International Graduate School in Computer Science

The Computer Science Graduate School is aimed at both industry and the academic world and covers the following subject areas:

* Cognitive Systems
* Computer Science
* Computer Systems
* Information Science and Media
* Computational Linguistics
* Economic Information Systems
* Information Systems Development
* Engineering Information Systems

The department hosts a National Graduate School in Computer Science, CUGS, with participation from Örebro University, Mälardalen University, Skövde University, Jönköping University and others. This school gradually started its operation during the academic year 2000-2001. In addition, research groups and doctoral students participate in other national graduate schools, for instance in Language Technology and in the area of Management and Information Technology. The Department also runs an Industry Research School, as a special programme funded by The Foundation for Knowledge and Competence Development, and participates in the graduate schools Excellence Center in Computer and Systems Engineering (ECSEL), Graduate School for Human-Machine Interaction (HMI) and International Graduate School of Management and Industrial Engineering (IMIE). The research environment is strongly influenced by cooperation at both departmental and international levels and the department is regularly visited by guest professors and graduate students from international study programs. The aims of the graduate school are the following:

• The graduate school emphasizes the value of an integrated course of education in an area of importance for Swedish industry. The aim is to provide the student with broad competence. On completion of studies the student will have deep insights into his or her area of study as well as being well-oriented in the state of the art in related fields.

• The department has 5 divisions and 12 research laboratories and all graduate students belong to one of these. This provides an environment where the student, supported by advisors, formulates and produces his or her thesis as part of the requirements.

• In addition to a main advisor each graduate student has two deputy advisors. The advisory group can provide the student with a wider range of support than is possible with just one advisor.

• The coursework pursued is of central importance in gaining broad competence. The department offers a well-established program of about 30 courses per year. These are often of an interdisciplinary character, thus the range is not limited to the student's particular lab, but is of relevance to the department as a whole. In addition to courses of a more "technical" nature, others are given in research methodology, scientific writing, presentation technique and ethics. Each laboratory also runs courses specific to its range of interests.

• As a consequence the study program promotes communication between students pursuing different interests. Seminar series, graduate student conferences, information and assessment meetings also stimulate collaboration. Methods of continually assessing progress and results and proposing improvements to achieve this end are considered essential.

• In addition to traditional graduate studies the aims of the department have for many years included the further education of teachers and graduate students at regional University Colleges, as well as continuing education for applicants from industry.

Further information concerning the Graduate School of Computer and Information Science can be obtained from

Lillemor Wallgren
Director of Graduate Studies Administration
Department of Computer and Information Science
Linköpings universitet, S-581 83 Linköping Sweden
Phone: +46 13281480 (281000) • Telefax +46 13142231 • Internet: lew@ida.liu.se
International Graduate School in Computer Science

The Computer Science Graduate School is aimed at both industry and the academic world and covers the following subject areas:
* Cognitive Systems
* Computer Science
* Computer Systems
* Information Science and Media
* Computational Linguistics
* Economic Information Systems
* Information Systems Development
* Engineering Information Systems

The department hosts a National Graduate School in Computer Science, CUGS, with participation from Örebro University, Mälardalen University, Skövde University, Jönköping University and others. This school gradually started its operation during the academic year 2000-2001. In addition, research groups and doctoral students participate in other national graduate schools, for instance in Language Technology and in the area of Management and Information Technology. The Department also runs an Industry Research School, as a special programme funded by The Foundation for Knowledge and Competence Development, and participates in the graduate schools Excellence Center in Computer and Systems Engineering (ECSEL), Graduate School for Human-Machine Interaction (HMI) and International Graduate School of Management and Industrial Engineering (IMIE). The research environment is strongly influenced by cooperation at both departmental and international levels and the department is regularly visited by guest professors and graduate students from international study programs. The aims of the graduate school are the following:

- The graduate school emphasizes the value of an integrated course of education in an area of importance for Swedish industry. The aim is to provide the student with broad competence. On completion of studies the student will have deep insights into his or her area of study as well as being well-oriented in the state of the art in related fields.
- The department has 5 divisions and 12 research laboratories and all graduate students belong to one of these. This provides an environment where the student, supported by advisors, formulates and produces his or her thesis as part of the requirements.
- In addition to a main advisor each graduate student has two deputy advisors. The advisory group can provide the student with a wider range of support than is possible with just one advisor.
- The course-work pursued is of central importance in gaining broad competence. The department offers a well-established program of about 30 courses per year. These are often of an interdisciplinary character, thus the range is not limited to the student's particular lab, but is of relevance to the department as a whole. In addition to courses of a more "technical" nature, others are given in research methodology, scientific writing, presentation technique and ethics. Each laboratory also runs courses specific to its range of interests.
- As a consequence the study program promotes communication between students pursuing different interests. Seminar series, graduate student conferences, information and assessment meetings also stimulate collaboration. Methods of continually assessing progress and results and proposing improvements to achieve this end are considered essential.
- In addition to traditional graduate studies the aims of the department have for many years included the further education of teachers and graduate students at regional University Colleges, as well as continuing education for applicants from industry.

Further information concerning the Graduate School of Computer and Information Science can be obtained from

Lillemor Wallgren
Director of Graduate Studies Administration
Department of Computer and Information Science
Linköpings universitet, S-581 83 Linköping Sweden
Phone: +46 13281480 (281000) • Telefax +46 13142231 • Internet: lew@ida.liu.se
Department of Computer and Information Science
Contents

<table>
<thead>
<tr>
<th>SCHEDULE FALL 2002</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRADUATE STUDIES IN COMPUTER AND INFORMATION SCIENCE</td>
<td>7</td>
</tr>
<tr>
<td>Overview of the Department</td>
<td>7</td>
</tr>
<tr>
<td>Research</td>
<td>7</td>
</tr>
<tr>
<td>Contacts at the department</td>
<td>8</td>
</tr>
<tr>
<td>Overview of divisions and research laboratories</td>
<td>9</td>
</tr>
<tr>
<td>Graduate Studies in Computer and Information Science</td>
<td>15</td>
</tr>
<tr>
<td>General information</td>
<td>15</td>
</tr>
<tr>
<td>The graduate studies programme Fall 2002</td>
<td>16</td>
</tr>
<tr>
<td>Contact for graduate studies information</td>
<td>16</td>
</tr>
<tr>
<td>GRADUATE COURSES, FALL 2002</td>
<td>17</td>
</tr>
<tr>
<td>Graduate School in Computer and Information Science, (CIS)</td>
<td>17</td>
</tr>
<tr>
<td>FDA 124 Activity Theory, developmental work research, and information systems development</td>
<td>17</td>
</tr>
<tr>
<td>FDA 026 Avhandlingsseminarier</td>
<td>19</td>
</tr>
<tr>
<td>FDA 126 Aspects of Scientific Writing</td>
<td>21</td>
</tr>
<tr>
<td>FDA 089 Business Modelling i teori och praktik</td>
<td>23</td>
</tr>
<tr>
<td>FDA 030 Ethics in the Age of Information Technology</td>
<td>27</td>
</tr>
<tr>
<td>FDA 130 Formal Modeling and Verification for Real-time systems</td>
<td>29</td>
</tr>
<tr>
<td>FDA 078 Inter-organisatorisk samverkan och elektroniska affärer</td>
<td>31</td>
</tr>
<tr>
<td>FDA 012 Introduction to Research Methodology in Computer Science</td>
<td>33</td>
</tr>
<tr>
<td>FDA 019 Presentation Technique</td>
<td>35</td>
</tr>
<tr>
<td>FDA 136 Requirements Engineering</td>
<td>37</td>
</tr>
<tr>
<td>FDA 131 Research preparation course in Geoinformatics</td>
<td>39</td>
</tr>
<tr>
<td>FDA 056 Teoridriven, inductive och modelleringsbaserad forskning</td>
<td>41</td>
</tr>
<tr>
<td>FDA 138 XML and Databases</td>
<td>45</td>
</tr>
<tr>
<td>National Graduate School in Computer Science, (CUGS)</td>
<td>49</td>
</tr>
<tr>
<td>FDA 127 Communication</td>
<td>49</td>
</tr>
<tr>
<td>FDA 128 Computation II</td>
<td>51</td>
</tr>
<tr>
<td>FDA 129 Database Systems</td>
<td>53</td>
</tr>
<tr>
<td>FDA 133 Introduction to Machine Learning Methods for Data Mining</td>
<td>55</td>
</tr>
<tr>
<td>FDA 137 Semantic Aspects of Logics for Action and Change</td>
<td>57</td>
</tr>
<tr>
<td>Excellence Center in Computer Science and Systems Engineering, (ECSEL)</td>
<td>59</td>
</tr>
<tr>
<td>FDA 015 Object-Oriented Languages for Dynamic Systems</td>
<td>59</td>
</tr>
<tr>
<td>FDA 050 TCP/IP Architecture and Protocols</td>
<td>61</td>
</tr>
<tr>
<td>Human Machine Interaction, (HMI)</td>
<td>65</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>FDA 066 Human Factors Research Methodology and Field Experimentation (HMI 503)</td>
<td>65</td>
</tr>
<tr>
<td>FDA 132 Introduction to Human Factors Engineering (HMI 606)</td>
<td>67</td>
</tr>
<tr>
<td>FDA 090 Play & Designing Media for Participation (HMI 723)</td>
<td>69</td>
</tr>
<tr>
<td>National Graduate School and Management and IT, (M.I.T.)</td>
<td>71</td>
</tr>
<tr>
<td>FDA 135 Perspektiv på forskning och vetenskap</td>
<td>71</td>
</tr>
</tbody>
</table>

| FACULTY ENGAGED IN THE GRADUATE STUDY PROGRAMME | 73 |

| GUEST RESEARCHER AND AFFILIATED FACULTY ENGAGED IN THE GRADUATE STUDY PROGRAMME | 87 |

| DOCTORAL THESES PRESENTED AT THE DEPARTMENT | 91 |

| LICENTIATE THESES PRESENTED AT THE DEPARTMENT | 95 |
Graduate Courses Fall 2002

<table>
<thead>
<tr>
<th>Course</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Day</th>
<th>Time</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kod: FDA124 Activity Theory, developmental work research, and information systems development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Starts Nov 21</td>
<td></td>
<td>Thursday</td>
<td>10-12</td>
</tr>
<tr>
<td>Sofie Pilemalm, Toomas Timpka, Vivian Vimarlund</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate school: CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Continue Jan 16, 23 and 30, 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kod: FDA026 Avhandlingsseminarier</td>
<td>Sept 6</td>
<td>Oct 10</td>
<td>Nov 7</td>
<td>Dec 12</td>
<td></td>
<td>09.00-12.40</td>
<td>IDA</td>
<td></td>
</tr>
<tr>
<td>Stefan Cronholm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate school: CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kod: FDA126 Aspects of Scientific Writing</td>
<td>Starts Oct 10</td>
<td>Ends Nov 7</td>
<td></td>
<td></td>
<td>Thursday</td>
<td>14-17</td>
<td>IDA</td>
<td></td>
</tr>
<tr>
<td>Erik Hollnagel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate school: CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kod: FDA089 Business Modelling i teori och praktik</td>
<td>Scheduled later</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birger Rapp, Anders G Nilsson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upp till 5 p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate school: CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kod: FDA127 Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crash course</td>
<td></td>
<td>External location</td>
<td></td>
</tr>
<tr>
<td>Juha Takkinen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate school: CUGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Graduate Courses Fall 2002

