
DATALOGI LINKÖPING
PROGRESS REPORT

SOFTWARE SYSTEMS RESEARCH CENTER

Preliminary Report 1980

2nd (extended) edition

Software Systems Research Center
Linköping University
S-581 83 Linköping, Sweden

December 1980

ISSN 0348-2960

ISSN 0348-2960 December 1980.

Software Systems Research Center

1980

This folder presents the background for the research activities, which are
being performed a t Software Systems Research Center at Linköping
University. T he presentation is intended to give an overview o f the treated
problem areas, together with an indication of the lines along which solutions
are sought Actual projects are not described in any detail. It is our intention
to produce an up-to-date progress report each fall, presenting the current
status o f the work within the research center.

T he research center is supported by the Swedish Board for Technical
Development under contract no 80-3918.

This 2nd edition o f the 1980 status report is extended with a list o f the
personnel at the center, the plans for an A I project, and additional references
to reports published during the fall.

M ailing address:
Software Systems Research Center
Linköping University
S-581 83 Linköping
Sweden

Postadress:
Datalogicentrum
Tekniska Högskolan i Linköping
581 83 Linköping

Personnel:

Principal Investigator:

Erik Sandewall, professor

Laboratory Leadership and Coordination:

PELAB (Programming Environments Laborator)):

Pär Emanuelson
Anders Haraldsson
Jerker Wilander

ASLAB (Applied Software Systems Laboratory):

Mats Andersson
Sture Hägglund
Erik Sandewall

AI Project:

Jim Goodwin
Uwe Hein

Research Associates and Craduate Students:
Anders Beckman Magnus Ljungberg
Karl Dubbelman Hans Lunell
Kenth Ericson Anders Ström
Peter Fritzson Dan Strömberg
Arne Fäldt Ola Strömfors
Jim Goodwin Eva-Chris Svensson
Christian Gustafsson Örjan Svensson
Hans Holmgren Erik Tengvald
Lennart Jonesjö Lars Wikstrand
Jan Komorowski Olle Willen

Technical and Administrative Services:

Anders Aleryd
Mats Andersson
Leif Finmo
Ulla Mathiasson
Sven-Tuve Persson
Katarina Sunnerud
Henrik Sörensen
Lillemor Wallgren

0. GENERAL OVERVIEW.

W ithin the research programme fo r Knowledge development in Information
Processing, funded by the Swedish Board for Technical Development, an
Experimental Research Center, called the Software Systems Research Center,
has been formed a t Linköping University. Work in the Research Center will
be a continuation and extension o f the research which has been conducted so
fa r in the framework o f the Informatics Laboratory in Linköping. T he
purpose of this status report is to describe the directions and plans for future
work, as it is formulated in connection with the laboratory reorganization,
and also to summarize shortly the previous and on-going projects, which we
are building on. A catalogue with up-to-date project descriptions will be
appended to this report later.

T he activities within the center are in certain respects divided into two
Laboratories, namely:

1. an Applied Software Systems Laboratory (ASLAB), oriented towards
techniques which make computers easier to use for (non-expert) end
users or as a tool in a given application; particularly techniques for
dialogue between the user and the computer system (’man-machine
dialogues”) and for modelling (- description) o f applications in the
computer;

2. a Programming Environments Laboratory (PELAB), oriented towards
the design o f tools for the programmer, including both the general
architecture o f such tools (programming environments), specific
functions which are needed in such tools (program manipulation),
and the underlying, theoretical study o f such specific functions, and
the properties o f programs which make them possible.

T he organization of an Experimental Research Center is planned in
accordance with ideas pu t forward in the Feldman Report (Comm ACM 22, 9)
and later supplemented by Denning (Comm. ACM 23, 1), with a strong
emphasis on methodology development in close interaction with
implementation o f experimental systems and jo in t projects with industry and
governm ent

We assume a considerable homogeneity within the research center, both in
terms o f a common approach to issues o f software architecture, such as the
emphasis on programming environments and other Interactive techniques for
software development, and also in terms of a common organization for
administrative matters and for technical support (equipment and basic

- 2 -

software). However, the conduct o f projects, thesis supervision, industrial
liaison, and related issues should to a large extent be handled within each
laboratory. Such a division has already become necessary with the current
size of our research group, and would become more necessary if additional
activities and additional members are added to the group.

T he two laboratories are similar to projects in the sense tha t they may have a
shorter life-length than the research center, and since researchers a t the
center will sh ift between the laboratories for different activities, for example
from one year to the nex t Modification o f the laboratory structure is
foreseen as a way to adapt the research center’s activities to new needs in the
future.

1. THE PROGRAMMING ENVIRONMENTS LABORATORY

1.1 RESEARCH OBJECTIVES.

T he central goal for the Programming Environments Laboratory (PELAB)
will be to develop a theory for design o f programming tools. Such a theory
must prescribe two th ings, the content and architecture o f the programming
environment (PE). As for content, it must prescribe the choice o f tools: what
program manipulators should be provided T his requires a firm theoretical
and practical knowledge o f the various kinds o f manipulators that exist From
program verifiers to flow analyzers to editors, and o f the properties o f
programs which make them possible. As to architecture, it m ust prescribe the
kind o f communication tha t must occur between different tools and
manipulators. T o support such communication, it must also prescribe an
appropriate shared representation for their knowledge about programs.

