
14RoboCup-99 Team Descriptions

Small Robots League, Team BigRed, pages 14–23

http://www.ep.liu.se/ea/cis/1999/006/03/

Description of Cornell BigRed Small League
RoboCup Team

BigRed

Raffaello D’Andrea, Jin-Woo Lee

RD, JL: Mechanical & Aerospace Engineering, Cornell University

Abstract. In this paper, we describe Cornell BigRed, the team of Robot
Soccer competition that we developed to attend the RoboCup competition.
The project entails the construction of fully autonomous, fast moving robots
which will work together as a team in an effort to compete against similar
teams of robots in a robotic soccer match.

We designed and built the robots and the image processing algorithm, and
developed the game strategy for the many situations and the artificial intel-
ligence for collaboration between the robots. To provide a realistic testing
platform for our artificial intelligence system, we have constructed a simu-
lation of the playing field. The simulator has provided a means of testing
the artificial intelligence play-by-play even before our robots were fully con-
structed.

1 Introduction

As engineering systems become more and more complex, there is an in-
creasing need from industry for engineers who not only have expertise in
a particular engineering discipline, but who also possess diverse interdisci-
plinary skills, can integrate system components, and can ensure total system
operability. This skill set and process is often referred to as Systems Engi-
neering (SE).

In order to effectively teach SE principles to students, a project course that
embodies many of the key elements of SE, is being developed. The project
entails the construction of fully autonomous, fast moving robots which will
work together as a team in an effort to compete against similar teams of
robots in a robotic soccer match. This yearly competition is known as the
Robot World Cup Initiative, or RoboCup.

This paper outlines the main features of the Cornell RoboCup team. The
paper is organized as follows. In Section 2, we describe the basic system ar-
chitecture. We describe the electrical and mechanical aspects of the project,
followed by a description of the global vision system. In Section 3, we de-
scribe the feedback control and filtering structure. The artificial intelligence
subsystem is described in Section 4. We conclude with a description of the

15

Figure 1: Picture of Robot

simulation model in Section 5, which has been developed to allow concurrent
artificial intelligence and robot design.

2 System Architecture

The system consists of three main sub systems: the physical robots, the
global vision system, and the artificial intelligence. Our global vision system
is based on the Sony DXC-9000 camera, which captures the state of the
field at a resolution of 640x480 and a frame rate of 60 Hz. A Matrox
Genesis framegrabber, with an on-board DSP, receives the captured frame
from the camera. A dedicated vision workstation identifies the ball and
robot locations as well as the orientation for our team, and then pass the
information to the AI workstation. Robot commands are dispatched from
the AI workstation via a half duplex wireless transmitter. Each component
of the system was designed to ensure a system sampling rate of sixty cycles
per second.

2.1 Mechanical Design

The Cornell University team consists of two mechanical designs, one for our
field player and another for our goalkeeper. All robots have a unidirectional
kicking mechanism powered by a solenoid (two for the goalkeeper).

The field players have a design mass of 1.5 kg. Motors were selected to
achieve a maximum linear acceleration of 5.1 m/s2 and a maximum linear

16

velocity of 2.5m/s using a six-to-one gear reduction. The desired maximum
acceleration was arrived at using a weight transfer analysis assuming a co-
efficient of friction with the table of 1.0 and taking the height of our center
of mess above the table as 6 cm.

The goalkeeper has a design mass of 1.5kg. Motors were selected to achieve
a maximum linear acceleration of 5.8 m/s2 and a maximum linear velocity
of 1.25 m/s using a nine-to-one gear reduction.

2.2 Electrical Design

The on board electronics had several design goals. The main goal was for
the robots to receive wireless left and right wheel velocity signals and have
a local feedback loop to obtain the velocity quickly and accurately. The
robot will also be able to receive different commands, such as engaging
the kicking mechanism. The design had to be simple, low in power, small
in size, and easy to use. The best way to handle the requirements was
to implement everything all electronic with an on-board micro-controller.
After a careful comparison of all the micro-controllers on the market we
selected the Motorola 68HC16Z1.

The wireless communication design had to have enough bandwidth to send
two 9 bit wheel velocities and a 2 bit action to five robot every 60 Hz. This
is a total of (2× 9 + 2)× 5 = 100 bits for a bandwidth of 750 bytes/sec.

