectilinear Figures, Proceedings o f 6th G I Conference on

ID A A N N U A L RESEARCH REPORT 1985
Publications since 1980.

133

Theoretical Computer Science, Dortmund (1983), Lectures Notes in Computer
Science, Springer Verlag.

53. A n drzej Lingas: An Application of Maximum Bipartite C-Matching to Subtree
Isomorphism, Proceedings o f the 8th Colloquium on Trees in Algebra and
Programming, L’Aquila (1983). Lectures Notes in Computer Science, vol 159,
Springer Verlag.

54. A n drzej Lingas: A Note on Complexity of Logic Programs, Proceedings o f the
Logic Programming Workshop, Aldeia das Acoteias, Portugal (1983).

55. A n drzej Lingas: The Greedy and Delauney Triangulations are not bad in the
average case and Minimum Weight Geometric Triangulation of Multi-Connected
Polygons is NP-complete, Proceedings o f the International Conference on
Foundations o f Computation Theory, Borgholm (1983), Lecture Notes in Computer
Science, vol 158, Springer Verlag. See also Information Processing Letters, vol 22, pp
25-31, (1986).

56. A n drzej Lingas: A Linear-Time Heuristic for Minimum Weight Triangulation of
Convex Polygons. Proc. o f the Allerton Conference on Communication, Control, and
Computing, Urbana, Illinois 1985.

57. A n drzej Lingas: Subgraph Isomorphism for Easily Separable Graphs of Bounded
Valence. P roc. o f the 11th Int. Workshop on Graphtheoretie Concepts in Computer
Science, Castle Schwanberg, Wuerzburg, Germany, June, 1985.

58. A n drzej Lingas: On Partitioning Polygons. Proc o f the 1st A C M Symposium on
Computational Geometry, Baltimore, Maryland, June 1985.

59. A n drzej Lingas, Subgraph Isomorphism for Biconnected Outerplanar Graphs in
Cubic Time, in the Proc. o f the 3rd Symposium on Theoretical A spects o f Computer
Science, January, 1986, Orsay, France, Lecture Notes in Computer Science, vol 210,
Springer Verlag.

60. A ndrzej Lingas: On Approximation Behavior and Implementation of the Greedy
Triangulation for Convex Planar Point Sets, to appear in Proc o f the 2nd A C M
Symposium in Computational Geometry, Yorktown Heights, June 1986.

61. J. B ryan Lyles: CAD Approaches for an Asynchronous Architecture. In Proc. o f
the Nordic Symposium on VLSI in Computers and Communications, June 13-15,
1984, Tampere, Finland.

62. J. B ryan Lyles, Zebo Peng, Johan Fagerström : Naming Services in a
Distributed Computer Architecture. In Proc. o f the Nordic Symposium on VLSI in
Computers and Communications, June 13-15 1984, Tampere, Finland.

63. Jan M aluszynski, Jorgen Fischer N ilsson: A Comparison of the Logic
Programming Language Prolog with Two-Level Grammars. P roc. o f the 1st Logic
Programming Conference, Marseille-Luminy, 1982.

64. Jan M aluszynski, Jorgen Fischer Nilsson: A version of Prolog based on the
notion of two-level grammar. Proc. o f the Prolog Programming Environments
Workshop, Linköping, 1982.

65. Jan M aluszynski, Jorgen Fischer N ilsson: Grammatical Unification.
Inform ation Processing Letters, vol 15, pp 150-158, (1982).

66. Jan M aluszynski: Towards a Programming Language based on the Notion of
Two-Level Grammar. Theoretical Computer Science, vol 28, pp 13-43, North-Holland
(1984).

67. Jan M aluszynski, H. Jan K om orow ski: Unification-Free Execution of Logic
Programs, in Proc o f the IEEE Symposium on Logic Programming, Boston 1985.

68. H enrik N ord in : Using Typical Cases for Knowledge-Based Consultation and
Teaching. To appear in Proc o f the 3rd Annual Conf. on Applications o f Expert

134 IDA AN N U AL R ESEARCH R EP O R T 1985
Publications since 1980.

Systems, Orlando, Fla., 1986.