O u r view o f a programming environment is centered around a few main
concepts:

1. Program development as an incremental process.
T he envisioned environment has a user interface intended to support
program design, implementation and maintenance as an incremental
process. Programming language issues are im portant bu t will not
dominate the research.

2. Integrated system.
T he overall system design is an integrated system. Tools and other
components of the PE are available from other tools, and
communication between such tools is an important issue.

3. Language oriented tools.
Tools, such as editors, debuggers, etc., are to be adapted to the
programming language in use, e.g. by supporting concepts and
structures from that language.

4. Programs, program fragments and information about programs are
stored in a database.
A program is no longer primarily represented as a character string
on a file. I t may be represented in several forms; an internal
representation is a structured form to facilitate analysis,
transformation and interpretation of the code. Information that is

- 4 -

included in the description of a program is verification assertions, test
cases, program analysis results etc.

5. Advanced program development and maintenance tools.
T he programmer should have advanced tools available when
developing and maintaining programs. T h is includes tools for

a. program specification
b. program testing and debugging
c. program presentation
d program analysis and transformations
e. program verification
f. program generation
g. program documentation.

An im portant problem to study in this area is to find good strategies to
transform program from an development/maintenance environment to a
production environment, e.g., a program run on a micro computer o r a
program distributed to several computers in a network.

1.2 RATIONALE AND BACKGROUND.

T he overall problem is to facilitate software production. In a programming
environment advanced tools will be available for program development and
maintenance. Today there is a lack of advanced tools. An editor, a compiler, a
linkage editor and a simple debugger are often the only tools available, and
there is no other advanced support for testing, debugging, program analysis
and other aids to handle programs.

T he first conventional language for which a requirement for a PE is
discussed is for the new ADA language. T here is, however, not yet any final
specification available. From the language design and from early discussions
of the PE it seems that the tools will be of standard nature. In our view, many
advanced tools will be missing. Today Interlisp is the best example o f an
integrated PE. It has been used in artificial intelligence (AI) research for over
10 years and the system has continuously been growing and new facilities are
extending the system.

After many years work with the Interlisp system, the implementations of
PATHCAL and Q LO G , and experiments with the program manipulation
system REDFUN, we have created a stack of problems to attack.

Work needs to be done in the overall design o f an advanced PE and we want
to investigate questions as:
- what representations should a program appear in?
- what information about a program should be derived and maintained, and

- 5 -

how should such information be structured?
- what tools should be available and how should they be implemented and

integrated?
- how to administrate program versions, test cases etc?
- how should the user interface be designed, a large system and advanced

tools increases the complexity and makes its use more difficult

Many problems are depending on finding appropriate ways to represent
information about program s (e.g., declarative information, analysis results,
verification assertions, test cases, specifications and performance statistics)
and appropriate specifications o f the language in use (e.g., semantics and
other properties about the language)

Tesdng and debugging methods can be im proved More advanced testing
methods may rely on symbolic evaluation and verification o f assertions, and
better handling of test cases and retesting are necessary. Debugging can be
im proved through better ways to supervise the execution, to present program
code and through more advanced analysis tools.

We believe that generation of tools will be an important ingredient In a PE,
and we can see the need of parser and code-generator generators, specialized
analysis and manipulation programs, special tailored pretty printers etc.
Preferably such tools should be easy to generate by the users.

T he production of software will in the future be more oriented towards use of
existing programs and change them to suit a new, bu t similar, application or
to be adapted to a new system environment (e.g., computer system,
programming language, operating system). We believe that it is im portant
for a PE to be able to support this type of modifications with help from
advanced program manipulation techniques.

T he execution process of a program in a PE is an im portant issue and
differs from the normal edit-compile-execute cycle. A program will preferably
be developed interpretatively during the development and test phases and
may be compiled for more efficient use. We can see different degrees of
compilation. T his will put new requirements on the programming language
in use.

Many o f the functions in the desired tools needs more formal treatment; and
tools and methods in a PE should be based on formal results when
appropriate implementations can be perform ed

T here exists a need for better program development tools for micro
computers and distributed systems. We expect that very little program
development in the future will be performed in assembly languages and thus
we feel that the effort should be spent on general program development
support Programs will be developed in a development system and after that

- 6 -

transported to the micro computer system. T hus investigation of different
transportation strategies will be necessary.

1.3 PREVIOUS WORK IN LINKÖPING.

T he Linköping informatics lab has a strong tradition in both usage and
development o f methods for incremental languages and systems. T he Interlisp
system has been a tool widely used within the group and in addition to this it
has been demonstrated how to export that technique to other languages. T he
group has also maintained a high level o f competence in the field of
"conventional" techniques. T h is will make it possible for the "Lisp-school"
and the "Pascal-school" to exchange ideas.

