
133RoboCup-99 Team Descriptions

Simulation League, Team UBU, pages 133–138

http://www.ep.liu.se/ea/cis/1999/007/30/

UBU Team

UBU

Magnus Boman, Johan Kummeneje, David Lybäck,
H̊akan L. Younes

JK, DL, HY: The DECIDE Research Group, Department of Computer and
Systems Sciences, Stockholm University
MB: DSV, Stockholm

Abstract. The underlying research topics and the architecture of the
UBU team are briefly described. The aim of developing UBU is to subject a
series of tools and procedures for agent decision support to a dynamic real-
time domain. The current version of the UBU team is written in Java.

1 Background

The UBU team first competed in RoboCup98, where it won one game, and
lost three [1]. The team being badly tested and not optimised for speed
could explain its limited success.

Team UBU originally started out in Java, with parts of a team being im-
plemented in 1997. These parts were then partly used in a new imple-
mentation, written in C. As an example of design heterogeneity, we de-
cided to keep the Java goalie, however. This was the version competing
in RoboCup98, an event from which we learned very much. Investigations
made after RoboCup98 showed that multi-threading in C can be most prob-
lematic, and a hard decision had to be made. Should we continue the re-
finements of the team, or put all our experience in a new team? We decided
to start afresh, and use Java throughout. This document reports on this
latest generation of UBU.

2 Research Goals

The aim of developing UBU is to subject a series of tools and procedures
for agent decision support to a dynamic real-time domain. These tools and
procedures have previously been tested in various other domains, e.g., intel-
ligent buildings [3] and social simulations [14]. The harsh time constraints
of RoboCup requires true bounded rationality, however, as well as the devel-
opment of anytime algorithms not called for in less constrained domains (cf.
[4]). Artificial decision makers are in the AI and agent communities usually



134

turn with ball

drive with ball

catch the ball (goalie only)

unsuccessful catch

successful catch

successful pass

unsuccessful pass

pass teammate #11

shoot at goal

not goal

goal

clear the ball away

ball control

pass teammate #1

unsuccessful pass

successful pass

...
...

...

Figure 1: A simple template decision tree.

associated with planning and rational (as in utility maximising) behaviour.
We have instead argued for the coupling of the reactive layer directly to
decision support. A main hypothesis is that in dynamic domains (such as
RoboCup), time for updating plans is insufficient. Basically depending on
the size requirements of agents, and on the communication facilities avail-
able to the agents, we have placed decision support either in the agents, or
externally. In the former case, deliberation is made in a decision module.
In the latter case, a kind of external calculator which we have named pro-
nouncer provides rational action alternatives. The input to the pronouncer
is decision trees or influence diagrams. The structure and size of these
models are kept small, to guarantee fast evaluation (cf. [15]). A typical de-
cision tree is shown in Figure 1. A RoboCup player store empty diagrams
as templates and fills them with utilities and probabilities when making
queries to the pronouncer. The pronouncer can be made into an agent too,
e.g., by using a wrapper. The coach function is particularly interesting in
this context, since it is ”free” and since it could hold the pronouncer code.
An important problem here is the uncertainty and space constraints on the
communication with the coach.

The concept of norms as constraints on agent actions have also been inves-
tigated [2]. A team in which each boundedly rational player maximises its
individual expected utility does not yield the best possible team: Group
constraints on actions must be taken into account (see, e.g., [7]). Norms is
our way of letting the coalitions that an agent is part of play a part in the
deliberation of the agent.



135

Soccer Server

Basic Functionality module
(RoboCupBase)

Situated Automata
(Behaviours)

Support
modules

Figure 2: A layered architecture.

3 Architecture

3.1 Overview

Our players are currently rather individualistic, as their explicit co-operative
skills are almost non-existing. By providing the players with certain areas
which limit their movements, we keep the team from all running for the
ball at the same time. The players also try to some extent to predict the
behaviour of the other players. The actual design of the team has not
been focused on the communication between the players. Instead, a lot of
work has been put into the communication within the players themselves.
Because of the inherent characteristics of Java, we have designed the sys-
tem in an object-oriented way to provide it with the highest flexibility and
extensibility possible. This has also brought the advantage of portability
between platforms, and inspired us into writing the players layered, as il-
lustrated in Figure 2. The main layers of the design are the soccer server,
the basic functionality module (RoboCupBase), the support modules, and
the situated automata. The latter are designed manually and linked to the
various player behaviours (cf. [10]). As the soccer server is provided by the
RoboCup Federation, we will not discuss its design in this paper.

3.2 Basic Functionality

The basic functionality implements the low-level details of agent behaviour,
such as parsing the information originating from the sensors and triggering
the effectors. Several of the key concepts in this module are directly bor-
rowed from Java, such as events and listeners, as well as multi-threading. In
each player, we estimate the number of threads to be around 10-15 during
a game, and through efficient use of sleep, we have overcome the greatest
disadvantage of Java, viz. speed. The architecture of the basic functionality



136

Basic Functionality

Situation automaton and State machine

Primitive Action Layer

Communication Layer

Soccer Server (predefined)

Query Interface

Memory Bank

Updating Interface

Figure 3: Basic functionality.

module can be seen in Figure 3, where it is shown that there is only one
layer (or in this case one class), called the communicator-layer, that inter-
faces the soccer server (cf. [8]). The communicator-layer defines a set of
methods, interfacing two banks in the primitiveaction-layer, viz. the effector
bank and the sensor bank. The effector bank translates the action-objects
send through the system into the actual messages understood by the soccer
server. This is done in parallel with the sensor bank splitting the incom-
ing information from the soccer server into the different senses, e.g., the
hear-messages are sent to the hearing-sense.