2.3 Global Vision System

The vision system consists of two components, a DSP board for image
processing and a host computer for target tracking. A digital camera is
mounted above the field. A host computer with a frame grabber/DSP board
performs the frame capture and all of the vision system processing. The
extracted data is then sent over a network connection to the AI workstation.

The vision computer performs additional computation to identify the ob-
jects located by the image processing routines. The host computer is con-
nected to the AI workstation with a UDP connection over 10 mbs Ethernet.
The vision algorithm consists of four separate operations: frame capture,
location, orientation, and identification.

The first task is to capture the image transmitted from the camera. The
Matrox board takes a full 1/60th of a second to capture one frame at 640x480
resolution on 3 separate 8-bit color channels.

The second task is to locate the colored golf ball and ping-pong ball markers
on the robots. The captured image is segmented by using a simple thresh-
olding computation on each of the three color channels, and the resulting
binary images are ANDed according to the color sought for each ball. Then
the segmented images are searched for blobs. This search is localized based
on the blob locations in the previous time step. These operations are per-
formed as a separate thread of execution and runs concurrently with the
capture of the next frame.

The third task is to determine the orientation of the team robots by pairing
the location and orientation markers on each robot. The nearest orientation

17

Trajectory
Generator

Veloci ty
Generator

Global
Vis ion

PID
Control ler

D C
Motor

M

O

M

O

Figure 2: Schematic diagram for Robot Control

marker to each identification marker are paired together since the orienta-
tion markers are at a fixed and known distance from the orientation marker
and smaller than the robot radius.

The fourth task is to determine the identity of each of the team robots.
The robot locations are each paired with the robot locations in the pre-
vious frame to order the robot identification markers, which are initially
unordered. The distances between robot identification markers for two suc-
cessive frames is constrained to be within the distance specified by the robot
top speed. A present robot identification marker is paired with a past identi-
fication marker such that the total global minimum difference is minimized.

Finally, the new robot and ball locations are sent to the artificial intelli-
gence system via a UDP link. The system as currently implemented can
achieve a throughput of 60 frames per second, with the total subsystem time
elapsed (from shutter close to AI computer transmission) of approximately
30 milliseconds.

3 Feedback Control and Filtering Algorithm

Two feedback loops are employed for the robot’s motion control. The first
is a local feedback loop and the other a global feedback loop. The local feed-
back loop resides on the microcontroller of each robot and is in in charge of
velocity control for the motors[1]. The global feedback control has position
feedback loop through the global vision system. The global vision system
gives the new position and the orientation of the robots. The desired trajec-
tories to the target points and the real velocity of each motor of the robots
are generated and then transmitted to the robots through the RF commu-
nication at every sixtieth of a second. Figure 1 is schematic diagram for the
feedback control loop.

Data received from the vision system over the network contains noise which
is rectified with filters for both the ball position and the team robot positions
and orientations. Ball and the team robot filtering are performed with a
g− h filter[2], The basic equation of the g− h filter for the robot’s position
and orientation is given by

V̂ (t+ 1) = V̂ (t) +
h

T s

(
X(t)− X̂(t)

)
(1)

X̂(t+ 1) = X̂(t) + Ts · V̂ (t+ 1) + g ·
(
X(t)− X̂(t)

)
(2)

18

where X is the measured position vector, X̂ and V̂ are the estimated po-
sition vector and the estimated velocity vector, Ts are the sampling time,
and h and g are filter gains.

4 Artificial Intelligence Subsystem

The artificial intelligence subsystem is divided into two parts. The high-level
AI takes the current game state (robot and ball positions, velocities, and
game history) as input, and generates new targets and kicker commands for
the robots as output. A target consists of a field location and a desired final
state (time-to-target, robot orientation, and robot velocity). The low-level
AI computes the trajectory to the target point and computes the wheel
velocities to transmit to a robot.

4.1 Low-level AI (Trajectory Generation)

The job of low-level AI is to generate trajectories for a robot. It takes as
inputs the current state of the robot and the desired ending state. The
current state of a robot consists of the robot x and y coordinates, orienta-
tion, and left and right wheel velocities. A desired target state consists of
the final x and y coordinates, final orientation, final velocity as well as the
desired amount of time for the robot to reach the destination.