Since the Linköping informatics lab was founded much o f the research has
been centered around PE’s. A number of successful projects have been
completed or are still in progress. Much interest has been centered around the
design of interactive programming environments. T he Interlisp system has
been a common tool and has served as an inspiration and/or challenge to
transfer ideas to other languages. Most work has attempted to show that
languages are not central in the research but the interactive tools. Within the
group PE’s have been designed for such different languages as Pascal
(Wilander), BCPL (Strömberg, Fritzson) and Prolog (Komorowski). T he
design issues and implementation problems are in many ways similar.

T he programming methodology in an incremental system is very different
compared to that o f a "batch" oriented one. These new methodologies have
been developed through experience with incremental systems. In these systems
design methodologies like "structured growth" and "handles" (Sandewall) are
now in practical use. Another effect of the incremental system design and the
Lisp language has been that the view of a program has been shifted from a
text file to a "data base". In an incremental system the program is a data
structure of procedures and data. With such data structure (or database) it is
possible to manipulate programs, make presentations o f the program
structure in different projections and to keep documentations associated with
the program code.

O ther important research within the group has been connected with program
manipulation. From this work several PhD thesis projects have emanated
(Haraldsson, 77) and (Emanuelson). O ne specific problem has been to
perform optimizations on the source code level of programs. T his research
has shown among other things that it is not always necessary to develop a
compiler instead of an interpreter merely for efficiency. Instead it is possible
to use the interpreter as a compiler macro and thus get an fully compiled
program without writing the special compiler. T he problem of transporting a
program from a development environment to a more production oriented
system has also been studied (Strömberg, Fritzson). T his requires

- 7 -

development o f techniques for translating language constructs from an
flexible extendible language into a fixed and efficient language. A
complementary approach to this problem has been taken in the
M EDICUS-project (Wikstrand, Hägglund), where program analysis
techniques are used to produce a reduced system as a basis for program
translation or semi-automatic program generation.

Implementation strategies have attracted substantial interest W ork on
Lisp-implementations on low level has led to a dissertation (Urmi). Related
work is in progress concerning the issue of generating compilers through
description of the language and the machine. W ork is performed in the field
o f automatic generation of code generators (Lunell) and parsers (Ericson).
T he latter p art is in its finishing phases. T he group has gained a great deal
o f knowledge in implementation techniques when implementing a Pascal
compiler (Lunell, Börtemark), an Algol-68 compiler (Fäldt) and some Lisp
systems (Urmi, Goodwin) in the past few years. T h is competence will be
important to maintain.

W ork on knowledge representation has been performed, both in Q lisp
(Emanuelson) and with semantic networks (Goodwin).

1.4 PROJECT ORGANIZATION.

T he organization o f PELAB will be centered around a kernel project with a
number o f satellite activities, such as literature studies, theory development
minor implementations o f experimental systems, thesis projects etc. T he
kernel project, aiming at a design for an integrated programming
environment; will be more implementation and experimental oriented and
closer to applications than the others. T his project will have the dual aim to
make it possible to transfer the expertise of the group out into industry and
to give new PhD candidates a basic knowledge of the ideas and techniques
used within the laboratory. T he primary research objectives o f this group
will be implementation of components of PE’s and experimental
implementations and usage o f integrated PE’s. Program manipulation issues
will be further studied and tools for that will be integrated in PE. T his
project is a collection of strongly related subprojects.

Implementations and experiments will mostly be carried out in the
Interlisp-system and we will use Lisp as the implementation language. Pathcal,
the implementation of Pascal in Lisp, may serve as a base for further work.
T he work will not be concentrated to a specific language, and different
languages and language constructs will be considered.

T his project is expected to show how a program implemente r and maintainer
could work and the type of tools he/she could have. T his project will thus not
attempt to discuss in detail the problems of specification and requirements

analysis. We will only require a connection to such systems and will in this
experiment say that we have a simple specification tool tha t could be adapted
to more formal techniques when they are explored

T he activities in this kernel project will, among other things, involve
questions regarding:
- Design of program databases.
- Testing and debugging methodologies.
- Program manipulation.
- Documentation and specification.
- Design of programmers interface and program presentation.

T he aim of the research will not be to develop The integrated programming
environment, but to develop designs and components o f such systems. The
most im portant strategy for the research will be experimental system design.
Total integration might occur in some cases bu t not necessarily in all.

As satellites to this kernel project there might be other project groups,
studying a specific problem. Today we have plans for three such groups.

Program representation
T his project will take input from the AI-school o f knowledge
representation. These techniques will be adapted to programming and
programming methodology. Associative networks, e.g. semantic
inheritance networks, and data abstraction techniques are some
candidates to be considered

Formal methods for programming
T his group will mainly take input from the more conventional
compiler construction school. The main thrust will be in the theory for
program analysis using for example the monotonic framework analysis
algorithms. O ther areas of interest are methods for incremental
analysis, interprocedural analysis and analysis o f agenda-based
programming languages (cf. Simula).

Compiler writing tools
T he compiler tools part will be mainly oriented towards the
development of tools for automatic code-generation. T h is group will
create efficient means of implementing a language on a new machine.