69. Ludm ila Ohlsson: A Computer Model for Domain Dependent Systems. Proc o f 7th
Int. A L L C Symp. on Computers in Literary and Linguistic Research , Pisa, 1982
(North-Holland).

70. M ikael P atel, A rne Jönsson: An Interactive Flowcharting Technique for
Communicating and Realizing Algorithms, in Proc o f the 19th Annual Hawaii Int.
Conf. on System Sciences, HICSS-19, 1986.

71. Z ebo P eng: A Unified Approach to Design Representation and Synthesis of VLSI
Systems. In Proc. o f the 19th Annual Hawaii Int. Conf. on System Science,
HICSS-19, Jan, 1986.

72. Z ebo Peng: Synthesis of VLSI Systems With The CAMAD Design Aid, to appear in
P roc. o f the 28rd ACM /IEEE Design Automation Conference, Las Vegas, June 1986.

73. G unter R iedew ald , Jan M aluszynski, P iotr D em binski: Formale Beschreibung
von Programmiersprachen, R. Oldenburg Verlag, Munchen, Wien, (1983).

74. R olan d R ehm nert, K ristian Sandahl: Knowledge Organization in an Expert
System for Spot-Welding Robot Configuration. In Proc. o f the 5th Int. Workshop on
Expert Systems and Their Applications, Avignon, 1985.

75. Olle R osin , Hans H olm gren, Sture H ägglund, Implementing Tuning and
Feedback Facilities in a System for Patient Management Simulations, P roc. Srd
Congress on Medical Informatics Europe, Toulouse, 1981.

76. P io tr R udn ick i, W lodzim ierz Drabent: Proving Properties of Pascal Programs
in MIZAR 2, Acta Informatica, vol 22, pp 311-331, 1985.

77. K ristian Sandahl, Sture H ägglund, Jan -O lof H ildén, R olan d R ehm nert,
Lars R eshagen: The Antibody Analysis Advisor and its Migration into a
Production Environment. To appear in Proc. o f the 1st Int. Conf. on Expert Systems,
London 1985.

78. Erik Sandew all et al: Provisions for Flexibility in the Linköping Office Information
System, Proc. o f the National Comp. Conf., Los Angeles, 1980.

79. Erik Sandew all, Claes Ström berg, Henrik Sörensen: Software Architecture
Based on Communicating Residential Environments. Proc. o f the 5th Int. Conf. on
Software Engineering, San Diego, 1981. Also in Barstow et al. (eds.) Interactive
Programming Environments, McGraw-Hill, 1984.

80. Erik Sandew all, Henrik Sörensen, Claes S tröm berg : A System of
Communicating Residential Environments. Proc. o f the 1980 LISP Conf., Stanford,
Calif, 1980

81. Erik Sandew all: Unified Dialogue Management in the Carousel System. P roc. o f
the A C M Conference on Principles o f Programming Languages, Albuquerque, NM,
1982. Appeared in print in N. Naffah (ed.) Office Information Systems, North
Holland, 1982.

82. Erik Sandew all: An Environment for Development and Use of Executable
Application Models. Presented at the seminar ”Software factory experiences” , Capri,
May 3-7, 1982.

83. Erik Sandew all, Sture H ägglund, Christian G ustafsson, Lennart Jonesjö,
Ola Ström fors: Stepwise Structuring - A Style of Life for Flexible Software. Proc.
o f the National Computer Conference, Anaheim, 1983.

84. Erik Sandew all: Formal Specification and Implementation of Operations in
Information Management Systems. In: Jan Heering and Paul Klint (eds.), Colloquium
Programmeeromgevingen, MC Syllabus, Mathematisch Centrum, Amsterdam 1983.

85. Erik Sandewall: A Functional Approach to Non-Monotonic Logic, in Proc o f the

ID A A N N U A L RESEARCH REPORT 1985
Publications since 1980.

135

Int. Joint Conf. on Artificial Intelligence, IJCAI, 1985 and Computational
Intelligence, vol 1, no 2, pp 80-87, 1985.

