
Linköping Studies in Science and Technology

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Tools for Design, Interactive Simulation, and
Visualization of Object-Oriented Models in Scientific

Computing

by

Vadim Engelson

Linköping 2000

Dissertation No. 627

Abstract

Mathematical models used in scientific computing are becoming large and com-
plex. In order to handle the size and complexity, the models should be better struc-
tured (using object-orientation) and visualized (using advanced user interfaces).
Visualization is a difficult task, requiring a great deal of effort from scientific com-
puting specialists.

Currently, the visualization of a model is tightly coupled with the structure of
the model itself. This has the effect that any changes to the model require that the
visualization be redesigned as well. Our vision is to automate the generation of
visualizations from mathematical models. In other words, every time the model
changes, its visualization is automatically updated without any programming ef-
forts.

The innovation of this thesis is demonstrating this approach in a number of dif-
ferent situations, e.g. for input and output data, and for two- and three-dimensional
visualizations. We show that this approach works best for object-oriented lan-
guages (ObjectMath, C++, and Modelica).

In the thesis, we describe the design of several programming environments and
tools supporting the idea of automatic generation of visualizations.

Tools for two-dimensional visualization include an editor for class hierarchies
and a tool that generates graphical user interfaces from data structures. The editor
for class hierarchies has been designed for the ObjectMath language, an object-
oriented extension of the Mathematica language, used for scientific computing.
Diagrams showing inheritance, part-of relations, and instantiation of classes can
be created, edited, or automatically generated from a model structure.

A graphical user interface, as well as routines for loading and saving data, can
be automatically generated from class declarations in C++ or ObjectMath. This
interface can be customized using scripts written in Tcl/Tk.

In three-dimensional visualization we use parametric surfaces defined by object-
oriented mathematical models, as well as results from mechanical simulation of
assemblies created by CAD tools.

Mathematica includes highly flexible tools for visualization of models, but their
performance is not sufficient, since Mathematica is an interpreted language. We use
a novel approach where Mathematica objects are translated to C++, and used both
for simulation and for visualization of 3D scenes (including, in particular, plots of
parametric functions).

Traditional solutions to simulations of CAD models are not customizable and
the visualizations are not interactive. Mathematical models for mechanical multi-
body simulation can be described in an object-oriented way in Modelica. However,
the geometry, visual appearance, and assembly structure of mechanical systems are
most conveniently designed using interactive CAD tools. Therefore we have de-
veloped a tool that automatically translates CAD models to visual representations
and Modelica objects which are then simulated, and the results of the simulations
are dynamically visualized. We have designed a high performance OpenGL-based

1

3D-visualization environment for assessing the models created in Modelica. These
visualizations are interactive (simulation can be controlled by the user) and can be
accessed via the Internet, using VRML or Cult3D technology. Two applications
(helicopter flight and robot simulation) are discussed in detail.

The thesis also contains a section on integration of collision detection and colli-
sion response with Modelica models in order to enhance the realism of simulations
and visualizations.

We compared several collision response approaches, and ultimately developed
a new penalty-based collision response method, which we then integrated with the
Modelica multi-body simulation library and a separate collision detection library.

We also present a new method to compress simulation results in order to reuse
them for animations or further simulations. This method uses predictive coding and
delivers high compression quality for results from ordinary differential equation
solvers with varying time step.

2

Acknowledgments

First, I would like to thank my supervisor Peter Fritzson for letting me do this
research and development of several very interesting projects. I had an enjoyable
collaboration with the co-authors of the papers included in the thesis: Dag Fritzson,
Johan Gunnarsson, Lars Viklund, and Håkan Larsson. The master students Håkan
Larsson, Johan Parmar, Daniel Larsson, and Andreas Gustafsson worked hard on
the projects discussed in the thesis. The Programming Environment Laboratory led
by Peter Fritzson has been a stimulating and comfortable research environment.
Many thanks to Peter Fritzson, Robert Forschheimer, Hilding Elmqvist, Dag Fritz-
son, Daniel Costello, Patrik Nordling, Peter Aronsson and Peter Bunus for their
comments on a draft of the thesis and interesting discussions. Thanks also to Gu-
nilla Norbäck, Bodil Mattsson-Kilhström, Kit Burmeister and Lillemor Wallgren
for their administrative work, and Ivan Rankin for improving my English.

