RoboCup-99 Team Descriptions 44
Simulation League, Team Headless-Chickens, pages 44-47
http: /www.ep.liu.se/ea/cis/1999/007/10/

An Editor for User Friendly Strategy Creation

Headless-Chickens

Johan Ydrén, Paul Scerri

JY, PS: RTSLAB, Department of Computer and Information Science, Link6ping
University, S-581 83 Linkoping, Sweden

Abstract. This paper describes a graphical editor designed to enable
a soccer coach, without any computer science knowledge, to specify team
strategies for RoboCup. The team strategy is compiled into separate agents
that play according to the strategy. In an attempt to make the use of the
editor natural for a coach, the design is based on the idea of a coach drawing
a strategy on a whiteboard to show human players how to play during a game.
The strategies that can be expressed include the formations of the players
at different situations and how they move the ball within and between those
formations.

1 Introduction

In many domains where agents are used, RoboCup being one of them,
there are experts who have valuable knowledge but don’t have the com-
puter knowledge to implement agents. A common way to utilize domain
expert knowledge is to let the expert explain the knowledge to computer
experts who in turn implements it to their understanding. This is however
not a desirable solution because expert knowledge might be lost or mis-
interpreted in the translation and it slows development, making iterative
improvement almost impossible.

This work deals with an approach to make the design of strategies for agents
participating in RoboCup accessible to someone whose expertise is soccer
rather than computers. Building on a method coaches use in real life a
graphical editor has been designed that lets a user design a team strategy
that is then compiled into separate agents.

A common way to express soccer strategies in real life is to draw them on
a whiteboard using simple figures to represent the player and their actions.
The design of the editor described here is based on the whiteboard concept.
The editor allows a user to design team level strategies without understand-
ing any concepts of the underlying agents. The strategies are then compiled
into individual behavior based agents.

The target architecture, i.e. the architecture the agent is compiled into, is
a hierarchical layered behavior based architecture. It seems to be straight



45

forward to map the user specifications onto the architecture. The compila-
tion process basically involves piecing predefined parts of behavioral based
hierarchies together according to what has been specified in the editor.

2 The Editor

The purpose of the editor is to make the design of strategic behavior accessi-
ble to a human soccer coach whose expertise is soccer rather than computer
science. A common way to express strategies in real life is to draw them on
a whiteboard using simple figures representing players and arrows express-
ing how the players should move the ball. Using the whiteboard method
a coach can express strategies at a wide range of abstraction levels. The
editor described here is focused on strategies concerning the whole team
and their positioning on the field in different phases of the game. Strategies
aimed at structuring the flow of the game rather than low level strategies
such as dribbling.

Using the whiteboard analogy, a coach expresses strategies by drawing the
players at their respective positions on an image of the playing field and
showing where to pass and which way to run and dribble. Figure 1 shows
how a particular strategy looks in the editor. In the editor circles represents
players, single line arrows represent direction to pass and double lined arrows
represent direction to dribble. The strategy shown is designed to take the
ball out of the teams end of the field by passing to either side and then
forward.

D |

Figure 1: The editor showing a strategy intended to move the ball
from the defensive zone by passing it to either side and then forward.
In the lower left corner is a selector indicating the play mode

Mimicking the process the coach uses in real life, the team specification is
divided into phases or play modes. Dividing a game up into simple modes
is admittedly a simplification, but hopefully one that will work well for
RoboCup as well as being easily understood by an user. Presently, the



46

current ball position determines the current play mode, either defense, at-
tack or middle when the ball is in the back, forward or center thirds of the
ground respectively. For each of these modes the user assigns each player a
position, a role i.e. attacker or defender and an arbitrary number of actions,
i.e. dribble, pass and receive pass options. The assigned role determines
how the player plays e.g. an attacker plays aggressively towards the oppo-
site goal and a defender plays defensively and gives priority to backing up
rather than moving forward. The implementation of each role corresponds
to what a user would find typical for the role. The actions are integrated
in the players general behavior and executed when an opportunity to do so
occurs. If the user specifies more than one action for a player he can set
priorities between the actions, effectively giving the agent preferred actions.
Lower priority actions are chosen if higher priority ones cannot be chosen
e.g. if the player can’t pass to the position with the highest priority with-
out a high probability of the opponents intercepting the ball he will chose
another, better, passing action, with lower priority.