<table>
<thead>
<tr>
<th>Course</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Day</th>
<th>Time</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kod: FDA128, Computation II, Peter Jonsson, 2.5 p, CUGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crash</td>
<td>course</td>
<td>External location</td>
</tr>
<tr>
<td>Kod: FDA129, Database Systems, Nahid Shahmehri, Patrick Lambrix, 3 p, CUGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crash</td>
<td>course</td>
<td>External location</td>
</tr>
<tr>
<td>Kod: FDA030, Ethics in the Age of Information Technology, Göran Collste, 3-5 p, CIS</td>
<td>Starts Sept 18</td>
<td>Ends Oct 30</td>
<td>Wednesday FDA</td>
<td>13FDA032, FDA143-16</td>
<td>IDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kod: FDA130, Formal Modeling and Verification for Real-Time Systems, Petru Ele, Zebo Peng, Marius Minea, 6 p, CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Week 46, 47</td>
<td>Crash course</td>
<td>IDA</td>
<td></td>
</tr>
<tr>
<td>Kod: FDA066, Human Factors Research Methodology and Field Experimentation (HMI 503), Fang Chen, Kjell Ohlsson, 5 p, HMI/IKP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Continue 3 weeks in Febr 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Graduate Courses Fall 2002

<table>
<thead>
<tr>
<th>Course</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Day</th>
<th>Time</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kod: FDA132 Introduction to Human Factors Engineering (HMI 606) Sidney Dekker 5 p Graduate school: HMI/IKP</td>
<td></td>
<td></td>
<td>Oct 29, 31</td>
<td>Nov 5, 11, 12, 15, 20</td>
<td></td>
<td></td>
<td></td>
<td>IKP</td>
</tr>
<tr>
<td>Kod: FDA078 Inter-organisatorisk samverkan och elektroniska affärer Ulf Melin 3 p Graduate school: CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oct 29, 31</td>
<td>IDA</td>
</tr>
<tr>
<td>Kod: FDA133 Introduction to Machine Learning for Data Mining Patrick Doherty 5 p Graduate school: CUGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Three two day session.</td>
<td>IDA</td>
</tr>
<tr>
<td>Kod: FDA012 Introduction to Research Methodology in Computer Science Sture Hägglund 3 + 2 p Graduate school: CIS</td>
<td>Starts Sept 26</td>
<td></td>
<td>Ends Nov 14</td>
<td></td>
<td>Thursday</td>
<td>10-12</td>
<td></td>
<td>IDA</td>
</tr>
</tbody>
</table>
Graduate Courses Fall 2002

<table>
<thead>
<tr>
<th>Course</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Day</th>
<th>Time</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kod: FDA015
Object Oriented Languages for Dynamic Systems with Modelica
Peter Fritzson, Torkel Glad
3 p
Graduate school: ECSEL</td>
<td>Starts
Oct 28</td>
<td>Ends
Dec 16</td>
<td>Monday</td>
<td>9-12</td>
<td>IDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kod: FDA135
Perspektiv på forskning och vetenskap
Birger Rapp, Lars Engwall
5 p
Graduate school: M.I.T.</td>
<td>Scheduled later</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kod: FDA090
Play & Designing Media for Participation
Kevin McGee
Graduate school: HMI</td>
<td>Starts
Sep 11</td>
<td>Ends
Oct 30</td>
<td>Wednesday</td>
<td>10-12</td>
<td>IDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kod: FDA019
Presentation Technique
Ingela Dellby
3p
Graduate school: CIS</td>
<td>Starts
Sep 10</td>
<td>Ends
Oct 11</td>
<td>Tuesday
Friday</td>
<td>09.15-12.15</td>
<td>IDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kod: FDA131
Research preparation course in Geoinformatics
Åke Sivertun, Erlang Jungert, Michael LeDuc
5p
Graduate school: CIS</td>
<td>Sept 30</td>
<td>Oct 7, 21</td>
<td>Nov 4, 18</td>
<td>Dec 2, 16</td>
<td>Monday</td>
<td>10-12--13-15</td>
<td>IDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Continue
Jan 20, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>Start:</td>
<td>End:</td>
<td>Day</td>
<td>Time</td>
<td>Place</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirements Engineering</td>
<td>Sept 27</td>
<td>Dec 13</td>
<td>Fri</td>
<td>13-15</td>
<td>IDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kristian Sandahl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate school: CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semantic Aspects of Logics for Action and Change</td>
<td>Sept 24</td>
<td>Nov 12</td>
<td>Tue</td>
<td>9-12</td>
<td>IDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erik Sandewall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate school: CUGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP/IP Architecture and Protocols</td>
<td>Sept 24</td>
<td>Nov 4</td>
<td>Tue</td>
<td>9-12</td>
<td>External location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nahid Shahmehri, Kent Engström, Göran Goldkuhl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate school: ECSEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teoridriven, induktiv och modellering-baserad forskning</td>
<td>Oct 21</td>
<td>Dec 2</td>
<td>Tue</td>
<td>9-12</td>
<td>Crash course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan Matoszynski</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate school: CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XML and Databases</td>
<td>Aug 14, 15, 16, 19, 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Overview of the Department

1.1 Research

The research at the Department for Computer and Information Science, IDA for short, is carried out in five divisions covering a broad spectrum of areas, several of which are multi-disciplinary. There is research in traditional computer science areas such as programming and specification languages, software engineering, databases and knowledge-based systems, real-time systems, hardware design and verification, intelligent autonomous agents and theoretical computer science. But the department also hosts research in economic information systems, information systems for businesses and other organizations and human/cognitive aspects of computer systems, e.g. natural language processing and human-computer interaction.

The Department of Computer and Information Science, IDA, was formed in 1983 as an independent department. Since then it has grown to be one of the largest CIS-departments in Scandinavia, with several internationally well-known and recognized research groups. Several educational programmes with a large number of courses have been developed for undergraduate and graduate education.

The department has about 220 employees, with a staff of teachers and researchers of about 85 persons and administrative and technical staff of about 35 persons. There are 14 full professors in the department, ten consulting professors from outside the university and about 150 doctoral active students, about half of them employed in the department and the rest being industry doctoral students or employed at university colleges elsewhere.

IDA’s research program has been designed to cover areas of strategic importance, both for undergraduate education as well as for the needs of society. Research in the department is organized and carried out in five divisions covering a broad spectrum of areas; several of which are multi-disciplinary. Each division is characterized by its long-term commitment to develop and maintain the knowledge within a defined area, and by its long term responsibility for individual graduate students. Within divisions there are a number of research laboratories and some smaller groups. Below, the research labs are listed by division. Each research lab have it’s own web page, where full information about the lab is given.

The Division for Databases and Information Technique (ADIT)
- Engineering Databases and Systems (EDSLAB)
- Intelligent Information Systems (IISLAB)

The Division for Artificial Intelligence and Integrated Computer Systems (AIICS)
- Knowledge Processing (KPLAB)

The Division for Human-Centered Systems (HCS)
- Cognitive Systems Engineering (CSELAB)
- People, Computers and Work (MDA)
- Natural Language Processing (NLPLAB)
The Division for Information Systems and Management (ISM)

- Economic Information Systems (EIS)
- Information Systems and Work Contexts (VITS)

The Division for Software and Systems (SaS)

- Embedded Systems (ESLAB)
- Programming Environments (PELAB)
- Real Time Systems (RTSLAB)
- Theoretical Computer Science (TCSLAB)

1.2 Contacts for the Department of Computer and Information Science

Head of the department:
Prof. Mariam Kamkar, marka@ida.liu.se

Administrative manager:
Inger Emanuelson, ime@ida.liu.se

Technical manager:
Kjell Sandberg, kjesa@ida.liu.se

Postal address:
Dept. of Computer and Information Science
Linköpings universitet
S-581 83 Linköping
SWEDEN

Telephone:
+46 13 281000 (university switchboard)

Telefax:
+46 13 142231 (building B, main fax)
+46 13 282666 (building B)
+46 13 282895 (building E)

Internet:
ida.liu.se

Anonymous FTP:
ftp.ida.liu.se (130.236.30.131)
remote-und.ida.liu.se (students domain)

Home page:
http://www.ida.liu.se/
1.3 Overview of divisions and research laboratories

The department hosts research in areas such as programming and specification languages, software engineering, databases and knowledge based systems, real-time systems, hardware/software codesign and verification, artificial intelligence, intelligent autonomous agents, theoretical computer science, economic information systems, information systems for businesses and other organizations and human/cognitive aspects of computer systems, e.g. natural language processing and human-computer interaction. A short review of the five divisions is given in this section.

1.3.1 ADIT - The Division for Database and Information Techniques

Professor Nahid Shahmehri

The Division for Database and Information Techniques (ADIT) conducts research on principles, algorithms, and methods for defining and constructing advanced tools for database and information management systems. Special emphasis is placed upon engineering information systems and applications for future information society and various user categories with different needs. The research topics include information security and privacy, peer-to-peer computing, mobile communication networks, multimedia databases, biological databanks, design of database systems for Internet & mobile applications, live help systems, user modeling, information extraction, context and content awareness, and agent technology.

Examples of ADIT’s current research projects are inter-vehicular communication for traffic safety, e-services and security issues in intelligent homes, information technology for the elderly, dynamic e-service composition.

EDSLAB - Laboratory of Engineering Databases and Systems

Professor Nahid Shahmehri (acting lab leader)

EDSLAB conducts research on methods and theories for database support of engineering applications. Applications for this technology include mechanical, electronic, telecom, and software applications.

IISLAB - Laboratory for Intelligent Information Systems

Professor Nahid Shahmehri

IISLAB conducts research in intelligent information systems. Current projects focus on information security, information retrieval and filtering, and the representation, organization and processing of knowledge in distributed environments such as the World Wide Web.
1.3.2 AIICS - The Division for Artificial Intelligence and Integrated Computer Systems

Professor Patrick Doherty

The focus of interest for the Artificial Intelligence and Integrated Computer Systems Division is intelligent artifacts, that is, man-made physical systems containing computational equipment and software that provide them with capabilities for receiving and comprehending sensory data, for reasoning, and for performing rational action in their environment. Research and teaching activities in AIICS currently include topic areas in artificial intelligence (in particular knowledge representation), theoretical and applied logic, and computer science and programming. The AIICS division consists of one research laboratory and three additional research groups which are intended to grow into full-fledged research laboratories in the future.

KPLAB - Knowledge Processing Laboratory
Professor Patrick Doherty

Research in KPLAB focuses on the theoretical and practical aspects associated with the representation of knowledge and the reasoning techniques associated with the processing of knowledge as used by both physical and software artifacts. Current activities include the development of nonmonotonic temporal logics for reasoning about action, change and process; the development of logically-based knowledge representation frameworks for reasoning about and representing incomplete, uncertain, or vague information; the specification and implementation of higher-level cognitive tasks such as planning, prediction, explanation, diagnosis and execution monitoring; and the design and specification of deliberative/reactive architectures used in the implementation of autonomous artifacts such as robots and softbots. Special emphasis is currently being placed on the design and development of command and control architectures for unmanned aerial vehicles (UAVs) and their integration with active vision systems and other sensors. Such systems require on-line planners, prediction and chronicle recognition mechanisms, GIS and soft real-time databases, and a variety of knowledge representation frameworks with associated inference mechanisms used to dynamically construct and reason about the UAVs internal and external environment. As a new avenue of investigation, we are also pursuing the development of knowledge representation techniques for the semantic web.

Other research groups in the AIICS Division:

SCML - The Soft Computing and Machine Learning Group
Professor Patrick Doherty and Professor Andrzej Skowron

The focus of interest for this group is in the area of approximate reasoning and machine learning techniques. Currently, specific topics being pursued are rough set theory and its application, neural network research and technology, and machine learning and classification techniques based on the use, both individually and combined of rough sets and neural nets. Target applications are in the areas of bioinformatics, sensor fusion and data mining. The SCML group has a strong affiliation with the Group of Logic at the Institute of Mathematics, Warsaw University. Professor Andrzej Skowron leads this group.
CASL - Cognitive Autonomous Systems Group
Professor Erik Sandewall

Cognitive Autonomous Systems are high-level robotic systems in a broad sense of ‘robotic’: they are computer systems that have the following capabilities: (1) autonomy - they are capable of operating with goals and with plans for achieving those goals, and of executing such plans in a robust fashion. (2) modelling - the ability to represent knowledge about their environment and about themselves. (3) perception - the ability to perceive phenomena in their environment, and to model them. (4) deliberation - the ability to reason about phenomena within the modelling range of expressivity in the system. (5) communication - the ability to receive information from other similar systems or from people, and to communicate it to them. We use the term ‘cognitive’ as an umbrella term for the last four items in the list. Research interests in this group focus on selected aspects of the theory and software technology for cognitive autonomous systems according to the definition above.