It is expected that these projects and the kernel project will have much in
common. T he main flow o f information will probably come from the satellite
projects to the kernel project Although the projects differ in technique one
could view the projects as attacking partial problems for a total integrated
programming environment

2 . APPLIED SOFTWARE SYSTEM S LABORATORY

2.1 RESEARCH OBJECTIVES.

T he research activities in this laboratory deal primarily with application or
end user oriented aspects o f software systems. T h is is to be interpreted as the
study o f computer support for specific classes o f applications as well as the
design o f flexible end user interfaces. Research problems concerned involve
methods for specification, implementation and maintenance o f such systems.

O ne practical goal for research in the Laboratory is to make computers
easier to use for people lacking special training and interest in programming
or other forms o f computer mastery. Computer systems today are often hard
to access: they are not flexible enough in day-to-day operation, and changing
their behaviour requires reprogramming by a specialist, who is a middleman
in short supply. T h is situation is a considerable disadvantage from the point
o f view of public interest as a general rule, information in computer systems
should be made as widely available as possible (except o f course for cases
where privacy is a t stake). It is also often a disadvantage for the use and
usefulness o f the computer system. Finally, it is probably a contributing
factor for the common perception, correct or incorrect, that computer
professionals have a considerable ’power’ by virtue o f their expertise.

We identify three technical areas which should be approached in order to
remedy the situation:

1. Modelling o f applications, dealing with how a computer system may
be oriented towards a specific application area, with respect to how
the applications are described to the computer, and how the
processing within the computer is organized. Good techniques for
modelling of applications are necessary in order to develop computer
software which is well adapted to the application.

2. Dialogue techniques, dealing with various ways o f carrying out the
dialogue between the user and the computer, for example interactive
graphics, written natural-language I/O , and so forth.

3. Development o f very-easy-to-use systems for specific purposes. An
example o f a system which is intended to fall in this class is the
Viewdata system.

- 1 0 -

We believe that the th ird o f these approaches is a question o f product
development rather than build-up of technological knowledge, and therefore
restrict the continued proposal to the first two areas. T h e following more
specific issues are involved there.

2.1.1 Modelling o f application areas.

T he classical way to develop an application for a computer, is to write a
program that does the job. Textbooks of computer program m ing and on
software engineering still often suggest, explicitly or implicitly, that that is the
way to do things.

In practice, one usually prefers to have specialized tools tha t service a class of
applications. T his is a natural approach since many software companies
select a limited number of specialized application areas, and deliver similar
systems within these areas, to many customers whose needs are similar bu t not
identical. T he specialized tools are not restricted to subroutine libraries, but
may also be:

- specialized programming languages
- program generators, which accept a description of an application and

generate a corresponding, tailor-made program
- general-purpose programs (’superroutines’) which are highly

parameterized, and which enable the user to develop an application by
selecting appropriate parameter structures.

These methods may be used both for classes o f applications (e.g. systems for
financial planning), or for specific functions that recur in a wider class of
applications (e.g. report-program generators, and support for form-like
layouts on screens). They have in common that they introduce a specialized
language for describing a class o f applications, or a specific function, and
various kinds o f tools for manipulating that description.

More advanced examples o f the same techniques may be found in the
research literature for some application areas, for example in systems for
describing office procedures , in compiler-compilers, or in systems for
describing process control systems. Similarly, the trend towards putting more
and more information In the ’declarative part’ or the ’representation of
knowledge’, in artificial intelligence systems, seems to be a parallel
development

In many cases, it will be natural to separate the computer-based knowledge
about the application situation, from the software that is actually used in that
situation. If such a separation is done, we obtain as a consequence a method
for application development where a model o f the application is gradually
built up in a data base, tested as a pilot system in that environment, and then
used to generate the production programs (and parameters) for the

-11 -

application, to be used by the end user. T h is approach should encourage one
to build a tool-box of programs for operating on such models, for example
as documentation support

Systems o f this kind may sometimes be used by a computer specialist, for
reasons such as:

- to increase the productivity o f the specialist;
- to reduce the time required for completing the application;
- to improve the quality o f the software and/or its documentation;

bu t it may also be designed so that It enables a specialist in some other
profession to develop his o w n ’programs’ without the nuisance of
conventional programming, and without having to work indirectly, through a
programmer.

In other application situations, and particularly in a longer perspective, one
may instead wish to keep the knowledge about the application present at all
times. ’Expert’ problem-solving systems in artificial intelligence research are
an early example of that possibility, although we believe that it is more
fruitful to try to embed A I. techniques in current computer applications,
rather than inventing new applications. Building systems which contain and
use an explicit description of their application environment, is an approach
to ultimately obtain systems which

- allow task solving in a truly interactive, cooperative fashion;
- are able to explain to the user, the reasons for their behavior or

response in specific situations;
- allow the user to request (in the language of the application) exceptions

from the standard procedure usually performed by the system, and have
it performed correctly and consistently

- are able to handle ’new’ situations adequately, and request the user’s help
only when really needed.

2.1.2 Dialogue techniques

It is obvious that the computer systems of tomorrow will, to a very large
extent, be interactive to their nature. Experience shows that developing
interactive parts o f a program system is usually a very time consuming task,
especially with regard to subsequent program maintenance. It is to be noted
that interactive does not only imply entering of parameters in a dialogue
mode, bu t also the organization of programs to support cooperative,
incremental "problem solving".