Finally, I would like to thank my wife Yelena for her help and patience, and
my son Daniel who behaved very well when I wrote this thesis.

Vadim Engelson
Linköping

April 2000

3

4

Contents

Thesis Overview 15

1 Introduction 17
1.1 Visualization and Editing Tools 18
1.2 Models and Graphical User Interfaces 19
1.3 User Interaction . 20
1.4 Taxonomy of Visualizations . 21
1.5 Thesis structure . 22

2 Two-Dimensional Visualization 23
2.1 Graphical Tools for Editing Structure Diagrams of Software Systems 24
2.2 Inheritance and Composition Diagrams and Their Use for the Ob-

jectMath Object-Oriented Language. 24
2.3 Automatic Generation of Form-Based Interactive Environments

from Object-Oriented Models 26

3 Three dimensional graphical user interfaces 27
3.1 Interactive Visualization of Numerical Results of Computations

Specified in Mathematica. 28
3.2 A Modelica-Based Design, Simulation, and 3D Visualization En-

vironment for Mechanical Models and its Applications 29
3.3 Integration of 3D Graphics and Modelica 33
3.4 MathModelica: A Modelica Environment Embedded in the Math-

ematica Environment . 33

4 Contributions to Simulation Techniques and Environments 35
4.1 Collision Detection and Response for Mechanical Simulations in

Modelica. 35
4.2 A Lossless Compression Method for Computational Results. . . . 36

5 Conclusion 37

Paper 1. Variant Handling, Inheritance and Composition in the Ob-
jectMath Computer Algebra Environment 43

1 Backgound 45

2 The ObjectMath Programming Environment 46

3 The ObjectMath Language 47
3.1 Object-Oriented Modeling . 48

5

3.2 ObjectMath Classes and Instances 49
3.3 Single Inheritance Examples: Cylinders and Spheres 50
3.4 Examples of Multiple Inheritance 51
3.5 Modeling Part-Of Relations . 53

4 Variants of Classes 54

5 Code Generation from ObjectMath 56

6 Applications of ObjectMath 56

7 Related Work 57

8 Conclusions 58

9 Acknowledgments 58

10 References 58

Appendix A. The bearing model expressed in the ObjectMath Language 61

Paper 2. ObjectMath Inheritance and Composition Diagram Edi-
tor 65

1 Introduction 67

2 Syntactic Rules of ObjectMath and Mapping between Textual and Graph-
ical Representation 69

3 The Textual Syntax of ObjectMath 69

4 Graphical Representation of ObjectMath Models 70
4.1 The ”Violation Impossible” Rules 71
4.2 Permanently Checked Rules . 72
4.3 Rules Checked when an Editor Session is Finished 73

5 Operations of ObjectMath diagram editor 73
5.1 Adding Objects and Relations 73
5.2 Deleting objects . 74
5.3 Moving Objects . 74
5.4 Other Operations . 75
5.5 Completeness and Correctness 75

6 Layout 75

7 Conclusions 77

6

Paper 3. Automatic generation of user interfaces from data struc-
ture specifications and object-oriented application models 79

1 Introduction 82
1.1 User interface generation based on data declarations 82

2 The Semi-automatic GUI Generating System 84
2.1 The ObjectMath Environment 84
2.2 The simulation environment for ObjectMath models 85
2.3 An ObjectMath example: a Bike model 85
2.4 Variables and built-in data types 86
2.5 Generation of input data editor 87
2.6 Presentation of arrays. 88
2.7 Frame hierarchy definition functions 89
2.8 Description of variables . 90
2.9 Evaluation of the first generation system 90

3 The Persistence and Display Generating tool (PDGen) 91
3.1 Example of graphical user interface generation 92
3.2 Graphical presentation of variables 92
3.3 PDGen restrictions . 96
3.4 Hiding and detaching windows 96
3.5 Data type analysis and code generation. 97
3.6 Input and output procedures . 99
3.7 Data display procedure . 99
3.8 Data storage formats . 100
3.9 Universal browser design . 100
3.10 Attributes . 100