EIT - Education in Information Technology Group
Associate Professor Anders Haraldsson

This is currently a support group for experimentation with new pedagogic techniques and tools for undergraduate and graduate courses taught within the AIICS division. Research interests focus on the use of information technology for support of courses in computer science and artificial intelligence. Tools are developed for the traditional deployment of courses and support of information flow in addition to deployment and support of courses on the WWW.

1.3.3 HCS - The Division for Human-Centered Systems

Professor Lars Ahrenberg

Research in the Division for Human-Centered Systems is aimed at studying and improving the interactions among humans, computing systems, and information resources. Human abilities constitute the goal as well as a point of departure for our research.

The research is concerned with the development of new technologies and methods as well as the effects of new technologies for individuals, groups and society at large. Thus, research is usually multi-disciplinary, combining methods from computer and information science with perspectives from the humanities and social sciences.

CSELAB - Cognitive Systems Laboratory
Professor Erik Hollnagel

Cognitive Systems Engineering is concerned with the study, analysis, modelling and design of systems of humans and machines together in ensambles. It is not about machines alone and not about humans alone but rather about what they do together.
MDA - People Computers and Work
Professor Toomas Timpka

The MDA group develops and studies information systems in working-life contexts, with a focus on applications in service organizations. The research has an interdisciplinary character and integrates methods from computer science, psychology and sociology. Specific areas of interest include computer-supported cooperative work, inter-organizational networks, economic evaluations of information systems and participatory design.

NLPLAB - Natural Language Processing Laboratory
Professor Lars Ahrenberg

NLPLAB studies linguistic processing and knowledge representation from linguistic, computational and behavioral perspectives. Current applied projects concern spoken and multimodal natural-language dialogue systems and computer-aided translation.

Other research groups in the HCS Division:

ASLAB - Application Systems (Professor Sture Hägglund)
The research in ASLAB, is conducted in groups working with Human-Computer Interaction, especially usability-oriented methods for IT design and Home Communication, and Web Software Engineering, with a special emphasis on knowledge acquisition tools and advanced web programming support.

LIBLAB - Laboratory for Library and Information Science (Prof. Sture Hägglund)
Research at LIBLAB, is focused on long term studies of the interactions between information technology and the generation, access to and use of information resources, in particular documents and document collections.

GIS - Geographical Information Systems (Dr. Åke Sivertun)
Research in the GIS group is applications of geographical information systems and with algorithms for spatial data processing.

1.3.4 ISM - The Division for Information Systems and Management
Professor Birger Rapp

ISM conducts research about management issues arising from the use of modern ICT, including the impact on organisations and business, communication, knowledge development and utilisation, business oriented model- and system development, and strategic and economic management control, accounting, auditing, design of control and responsibilities applied to information usage for information provision. Research is often conducted in co-operation with industry to achieve applicable solutions to business and organisational issues. Mutual research interests for the collaborating research groups are also encouraged and supported. ISM has responsibility for courses within the areas of model building and system development, information systems and business management, and economic thinking applied to business and organisational use of information.
EIS - Economic Information Systems
Prof. Birger Rapp

The research area of Economic Information Systems involves, among other things, communication and transfer of information between people, as well as the development of suitable information systems for this purpose. This subject also deals with the use of modern information technology and the development of structures within organizations, together with the effects of information technology on people and organizations. This involves both questions concerning economic direction and control, and the capacity of people to take in and use information as well as training.

The division of Economic Information Systems conduct research in the following main streams: Business Information Development; Application of Transaction and Principal Agent Theory; IT and New Organizational Structures; Simulation, Decision Support System and Control Systems of Manufacturing Flows; Business Control; IT-Economics; Internal Auditing; External Accounting and Auditing; Economic Crime Prevention; E-Business; Knowledge Management.

VITS - Development of information systems and work contexts.
Prof. Göran Goldkuhl

Research areas covered by VITS include business processes and information systems; inter-organisational relationships and electronic commerce; IT support for transportation, travelling and tourism; information systems - design & architecture; CASE/method tools; knowledge and method management. The research is mainly based on communicative and action theories and has a strong emphasis on methods for business and information systems development. Research approaches are mainly qualitative and case study based. VITS is a network research group with 30 researchers from the universities of Linköping, Borås, Dalarna (Borlänge), Jönköping, Karlstad and Örebro.

1.3.5 SAS - The Division for Software and Systems
Professor Zebo Peng

The division for Software and Systems (SaS) deals with research and education in the areas of software engineering, programming environments, systems software, embedded hardware/software systems, computer systems engineering, real-time systems and theoretical computer science.

The division has approximately 35 Ph.D. students involved in three postgraduate study programs: computer systems, computer science and engineering information systems. The research is funded from Linköping School of Engineering and receives also significant external funding from VR, VINNOVA, the Foundation for Strategic Research (SSF), KK-stiftelsen and the European Commission. The research covers both basic research and projects in cooperation with industry, for instance ABB Robotics, ABB Industrial Systems, Ericsson Radio Systems, Ericsson Telecom, SKF, Saab, Saab Bofors Dynamics, Saab Combitech and several other companies. The research is carried out in four research laboratories:
ESLAB - Embedded Systems Laboratory
Prof. Zebo Peng

ESLAB conducts research on the design and test of embedded systems, especially those consisting of interacting hardware and software components. Special emphasis is placed upon the development of methods and tools for specification, modeling, synthesis, simulation, design for test, formal verification and hardware/software co-design. We are also concerned with the exploitation of systematic design and design automation techniques for industrial application areas, such as telecommunication, automotive electronics and aerospace.

PELAB - Programming Environments Laboratory
Prof. Peter Fritzson

Software engineering tools and architectures, programming languages and environments, including compilers, debuggers, testing tools, parallel and real-time programming tools; software engineering methodology and process improvement.

RTSLAB - Laboratory for Real-Time Systems
Doc. Simin Nadjm-Tehrani

Systems engineering, safety-critical systems, network survivability, fault-tolerance in distributed systems, real-time and embedded databases, resource allocation and quality of service guarantees.

TCSLAB - Theoretical Computer Science
Doc. Ulf Nilsson

Programming theory, declarative programming and specification languages, formal models and methods, algorithms and complexity.
2. Graduate studies in Computer and Information Science

2.1 General information

Graduate studies at the department consists of courses and project participation. The course programme is organized at the department level as *regular courses*, each of which is given approximately every second or third year (if possible), and *occasional courses* which depend on the profile and interests of current faculty and visiting scientists. The programme covers the areas: Computer Science, Computer Systems, Information Systems and Media, Economic Information Systems, Computational Linguistics, Cognitive Systems, Engineering Information Systems and Information Systems Development.

The department also hosts a National Graduate School in Computer Science, CUGS, with participation from Örebro University, Mälardalen University, Skövde University, Jönköping University and others. This school gradually started its operation during the academic year 2000-2001. In addition, research groups and doctoral students participate in other national graduate schools, for instance in Language Technology and in the area of Management and Information Technology.

The department also participates in several other special graduate schools aiming for interdisciplinary studies preparing also for a career outside the university, with funding from the Foundation for Strategic Research. ECSEL, Excellence Center in Computer Science and Systems Engineering, started in 1996 in cooperation with primarily the Department of Electrical Engineering. HMI, Human Machine Interaction, started in 1997 and its goal is to improve Swedish competence by educating specialists in HMI. It is a cooperation between Linköping (IDA, IKP, Tema-K) and Stockholm (NADA, DSV). IMIE, International Graduate School of Management and Industrial Engineering, has been in operation for some years with contributions from the subject area Economic Information Systems in our department. Graduate students in these schools belong to research groups in the home department, but follow a special study programme.

A special study programme for industry-based graduate students is available in the area of Applied IT and Software Engineering. This Industry Research School is funded by the Foundation for Knowledge and Competence Development and by participating companies.

About 150 Ph.D. students participate in the graduate programme, and may choose among about 30 courses given each year. The courses and seminars are normally given in English (unless all participants are fluent in Swedish).

The programme leads to one of the following degrees:

Licentiate of technology or philosophy. The requirements include 40 points (one point equivalent to one week full time studies) of completed courses and 40 points thesis work.

Doctor of technology or philosophy. The requirements are generally 80 points courses and 80 points thesis work. Most of the Ph.D. students take the licentiate degree as an integral part of their doctoral studies.

For the degree in technology, a master of engineering (4.5 years of study) is normally assumed as a prerequisite.
As an executive, there is one director of graduate studies (Ulf Nilsson). However, most of the administration and organization rests upon the director of graduate studies administration (Lillemor Wallgren). Most graduate students are employed by the department full time. They assist in undergraduate courses and other internal assignments of the divisions/laboratories, up to about 20% of their time. The rest of the time is spent on graduate courses and thesis project.

2.2 The Graduate Studies Programme Fall 2002

The presentation in later sections contains the following types of courses:

- General graduate courses offered for students of the whole department
- Graduate courses offered mainly for students within a division/research group or graduate school

In addition to the graduate study courses given in the Department of Computer Science, graduate students may also take courses from other departments, in particular courses from the special graduate schools CUGS, ECSEL, HMI, IMIE.

Main seminar series and seminars in the divisions.

The seminars are announced by e-mail, and occasionally by special announcement. They are strongly recommended for students, and although they do not automatically give credit points in graduate studies, they are a necessary ingredient in the PhD training.

2.3 Contact for graduate studies information

Further information concerning the contents of this program can be obtained from Lillemor Wallgren, phone 013-28 14 80, Ulf Nilsson, 013-28 19 35, Britt-Inger Karlsson, 013-28 17 06 or for a particular course from the person responsible for that course.

Contact information: Lillemor Wallgren
Director of Graduate Studies Administration, Department of Computer and Information Science
Linköping University, S-581 83 Linköping, Phone: 013-281480, Fax: 013-142231, E-mail: lew@ida.liu.se
FDA124
Activity Theory, developmental work research, and information systems development (CIS)

Lectures:
16 h

Recommended for
Graduate students in informatics and information systems development.

The course was last given:
Fall 1998.

Goals
To acquire knowledge of the theoretical background of Activity Theory, and its relevance for computer supported work re-design and information systems development.

Prerequisites
Basic courses in informatics and information systems development.

Organization
Lectures and seminars.

Contents
Theoretical overview - origin, tradition (Vygotsky, Leontjev.)
Activity Theory and information systems development (Kuutti.)
Cultural-historical Activity Theory and developmental work research (Engeström.)

Literature
To be decided.

Teachers
Sofie Pilemalm, Toomas Timpka, Vivian Vimarlund.

Examiner
Toomas Timpka.

Schedule
Fall 2002.

Examination
Active seminar participation, course paper writing and presentation.

Credit
5 credits.
FDA026
Avhandlingsseminarier (CIS)

Lectures:
20 h.

Recommended for
Kursen vänder sig till forskarstuderande som arbetar med sin lic- eller doktorsavhandling. För att få delta på kursen behöver kursdeltagare inte ha färdiga avhandlingskapitel, men ett synopsis eller utkast till sin avhandling skall finnas.

The course was last given:

Goals
Huvudsyftet med kursen är att deltagarna får delar av sina pågående avhandlingsarbeten (lic- eller doktorsavhandling) granskade av en utsedd opponent samt av övriga deltagare. Ett annat viktigt syfte är att deltagarna får träning i att opponera på andra arbeten.

Prerequisites
Inga.