The next layer is memory-layer, which is basically divided into two parts, the
queue of actions, and the short-time memory, i.e. the sphere of attention [6].
The queueing of the actions is simplistic as it only limits the transmission
of the time-consuming actions by not allowing them to be executed more
than once each 100 milliseconds. In the memory-layer, the interesting part
is the short-time memory, which in turn consists of three layers, where we
have separated the representation (layer 2) of the information from both
the updating (layer 1) and the querying (layer 3). On top of the basic
functionality module, we have put a general interface in order for the higher-
level programmers to easily access all the functionality needed in the basic
functionality module. The main reason for layering the architecture is to
enable the future extension of applying this architecture in another league
of RoboCup, e.g. the middle-size robot league. Our design is inspired by
the OSI-architecture [13], and it has enabled us to reimplement only the
two lowest layers to provide the same interfaces upwards, to a different
underlying platform.

3.3 Support Modules

We quickly realised that there is a lot of information not provided by the
soccer server, e.g., which team has the ball at a given moment. Our solution



137

is to implement several support modules. At the moment, we have two,
which we will describe here. The two are the self model and the team
model. It may seem a bit strange to have models in support modules, but
they are dynamically providing information independently of the situated
automata. Self model is the part where the player has an idea of its role in
the team, and of its so-called home position. The team model is a model of
the rest of the team, as well as of the opposing team. At the moment, the
model calculates the probability for each of the teams having the ball.

3.4 Situated Automata

The situated automata are the tip of the iceberg in our architecture. Ba-
sically, an automaton consists of several parts, but it can be looked upon
as consisting of two layers, i.e., the reactive behaviour and the deliberative
behaviour [5].

We use a combination of reactive and deliberate behaviours, rather than
a hybrid approach. We have found that situated automata work well for
real-time systems, and we are using them in connection with parts of the
subsumption architecture. Some of the behaviours required in the RoboCup
environment are mandatory, e.g., correctly interpreting the half-time mes-
sage from the referee. Therefore, we have implemented reactive responses
to such messages, superseding deliberation. As it is a situated automaton,
the player is always in a distinct state. Reactive parts are always evaluated
first. Thereafter, the deliberative parts are evaluated, and the activity with
the highest utility out of all the available activities is performed. Note the
difference between activities and actions: we use the term action for the
primitive actions, while activity is reserved for a more complex set of con-
ditions and actions. The situated automaton of our architecture strongly
resembles the one of the highly successful CMUnited98 [12], something we
realised after completing its design.

3.5 Future Research

We are currently investigating social norms as a factor in agent team design.
A RoboCup team is an artificial social system in the terminology of [9].
Decision representations, now done through decision trees, will be extended
also to include influence diagrams [11]. These will then be evaluated by
pronouncers [4].

References

[1] Jens Andreasen, Magnus Boman, Mats Danielson, Carl-Gustaf Jans-
son, Johan Kummeneje, Harko Verhagen, Johan Walter, Helena Åberg,
and Åsa Åhman. Ubu: Utility-based uncertainty handling in synthet-
ic soccer. In Minoru Asada, editor, RoboCup-98: Robot Soccer World
Cup II, Proceedings of the second RoboCup Workshop, pages 379–386.
RoboCup Federation, July 1998.

[2] Magnus Boman. Norms in artificial decision making. Artificial Intelli-
gence and Law, 7:17–35, 1999.



138

[3] Magnus Boman, Paul Davidsson, Nikolaos Skarmeas, Keith Clark, and
Rune Gustavsson. Energy saving and added customer value in intel-
ligent buildings. In Hyacinth S. Nwana and Divine T. Ndumu, edi-
tors, Proceedings of PAAM98, pages 505–516. The Practical Applica-
tion Company, 1998.

[4] Magnus Boman, Paul Davidsson, and H̊akan Younes. Artificial decision
making under uncertainty in intelligent buildings. In Proceedings of
UAI’99, 1999. In press.

[5] Rodney A. Brooks. A robust layered control structure for a mobile
robot. IEEE Journal of Robotics and Automation, 1986.

[6] Henrik Engström and Johan Kummeneje. Dr abbility: Agent tech-
nology and process control. Master’s thesis, Department of Computer
and Systems Sciences, Stockholm University, 1997. DSV Report 97-
49-DSV-SU.

[7] Susan Kalenka and Nicholas R. Jennings. Socially responsible decision
making by autonomous agents. In Proceedings of the 5th International
Colloquium on Cognitive Science, 1997.

[8] Oliver Langer. Soccer-user-library. http://www.tu-chemnitz.de/

~hla/soccer/scu/manualscu.ps.gz, May 1997.

[9] Yoram Moses and Moshe Tennenholtz. Artificial social systems. Com-
puters and AI, 1998(?).

[10] Stuart Russell and Peter Norvig. Artificial Intelligence - A Modern
Approach. Prentice Hall, 1995.

[11] Ross D. Shachter and Mark A. Peot. Decision making using proba-
bilistic inference methods. In the Eight Conference on Uncertainty in
Artificial Intelligence, San Mateo, CA ,USA, 1992. Morgan Kaufmann.

[12] Peter Stone. Layered Learning in Multi-Agent Systems. PhD thesis,
Computer Science Department, School of Computer Science, Carnegie
Mellon University, December 1998.

[13] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[14] Harko Verhagen. On the learning of norms. Submitted.

[15] H̊akan L. Younes. Current tools for assisting intelligent agents in real-
time decision making. Master’s thesis, Department of Computer and
Systems Sciences, the Royal Institute of Technology, 1998. DSV Report
98-x-073.