4 Automatic Generation of GUI from ObjectMath Models 102
4.1 Translation of an ObjectMath model to a C++ class hierarchy . . . 103
4.2 Translation example . 103
4.3 Advantages of the second generation approach. 104

5 Related work 104
5.1 Persistence generation systems 104
5.2 Display generation systems . 105
5.3 The C++ language and access to meta-information 105

6 Conclusions and Future Work 106

Paper 4. Using the Mathematica Environment for Generating Effi-
cient 3D Graphics 111

7

1 Introduction 113
1.1 The Mathematica Environment 114
1.2 Graphical Output In The Mathematica System 114
1.3 The Visualization Problem . 115

2 A Code Generation Approach 115

3 Introducing the Hierarchy of Surfaces and Objects 117
3.1 Syntax of Hierarchical Scene Description 117

4 Example of a Scene 119

5 Related Systems 119

6 Conclusions and Future Work 121

Paper 5. Tools for Design, Interactive Simulation and Visualization
for Dynamic Analysis of Mechanical Models 123

1 Background 125
1.1 Visualization Requirements Induced by Simulation Goals. 126
1.2 External Factors Important for Simulation Software and its Life

Cycle . 128
1.3 Structure of the report . 129

2 Overview of Approaches to Dynamic Simulation of Mechanical Models130
2.1 Multibody Simulation Tools . 131

2.1.1 ADAMS . 131
2.1.2 Working Model 3D . 135
2.1.3 Integrated Environments for Computer-Based Animation

(3D Studio Max) . 136
2.2 Equation-Based Simulation Tools 138

2.2.1 SIMULINK/Systembuild 139
2.2.2 Mechanical Packages for General Purpose Computer Al-

gebra Systems . 140

3 Using the Modelica Language for Dynamic Analysis 142
3.1 Modelica . 142
3.2 Basic Features of the Modelica Language 143

3.2.1 Implementation of Model Simulation 145
3.3 Introduction to Modelica Syntax 145

3.3.1 Introduction to the library of Electrical Components . . . 146
3.3.2 Example . 146
3.3.3 Using connectors . 148

8

3.4 Introduction to the Modelica Multibody System Library 149
3.5 Using the MBS library . 153

3.5.1 Kinematic outline . 153
3.5.2 Example: Kinematic Outline of Double Pendulum 155
3.5.3 Adding masses. 156
3.5.4 Adding Masses to the Double Pendulum Example. 156
3.5.5 Adding Geometrical Shapes 158
3.5.6 Adding Shapes for Double Pendulum 159
3.5.7 Interface to Non-Mechanical Parts of the Model 160

3.6 Advantages of Using MBS for Dynamic Analysis 161
3.6.1 Interpretation and Compilation in Mechanical Simulation . 161
3.6.2 Multidomain Simulation 162

3.7 Difficulties of using the MBS library 162

4 CAD Tools 163
4.1 CAD Tools and Dynamic Analysis 163
4.2 Comparison of Various CAD tools 164

4.2.1 SolidWorks . 164
4.2.2 Working Model 3D . 165
4.2.3 3D Studio Max . 165
4.2.4 Mechanical Desktop . 166
4.2.5 Pro/ENGINEER Tool Family 167

5 Mechanical Model Design in SolidWorks and Model Translation 169
5.1 Design of SolidWorks Parts and Assemblies 169
5.2 Mating Example . 169
5.3 Classification of mates . 170
5.4 Translation of mates into joints 171

5.4.1 Multibody Systems with a Kinematic Loop 173
5.5 User Interface for Configuration of Joints 173
5.6 Mechanism Example – Crank model 174
5.7 Mechanism Example – a Swing Model 176

6 Structure of the Integrated Environment 182

7 Requirements for Visualization of Mechanical Models 185
7.1 Design Requirements . 185
7.2 Usage Requirements . 186

8 MVIS - Modelica Interactive Visualization Tool 188
8.1 Offline and online Visualization Interfaces from Modelica 189

8.1.1 Data structures used in visualization 189
8.1.2 Force and Torque Equations for Visualization Classes . . . 192
8.1.3 Standard and New Classes for Visualization 193