Development o f dialogue management techniques appropriate for various
kinds o f applications and using different types o f equipment is one way to
improve the end user interface. A number of techniques to this end exist,

- 1 2 -

such as e.g. command languages, tree-structured menu selection, screen forms,
restricted natural language etc., but many aspects o f these techniques still
remain to be explored. Another way to deal with the problem o f dialogue
development is to look at the architecture of the software:

- Design of an end user system ("end user facility"), i.e. a system which
serves as a user’s workbench, and allows him to perform local operations on
his work data, and serves as an interface In his dealings with an assortment
of other, often remote D P systems. T he user interface may then help to
provide uniformity in notation and concepts, to facilitate combined use of
several systems, and to support locally operations not provided by the remote
systems.

- Development tools for dialogue techniques. T he section on modelling of
application areas, above, discussed the use o f special-purpose languages and
other similar tools for developing applications. Similar techniques are being
used for supporting the development o f programs for specific functions
within a system, and to a large extent for supporting dialogues.
Report-program generators and screen-control program generators are
examples which are already on the m arket

In particular, we notice here the interdependence o f the ’application
modelling’ and ’dialogue techniques’: on one hand, application modelling
needs the support o f dialogue techniques for entering models into the
computer, and on the other hand, dialogues need the support o f the same
kind o f special-purpose languages as are used for expressing application
models.

2.2 TECHNICAL APPROACH.

We proceed now to the alternative, technology-oriented characterization o f
the Laboratory’s activities. From this perspective, research in the Laboratory
is concerned with methods and tools for the development and modification
("maintenance") of software, with an emphasis on application software rather
than e.g. compilers. T he basic technical concept may be stated as: software
production through design environments and production environments for
restricted classes o f applications

Software is usually developed in a classical framework which is organized
around the compiler, and which also includes text editors, program
generators, and various documentation tools ’before’ the compiler, and a
linkage editor (for connecting separately compiled modules) and a host
operating system (within which programs are executed) ’after’ the compiler.
We are presently questioning this classical framework, and our current
hypothesis for an alternative framework will guide the research in the
laboratory, a t least initially.

- 13 -

We propose instead to think o f two m ajor types o f tools, development systems
and production systems. Development systems are CAD systems for software,
i.e. they are interactive systems which provide an integrated set o f services for
the programmer (in a broad sense of the word, i.e. the person who impresses
a desired pattern of behavior on a computer). In particular, the development
system provides services for editing of programs (again in a broad sense of
the word), for test execution and debugging (both in a conventional sense, i.e.
to cure reasons for functional breakdown, and in the pilot-system sense, i.e. to
allow end users to check out the system’s behavior and specify modifications),
for documentation support, and for generation of ’object code’. In particular,
the development system contains a data base in which the parts o f the
program, and the corresponding descriptive Information (declarations,
documentation) is stored.

T he production system is usually an end-user system. It implements a fixed
framework of communication with the user. In addition it typically contains a
num ber of general-purpose services such as text editing and ’help’ support
and it contains a number of exchangeable modules for performing tasks
which are specific to the particular user or installation. Each production
system will receive such modules as contributions from one or more
development systems. T he development systems contain in their data bases,
the information that enable them to furnish the right production systems with
the righ t modules at the righ t times.

T he 'programs’ that are maintained in the development systems, need not be
expressed in general-purpose programming languages. Instead, the
development environment should support a variety of different
special-purpose languages which are oriented towards either a specific
technical function (such as for describing forms for use on screens or
printouts, or for describing dialogues), or a set o f concepts that are useful for
a restricted set o f applications (such as ’budgeting’ or ’information-flow
applications’). In particular, this means that the use o f the development
environment is not restricted to professional programmers or other computer
experts; it may also be a tool for the application expert

T he strategy encourages software design for classes o f applications, rather
than for single applications. Each class o f applications would be supported
by one or a few, appropriate development systems, including e.g. special
purpose languages for describing instances of the class to the development
system, as well as a basic production system which can be used throughout
the class. Each instance within the class can then be created by specifying it
to the development system(s), debugging it there, and then having the
appropriate modules sent to copies of the basic production system.

T h is mode of working enables a software manufacturer to arrange its
production similarly to manufacturers of other complex technical systems, i.e.
he specializes in a limited number o f ’products’ (which is what we have called

- 14 -

’classes of applications’), and sets up his operation so that he can easily
provide each customer with a custom-made varian t o f the product As a
consequence, modularity is emphasized for the purposes o f manufacturing
and maintenance, and not only for facilitating the design work.

T he following are the significant areas o f professional interest that we have
identified so far:

Architecture o f the development environment and the production
environment
T his includes issues of how to represent programs and other
knowledge in the data base of the development environment, generally
useful support for the repertoire o f special-purpose languages; issues
of modularity and other global structures in in the data base and the
programs; and the structure of the supporting software for the two
kinds of environments

Dialogue techniques
Good methods for dialogues are essential in both development systems
and production systems. Dialogue techniques include special-purpose
languages for describing dialogues; techniques for mixed-initiative
dialogue and natural-language dialogue; etc.