86. Erik Sandew all: Non Monotonic Inference Rules for Inheritance with Exception. To
appear in Proceedings o f the IEEE, Special Issue on Knowledge Representation.

87. Erik Sandew all: Specification Environments for Information Management Systems.
Panel position paper to appear in Proc. IFIP Congress 1986.

88. P io tr Siem ienski: A specialized VLSI CAD DATABASE. Nordic Symposium on
VLSI in Computers and Communications, June 13-15 1984, Tampere, Finland.

89. D an S tröm berg , P eter Eritzon: Transfer of Programs from Development to
Runtime Environments. BIT, vol 20, no 4, 1980.

90. Ola Ström fors, Lennart Jonesjö: The Implementation and Experiences of a
Structure-Oriented Text Editor. Proc o f the A C M SIGPLAN/SIGOA Symposium on
Text Manipulation, Portland, Oregon, June 8-10, (SIGPLAN NOTICES, vol 16, no 6)
1981.

91. Ola Ström fors, Editing Large Programs Using a Structure-Oriented Text Editor.
To appear in Proc. o f the Int. Workshop on Advanced Programming Environments.
Trondheim, Norway. June 1986.

92. B o Sundgren: How to Satisfy a Statistical Agency’s Need for General Survey
Processing Programs. Proc. o f the 45th Session o f the International Statistical
Institute, Amsterdam, Aug 12-22, 1985.

93. Erik T engvald , Reducing Design Complexity, or Why does Al Work, P roc. o f the
AIM SA-84 Conf., Varna, Bulgaria, (1984).

94. O ve W igertz , Johan E lfström , Sture H ägglund and Olle R osin :
Computer-Assisted Training in Patient Management and Clinical Decision Making,
in Pages et al. (eds.) Meeting the Challenge: Informatics and M edical Education,
North-Holland, 1983.

95. Jerker W ilander: An interactive programming system for Pascal. BIT, vol 20, 2,
1980. Also in Barstow et al. (eds.) Interactive Programming Environments,
McGraw-Hill, 1984.

96. Y osh ikazu Y am am oto , M ats Lenngren: Graphic Model Building System, in
Proc o f the 16th Annual Simulation Symposium, Tamppa, Fla., 1983, and in Proc o f
the IM ACS Symp. on Simulation in Engineering Sciences, North-Holland, Nantes,
1983.

O TH ER RESEAR CH REPORTS:

[Departmental reports, contributions to nordic conferences, and papers awaiting external
publication.)

97. P ierre D eransart, Jan M aluszynski: Modelling Data Dependencies in Logic
Programs by Attribute Schemata, INRIA Report RR323, and LiTH-IDA-R-84-08
(1984).

98. W lodzim ierz D rabent: An Experiment with Domain Construction for
Denotational Semantics. LiTH-IDA-R-85-17

99. D im iter D riankov, Inference with consistent probabilities in Expert Systems,
submitted for publication 1985.

100. K enth E ricson , Hans Lunell: Redskap för kompilatorframställning
LiTH-MAT-R-80-39

101. P eter Fritzson : Distribuerad PATHCAL: Förslag till ett distribuerat interaktivt

136 IDA AN N U A L RESEARCH REPORT 1985
Publications since 1980.

programmeringssystem för PASCAL. LiTH-MAT-R-81-05

102. P eter F ritzson : Fine-Grained Incremental Compilation for Pascal-Like Languages.
LiTH-MAT-R-82-15

103. P eter F ritzson : Adaptive Prettyprinting of Abstract Syntax applied to ADA and
PASCAL. LiTH-IDA-R-83-08

104. Jam es W . G oodw in : An Improved Algorithm for Non-monotonic Dependency Net
Update. LiTH-MAT-R-82-23

105. H ans G runditz, U w e H ein, Erik Tengvald: Artificiell intelligens i framtidens
CAD /CAM system. LiTH-MAT-R-82-30

106. Sture H ägglund: Towards Control Abstractions for Interactive Software. A Case
Study. LiTH-MAT-R-80-37

107. Sture H ägglund et al: 80-talets elektroniska kontor: Erfarenheter från
LOIS-projektet. LiTH-MAT-R-81-04

108. Sture H ägglund: Informationshantering i det elektroniska kontoret. P roc. o f the
5th Nordic conf. on Information and Documentation , Trondheim, 1982.
LiTH-MAT-R-82-27.