Organization
Kursen genomförs i seminarieform med presentation, opposition och diskussion.

Contents
Seminariebehandling av utkast till avhandlingsbidrag. Presentation och opposition. Varje bidrag behandlas i ungefär 45 minuter. Kursdeltagare förväntas aktivt delta i diskussioner kring struktur och innehåll i avhandlingar.

Literature
Presenteras senare.

Teachers
Göran Goldkuhl, Stefan Cronholm.

Examiner
Göran Goldkuhl.

Schedule
Höstterminen 2002.

Examination

Credit
3 poäng.
FDA126
Aspects of scientific writing (CIS)

Lectures:
15 h.

Recommended for
All doctoral students at IDA/HMI.

The course was last given:
Fall 2001.

Goals
To provide the basic skills needed for reading, writing and presenting scientific work (journal papers, monographs, presentations). This includes guidelines for structuring written and oral presentations, as well as for critical reading.

Prerequisites
Good working knowledge of English.

Organization and Contents
The seminars will take the form of guided discussions of a number of selected scientific papers, and use these to illustrate essential points relating to reading, writing and presentation. Course participants are required to read through selected papers and discuss these during classes. Course participants are encouraged to suggest examples of papers that they consider particularly good or bad. The papers need not be within their own area of interest or expertise.

Literature

Teachers
Erik Hollnagel.

Examiner
Erik Hollnagel.

Schedule
Fall 2002.

Examination
Active presence during seminars + summary report or presentation.

Credit
3 credits.

Comments:
Maximum 12 participants.
FDA089
Business Modelling i teori och praktik (CIS)

Recommended for
Doktorander och forskarstuderande vid
- Ekonomiska informationssystem (EIS)
- Informationssystemutveckling (VTIS/ISU)
- IMIE forskarskola
- MIT forskarskola

The course was last given:

Goals
Öka förståelsen för användning av "business models" (affärsmodeller, verksamhetsmodeller) vid förändringsarbete inom företag och organisationer med speciell fokus på sambandet mellan de tre utvecklingsnivåerna:
- Affärsutveckling (Strategi)
- Verksamhetsutveckling (Process, Funktion)
- Systemutveckling (IS/IT-stöd)

Prerequisites
Grundkunskaper i företagsekonomi eller systemutveckling.

Organization
Kursen består av koncentrerade presentationer, litteraturbevakningar, teoretiskt modelleringssarbete och praktikfallsanalyser. Inom området Business Modelling finns många olika teman som vi kommer att beröra t.ex.:
- Modellers och metoders roll vid förändringsarbete
- Olika perspektiv och aspekter vid modelleringssarbete
- Teorier från företagsekonomi och informationssystem för modellering
- Metodkombinationer (t.ex. metodkedjor och metodallianser)
- Kvalitetssäkring av modeller och metoder
- Modelleringssarbete inom mindre och större företag

Presentationerna ger en kort orientering kring litteraturen för att skapa ett underlag för de två självständiga tillämpningsuppgifter som ska genomföras under kursens gång. Deltagarna ägnar en stor del av tiden under kursens inledning till aktiva självstudier av litteraturen. Under den senare delen av kursen genomför deltagarna experiment med att kombinera eller integrera ett par metoder för förändringsarbete (teoretiskt modelleringssarbete) samt studerar ett antal företag i praktiken vilka erfarenheter de har av kombinerad metodanvändning vid Business Modelling.
Denna doktorandkurs behandlar sambandet mellan affärsutveckling, verksamhetsutveckling och systemutveckling på företag och organisationer. Det är ett försök att integrera kunscher från två olika vetenskapliga discipliner nämligen Företagsekonomi ("Business Administration") och Informatik ("Information Systems"). Kursen ger som helhet 5 poäng efter godkända resultat på två tillämpningsuppgifter.

Bakgrund:
Inom ämnet Informatik/ADB har vi konstruerat specifika modeller och metoder för utveckling av informationssystem på företag (systemutveckling). Men även inom Företagsekonomi har man skapat mycket intressanta, generella ansatser för affärsmodellering inom företag.
Affärsmodellering vid strategisk planering och verksamhetsförnyelse är ofta en kontinuerlig process inom organisationer och kan utgöra en värdefull bas för att starta upp nya informationssystemprojekt.

En central forskningsfråga med stor praktisk relevans är hur vi kan samordna och integrera metoder för affärsmodellering och systemutveckling. Ett stort upplevt problem i praktiken är att ledningsgrupper ofta genomför affärsutveckling tillsammans med managementkonsulter som ofta går stick i stäv mot systemutvecklingsprojekt som bedrivs på initiativ från IT-avdelningar.

Literature

Huvudboken

Möjlighet till rabatterat pris på huvudboken i kurs 3 >>>

Kompletterande litteratur

utgåvan är även fritt tillgänglig på Internet: Sök på Altavista efter "Advancing Your Business" eller använd adressen: http://www.hhs.se/im/efi/ayb.htm

Teachers
Anders G Nilsson, Birger Rapp.

Examiner
Anders G Nilsson, Birger Rapp.

Schedule
Höstterminen 2002.

Examination
För godkänt deltagande och resultat på doktorandkursen i Business Modelling (5 poäng) krävs:

• Författande av två rapporter som behandlar de obligatoriska tillämpningsuppgifterna (examinationsgrundande)

• Aktiv närvaro vid de två seminarietillfällena där rapporterna presenteras och diskuteras (dvs obligatorisk närvaro på seminarier)

• Tillämpningsuppgifterna måste vara klara till seminarietillfällena dvs ingen extra möjlighet till examination kommer att ges. Rapporterna lämnas i form av papperskopia till kursledaren vid seminariets början. Vidare ombesörjs spridning av rapporten till övriga kursdeltagare eftersom behovet av att studera varandras "forskningsfynd" säkert är stort.

Tillämpningsuppgifter

I Egen litteraturbevakning

De olika delarna i tillämpningsuppgiften ska nedtecknas i en rapport på ca 15 sidor. Tillämpningsuppgiften ska ske i form av ett enskilt, individuellt arbete. På seminariet den 8 oktober kommer vi först att delta in oss i ett antal grupper och diskutera våra resultat av litteraturbevakningen. Sedan kommer varje grupp att presentera några "highlights" från diskussionerna i en efterföljande plenum-session.
II Genomförda experiment

Efter det teoretiska modelleringsarbetet sker en empirisk studie med några praktikfallsanalyser. Man kan välja mellan två former av undersökningsdesign: Djupintervjuer (2 företag) eller Begränsad enkätsstudie (ca 10 företag). Syftet är att undersöka erfarenheter av hur företagen jobbat med metodkombinationer vid förändringsarbete. Helst bör företagen använda någon eller några av de metoder du/ni analyserade i det teoretiska modelleringsarbetet. Resultaten av de genomförda experimenten ställs mot den egna referensramen som utvecklades i uppgift I ovan.

Credit
Upp till 5 p.

Comments
Kursen är utsträckt över ett par månader med två introducerande presentationer av kursledarna och två seminarier där de egna tillämpningsuppgifterna presenteras och diskuteras
FDA030
Ethics in the Age of Information Technology (CIS)

Lectures:
27 h.

Recommend for
Graduate students.

The course was last given:
Fall 2001.

Goals
To introduce ethical theories and methods. To present and analyse ethical issues related to
computerisation and information technology. To present and analyse problems in research
ethics.

Prerequisites
None.

Organization
Presentations, seminars and discussions.

Contents
Ethical theories and methods for analysing ethical arguments. The course focuses on ethical
issues related to the use of information technology, like privacy, responsibility and decision
support and ethical issues related to the use of Internet. Another focus is on research ethics. This
includes cheating, rights and responsibilities of researchers, ethical issues related to publication
and the confrontation of different systems of norms in applied research.

Literature
Collste, Göran, ed, Ethics in the Age of Information Technology, Studies in Applied
Ethics, 7, Linköping, 2000 (Can be bought at the start of the course).

Teachers
Göran Collste and Bo Petersson, Centre for Applied Ethics. Erik Sandewall, IDA.

Examiner
Göran Collste.

Schedule
Fall 2002.

Examination
Seminar activity and written papers.

Credit
3-5 credits.
FDA130
Formal Modeling and Verification for Real-Time Systems (CIS)

Lectures:
32 hours.

Recommended for
Graduate students, researchers, practitioners.

The course was last given:
New course.

Goals
To provide theoretical basics and to introduce advanced research issues. Examples will be presented and some state of the art tools will be discussed.

Prerequisites
Basic knowledge in logics, modeling and real-time systems.

Organization
Lectures.

Contents
Introduction
 Discrete and continuous time; modeling
Model checking basics
 Temporal logics
 Explicit state model checking
 Symbolic model checking
Model checking for discrete real-time
 RTCTL model checking
 Quantitative analysis
Models for continuous real-time
 Timed automata
 Time Petri nets
Model checking for timed automata
 Region graph
 Zone automaton
 Time-abstract (bi)simulations
Tools: UPPAAL, KRONOS
Advanced model checking issues:
 Symbolic representation
 Partial order reduction
Languages for real-time systems:
 SDL
 Synchronous languages
Real-time system design and analysis:
 Compositionality issues
 Scheduling and control
 High-level design and refinement

Literature
Research papers.

Teacher
Marius Minea.

Examiner
Petru Eles, Zebo Peng.

Schedule
Fall 2002.

Examination
To be decided.

Credit
6 credits.
FDA078
Inter-organisatorisk samverkan och elektroniska affärer (CIS)

Lectures:
24 timmar (inklusive seminarier).

Recommended for
Kursen ges av ämnesområdet informationssystemutveckling. Den vänder sig till personer med intresse för teorier kring inter-organisatorisk samverkan och elektroniska affärer samt praktiska exempel på detta.

The course was last given:
Höstterminen 2002.

Goals
Kursen skall ge kunskap om inter-organisatorisk samverkan och elektroniska affärer. Kursen fokuserar både affärer mellan företag (b2b) och affärer med konsumenter (b2c). Kursen skall ge kunskap om olika modeller, tillvägagångssätt och metoder för interaktion och utveckling av samverkan i nätverk. Ett mål med kursen är att visa hur informationsteknik kan innebära både möjligheter och begränsningar för denna typ av samverkan. Kursen kommer att ge såväl teoretiska som praktiska bilder av området.

Prerequisites
Inga särskilda förkunskapskrav.

Organization
Kursen består av ett antal föreläsningar samt diskussions- och examinationsseminarier. Delar av doktorandkursen kan samlas med D-studenter (gäller främst föreläsningar).

Contents
Affärslogik vid elektroniska affärer.
Modeller för interaktion i nätverk.
Grundläggande begrepp inom området.
Metoder och tillvägagångssätt vid utveckling av inter-organisatorisk samverkan.
Informationsteknikens möjligheter och begränsningar.
Koordination i och av relationer.
Bilder från praktiken - exempel på inter-organisatorisk affärssamverkan.

Literature
Artiklar

Teachers
Ulf Melin (samt gastföreläsare).

Examiner
Ulf Melin.
Schedule

Examination
Inlämningsuppgift som examineras på seminarium.

Credit
3 credits.
FDA012
Introduction to Research Methodology in Computer Science (CIS)

Lectures:
16 h.

Recommended for
New graduate students. Special study groups will be arranged for students with common interests, such as students in the Industry Research School, HMI Research School, etc.

The course was last given:
Fall 2001.

Goals
To prepare for graduate studies in general and for formulating research problems and thesis topics in particular.

Prerequisites
None.

Organization
Lectures and seminars. Optional study groups for extra course credit.

Contents

Literature
Chalmers: What is this thing called science.
Journal papers.

Teachers
Sture Hägglund and invited guests.

Examiner
Sture Hägglund.

Schedule
Fall 2002.

Examination
Written examination and seminar activity. Study group report for 2 extra credit points.