9

8.2 Rendering Properties and Design Aspects 195
8.3 MODIC, Modelica Interactive Control Interface 197

8.3.1 Interface for Output Values 197
8.3.2 Interface for Input Values 199

8.4 Synchronization Problem in the Interface for Input Values 199

9 Modelica Visualization on the Internet 205
9.1 VRML-Based Simulation Visualization 206
9.2 Cult3D Approach . 208
9.3 Using 3DStudioMax . 210

10 Conclusions 211

11 Acknowledgments 212

Paper 6. Simulation and Visualization of Autonomous Helicopter
and Service Robots 217

1 Introduction 219

2 Helicopter modeling 221
2.1 The control system . 221
2.2 Mechanical model of the helicopter 223
2.3 The Integration of the Helicopter Control System and the Heli-

copter Mechanical System . 226
2.4 Helicopter Visualization . 229
2.5 Conclusions on Helicopter Simulation and Visualization 230

3 Robot Modeling 232
3.1 Mechanical Part of the Robot and the Load Model. 233
3.2 Environment Model . 234
3.3 Scenario for Load Movement . 235
3.4 The Inverse Geometry Problem 236

3.4.1 The Inverse Robot in 2D 236
3.4.2 Alternative Solutions . 237
3.4.3 The Inverse Robot in 3D. 238

3.5 Conclusions on Robot Simulation 239

4 Acknowledgments 240

Paper 7. An Environment for Design, Simulation and Interactive
Visualization for CAD Models in Modelica 243

10

1 Background 245

2 The Modelica Language 246
2.1 Simple Electric Circuit . 246
2.2 Implementation of Model Simulation 247
2.3 Mechanical System Modeling in Modelica 248

3 CAD Tools 249
3.1 Example . 249
3.2 Modelica Model . 249

4 Translation and simulation 250

5 Visualization 250

6 Related Work 251

7 Future work 252
7.1 Using STEP/EXPRESS for Contact Computation 252
7.2 True Multidomain Applications 252

8 Conclusions 252

9 Acknowledgments 252

Paper 8. An Integrated Modelica Environment for Modeling, Doc-
umentation and Simulation 255

1 Background 257

2 Using Mathematica Notebooks 257

3 The Modelica Language 258

4 The Experimental Environment 260

5 Conclusion 262

Paper 9. 3D Graphics and Modelica - an integrated approach 263

1 Background 265

2 Simulation and Visualization Requirements 267

11

3 Graphic Object Representation in Modelica Code 268
3.1 Choice Between Classes and Annotations 269
3.2 Shape Structure and Modelica Model Structure 271

4 Geometry Definition Syntax in Modelica 271
4.1 Syntax for External Graphic Format Specification 272

5 Primitive Geometric Objects 273

6 Position Specification 274
6.1 Specification of Level of Detail 275

7 Implementation Outline 276

8 Conclusions 277

Integration of Collision Detection with Multibody System Library
in Modelica 279

1 Introduction 281

2 Impulse Model 284
2.1 Impulse and Velocity Equations 284
2.2 Simulations Using Impulse-Based Model 288
2.3 Impulse-based Approach and Modelica 289
2.4 Bouncing Ball Example . 289
2.5 Colliding Pendulum Example . 290
2.6 Problem of Non-State Variables 291
2.7 Restructuring the Model of Colliding Double Pendulum Example . 292
2.8 Using Dependencies Between State Variables and Body Velocities 294
2.9 Limitations of the Impulse-Based Method in Modelica Models . . 294

3 The Force Model of Collision 295
3.1 Penetration . 296
3.2 The Bodies and Their Shells . 296
3.3 The Point of Contact . 297
3.4 Direction of Force . 297
3.5 Penetration Prevention Model 298

4 Computation of the Force from Penetration Measurement 299
4.1 Constraints on Force Equations 302
4.2 Definition of the Collision Force Using Polynomial of Time. . . . 303
4.3 Linear Collision Force Model of the First Order 304
4.4 Collision Force Model Based on Position 305