109. Sture H ägglund: En analys av interaktiva frågesystem för relationsdatabaser. Proc.
NordData 88, Oslo, 1983.

110. Sture H ägglund: Mot femte generationens programvara i samarbete högskola -
näringsliv. In Proc NordDATA 85, Copenhagen, 1985.

111. A nders H araldsson: Experiences from a Program Manipulation System.
LiTH-MAT-R-80-24

112. A nders H araldsson: INTERLISP - en avancerad integrerad programmerings-
omgivning för LISP-språket. Proc. Nord-Data 82, Göteborg, 1982.
LiTH-MAT-R-82-29.

113. K risto Ivanov: From Computers to Information and Systems Science.
LiU-MAT-ADB-R-80-3

114. K risto Ivanov: Teologisk logik och systemteori. LiU-MAT-R-81-2

115. K risto Ivanov: Sekundära sannolikheter i beslutsfattande. LiU-MAT-R-81-3

116. K risto Ivanov: An elementary data-structure for data processing systems.
LiU-MAT-R-82-2

117. K risto Ivanov: Presuppositions of formal methods for development of computer
systems. LiU-IDA-R-83-1

118. K risto Ivanov: Computer applications and organizational disease. LiU-IDA-R-83-2

119. K risto Ivanov: Systemutveckling och ADB-ämnets utveckling. LiU-IDA-R-84-1

120. E rland Jungert: Deriving a Database Schema from an Application Model Based on
User-defined Forms. LiTH-MAT-R-80-35

121. H . Jan K om orow sk i, James W . G oodw in : Embedding Prolog in Lisp: An
Example of a Lisp Craft Technique. LiTH-MAT-R-81-02

122. K rzy sz to f K uchcinski, Z ebo Peng: Microprogramming Implementation of Timed
Petri Nets. LiTH-IDA-R-85-19

123. H arold W . Lawson Jr.: Introducing Computer Concepts and Terminology, in
P roc. N ordDATA 81, Copenhagen, 1981.

124. H arold W . Law son Jr., Arne Jönsson: Algoritmbeskrivning och Dimensional
Flowcharts, in Proc. NordDATA 82, Göteborg, 1982.

125. H arold W . Law son Jr.: Tools for Tomorrows Integrated Hardware/Software

ID A A N N U A L RESEARCH REPORT 1985
Publications since 1980.

137

Development, in Proc. NordDATA 88, Oslo, 1988.

126. H arold W . Law son, Jr.: Sabbatical Report. LiTH-IDA-R-85-05

127. H arold W . Law son Jr.: Swedish Participation in the Malaysian National
Microelectronics Programme, LiTH-IDA-R-85-11

128. B engt Lennartsson, Ola Ström fors: DICE - en portabel integrerad
programmeringsomgivning. In Proc NordDATA 85, Copenhagen, 1985.

129. M ats Lenngren, Y oshikazu Y am am oto: GMBS - Graphic Model Building
System, in Proc NordDATA 88, Oslo, 1988.

180. H ans Lunell: Some notes on the terminology for Compiler-Writing Tools
LiTH-MAT-R-80-41

131. H ans Lunell: En konceptuell maskin för Pascal. (Preliminär version).
LiTH-MAT-R-82-09

132. Henrik N ordin: Kunskapsbaserade stödsystem i framtidens bankarbete. In Proc.
N ordD ATA 85, Copenhagen, 1985.

133. A lexander O llongren: On the Implementation of Parts of Meta-IV in Lisp.
LiTH-MAT-R-81-07

134. Ö sten Oskarsson: Construction of Customized Programming Languages.
LiTH-MAT-R-81-10

135. Ö sten Oskarsson, Henrik Sörensen: Integrating Documentation and Program
Code LiTH-MAT-R-81-01