Credit
3 + 2 credits.
FDA019
Presentation Technique (CIS)

Lectures:
Ca 30 h.

Recommended for
Graduate students.

The course was last given:
Spring 2002.

Goals
To achieve better presentations of your own research at international conferences and local meetings. To feel confident in front of an audience. To practise introduction of speakers and dealing with questions.

Prerequisites
None.

Organization
Day 1-2: Voice- and body language, mind-mapping, how to take notes, the students present prepared presentations. Day 3-4: Body language, overheads, short performances, students presentations (10 min). Day 5-6: The language, students own unprepared presentations. Some of the presentations will be video recorded.

Contents

Literature
Powerful Presentation.
Notice: The book will be bought by the teacher and handed out at the first lecture.

Teachers
Ingela Dellby.

Examiner
Ingela Dellby.

Schedule
Fall 2002.

Examination
Presentations and active participation in workshops, discussions and continuous evaluation of performances.

Credit
3 credits.

Comments
Maximum twelve participants. The course is given in English.
FDA136
Requirements Engineering (CIS)

Lectures:
24 h.

Recommended for
All graduate students with basic courses in Software engineering and Software development projects and/or working experience.

The course was last given:
New course.

Goals
The students will acquire theoretical insights and practical experience from processes, tools and techniques that are used in requirements engineering activities in large-scale software development and applied research.

Prerequisites
Undergraduate course TDDB61 PUM, or TDDB62 PUM-I and/or working experience.

Organization
- A seminar series of 12x2 hours
- A role-game exercise
- A lab series with tools for requirements prioritation and management
- A possibility to submit and present term papers

Contents
- Requirements elicitation
- Requirements specification
- Inspection of requirements
- Formal specification of requirements
- Semi-formal notations of requirements
- Software quality requirements
- Requirements prioritation
- Attribute-driven requirements engineering
- Software release planning
- Research issues

Literature

Selected articles
Teachers
Kristian Sandahl, Simin Nadjm-Therani, Pär Carlshamre, Joachim Karlsson, Andreas Borg ("course assistant").

Examiner
Kristian Sandahl.

Schedule
Fall 2002.

Examination
- A written, open-book exam on Sommerville and Sawyer.
- Short, written reflections from the labs.
- Term paper and presentation (optional)

Credit
4 credits (approved term papers will add 1-3 credits).
FDA131
Research preparation course in Geoinformatics (CIS)

Lectures:
32 h.

Recommended for:
Graduate students.

The course was last given:
Fall 2001.

Goals:
The purpose with this course is to give the students deeper knowledge and theoretical perspectives on Geoinformatics and perspectives on computer methods to handle spatial data. The subject Geoinformatics is interdisciplinary and share several academic and application fields. The course will give an overview of the research in the area and prepare for research.

Prerequisites

Organization
Tuition, seminars and exercises are provided concentrated between 10-15 during one day every second week to once a month between October and January (totally ca 10 events). Parts of the course communication as well as access to tutorials can be provided on distance.

Contents
– Theoretical perspectives on capture, handling, preparation and analysis of geographic and other spatial data.
– Methods to analyse networks and cartographic algebra to handle and analyse spatial questions within technology, natural science, medicine, social science and humanities
– Spatial statistical methods to identify clusters and diffusion of physical as well as biological and non material properties (languages, dialects, names, habits etc)
– Methods to visualise dynamic events in two or more dimensions and multi modal communication of processes in time and space.

Tuition
Tuition, seminars and exercises are provided concentrated between 10-15 during one day every second week to once a month between October and January (totally ca 10 events). Parts of the course communication, as well as access to tutorials, can be provided on distance.

Literature
Worboys, M.F. "GIS: A Computing Perspective".
Ref
Teachers
Åke Sivertun, Erland Jungert, Michael LeDuc, guests.

Examiner
Åke Sivertun.

Schedule
Fall 2002.

Examination
Examination by active participation in the lectures, seminars and exercises and a written report. Publication of the report in a scientific paper or presentation at conferences are rewarded.

Credit
5 credits.
FDA056
Teoridriven, induktiv och modelleringsbaserad forskning
TIM (CIS)

Lectures:
ca 30 h.

Recommended for
Forskarstuderande inom informatik och informationssystemutveckling, samt andra med
intresse för empirisk forskning och teoriutveckling. Kursen är seminariemodulerad och är även
öppen för disputerade som önskar fördjupa sina kunskaper.

The course was last given:

Goals
Kursen skall ge ökade kunskaper och färdigheter avseende datainsamling, dataanalys och teori-
formulering vid forskningsarbete samt ökad förståelse för hur man kan kombinera teoridrivet
och induktivt-empiribaserat och modelleringsbaserat angreppssätt. Kursen avser att vara ett
konkret stöd för kursdeltagare att analysera empiriska fall och utveckla teori förutom att bidra
till ökade färdigheter i dessa avseenden. Kursen har ett uttryckligt bimål att öka förmågan att
kritiskt granska samt skriftligen kommentera och muntligen kommunicera kring vetenskapliga
arbeten.

Prerequisites
Inga speciella förkunskaper behövs. Samtidigt bör påpekas att kunskaper inom vetenskapsteori
och forskningsmetodik (t.ex motsvarande kurserna Vetenskapsteori, Kunskapsprojektering
samt Kvalitativ analys och teoriutveckling) befärmnar förståelse av kursens innehåll. Kursen
bygger också på (vad avser fallseminariedelen) att kursdeltagarna har egna fall att redovisa, dvs
empiriska resultat från pågående eller genomförd forskning.

Kursen kan samlas med kursen Avhandlingsseminarier. Kursen kompletterar Avhandlings-
seminarier genom att fokusera analysprocessen före skrivande av avhandlingskapitel.

Organization
Kursen bedrivs seminariemodulerat. Kursen består av två typer av seminarier:
fallseminarier och litteraturseminarier

Fallseminarier innebär att kursdeltagare redovisar pågående forskning. Redovisning och analys
görs av stegen från empiriska data till beskrivningar av data och vidare till abstraherade
kategorier och formulerade teorier. Särskilt fokus riktas mot användning av teorier och modell-
eringstekniker för insamling och analys av data och för teoriutveckling. Fallseminarier utnyttjar
kursdeltagares fall och avser att bidra till utveckling av aktuell fallanalys samt därmed utgöra
en illustration av lämpliga tillvägagångssätt. De kursdeltagare som deltagit med fall på ett
seminarium dokumenterar lärdomar från fallseminariet ("lärpapper").

Litteraturseminarier innebär granskning av litteratur med relevans för kursens syften. Litteratur
kan avse vetenskapsteoretiska, forskningsmetodologiska, ämnesteoretiska eller modellering-
inriktade frågor. Till varje seminarium granskas ett utvalt och fastställt litteraturstoff (artiklar

Varje kurstillfälle (normalt 4 timmar) kommer att bestå av både fallseminarier och litteraturseminarier.

Contents

Kursen behandlar empiriska och teoriutvecklande faser av forskningsarbete och samspel mellan dessa. Särskilt fokus riktas mot möjligheter att kombinera ett teoridrivet och ett induktivt-empiriskt och ett modelleringsbaserat angreppssätt (TIM) vid dataanalys och teoriformulering. Vad gäller datainsamling görs en primär avgränsning till kvalitativa fallstudier, men andra tillvägagångssätt är möjliga att tillämpa inom en TIM-ansats. Kursen avser att fokusera, problematisera och vidareutveckla den combinerade forskningsansats (TIM) som har kommit att utvecklas inom forskarstudieämnet informationssystemutveckling och Forskningsgruppen VITS. Kursen är starkt tillämpningsorienterad till sin karaktär och har forskningsutvecklande syften; såväl på individnivå som för ämnesområdet.

Enligt TIM-strategin så skall sålunda forskningsprocessen bedrivas med aktivt stöd från generativa teorier med relevans för forskningsområden, ett rikt empiriskt datamaterial som skall behandlas med ett öppet och nyfikt sinne, strukturerade och åskådliggörande modeller (bilder och texter) som konceptualiserar och abstraherar data med stöd av explicita notationer.

Kursen behandlar mer specifikt följande moment:

- TIM som en särskild form av abduktiv forskning
- Teoribegreppet
- Användning av teorier vid datainsamling, dataanalys och teoriutveckling
- Exempel på teorier som brukas som aktivt teoristöd (handlingsteori, affärsaktsteori, praktikteori, talaktsteori)
- Diagnostiska kvalitativa fallstudier
- Kvalitetssäkring av empiriska data
- Triangulering
- Kvalitativ analys (Grounded Theory och andra ansatser)
- Behov av kunskapsmodellering
- Modelleringsstekniker för beskrivning av empiriska data, kategorier och teorier (t.ex begrepp grafer, teorografer, handlingsgrafer, målgrafer)
- Transparens i analys och redovisning av empirisk och teoriutvecklande forskning

Literature

Artiklar och bokkapitel kommer att väljas utifrån kursens syften och de behov som uppstår under kursen.
Teachers
Göran Goldkuhl.

Examiner
Göran Goldkuhl.

Schedule
Höstterminen 2002.

Examination
Deltagande på fallseminarier och litteraturseminarier. Presentation av egna fall. Dokumentering av lärdomar efter fallseminarier ("lärpapper"). Granskingsrapporter till litteraturseminarier.

Credit
3-5 poäng. (efter insats)

Comments
Kursen är ett samarbetsprojekt mellan ämnesområdet informatik vid Internationella Handelshögskolan (IIH) i Jönköping och ämnesområdet informationssystemutveckling vid Institutionen för datavetenskap, Linköpings universitet. Kursen genomförs på IHH i Jönköping.

Varje kurstillfälle (normalt 4 timmar) kommer att bestå av både fallseminarier och litteraturseminarier.
FDA138
XML and Databases (CIS)

Lectures:
10 h (preferably, 5 sessions of 2 hours each).

Recommended for
Graduate students.

The course was last given:
New course.

Goals
This course aims at introducing techniques and methods related to XML and databases that have been developed during the last years, some of which are still the subject of active research.

Prerequisites
Common knowledge of basic notions in Computer Science. No knowledge of XML will be assumed. No specific knowledge in document management and/or in database systems is assumed.

Organization
5 sessions during week 34 and 35.

Contents
XML is emerging as the markup language of choice for data modeling and data interchange on the Web. Furthermore, many aspect of data modeling and data management on the Web are related to database systems. Indeed, the Web can be seen as a distributed information system and it provides databases with a convenient interface. This course aims at introducing to techniques and methods related to XML and databases that have been developed during the last years, some of which are still the subject of active research. The course will give an introduction to XML basics, to formalisms for specifying XML data schemas, to query and transformation languages for XML, and to indexing methods for XML data. The course will also present research results on some of these issues recently obtained at the University of Munich. No specific knowledge in document management and/or in database systems is assumed.

Course Summary
1. XML Basics
 1.1 Markup Languages: Origins and Typology
 1.2 Structure of an XML Document
 1.2.1 Document Prolog
 1.2.2 Elements and Attributes
 1.2.3 Entities and Notations
 1.2.4 Namespaces
 1.2.5 Character Sets
 1.2.6 Document Tree
 1.3 XML vs. SGML
 1.4 XML vs. HTML
 1.5 References
2. XML, Databases, and Data Schemas for XML
 2.1 Features of Standard Data Models
 2.2 Advantages of Dispensable Data Schemas
 2.3 Semistructured Data
 2.4 DTD
 2.5 XML Schema
 2.7 References

3. Query and Transformation Languages for XML
 3.1 Need for Transformations
 3.2 Data Selection with XPath and XPointer
 3.3 Styling with CSS
 3.4 The Transformation Language XSLT
 3.5 The Query Language XQuery
 3.6 Xcerpt: Querying XML Data Reconsidered
 3.7 Streamed Evaluation of XPath
 3.8 References

4. Indexing XML Data
 4.1 Basics: Tag and/or Keyword Indexing
 4.2 Path Indexing
 4.3 Navigation Indices: Data Guides, Signature Files, and Improvements Thereof
 4.4 References

Literature
Teaching material.