12

4.5 Collision Force Model Based on Spring and Damping 306
4.6 Modeling Collision Force as A Function of Penetration Depth and

Time . 307
4.7 Properties of Collision Force Model Based on Spring and Damper 307
4.8 Fraction-based Approximation 308
4.9 Polynomial-based Approximation 308

5 Collision Detection Software 309
5.1 General Properties of Collision Detection Software 309

6 Using SOLID for Collision Detection 310
6.1 Using SOLID interface functions 310
6.2 Collision Plane Definition Problem 311
6.3 Geometry Specification . 312
6.4 Collision Response Detail Handling 312
6.5 Special Cases for Speedup of the Search 315
6.6 Combining Penetration Depth and Distance 316

7 Applications Using Force-based Model 317
7.1 Pendulum Colliding with an Obstacle 317
7.2 Pendulum Resting on an Obstacle after the Collision 318
7.3 Interface to Collision Detection Package 319

8 Conclusion 321

Paper 11. Lossless Compression of High-volume Numerical Data
from Simulations 325

1 Introduction 327
1.1 Smoothness of the data . 328
1.2 Compression and data representation 329

2 Fixed-step Delta-compression 330
2.1 Internal Representation of Double Values. 330
2.2 Definition of differences . 332
2.3 Truncating meaningless bits. 332
2.4 The difference compression algorithm 332

3 Using fixed step extrapolation 333
3.1 Decompressing . 334

4 Varying step extrapolation algorithm 335

13

5 Experiments 336
5.1 Experiments with wavelet-based algorithms 336
5.2 Artificially designed test sequences. 337
5.3 Application to simulation results 338
5.4 Lossy compression . 339

6 Conclusion 339

14

Thesis Overview

15

16

1 Introduction

Mathematical models used in scientific computing are becoming large and com-
plex. There are at least two areas of technology development, shown in Figure 1,
aimed at handling the size and complexity problem. These are better model struc-
turing methodologies (i.e. enhancing modeling and programming paradigms, such
as object-oriented programming) and better methods to present complex systems
(such as advanced user interfaces). These technologies make it possible to raise
the level of abstraction. Raising the abstraction level helps humans to concentrate
on the most important components and properties of complex models.

Scientific computing (in comparison with other software technology areas)
leads to additional challenges such as large and complex data structures (multi-
dimensional arrays and deeply nested object-oriented class structures), huge data
volumes, a high level of abstraction used in modeling, and the need for advanced
2D and 3D graphics to present computation results.

Ad
va

nc
es

 in
 u

se
r i

nt
er

fa
ce

s

text

st
ru

ct
ur

al

gr
ap

hi
ca

l

ob
je

ct
-o

rie
nt

ed

de
cl

ar
at

iv
e

no
n-

ca
us

al

ability to handle
complexity

2D diagrams

interactive
environments

Advances in programming paradigms

3D graphical

Figure 1: Advances in user interfaces and programming paradigms lead to in-
creased ability to handle system complexity

The development and use of scientific computing software goes through several
stages (see Figure 2), which can differ from application to application. Program-
ming and simulation environments integrated with graphical user interfaces can
help in different stages of software design and use. If the attention is focused at
graphical user interfaces the most interesting stages are the following: design of
data structures, input data preparation, execution and output data analysis. There
are other stages, such as requirement specification, reengineering, maintenance,
and debugging which might benefit from advanced graphical user interfaces, but
we do not cover them in this work.

17

GUI GUI GUI

Simulation
execution

TextUI

data

model (program code)

Design and
implementation.

Visualization.
Evaluation and editing

 of dataEditing of model

Figure 2: The development and use of software goes through several stages, some
of which are depicted here. An appropriate user interface technology should be
used in each phase.