Facilities in the production environment
T his includes 'fancy terminal’ techniques such as graphics, multiple
windowing and multiple screen techniques, non-standard keying
devices, etc.

Operations on application models
By virtue o f the special-purpose languages and the dialogue
techniques, models of the application are built in the development
environment Some significant operations on these models are for
simulation and other performance evaluation, for generating data base
schemata for use in a data base for the production system, and for
non-trivial generation o f program modules for the production
environment

These issues have a lot o f commonality with the research issues which were
identified, from a different perspective, in the previous section.

2.3 REFERENCE APPLICATIONS.

Research in the area of application modelling must clearly achieve a balance
between working with specific reference applications, and working with the
general problems that occur when this approach is used. We foresee a mode
of working where some projects concentrate on the needs o f their respective

- 15 -

applications, while paying marginal attention to new general-purpose
techniques, and other projects concentrate on the general-purpose problems
while using one or a few applications as test examples and toy problems. O ne
main area o f interest in this respect has so fa r been computers in office
information systems, hospitals and university education, and combinations o f
these.

T he following four separate efforts are presently in progress in our group:

1. T he MIL project (Medical Information system in Linköping). T he topic of
this project is customized medical information systems, and the purpose is to
develop an explorative system which can be tried in a few applications at
university hospitals. Im portant techniques developed and tested in this
environment concern e.g. methods for automatic derivation o f database
structures from end user forms, information flow modelling facilities, pilot
system implementation techniques and program transfer to the production
environment

2. T he LOIS project (Linköping Office Information System). T he purpose
of this project has been to develop a prototype system for text processing,
communication between users, and handling of structured data, in a
paperless-office type environm ent T he emphasis o f this project has been on
integrating various kind o f services while still maintaining a high degree of
programmability and adaptability to end user demands.

3. T he MEDICUS project (Medical Education with Interactive Computer
Usage for Simulation). In this application, the task is to create a number of
program s fo r sim ulation o f pa tien t m anagem ent situations, to be used in
medical education. Simulation programs are to be created directly by
physicians using an on-line terminal. T h is project demonstrates the
feasibility o f allowing a professional user, who is not trained to use
computers, to develop programs within a certain class o f programs, using
only the terms and concepts o f his application, and providing much less
detail than if he were to write a conventional program.

4. T he TPV project (terminal software and end user facilities). T his project
studies methods for development o f software systems for programmable
terminals and especially the distribution of processes and data between the
terminal and the host computer. A related topic is the design of end user
facilities in a system of the "electronic desk"-type. Specific topics addressed
are:
- Design of a generalized editor, which can handle structured texts as well as
graphic information, tables etc.
- Implementation of window handling on an intelligent terminal, with
associated functions for text editing, mail services, notes scribbling etc.
- Design of a language for manipulation of an electronic desk top.

- 16 -

W ork on tools in these reference applications has raised a number o f
significant architectural issues, having to do with program structuring,
modularity, the roles o f compilers and operating systems for program
structure, and so forth. We expect to continue the analysis o f these issues,
based on the continued experience from using the tools.

Further, an increasing number of specific methodological problems are being
identified in the work on the tools and the reference applications. I t will be
worthwhile a t this time to increase the attention on such problems,
particularly since we have already built up a reasonable repertoire o f tools
which make interesting reference applications possible. W ork is in progress
in the following areas:

- derivation of data base structure from specification o f user information
needs expressed as forms (in progress, thesis almost completed).

- development of generalized conceptual frameworks for dialogue
languages (cf. programming languages, which are basically monologue
languages), e.g. for text editing, database query, job control etc.

- methods for transfer or semi-automatic generation of application
programs from a specialized development environment to a target
system.

- mapping o f operations on the surface presentation of data base
contents, e.g. as structured text, onto corresponding operations of the
data base itself.

W ork on these and similar problems are undertaken by individual members
in the group, as thesis project or as a post-graduate project

- 17-

3. ARTIFICIAL INTELLIGENCE PROJECT

T he artificial intelligence project was initiated in May 1980 with the objective
to organize research in the area o f artificial intelligence within the Software
Systems Research Center. Accordingly, we spent most efforts during the last
year in finding out how existing AI interests, former AI work performed by
members of the SSRC and new ideas about artificial intelligence could be
unified into a common framework which would fit into and contribute to the
overall objectives of the SSRC.

O ur activities resulted in a proposal to establish an artificial intelligence
laboratory besides the already existing laboratories for programming
environments and application software within the SSRC. In the following we
will shortly describe the goals and objectives for such an AI laboratory. A
more detailed account has been given in a separately published research
proposal.

Artificial intelligence is a steadily growing discipline which makes important
contributions to a great number o f different areas of research, because:

* AI explores new and im portant areas for computer applications, such as
expert systems, computer vision systems and robots.

* AI explores new and more powerful techniques for the interaction with
computer programs, such as natural language front ends.

* AI provides a new framework and new formalisms for procedural
theories o f human cognition which are and will be of great interest for
psychologists, linguists and philosophers.

* AI explores new techniques and tools which can stimulate computer
science, such as very high-level languages, knowledge representation
systems, production systems.