Teachers
François Bry, visiting professor.

Examiner
Jan Maluszynski.

Schedule
Fall 2002.

Examination
Written report.

Credit
2 credits.

Comments
Intensive course.
Schedule
Fall 2002.

Examination
Active participation and seminar presentations.

Credit
3 credits.
FDA127
Communication (CUGS)

Lectures:
24 h.

Recommended for
Graduate students in electrical engineering, computer engineering, or computer science.

The course was last given:
New course.

Goals
To give knowledge of advanced network architectures, mobile and wireless networks, and multimedia information and networking.

Prerequisites
Basic course in computer networks.

Organization
Seminars, reading assignments, and laborations.

Contents
- Mobile and Wireless networks
 spontaneous networking techniques
 MAC protocols: CSMA, MACAW
 cellular: GSM/GPRS, UMTS/WCDMA, WAP, mobile IP
 home: infrared, Bluetooth
- Location management and context awareness.
- Network management: SNMP, MIB, etc.
- Routing protocols: BGP, IGP, RIP etc.
- Services & protocols.
- Security: Firewall, Ipsec, access methods, evaluation methods.
- Network architectures: internet exchange points, DMZ nets (de-militarized zone networks.)
- TCP/IP: QoSx, ICMP, Mobile IP, IPv6x etc.
- Peer-to-peer networking.

Literature
Tanenbaum, A: Computer Networks. Foruth Edt.. Prentice Hall.

Teachers
Juha Takkinen.
Schedule
Fall 2002.

Examination
Active participation and seminar presentations.

Credit
3 credits.
FDA128
Computation II (CUGS)

Lectures:
Två heldagar.

Recommended for
Important for all CUGS students, in particular those with little or no experience in constructing and analyzing algorithms.

The Course was last given

Prerequisites
CUGS Computation I or similar (familiar with the contents of chapter 1-5 in Corman et al’s book; see textbook for this course.

Organization
Intensive course.

Contents
Basic methods for constructing and analysing algorithms. The theory is illustrated by examples from graph algorithms, approximation algorithms and probabilistic algorithms.

Literature
Detailed reading list:
Read everything but concentrate on II, IV, VI, VII:31-33 and VII:35-37.

Teachers
Peter Jonsson.

Examiner
Peter Jonsson.

Schedule
Fall 2002.

Examination
Written examination.

Credit
2,5 credits.

Comments
This course is based on TDDA32, and more information about course content can be found at http://www.ida.liu.se/~TDDA32/.
FDA129
Database Systems (CUGS)

Lectures:
24 h.

Recommended for
CUGS students.

The course was last given:
New course.

Goals
The aim of the course is to give knowledge on issues underlying the design and implementation of particular types of modern database systems.

Prerequisites
Course on data modeling (e.g. using entity-relationship model or UML) and relational databases (including relational model, relational algebra, SQL, query processing, data structures, transactions, recovery.
Course on artificial intelligence.
Logic I.

Organization
2 or 3 intensive contact periods.

Related courses
Forthcoming CUGS CS advanced courses in databases.

Contents
- Object-oriented and extended relational database systems.
- Semi-structured data
- Integration models for access to heterogeneous information sources.

Literature
To be announced..

Teachers
Nahid Shahmehri, Patrick Lambrix.

Examiner
Nahid Shahmehri, Patrick Lambrix.

Schedule
Fall 2002.

Examination
To be announced.

Credit
3 credits.
FDA133
Introduction to Machine Learning Methods for Data Mining (CUGS)

Lectures:
20 h + Labs: 20 h.

Recommended for
All PhD students in informatics, systems and computer science. The course demands a certain mathematical and practical programming sophistication.

The course was last given:
New course.

Goals
To provide a hands-on introduction to practical machine learning tools and techniques with applications to data mining.

Organization
Lectures and labs.

Contents
The course course will consist of introductory seminars on various practical machine learning tools and techniques and their theoretical underpinnings. The course is intended to be lab intensive in the sense that each of the techniques considered will be followed by exercises and labs using appropriate software tools.

Topics include data mining and machine learning. Algorithmic techniques covered include statistical modeling, decision trees, covering algorithms, mining associatio rules, rough set based techniques. Other topics include decision rules, classification rules, instance-based learning, clustering, concept learning, and possibly Bayesian learning, PAC learnability and reinforcement learning.

Literature
The following books may be used in addition to other articles:

Witten, Ian & Frank Ebe (2000).
Data Mining, Practical Machine Learning Tools and Techniques with Java Implementations
Morgan Kaufmann Publishers
ISBN 1-55860-552-5

In addition, we may also use the following book as reference literature or as a second course book:
Machine Learning
WCB McGraw-Hill
ISBN 0-07-042807-7

Teachers
Marcin Szczuka, guest researcher.
Examiner
Patrick Doherty.

Schedule
Fall 2002.

Examination
Completion of a lab series (and possibly a written exam if required).

Credit
5 credits.
FDA137
Semantic Aspects of Logics for Action and Change (CUGS)

Lectures:
Preliminary: 8 lectures of 2x45 min each.

Recommended for
Graduate students.

The course was last given:
New course.

Goals
To familiarize the participants with the basic issues in the validation and analysis of range of applicability for logics of actions and change, as well as with existing results in this area.

Prerequisites
Previous study of the C4 course "AI - Kunskapsrepresentation" or the CUGS course "Knowledge Representation" is required or at least strongly recommended.

Organization
Lectures and literature study by the participants.

Contents
Reasoning about actions and change is important for cognitive robotic systems, that is, systems with high-level autonomy. A number of logics for action and change have been proposed during the last ten years. Nonmonotonic inference is understood to be a necessary feature of such logics. The formal properties of those logics have been explored in some cases, but still there are several logics that appear to be practically plausible but whose properties are not well understood.

This course will present the lecturer’s approach to analysing the properties of nonmonotonic logics of action and change, based on his book 'Features and Fluents' (Oxford University Press, 1994) as well as more recent contributions also by other authors. Generally speaking, the approach is to define an *underlying semantics* for classes of logics with similar expressivity, and then to investigate the *range of applicability* for each logic in such a semantics-defined class.

Literature
Erik Sandewall: Features and Fluents.
More recent papers in Logic of Computation, KR96, AICOM, and ETAI.
Possibly papers by other authors (Thielscher, etc).

Teachers
Erik Sandewall.

Examiner
Erik Sandewall.
Schedule
Fall 2002.

Examination
Conventional written exam.

Credit
3 credits.
FDA015
Object-Oriented Languages for Dynamic Systems (ECSEL)

Lectures:
24 h.

Recommended for
Students in ENSYM, SCORE, STEM, interested in software for modeling and simulation of
dynamic systems.

The course was last given:
Fall 2001.

Goals
To give an overview of modern equation-based object oriented modeling languages, with
emphasis on the new language Modelica, and how to model complex dynamic systems.

Prerequisites
General background for type 3 courses. (Advanced ECSEL course).

Organization
Lectures and exercises/mini-project.

Contents
What is an object oriented modelling language? The concepts of model, simulation, simulation
experiment. Different forms of ordinary differential equation systems. Object model.
Connection structure. Units. Type system and type checking. Connection of subsystems.
Integration of discrete and continuous system modelling. Examples of realistic application
models, e.g. robots, airplanes etc. Compilation techniques for modeling languages.

Literature
Articles and book draft on Modelica.

Teachers
Peter Fritzson, Torkel Glad.

Examiner
Peter Fritzson.

Schedule
Fall 2002.

Examination
Exercises and mini project.

Credit
3 credits.
FDA050
TCP/IP Architecture and Protocols (ECSEL)

Lectures:
24 h.

Recommended for
All ECSEL students.

The course was last given:
Fall 2000.

Goals
The goal of the course is to provide an overview of the numerous communication protocols and services that comprise the core functionality of the TCP/IP Internet. After the course a student should have an understanding, based on knowledge of the underlying technologies, of the possibilities and limitations present in the current Internet. The student should also be familiar with ongoing development and its possible impact on the kind of services that will be available to the end user in the future.

Prerequisites
Undergraduate network technology course TDTS41.
In case many participants are uncertain about their background prerequisite knowledge, there is a possibility to arrange an introduction half-day to computer networks. We assume that the participants would be complementing by self-study.
Basic knowledge in computer security (see Ecsel’s course in Basic Computer Security)

Organization
Lectures (8 lectures of 3 hours each) Seminars for presentation of implementation exercises and/or term papers.

Contents
The course touches upon many areas as shown below. The focus is on the protocols from the network layer and upwards, although some physical and link layer concepts are discussed in the beginning.
As well as giving information about the specific protocols, the course also aims to convey the architecture and philosophies behind the Internet protocols. Also, while future extensions and emerging protocols are discussed, the focus is on the currently deployed protocols.
The following preliminary lecture plan shows the topics covered:
Lecture 1
 Course organization
 Introduction
 Basic principles, terminology, layering
 The physical layer (brief discussion of media and topologies)
 The link layer (e.g. Ethernet, PPP)
 Internet organization and standards
Lecture 2

The network layer (IP, ICMP)
Link layer address resolution (ARP)
Host auto-configuration (BOOTP, DHCP)
Routing

Lecture 3

The connection-less transport layer (UDP)
The connection-oriented transport layer (TCP)

Lecture 4

Remote login protocols (telnet, rsh, SSH, X)
File transfer protocols (FTP, HTTP)
E-mail protocols (SMTP, POP, IMAP, MIME)
News protocols (NNTP)

Lecture 5

API to the transport layer: sockets
Data representation and remote procedure calls: XDR, RPC, ASN.1
Distributed file systems (NFS)

Lecture 6

Domain Name System (DNS)
Network Time Protocol (NTP)
Network management (SNMP)

Lecture 7

Security issues in TCP/IP
Firewalls
IPsec

Lecture 8

Multicast
QoS
IPv6
Emerging application protocols

Related Courses
Basic Computer Security
Cryptology
Applied Network Security
Network Services and Protocols with new themes

Literature
Request For Comments (RFC) documents and other information available on the Internet
Teachers
Kent Engström, UNIT. Some parts of the lectures may be given by invited speakers.

Examiner
Nahid Shahmehri.

Schedule
Fall 2002.

Examination
Open-book written exam. During the exam any written material is allowed.
For additional practice and credits, the participants can choose to do an implementation exercise or write a term paper for extra credits.

Credit
5+2 credits.

Comments
Related Courses:
Basic Computer Security.
Cryptology.
Applied Network Security.
Network Services and Protocols with new themes.
FDA066
Human Factors Research Methodology and Field Experimentation - HMI503 (HMI)

Lectures:
45 h.

Recommended for
Graduate students.

The course was last given:
Fall 2001.

Goals
This course is an introduction to scientific research methodology focusing primarily on various methods of data collection and analysis in field research.

Prerequisites
Graduate Student status or advanced undergraduate.

Organization
15 x 3 hours/week.

Contents
Ethics in research, Field experimentation, Laboratory versus field research, Quasi-experimental design, Validity and reliability of measurement. Critique of scientific articles. Various methods for studying human performance and collecting data including: use of behavioral taxonomies, task analysis, system analysis, verbal protocols, questionnaires, surveys, scaling, and psychophysics.

Literature

Research articles

Teachers
Håkan Alm, IKP.

Examiner
Håkan Alm, IKP.

Schedule
Fall 2002.

Examination
Home works, Two written tests.

Credit
5 credits.
An Introduction to Human Factors Engineering - HMI606 (HMI)

Lectures:
30 h.

Recommended for
Graduate students and well-qualified undergraduate students.

The course was last given:
Spring 1998.

Goals
To give student basic knowledge in Human Factors Engineering.

Prerequisites
Graduate Student status or qualified Undergraduate.