Besides making it possible to use human coaches to design strategies the
editor has advantages even for computer experts. Normally designing play-
ers to act in a coordinated manner is a tedious and error prone task simply
because it’s difficult to visualize how players move on the field. Using the
editor it’s possible to view all modes at the same time and thus detect po-
tential problems such as players being assigned to move far when the play
mode changes. It is also, as can be seen in Figure 1, easy with the editor
to ensure that passes will go to positions where a friendly player is likely to
be.

3 Compilation

The compilation process compiles the designed strategy into eleven indi-
vidual layered behavior based agents. The architecture of the agents is
described in depth in [3] and closely resembles the one proposed by Blum-
berg [1] . Basically an agent is composed of a hierarchy of behaviors. At
each level of the hierarchy one behavior is chosen to act. The choice of be-
havior to act is made by selecting the behavior with the highest activation,
where activation is a function of the behaviors priority and the prevailing
environmental conditions. At all but the lowest layer a behavior acts by
setting appropriate lower level behaviors, at the lowest level behavior acts
by activating a skill.

The compilation process compiles the strategy specification to a individ-
ual behavior hierarchy for each of the players. The compiler starts with
a hard coded framework. The framework for each of the players is a par-
tial generic hierarchy. The framework is the same for every player and is
basically the top of the agent hierarchy. For each play mode there is a sub-
hierarchy added to the framework. The added hierarchies implement the
roles assigned to the player for the respective play modes. The hierarchies
are slightly different for each role, i.e. a hierarchy for a player assigned an
attacking role is slightly different to the hierarchy for a player assigned a
defensive role. On to the role hierarchies are added sub hierarchies imple-
menting each of the actions specified by the user of the editor. I.e. for every
pass, dribble, or receive pass specified in the editor an action hierarchy is
added to the overall hierarchy. Each of the action hierarchies is a generic



47

hierarchy that is instantiated with parameters at the last stage of the com-
pilation. The instantiation stage of the compilation also instantiates some
parameters in the role hierarchies, for example positions to move to.

Clearly, the compilation process is quite simple, a result of how closely the
architecture resembles the way a human might explain the behavior of an
soccer playing agent. We consider the simplicity of the compilation process
to be validation of the idea of using an underlying behavior based system
rather than a simplification in the implementation. Especially helpful in the
compilation process is the way behaviors, as a coach would express them,
map to separate behaviors in a behavior based system e.g. when a coach
uses terms like dribble or defense these behaviors are represented by separate
behaviors that can be taken out or added as specified by the editors user.

4 Future work

This project is to develop a prototype which in the future may be extended
in a variety of ways. Presently we are exeprimenting with integrating the
high level specification system with an existing low level behavior based
specification system. The user could also be given a broader range of op-
tions. An interesting area that the development of the editor has exposed
is how behavior based systems can be presented to non computer scientists
and how non computer scientists would find it natural to express behaviors
for behavior based systems. Another interesting area is how to make a more
general compiler that doesn’t limit the users choices to the degree that has
been found necessary in this project.

References

[1] Bruce Blumberg and Tinsley Galyean. Multi-level control of
autonomous animated creatures for real-time virtual environ-
ments. In Siggraph 95 Proceedings, pages 295-304, New York,
1995. ACM Press.

[2] Alexander Repenning. AGENTSHEETS: A tool for building
domain-oriented dynamic, visual environments. PhD thesis,
University of Colorado, Boulder, 1993.

[3] Paul Scerri, Silvia Coradeschi, and Anders Térne. A user ori-
ented system for developing behavior based agents. In Pro-
ceedings of RoboCup’98, Paris, 1998.