1.1 Visualization and Editing Tools

We use the word visualization in a broad sense. Our interpretation is the repre-
sentation of data structures and data values on computer displays by means of two-
and three-dimensional graphical elements using an appropriate level of abstraction.
The 3D visualization is a representation of three-dimensional scenes mapped onto
a 2D display. Scientific visualization is a special case of visualization which usu-
ally means visual presentation of high volumes of numeric data defined over some
continuous domain, such as time and/or space. Often computational results of sci-
entific computing are displayed by scientific visualization tools (e.g. AVS[2], Data
Explorer[16], and Vis5D[15]).

The information used in scientific computing falls into two categories: de-
scriptions of mathematical models and descriptions of data. When a mathematical
model (at some level of abstraction) is represented graphically as a diagram by
some tool it is usually not called visualization, but rather graphical model brows-
ing and/or editing.

There are many other kinds of information that are important in software de-
sign, which are not covered in this work. Particular examples are documents and
document structures, entity-relation diagrams, scenario diagrams, database visual-
ization and diagrams of program execution paths.

In the thesis we discuss and compare several stages where interactive graphical
environments can be used:

� model editing (in particular, browsing and editing of model component dia-
grams during the design stage),

� input data editing,

� visualization during execution (e.g. interactive control of simulations, exe-
cution monitoring, and computational steering)

� output visualization in the form of 2D graphs and 3D interactive animations.

18

1.2 Models and Graphical User Interfaces

In a broad sense the goal of graphical user interfaces is to reflect the structure of
the models and the data used (or produced) by the corresponding software.

For instance, a graphical user interface for model design and maintenance
should be able to display the structure of the model. This structure contains model
components (classes, variables, instances, functions, equations) and relations be-
tween the components. In graphical user interfaces which are used for model de-
sign each component is represented by a graphical element (vertex, icon, infor-
mation box, etc.), and relations between the components are presented as links
between these elements.

Graphical user interfaces for accessing model data should reflect the data struc-
tures. In most cases models have a tree-like organization of data. Certain larger
components contain smaller components which in turn contain data items with
elementary data types. A natural way to present data graphically is to use this
tree-like structure for search and navigation. The leaves of the tree are represented
by graphical elements (widgets) for user input and they are used for editing and
inspection of the elementary data items. Usually not all data structure components
used in the model should be available for editing and inspection by the end-user.
Therefore some flexibility in the specification of graphical user interfaces for data
is necessary.

In many application areas the model data contain some geometric information.
Certain components of the model might have corresponding geometric shapes.
Graphical user interfaces for such models should include display of the shape. In
addition, the components may have some attributes and relations with other com-
ponents. These relations and attributes are usually visualized in a graphical user
interface as links between the shapes or visual properties of the shapes.

In all three of the above cases tight coupling between the model and graphical
user interface exists.

Design and development of a graphical user interface for a mathematical model
is a difficult task. User interfaces for scientific computing are often designed by
scientific computing specialists, who lack expertise in user interface design. This
leads to unnecessary waste of time, as well as error-prone and non-reusable visu-
alization software.

In the above we have argued why the structure of a user interface is dependent
on the structure of the corresponding model and model data. Each time the model
changes, or model data structures are changed, the user interface should be partially
redesigned. This leads to the need for additional design efforts. This disadvantage,
however, can be turned into an advantage. Our vision is that graphical user inter-
faces can be generated from the corresponding models. In many cases this can be
done automatically, without any design efforts. In other cases the design efforts
needed for generating user interfaces automatically are negligible when compared
with the efforts for traditional design and maintenance of user interface software.
One of the challenging problems we attempt to solve in this thesis is to identify

19

cases when this automatic generation can be done, and to build tools that support
this process.

Experience shows that the problem of automatic generation of user interfaces is
quite application dependent. For instance, some representation of data is visualized
automatically (e.g. as a tree like data structure diagram), but the applications may
sometimes require a completely different view of the data (e.g. a plot containing
certain data points). Mechanical models might use the same mathematical equa-
tions as electrical models, differing only in notation. However, a graphical user
interface useful for mechanical simulation models differs very much from one for
electrical simulations. Volume visualization or fluid dynamics visualization is not
similar (in the general case) to the structure of equations used for the corresponding
computations.