The low-level AI needs to be efficient and robust to imperfections in robot
movement. Currently, our algorithm can run more than 60 times per one
computation cycle, which is sufficient considering it only needs to be run at
about four times per cycle (for four robots excluding the goalie).

This complex problem is solved by breaking the problem of trajectory gener-
ation into two parts. The first part generates a geometric path. The second
part calculates wheel velocities such that the robot stays on the path and
completes it in the allocated time.

4.1.1 Generating a geometric path

Our geometric path is represented by two polynomials in the x and y co-
ordinates of the robots. The x coordinate polynomial is a fourth-degree
polynomial and the y coordinate polynomial is third degree.

x(p) =
4∑
k=0

αkp
k (3)

y(p) =
3∑
k=0

βkp
k (4)

The task is to solve for the nine polynomial coefficients for a particular
path requirement. The 9 constraints on the polynomial path are: initial x
coordinate, initial y coordinate, initial orientation, initial curvature (deter-
mined by the initial left and right wheel velocities), initial speed, final x

19

rvv

lv
r

κ

Figure 3: Trajectory Generation

coordinate, final y coordinate, final orientation, and final speed. It might
seem strange that initial speed and final speed are constraints since they are
not geometric features of the path, but we can actually transform them into
the geometric feature of “path stiffness.” For example, if the initial robot
speed is very slow, the path beginning can change curvature very quickly
(i.e. low “initial path stiffness”) but if the initial speed is very high, the
path beginning shouldn’t change curvature too quickly (i.e. high “initial
path stiffness”).

4.1.2 Generating wheel velocities

Every point on the geometric curve has a curvature value, which defines a
relationship between the left wheel velocity vl and the right wheel velocity
vr at that point in the curve. This relationship is:

v = (vl + vr)/2 (5)

vl(1 + κ · r) = vr(1− κ · r) (6)

where κ is the curvature of the path, and r is the half distance between the
two wheels and v is the forward moving velocity of the robot(See Figure 3).
Thus, we simply need to choose a forward moving velocity of the robot to
solve for vl and vr at every point on the curve, which can then be sampled at
the cycle rate of our AI system. Obviously, the forward moving velocity is
constrained by the time-to-target as well as mechanical limits of the robot.

Even though each run of this algorithm generates a pre-planned path from
beginning to end, it can be used to generate a new path after every few
cycles to compensate for robot drift. The continuity of the paths generated
is verified through testing. However, this algorithm breaks down when the
robot is very near the target because the polynomial path generated might
have severe curvature changes. In this case, the polynomials are artificially
created (and not subject to the above constraints) on a case-by-case basis,
and these are guaranteed to be smooth.

4.2 High-level AI

The artificial intelligence subsystem receives object coordinates, orienta-
tions, and velocities as inputs from the vision subsystem(See Figure 4).

20

Pass robot
number to role

Request
feasibility and
priority info for
game state

High Level AI
- parses vision data
- checks feasibilities
 and priorities
- forms robot-role
 pairings

Low-
level AI

Set of Roles

R1 ..R2

Figure 4: AI subsystem overview

This information defines an object state, which along with the game history
defines the game state.

4.2.1 Roles

Definition A role is a set of functions that satisfy the following three prop-
erties:

� Property A

– Input: the current game state

– Output: a number representing the relative priority of execution
for this role.

� Property B

– Input: a robot number

– Output: a number representing the relative feasibility of execu-
tion for this robot

� Property C

– Input: the game state, and the robot number assigned to this
role

– Output: A target vector containing:

1. target point on the field.

2. desired ending orientation of the robot.

3. desired no. of cycles in which the robot must reach 1 and
2.

Over time, a role specifies the behavior of a robot. A collection of offensive,
defensive, and general roles, and the process of assigning them to robots
sums up the high-level AI.