Organization
This course is arranged as a series of four seminars. It is necessary for students to have read pages before class, so that there is a meaningful discussion. Every student should bring about 6 prepared issues to discuss for each seminar. Location: Röda Rummet, A-huset, Linköpings universitet.

Contents

Literature

Teachers
Sidney Dekker, IKP.

Examiner
Sidney Dekker, IKP.

Schedule
Fall 2002.

Examination
Two written tests.
The two written tests give 60% of the course grade. Passing grades on the written tests are necessary for a passing grade on the course.

The paper corresponds to 40% of the grade. The topic for the paper must be discussed with the teacher. It should be a new paper on some relevant issues to Human Factors. It could be either a review paper or a proposal.

Credit
5 credits.
FDA090
Play & Designing Media for Participation - HMI723 (HMI)

Lectures:
16 h

Recommended for
Graduate students.

The course was last given:
New course.

Goals
To develop the ability to describe, use, and invent design solutions in the area of media
technology – with particular emphasis on co-adaptive designs that facilitate both good
experience and good praxis.

Prerequisites
None.

Organization
The course is organized as a series of design sessions, discussions, and small, weekly “deliver-
able.” (Note: The weekly deliverables are a mechanism for students to make regular progress
towards their final projects; students can expect weekly feedback on their deliverables.) The
course will meet weekly for 8 weeks, and then, again, twice at the end of the Fall term for review
and rejoicing.

Contents
This course is a studio for designer-developers of computational media. The focus is on devel-
oping media that allow people to instantly (or quickly) do the self-fulfilling activities they find
important.

The course will explore aspects of media technology, cognitive science, and aesthetics that are
relevant when designing to support engaging participation. We will draw insights from example
technologies that are practical (programming environments), engaging (games), or both. We
will also examine different models of human-computer interaction and of cognition – including
both models of the third-person and experiences of the first-person (“how do we improve the
experience of particular activity?”). Finally, we will look at different approaches to “non-utili-
tarian” media and experiences, such as games, play, art, and performances.

Literature
Readings will be adapted to the needs and interests of course participants, but will most likely
include pieces by Christopher Alexander, Mihaly Csikszentmihalyi, Jean Lave, Scott McCloud,
Marvin Minsky, Seymour Papert, Edward Tufte, and Francisco Varela. These readings will be
short and distributed as needed.

Teachers
Kevin McGee
Examiner
Kevin McGee

Schedule
Fall 2002

Examination
Active participation, weekly deliverables, and a final project.

Credit
3 (+ 2) credits

Comments
Course size is limited to 15 participants. All students are expected to define and complete a small project that contributes in some definite way to their thesis work; examples of projects include a publishable article, a thesis chapter, a prototype, a small hardware/software implementation, or even a formal thesis proposal. The difference between the 3-point and 5-point version of the course is the scale of the final project. Course language will be a mix of English and Swedish.
FDA135
Perspektiv på forskning och vetenskap (M.I.T)

Lectures:
26 tim (6 dagar).

Recommended for
Graduate students.

The course was last given:
New course.

Goals
Kursen syftar till att introducera de studerande till forskning och vetenskap. Målet är att de efter genomgången kurs skall ha erhållit kunskaper om forskningens och vetenskapens framväxt, hur vetenskapen är organiserad samt dess roll i det moderna samhället.

Organization

Contents
Kursen innehåller tre moment:

1. Historiska perspektiv på forskningen.
2. Vetenskap som social organisation med tillämpning på management och informatik.
3. Vetenskap i det moderna samhället.

Literature
1. Historiska perspektiv på forskningen

2. Vetenskap som social organisation med tillämpning på management och informatik
3. Vetenskap i det moderna samhället

Teachers
Lars Engwall.

Examiner
Birger Rapp.

Schedule
Fall 2002.

Examination
För godkänd kurs krävs aktivt deltagande i undervisningen samt godkänd hemtentamen.

Credit
5 poäng.
Faculty engaged in the graduate study programme

ADIT: Database and Information Techniques

Patrick Lambrix, Ph. D., Linköping 1996. Associate professor (*docent, universitetslektor*).

Bioinformatics and intelligent information systems: knowledge representation, organization and management of information, information retrieval, ontologies, integration of biological databases.

Nahid Shahmehri, Ph. D., Linköping 1991. Professor of computer science. Group leader, IISLAB and EDSLAB. Head of the Division for Database and Information Techniques. Previous affiliation: Carlstedt Elektronik AB.

Engineering information systems and applications, information security, peer-to-peer computing, Internet and mobile services, information retrieval and information extraction.

Lena Strömbäck, Ph. D., Linköping 1997. Assistant professor (*universitetslektor*). Previous affiliations: Assistant professor, NLPLAB, Linköping University, Coordinator of research activities at Nokia Home Communications.

Multimedia databases, information extraction, functionalities for intelligent homes.

Intelligent Informations Systems: information retrieval and filtering, electronic mail and the semantic web, work-flow and task management.
AIICS: Artificial Intelligence and Integrated Computer Systems

Marcus Bjäreland, Ph. D., Linköping 2001. Assistant professor (vik. universitetslektor), computer science.

Artificial Intelligence, Knowledge Representation, Execution Monitoring, Constraint satisfaction, Reasoning about Action and Change.

Programming languages and systems, programming methodology, program manipulation, partial evaluation.

Witold Lukaszewicz, Ph. D., 1979 in Warsaw University. On leave from College of Economics and computer science TWP Olsztyn.

Research interests include reasoning about action, non-monotonic reasoning, planning and knowledge base update.

Erik Sandewall, Ph. D., Uppsala 1969. Professor of computer Science. Group leader, CASL. Director of the WITAS project. Chairman of the Board for the National Graduate School in computer science (CUGS). Director of Linköping University Electronic Press.

Representation of knowledge with logic, reasoning about action and change, cognitive robotics, autonomous agents.
HCS: Human-Centered Systems

Syntax, semantics and pragmatics of natural language; dialogue systems, natural language; machine-aided translation, parallel corpora.

Nils Dahlbäck, Ph. D., Linköping 1992. Associate professor (*universitetslektor*), cognitive science. Deputy/Dean in the Arts and Science faculty

Natural language processing, especially empirically based computational models of discourse. Individual differences in cognitive styles and abilities, including learning styles, and their relationship to hypermedia navigation and IT-based learning. Cultural differences in social responses to media.

Knowledge-based systems, knowledge acquisition, ontologies, semantic web, medical informatics, software development environments, command-and-control systems, Internet-based applications, and Java programming

System development, requirements engineering, organizational development, quality methods, participatory design, information technology.
Erik Hollnagel. Ph. D., Århus 1981. Professor of Human-Computer Interaction. Several previous affiliations in Denmark, England and Norway.

Cognitive systems engineering, risk and reliability analysis, user modelling and simulations, decision support and expert systems.

Expert systems and artificial intelligence applications, database technology, human-computer interaction, intelligent tutoring systems and software engineering.

Qualitative spatial reasoning, geographical information systems, database technology, visual languages.

Artificial intelligence, natural language processing, dialogue systems, especially empirically based computational dialogue models.

Cognitive technology, cognitive modelling, cognitively based agents in adaptive support systems, visual reasoning.

Text-to-speech conversion, speech recognition, speech-to-speech translation, prosody in speech synthesis and recognition.

Hans Marmolin, Ph. D., Uppsala 1973. Consulting professor (adjungerad professor), human-computer interaction, especially information psychology. Previous affiliation KTH and others.

Human-computer interaction, usability engineering, cognitive ergonomics, user interface design.

Magnus Merkel, Ph. D., Linköping 1999. Assistant professor (universitetslektor), computational linguistics.

Natural language processing, computational support for writing and translation; machine-aided translation, parallel corpora, information extraction.

Kjell Ohlsson, Ph. D., Umeå 1982. Professor at the Department of Mechanical Engineering. Part time at the Department of Computer and Information Science, human-computer interaction. Previous affiliations Umeå, Luleå and others.

Human-computer interaction, usability engineering, cognitive ergonomics, decision making, psycho acoustics.

Eva Ragnemalm, Ph. D., Linköping 1999. Assistant professor (universitetslektor), computer science.

Intelligent tutoring systems, simulation based tutoring systems, student modelling and user modelling, human-computer interaction.
Nancy Reed, Ph. D., University of Minnesota 1995. Assistant professor (*universitetslektor*), computer science. Previously at University of California, Davis.

Autonomous agents, knowledge-based systems, modelling human expert reasoning, real-time systems and specification languages for agents. Current application areas are agents in dynamic simulation environments and knowledge-based systems in diagnosis.

Geographical Information Systems - GIS. Communication of complex data and linking multi disciplinary models in GIS. Research in environmental programs, programs for medical geography, physical planning and decision support.

Hypermedia, computers and society, human-computer interaction, systems development.

Shumin Zhai, Ph. D., University of Toronto, 1995. Guest Professor, Human-Computer Interaction. Research Staff Member, IBM Almaden Research Center, San Jose, California.

Advanced user interfaces; interaction devices and methods; multi-dimensional, multi-stream, multi-hand, and multi-modal input; human performance modeling and experimentation.

Karin Axelsson, Ph. D., Linköping 1998. Assistant professor (forskarassistent), information systems development.

Information systems architecture, theories on information systems development, inter-organisational business development, qualitative research methods.

Stefan Cronholm, Ph. D., Linköping 1998, Assistant professor (universitetslektor), computer science. Co-leader, VITS. Director of undergraduate studies for the Information Systems Analysis Program.

Theories/methods on business process and information systems development, method modelling, qualitative research methods, method tools, usability.

Communicative action theories and methods for evaluation and design concerning inter-organisational networking, business processes, information systems, human-computer interaction, electronic commerce and knowledge management. Method modelling and renewal. Qualitative research approaches.
Anna Moberg, Ph. D., Linköping 1997. Assistant professor, (forskarassistent), economic information systems.

IT and organisational design, e-work, telework, callcentre, non-territorial office, organisational communication, location.

Strategy and management control, environmentally-driven business development, valuation and accounting of intangible assets, production control.

Management issues arising from IT-enabled business change, especially how accounting, control, and pricing could be modified to provide information and incentives appropriate for the new business situation.

Birger Rapp, Econ. Dr., Stockholm 1974, Professor of economic information systems. Group leader, EIS. Head of the Division for Information Systems and Management. Director of the Swedish Research School of Management and Information Technology, M.I.T.. Among many other appointments president of the board of the Swedish Teleworking Association, Distansforum and program director in Management and Economic Information Systems at IMIT.

Accounting, business control, agency theory, IT and organization, production, economics.

Main interests in Computer Simulation in Change Processes, Process Management and Manufacturing Planning and Control.

Health informatics and the organizational and societal economic effects of the development, use and implementation of Information and Communication Technology (ICT). Economic, Human-computer interaction, and development of methods and models for Economic Evaluation of user centered approaches to develop Information Systems.

Alf Westelius, Econ. Dr., SSE Stockholm, 1996. Assistant professor (universitetslektor), economic information systems, especially electronic commerce and knowledge management. Previous affiliations: The Stockholm School of Economics, the Ministry of Culture.

Knowledge management, project management, electronic commerce, change management and implementation processes.
SaS: Software and Systems

Uwe Assmann. Dr. rer. nat., Karlsruhe, 1995. Associate professor (docent, universitetslektor). Group leader, RISE (Research Center for Integrational Software Engineering) and the Swedish Semantic Web initiative (SWEB). Previous affiliations: Karlsruhe University, INRIA Rocquencourt, GMD. Member of IFIP WG 2.4 System Implementation Techniques.

Software engineering, software composition, aspect oriented development, Semantic Web, graph rewriting, software architecture, program analysis and optimization. Tools: Pike, COMPOST, Optimix, CoSy.

Wlodzimierz Drabent. Ph. D., Warsaw 1985. Associate professor (docent, universitetslektor), computer science. Associate professor at the Institute of computer science, Polish Academy of Sciences.