T he main objective for the AI laboratory must be to build up expertise and
to conduct qualified research in the field o f artificial intelligence. In order to
accomplish this task several activities have to be performed within the
laboratory, including careful analyses of existing programs and theories as
well as the implementation of new programs which can illustrate theoretical
concepts and by which hypotheses can be tested Furthermore, the laboratory
should provide a good educational environment for graduate and

- 18 -

post-graduate research students who want to specialize in the field.

Since AI has become a rather large discipline by now, we deemed it essential
to find meaningful limitations for the AI laboratory both in terms of topics
to be investigated and domains to be explored for the exemplification of
theoretical concepts. These limitations have been chosen with respect to
practical and theoretical reasons. According to our own competence and
specialization we thus propose that research in the AI laboratory will be
concerned with the following m ajor issues o f artificial intelligence:

* communication in natural language
* knowledge representation
* learning
* common-sense reasoning

We thus exclude areas such as computer vision, robotics and automatic
deduction (within logical formalisms), because serious research in each of
these areas would be too resource demanding.

With respect to the domain we have chosen to concentrate on office worlds,
since there exist the strongest interactions with other research activities in the
SSRC. T his is one application area where we expect to have a mutually
fruitful exchange of ideas and experiences with the other laboratories, e.g. on
problems regarding dialogue technique and knowledge representation. T he
office domain includes such tasks as document preparation, travel planning,
budget expertise, room allocation, scheduling of meetings etc. T h is domain
can furthermore be shown to possess all o f the features required for
theoretical reasons.

- 19-

LIST OF PUBLICATIONS.

PhD theses:

(Linköping Studies in Science and Technology Dissertations.)

No 14 Anders Haraldsson: A Program M anipulation System
Based on Partial Evaluation, 1977.

No 18 M ats Cedvall: Semantisk Analys av processbeskrivningar
i naturligt språk, 1977

No 22 Jaak Urmi: A Machine Independent LISP Compiler and
its Implications for Ideal Hardware, 1978

No 33 Tore Risch: Compilation of Multiple File Q ueries in a
Meta-database System, 1978.

No 51 Erland Jungert: Synthesizing Database Structures from a
User Oriented Data Model, 1980.

No 54 Sture H ägglund: Contributions to the Development of
Methods and Tools for Interactive Design of Applications
Software, 1980.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-structured Pattern Matcher through Partial
Evaluation, 1980.

R esearch re p o r ts pub lished 1976-1980.

LiTH-MAT-R-76-8 Erik Sandewall: Some observations on conceptual
programming. Also in Elcock, E.W., Michie, D. (eds),
Machine Intelligence 8, Edinburgh University Press, 1977.

LiTH-M AT-R-76-9 Erik Sandewall: Programming in an interactive
environm ent T he LISP experience. Also in ACM Comp.
Surveys, vol. 10, no 1, pp 35 -71, march 1978.

- 2 0 -

LiTH-MAT-R-76-11 Anders Beckman: Programvarukvalitet, En nordisk
förstudie.

LiTH-MAT-R-76-13 Sture H ägglund, Östen Oskarsson: En teknik för
utformning av användardialoger i interaktiva datasystem.

LiTH-MAT-R-76-14 Erik Sandewall: Personal data bases and the design of
man computer dialogues.

LiTH-M AT-R-76-17 Jaak Urmi: String to string correction.

L iTH-M AT-R-76-18 Jaak Urmi: A shallow binding scheme for fast
environment changing in a "spaghetti stack" LISP system.

LiTH-MAT-R-77-26 Anders Haraldsson: A partial evaluator, and its use for
compiling iterative statements in Lisp. Also in Proc. o f the
F ifth Annual ACM Symposium on Principles o f
Programming Languages, Tucson, 1978.

LiTH-MAT-R-78-1 Anders Beckman, S ture Hägglund, Gunilla Lönnem ark:
A program package supporting run time variation o f text
output from interactive programs.

LiTH-MAT-R-78-8 K enth Ericson: Pascal i Sverige.

LiTH-MAT-R-78-I9 Erik Tengvald, Sture Hägglund: En metadatabas för
Cobolsystem.

LiTH-M AT-R-78-20 Jerker Wilander: Interaktiv programutveckling i Pascal -
Programmeringssystemet Pathcal.

LiTH-MAT-R-78-21 Erik Sandewall: Programmeringsteknik for flexibilitet

LiTH-MAT-R-78-22 Erik Sandewall: LOIS - An Overview o f Facilities and
Design. Also in DAT A, vol 9, n r 1-2, February 1979.
Revised version as "Provisions for Flexibility in the
Linköping O ffice Information System", Proc. o f the
National Comp. Conf., Los Angeles, 1980.

LiTH-MAT-R-78-23 Claes Strömberg, H enrik Sörensen: Beskrivning av
fontsystemet och erfarenheter vid systemutvecklingen.

LiTH-M AT-R-78-24 Erland Jungert: Generering av databasstrukturer från en
formulärbaserad datamodell.

LiTH-M AT-R-78-25 Pär Emanuelson: A case study of Qlisp: Representing
knowledge taken from medical diaries.