4.2.2 Example Roles

� Defensive

– Support Goalie: cover areas of the goal not covered by the goalie

– Clear ball: Go for the ball and knock it upfield

– Block opponent: Block opponent’s attackers

21

Deflect ball

Mark opponent

Poacher (about
to switch to
deflect)

Left defender

Figure 5: Example game state

� Offensive

– Shoot to score

– Take penalty: Wait for user input, rotate if required and use
kicker

– Poach: Wait in a suitable vicinity of the enemy goal

� General

– Mark opponent: Keep position near specified opponent robot

– Intercept Ball: Meet ball in order to ’trap’ it

– Wait at specified position X: Cover location X of the field

– Dribble ball to X

– Shield ball: protect ball from opponents till own robot arrives

– Various forms of ’Deflect ball’: knock ball into goal, to another
robot (chain passes), or in a general direction.

4.2.3 Role-Role communication

Communication between roles allows them to dynamically adjust their be-
havior. Simple procedures (e.g. avoiding a shot path,) to complex maneu-
vers, (e.g. chained passes,) can then be implemented in a clean manner.

All roles have access to all current robot states, as well as current role-robot
pairings. The role programmer must, of course, be aware of how other roles
work to take advantage of the latter information.

4.2.4 Role-Robot Pairings

High-level AI maintains a list of roles that the four field players can assume.
Every cycle, the high-level AI computes the priority and feasibility of each
role as a function of the game state.

The high-level AI combines the roles’ priority and feasibility information
to generate role assignments for each robot. To perform this, it first sorts

22

Figure 6: Testing platform for the Simulation

the roles by priority. Then, it rearranges the list of roles based on their
feasibilities. Certain role-robot pairings are ruled out if determined to be
completely infeasible.

For example, if the trajectory of the ball relative to a robot R is such that
it is difficult to shoot it into the goal, not only will the feasibility value of
this role for R be relatively low, it will reflect how difficult it is for R to
shoot.

Finally, the high-level AI chooses the most suitable role assignments from
the top of the list, and calls the respective role functions to give instructions
to the robots.

4.2.5 Modularity

High-level AI has a general interface to all roles that is specified by the
three properties mentioned earlier. Hence, a role programmer need only
specify these three properties to add new roles to the system. However,
role-role communication necessitates that roles are thoroughly documented,
and their dependencies clearly specified.

5 Simulation

To provide a realistic testing platform for our artificial intelligence system,
we have constructed a simulation of the playing field that models the dy-
namics of our environment.

The dynamic modeling of our system is performed by a Working Model 2D
rendering of the complete playing field. The model includes two teams of
five individual players, the game ball, and the playing field. Real world

23

forces and constraints are modeled, including the modeling of the motion of
the tires and the inertia of the robots and ball. Additionally, the physical
interactions between the players and each other, the ball, and the playing
environment are all modeled in the two dimensional environment.

The simulator accepts external input and output every 1/60th of a simulated
second, the rate at which the information from the actual vision system is
updated and robot commands are issued. To simulate the time lag and
noise we encounter in our real world simulation, the Working Model pa-
rameters are passed into Matlab, where random noise, error, and delay are
introduced to model the limitations of our the vision system. This informa-
tion is then passed to the artificial intelligence module. Then, information
that is normally fed back from the artificial intelligence module into our
real-world robots is delayed and interpreted in Matlab before it is applied
to the model of our system, to simulate the lag associated with our real
world system.

The simulator has provided a means of testing the artificial intelligence
play-by-play even before our robots were fully constructed. It highlights the
real-world problems that exist in a dynamic system, and provides insight
into solving these problems within an accurate representation of our playing
environment. The simulator is a convenient, easy to use, and fairly accurate
rendering of our real-world system.

6 Summary and Conclusion

As a whole, the system has successfully developed and built. In the mean
time of building system, a simulator has been constructed to provide a
realistic testing platform and it has provided a means of testing the strategy
and artificial intelligence programming even before the real robots were
constructed. RoboCup project provides insight into the same problems
that we see in our real-world environment.

Acknowlegement

The authors would like to thank all of the members in Cornell RoboCup
team for their help in the design and construction of the system, and Pro-
fessor Bart Selman and Norman Tien for helpful advise and comments.

References

[1] J. L. Jones and A. M. Flynn, Mobile robots: Inspiration to
Implementation. A K Peters, Wellesley, 1993.

[2] E. Brookner, Tracking and Kalman Filtering Made Easy. A
Wiley-Interscience Publication, 1998.