Logic programming: proving properties of programs, types, error diagnosis, constraint logic programming, negation; programming languages semantics.

Design of embedded systems, design automation for digital systems, real-time systems, hardware/software co-design, computer architectures, concurrent programming, hardware description languages and languages for system specification.

Computer graphics, virtual reality, physics-based simulation, visualization and animation; modelling and simulation environments.
Johan Fagerström, Ph. D., Linköping 1988. Associate professor (universitetslektor), computer science.
Distributed systems, object-oriented programming, object-oriented analysis and design, operating systems.

Dag Fritzson, Ph. D., Göteborg 1988. Consulting professor (adjungerad professor), engineering information systems especially scientific computing. Previous affiliation Chalmers University of Technology, Göteborg. Current affiliation SKF AB.
Modelling techniques, parallel simulation, visualization, machine element modelling, e.g. rolling bearings.

Programming environments and languages, design languages and simulation environments, scientific computing, debugging tools, incremental compilation technology, compiler generation, compilers and development tools for parallel hardware.

Jörgen Hansson, Ph. D., Linköping University 1999. Assistant professor (universitetslektor), Director of CUGS - national graduate school of computer science. Chair of the board of studies for the bachelor’s engineering curriculum at the Linköping Institute of Technology. Previous affiliations: University of Skövde and University of Virginia, Charlottesville.
Real-time systems, database support for embedded and real-time systems, real-time operating systems, distributed systems.
Peter Jonsson, Ph. D., Linköping 1996. Associate professor (*docent, universitetslektor*), computer science.
Construction and analysis of algorithms. Complexity theory.

Christoph Kessler, Ph. D., Saarbrucken, Germany 1994
Associate professor (*docent, universitetslektor*), for data structures, algorithms, and programming, at PELAB.
Director of undergraduate studies for the Software and Systems division (SaS).
Code generation, code optimization, programming parallel computers, design and implementation of parallel programming languages, algorithms and data structures, computational geometry.

Erik Larsson, Ph. D., Linköping 2000. Assistant professor (*vik. universitetslektor*), computer systems.
Design and optimization of hardware test of computer systems, computer architecture, operating systems, computer-aided design of electronic systems.

Mariam Kamkar, Ph. D., Linköping 1993. Professor of software engineering. Head of the department of computer science.
Software engineering, software testing, program debugging, program analysis, optimization in compilers, programming environments and languages.

Constraint logic programming, formal methods in computer science.

Modelling and formal verification, Dependable systems, Resource allocation and Fault-tolerance in Distributed systems.

Ulf Nilsson, Ph. D., Linköping 1992. Associate professor (*docent, universitetslektor*), computer science. Associate head of the department of computer science. Director of graduate studies. Group leader, TCSLAB. Previous affiliations: State University of New York at Stony Brook and École Normale Supérieure de Cachan.

Logic programming and constraint programming; Formal verification; Automated fault diagnosis; Program transformation and abstract interpretation.

Design and test of embedded systems, electronic design automation, design for testability, hardware/software co-design, real-time systems, computer architecture, VLSI.

Industrial software engineering, knowledge management, requirements engineering, software quality, software processes, knowledge engineering, empirical research methods, inspection methods.

Tools, methods and architecture for systems engineering and real-time system design. Applications in automation and embedded systems. Real-time programming and specification languages. Robot programming.
Guest researchers and affiliated faculty engaged in the graduate study programme

Sten F. Andler, Ph. D., Carnegie-Mellon University 1979. Professor of computer science, Högskolan i Skövde, *(docent, LiU)*, distributed systems, real-time systems, operating systems. Previous affiliations: IBM Software Solutions (1992-93) and Almaden Research Center (1979-92), San Jose, CA.

Distributed real-time systems, real-time databases, active real-time databases, distributed databases, real-time operating systems.

End User Computing, Local Systems, Knowledge Management.

Planning and temporal reasoning, algorithms and complexity, model-based diagnosis.

David Carr, Ph. D., Maryland 1995. Assistant professor *(universitetslektor)*, human-computer interaction. Previous affiliations Maryland and Luleå.

User interface design, visualization, computer-supported cooperative work and groupware for teamwork.

Intelligent Control, Fuzzy Systems and Control, Autonomous Robotics.

Owen Eriksson, Ph. D., Linköping 2000, Senior Lecturer (*universitetslektor*), informatics. Co-leader, VITS. Director of undergraduate studies for Informatics at Dalarna University.

Theories/methods on business process and information systems development and evaluation, data base and conceptual modelling, IT and mobility.

Roland Hjerpe, Director of Libraries, Mid Sweden University. Previous Group leader, LIBLAB.

Library science and systems, hypertext and -media, knowledge organization and information retrieval, citation analysis and bibliometrics, personal and everyday life information/document management.

Engineering databases, complex product models.

System development models, development of complex systems, organizational learning.

Business processes and information systems. Method engineering qualitative research methods, change analysis, knowledge management.

Distributed scalable data structures (SDDSs), multidatabase systems, storage structures, query languages.

Interaction design, human-computer interaction.

Application packages, business modelling, business process re-engineering (BPR), information management, ISD methods, IS/IT strategies, maintenance management.

Functional programming languages, programming language implementation, functional programming, declarative debugging.

Work and knowledge (medicine and academia); tradition, innovation and technology; hypertext and visual resource development paths.

Andrzej Szalas, Ph. D., Warsaw University 1984. Guest professor. Also a professor in the College of Economics and computer science, Olsztyn, Poland.

Applied logics, knowledge representation, deductive databases.
<table>
<thead>
<tr>
<th>No</th>
<th>Author</th>
<th>Title</th>
<th>Year</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Anders Haraldsson</td>
<td>A Program Manipulation System Based on Partial Evaluation, 1977,</td>
<td>1977</td>
<td>91-7372-144-1</td>
</tr>
<tr>
<td>18</td>
<td>Mats Cedwall</td>
<td>Semantisk analys av processbeskrivningar i naturligt språk, 1977,</td>
<td>1977</td>
<td>91-7372-168-9</td>
</tr>
<tr>
<td>No 443</td>
<td>Marian Kamkar: Interprocedural Dynamic Slicing with Applications to Debugging and Testing, 1993, ISBN 91-7871-065-0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No 439</td>
<td>Cecilia Sjöberg: Activities, Voices and Arenas: Participatory Design in Practice, 1996, ISBN 91-7871-728-0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No 436</td>
<td>Johan Ringström: Compiler Generation for Data-Parallel Programming Language from Two-Level Semantics Specifications, 1997, ISBN 91-7219-045-0.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linköping Studies in Information Science

No 5 **Mikael Lind:** Från system till process - kriterier för processbestämning vid verksamhetsanalys, 2001, ISBN 91-7373-067-X

Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at: FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

Ola Strömberg: A Structure Editor for Documents and Programs, 1986.

Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.

Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.

Hans Block: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.

Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.

FHS 3/94
FHS 4/94
FHS 5/94
No 476 Bo Lagerström: Successive resultatavräkning av pågående arbeten. - Fallstudier i tre byggherrelse, 1995.
FHS 7/95
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based Programming, 1995.
FHS 8/95
Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap och metodanalys, 1995.
FHS 9/95
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 546 Magnus Werner: Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96
Mikael Lind: Affärsprocesstrainitiat förändringsanalys - utveckling och tillämpning av synsätt och metod, 1996.
No 557 Mikael Johannson: Quality Requirements for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Eva Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems, 1996.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärsituationer - möjligheter och hinder, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets rekommendation om koncernredovisning (RR01:91), 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organisatorisk verksamhetsutveckling - metoder som stöd vid utveckling av partnerskap och informationssystem, 1998.
No 745 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om aktörsscenarien i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an organisation, 1999.
No 807 Svein Bergum: Managerial communication in telework, 2000.
<table>
<thead>
<tr>
<th>No</th>
<th>Author</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>808</td>
<td>Karin Hedström</td>
<td>Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter</td>
<td>2000</td>
</tr>
<tr>
<td>820</td>
<td>Jean Paul Meynard</td>
<td>Control of industrial robots through high-level task programming</td>
<td>2000</td>
</tr>
<tr>
<td>823</td>
<td>Lars Hult</td>
<td>Publika Gränstor - ett designexempel</td>
<td>2000</td>
</tr>
<tr>
<td>832</td>
<td>Paul Pop</td>
<td>Scheduling and Communication Synthesis for Distributed Real-Time Systems</td>
<td>2000</td>
</tr>
<tr>
<td>842</td>
<td>Magnus Kald</td>
<td>The role of management control systems in strategic business units</td>
<td>2000</td>
</tr>
<tr>
<td>844</td>
<td>Mikael Cäker</td>
<td>Vad kostar kunden? Modeller för intern redovisning</td>
<td>2000</td>
</tr>
<tr>
<td>854</td>
<td>Göran Hultgren</td>
<td>Nätverksinriktad Förändringsanalyse - perspektiv och metoder som stöd för förståelse och utveckling av affärsrelationer och informationssystem</td>
<td>2000</td>
</tr>
<tr>
<td>858</td>
<td>Ola Pettersson</td>
<td>Deliberation in a Mobile Robot</td>
<td>2000</td>
</tr>
<tr>
<td>863</td>
<td>Dan Lawesson</td>
<td>Towards Behavioral Model Fault Isolation for Object Oriented Control Systems</td>
<td>2000</td>
</tr>
<tr>
<td>881</td>
<td>Johan Moe</td>
<td>Execution Tracing of Large Distributed Systems</td>
<td>2001</td>
</tr>
<tr>
<td>882</td>
<td>Yuxiao Zhao</td>
<td>XML-based Frameworks for Internet Commerce and an Implementation of B2B e-procurement</td>
<td>2001</td>
</tr>
<tr>
<td>890</td>
<td>Per-Arne Segerkvist</td>
<td>Webbaserade imaginära organisationers samverkansformer</td>
<td>2001</td>
</tr>
<tr>
<td>894</td>
<td>Stefan Svarén</td>
<td>Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv</td>
<td>2001</td>
</tr>
<tr>
<td>906</td>
<td>Lin Han</td>
<td>Secure and Scalable E-Service Software Delivery</td>
<td>2001</td>
</tr>
<tr>
<td>911</td>
<td>Emma Hansson</td>
<td>Optionsprogram för anställda - en studie av svenska börsföretag</td>
<td>2002</td>
</tr>
<tr>
<td>917</td>
<td>Susanne Odar</td>
<td>IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet som stöd för beslut om anskaffning av JAS 1982</td>
<td>2002</td>
</tr>
<tr>
<td>918</td>
<td>Stefan Holgersson</td>
<td>IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och beslutsfattande som bygger på uppgifter hämtade från polisens IT-system</td>
<td>2001</td>
</tr>
<tr>
<td>919</td>
<td>Per Oscarsson</td>
<td>Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av informationssäkerhet och dess hantering</td>
<td>2001</td>
</tr>
<tr>
<td>931</td>
<td>Niklas Sandell</td>
<td>Redovisning i skuggan av en bankkris - Värdering av fastigheter</td>
<td>2001</td>
</tr>
<tr>
<td>932</td>
<td>Fredrik Elg</td>
<td>Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala modeller, mål och konfidens i kontroll av mikrovärlden Moro</td>
<td>2002</td>
</tr>
<tr>
<td>933</td>
<td>Peter Aronsson</td>
<td>Automatic Parallelization of Simulation Code from Equation Based Simulation Languages</td>
<td>2002</td>
</tr>
<tr>
<td>938</td>
<td>Bourhane Kadmir</td>
<td>Fuzzy Control of Unmanned Helicopter</td>
<td>2002</td>
</tr>
<tr>
<td>942</td>
<td>Patrik Haslum</td>
<td>Prediction as a Knowledge Representation Problem: A Case Study in Model Design</td>
<td>2002</td>
</tr>
</tbody>
</table>

98