136. M ichael P ääbo : CAD-elektronik idag och i framtiden. LiTH-IDA-R-84-03.

137. R a lph R önnqu ist, Erik Sandewall: The Relationship between Ordered and
Unordered Trees in I.M.S. Theory. LiTH-IDA-R-84-04

138. R a lph R önnquist: Relational Algebra in I.M.S. Theory. LiTH-IDA-R-85-06.

139. R a lph R önnquist:The Information Lattice of Networks Used for Knowledge
Representation. LiTH-IDA-R-86-02

140. K ristan Sandahl, R oland Rehm nert: Expertsystem i verkstadsindustrin. In Proc
N ordDATA 85, Copenhagen, 1985.

141. K ristian Sandahl: Creating an Antibody Analysis Advisor as an Exploratory
investigation into Expert System Development. LiTH-IDA-R-85-20

142. Erik Sandew all: An Approach to Information Management Systems.
LiTH-MAT-R-82-19

143. Erik Sandew all: Ny teknologi i kontorsdatasystem. Proc. Nord-Data 82, Göteborg
1982. LiTH-MAT-R-82-17.

144. Erik Sandew all: Partial Models, Attribute Propagation Systems and
Non-Monotonic Semantics. LiTH-IDA-R-83-01

145. Erik Sandew all: Theory of Information Management Systems. LiTH-IDA-R-83-03

146. Erik Sandew all: Fjärde generationens programvaruutbildning. LiTH-IDA-R-84-13.

147. P io tr Siem ienski: Towards an Integrated VLSI CAD System, the Database and its
Implementation. LiTH-IDA-R-85-04.

148. A nders S tröm : DSS - ett datalagringssystem. Proc. Nord-Data 82, Göteborg 1982.

149. D an S tröm berg : Text editing and incremental parsing. LiTH-MAT-R-82-34

150. Erik T engvald : En Intuitiv Förklaring till Kildalls Algoritm LiTH-MAT-R-80-27

151. Erik Tengvald : A Note Comparing Two Formalizations of Dataflow Algorithms.
LiTH-MAT-R-80-28

138 ID A AN N U AL RESEARCH REPORT 1985
Publications since 1980.

152. Erik T engvald : Al an Emerging Science. LiTH-IDA-R-84-11

153. Lars W ikstrand , Sture Hägglund: A System for Program Analysis and its
Application as a Tool for Software Development and Program Transfer.
LiTH-MAT-R-80-30

154. Jerker W ilander: Felkorrigering i inkrementella programmeringsomgivningar. Proc.
Nord-Data 82, Göteborg 1982.

G EN ERAL:

155. A nders Beckm an: Varför jag inte kan vara datalog: en diskussion av värderingar.
LiTH-MAT-R-80-40

156. J -O B rüer, S. C how dhury, A . Fäldt, H. Gill and R .R ön n qu ist: Office
Models. ASLAB Memo 84-01.

157. A n drzej Blikle: Notes on the Mathematical Semantics of Programming Languages.
(Lecture notes.) LiTH-MAT-R-81-19

158. P är Em anuelson: Programtransformationer. LiTH-IDA-R-83-06

159. Sture H ägglund, Jon-Erik N ordstrand (eds.): A Study on Directions for
Research and Development of Scientific and Technical Information Systems. (With
contributions from Hein, H ägglund and Sandewall.)

160. Sture H ägglund: Datorstödda Informationssystem i ett regionalpolitiskt perspektiv.
I Snickars (ed.) Beslut för regional förnyelse, Publica 1984.