LiTH-MAT-R-79-3 Arne Börtemark, H ans Lunell: Im p lem en tin g av Pascal
på minimaldatorn: en tillbakablick.

LiTH-M AT-R-79-5 Jim Goodwin: Taxonomic Programming with Klone.

LiTH-MAT-R-79-7 Pär Emanuelson: A comparative study of some pattern
matchers.

- 21 -

LiTH -M AT-R -79-10 Arne Börtem ark: Felbekämpningsmedel, en första
översikt

LiTH-MAT-R-79-18 H ans Lunell: Automatic generation o f code for conceptual
machines: A problem discussion.

LiTH-MAT-R-79-19 Jan Komorowski: Q L O G interactive environment - the
experience from embedding a generalized Prolog in
INTERLISP.

LiTH-MAT-R-79-21 Erik Sandewall: Biological Software. Also in Proc. o f the
6th Int. J o in t Conf. o f Artificial Intelligence, Tokyo, 1979.

LlTH -M A T-R -79-22 Erik Sandewall: Self-description and reproduction in
distributed programming systems.

LiTH-MAT-R-79-23 Erik Sandewall: A description language and pilot-system
executive fo r information-transport systems. Also in Proc.
o f the 5th Int. Conf on Very Large Data Bases, Rio de
Janeiro, 1979.

LiTH -M A T-R -79-24 Erik Sandewall, Erland Jungert, Gunilla Lönnemark,
K atarina Sunnerud, Ove Wigertz: A tool for design and
development o f medical data processing systems. Also in
Proc. o f the 2nd Congress on M edical Informatics,
Europe, W est Berlin, 1979.

LiTH-MAT-R-79-28 Erik Sandewall: Why superroutines are different from
subroutines.

LiTH-MAT-R-79-37 Jerker W ilander: An Interactive programming system for
Pascal. Also in BIT, vol 20, 2,1980.

LiTH-MAT-R-79-39 Sture H ägglund: An Application o f Lisp as an
Implementation Language for the Domain Experts
Programming Environm ent

LiTH -M A T-R -79-42 Anders S tröm: Experiment med partialevaluering.

LiTH -M A T-R -80-01 Johan Elfström , Jan Gillqvist, H ans Holmgren, Sture
H ägglund, Olle Rosin, Ove W igertz: A Customized
Programming Environment for Patient Management
Simulations. Also in Proc. o f the 3rd W orld Conf. on
M edical Informatics, Tokyo, 1980.

LiTH-MAT-R-80-08 Dan Ström berg, Peter Fritzon: T ransfer o f Programs
from LISP to BCPL Environments: An Experim ent

LiTH -M A T-R -80-18 H. Jan Komorowski: Q L O G - T he Software for Prolog
and the Logic Programming.

LiTH-MAT-R-80-20 Pär Emanuelson, Anders Haraldsson: O n Compiling
Embedded Languages in Lisp. Also in Proc. o f the 1980
L ISP Conf., S tanford Calif, 1980.

- 2 2 -

LiTH-M AT-R-80-22 Erik Sandewall, H enrik Sörensen, Claes Ström berg: A
System of Communicating Residential Environments. Also
in Proc. o f the 1980 L IS P Conf., Stanford, Calif, 1980

LiTH-MAT-R-80-23 Uwe Hein: Interruptions in Dialogue. Also in D. Metzing
(ed), Dialogmuster und Dialogprozesse. H am burg, Buske,
1980 (to appear).

LiTH-MAT-R-80-24 Anders Haraldsson: Experiences from a Progam
Manipulation System.

LiTH-MAT-R-80-27 Erik Tengvald: En Intuitiv Förklaring till Kildalls
Algoritm

LiTH-MAT-R-80-28 Erik Tengvald: A Note Com paring Two Formalizations
of Dataflow Algorithms.

LiTH-MAT-R-80-29 James W. Goodwin: W hy Programming Environments
Need Dynamic Data Abstractions. (Presented a t the
Schlumberger W orkshop on Programming Environments,
Ridgefield, Connecticut, 1980. Partial proceedings to
appear).

LiTH-M AT-R-80-30 Lars W ikstrand, Sture H ägglund: A System for Program
Analysis and its Application as a Tool for Software
Development and Program Transfer.

LiTH-MAT-R-80-35 Erland Jungert: Deriving a Database Schema from an
Application Model Based on User-defined Forms.

LiTH-MAT-R-80-36 James W. Goodwin and Uwe Hein: Artificial Intelligence
and the Study of Language.

LiTH-MAT-R-80-37 Sture Hägglund: Towards Control Abstractions for
Interactive Software. A Case Study.

LiTH-MAT-R-80-38 Sture H ägglund, Johan Elfström , H ans H olm gren, OMe
Rosin, Ove W igertz: Specifying Control and Data in the
Design of Educational Software.

LiTH-MAT-R-80-S9 K enth Ericson, H ans Lunell: Redskap för
kompilatorframställning

LiTH-MAT-R-80-41 H ans Lunell: Some notes on the terminology for
Compiler-Writing Tools

LiTH-MAT-R-80-42 Östen Oskarsson, H enrik Sörensen: Integrating
Documentation and Program Code