161. Sture H ägglund: Kunskapsbaserade expertsystem. Ny teknik för
applikationsutveckling i nästa generations programvarusystem. LiTH-IDA-R-83-07

162. U w e Hein: A Proposal for an Artificial Intelligence Laboratory at SSRC, Linköping,
1980.

163. U w e H ein: Vad är artificiell intelligens? LiTH-MAT-R-81-13 och tidskriften DATA,
Köpenhamn, 1982.

164. U w e H ein: Kunskapsteori: Representation, Manipulation och Organisation av
kunskap - Del 1 - den teoretiska ramen. (Lecture notes). LiTH-MAT-R-82-04

165. U w e H ein: Kunskapsteori: Representation, Manipulation och Organisation av
kunskap - Del 2 - associativa nätverk. (Lecture notes). LiTH-MAT-R-82-07

166. U w e H ein: Kunskapsteori: Representation, Manipulation och Organisation av
Kunskap - Del 3 - Lingvistiskt orienterade representationssystem. (Lecture Notes).
LiTH-MAT-R-83-08

167. U w e H ein, Sture H ägglund (eds.): Proceedings of the Workshop on Models of
Dialogue. Theory and Application, Linköping, 1981. (With contributions from H ein
and H ägglund.)

168. K risto Ivanov: Forskningsanknytning av Universitetets grundutbildning.
LiU-M AT-ADB-R-80-1

169. K risto Ivanov: Systemvetenskap och fragmentering av kunskap.
LiU-MAT-ADB-R-80-2

170. K risto Ivanov: Mot ett ingenjörsvetenskapligt universitet. LiU-IDA-R-84-2

171. K risto Ivanov: Några policy-riktlinjer för ämnet ADB. LiU-MAT-R-83-3

172. H . Jan K om orow sk i (Ed.): Proceedings of the Symposium on Prolog Programming
Environments, Linköping, 1982.

173. B engt Lennartsson: Programvarumiljöer. Produktionsteknik för programvara i

ID A A N N U A L RESEARCH REPORT 1985
Publications since 1980.

139

Ada och andra språk. LiTH-IDA-R-84-01

174. M ats Lenngren, Thom as P ettersson , M ichael P ääbo , E w a A tteb o :
Datorgrafikdagar 7-9 juni 1983.

175. H ans Lunell: Tre skisser om datalogi som vetenskap LiTH-MAT-R-81-16

176. M ichael P ääbo : Introduktion till datorgrafik, LiTH-IDA-R-83-02

177. Erik Sandew all: Datavetenskaplig utvecklingsmiljö och kunskapsöverförings-
program. LiTH-IDA-R-83-10

178. D an S tröm berg : Datorn - hjälpreda eller hot i det lilla företaget?
(LiTH-MAT-R-81-06)

179. D an S tröm berg: Gränserna för artificiell intelligence - en reseskildring
(LiTH-MAT-R-82-46)

180. D an S tröm berg: Ett kritiskt perspektiv på artificiell intelligens forskning.
LiU-MAT-R-82-1

181. B o Sundgren: Conceptual Design of Databases and Information Systems.
LiTH-IDA-R-84-09 (Lecture Notes)

SYSTEM S D O C U M E N TA T IO N S:

182. MEDICS - Systemdokumentation och användarhandledning. H ans H olm gren,
Sture H ägglund, Olle Rosin . (SSRC Systemdok. 17)

183. MEDICS - Författarmanual - Preliminär version. Hans H olm gren , Sture
H ägglund, Olle Rosin . (SSRC Systemdok. 18)

184. MINISCOPE - Användarhandledning. Lars W ikstrand. (SSRC Systemdok. 19)

185. IDECS3 Reference Manual. Sture H ägglund. (SSRC Systemdok. 20)

186. ED3 - User’s Guide Ola Ström fors. (SSRC Systemdok. 21)

187. SCREBAS - Provisional Reference Manual. Erik Sandew all. (SSRC Systemdok. 22)

188. Ett gränssnitt mellan LISP 1.6 och MIMER på DEC-10 vid LIDAC.
Användarhandledning. Hans H olm gren. (SSRC Systemdok. 23)

189. ALGOL68C - Release 1.271, Users Guide. A rne Fäldt. (SSRC Systemdok. 24)

190. Handledning i användande av PIG. Olle W illén. (SSRC Systemdok. 25)

191. The Lois manager. Erik Sandewall (SSRC Systemdok. 26)

192. AFORM User’s Guide. A rne Fäldt. (SSRC Systemdok. 27)