It appears that object-orientation would be helpful in automatic generation of
user interfaces. We use a variety of object-oriented languages (ObjectMath, C++,
Modelica) as the basis for our tools. Object-oriented models have a number of
advantages, mainly for the following reasons:

� object-orientation imposes concise, hierarchical structures on models and
data;

� information necessary for graphical user interface design can be extracted
from such structures;

� object oriented languages provide the means to attach auxiliary attributes
to existing structures. This can be done by specialization through inheri-
tance. Then these attributes can be used for graphical user interface genera-
tion. Such attributes do not interfere with the data properties used for normal
computation (e.g. simulation).

1.3 User Interaction

Static diagrams and graphics at an appropriate level of abstraction are useful tools,
but are not enough for efficient work with complex software systems. In particular,
dynamic presentations and interactivity are essential for three common activities
– search (navigation), checking (analysis) and editing (modification). Users are
expected to be active agents in the process of design and use of scientific software.
Therefore user interfaces play a dominant role.

In descriptions of interactive tools we attempt to evaluate the quality of user
interfaces. For this purpose typical user tasks are selected and user efforts required
for performing these tasks are estimated. A good interface for visualization and
editing should provide the following

� consistent and compact presentation of components (layout quality),

� ease of use in navigation and location of relevant subcomponents (navigation
quality),

20

� consistent feedback from user actions, such as data editing or simulation
steering (feedback quality).

1.4 Taxonomy of Visualizations

In order to discuss the variety of different visualizations used in scientific com-
puting it is important to use a taxonomy. Such a taxonomy has been proposed by
Shneiderman [28] for information visualization. We consider this taxonomy in the
context of object oriented mathematical models used for scientific computing.

In this taxonomy seven kinds of visualizations are related to seven correspond-
ing data types. Generation of some of visualizations in this taxonomy can be auto-
mated.

1-dimensional: This class of visualization and data structures includes textual
documents and program source code. However, the models we consider
are usually quite complex. Therefore, one-dimensional visualizations are
not sufficient for presentation of such models. In particular, program source
code has a well-defined structure. We suggest that this source code is con-
verted into hierarchical structures with nodes (classes, objects, instances)
and connections (relations between them). This structure is generated auto-
matically from the textual representation and is visualized by our tools. For
instance, ObjectMath models are represented by hierarchical diagrams, as
described in paper 2.

2-dimensional: This kind of visualization includes geographical maps and plans,
as well as 2-dimensional plots of functions (X-Y plots). This is a widespread
way to present results from scientific computing applications. Most of the
tools for scientific computing, e.g. Dymola[5], Mathematica[30], MathMod-
elica (paper 8), Beast[10] have facilities for plotting variables in different
ways and options for choosing variables to be plotted. The graphical user in-
terface for selecting variables to be plotted is automatically generated from
data structures, e.g. for Dymola, MathModelica and Beast.

3-dimensional: Items with volume, e.g. real world objects, and object designed
using 3D CAD modeling tools are most naturally shown using 3-dimensional
visualization. Both real and abstract objects (such as three dimensional plots
of functions) can be viewed in this kind of visualization. Visualizations
in three dimensions are often used for physics-based simulations. In this
case, the structure of objects and their interrelations usually correspond to
the structure of the mathematical model. Such a model contains descrip-
tions of each physical component (e.g. rigid body) which is visualized as
a separate graphical object in 3D. Therefore, creation of such visualizations
can be automated (see paper 5). There are relations between the visualized
components (contacts and various motion constraints), which usually are not

21

visualized explicitly as graphic elements, but which can easily be noticed
when moving objects are observed.

There exist, however, 3-dimensional visualizations where the structure of
graphical objects is completely different from the structure of mathemati-
cal model. For instance, this happens in scientific visualization tools used in
computation fluid dynamics. Instead, the structure of graphical user interface
for visualization control often corresponds to the structure and dimensional-
ity of data.

Temporal: Visualization of time lines, historical information, and events are ex-
amples of temporal visualization. In our case, visualization of temporal data
is just one feature for other visualization types, in particular 3-dimensional
visualization. We use time in order to represent changes in objects and their
relations during physics-based simulation. Output data of such simulations
contains values of various variables at each time instant. Animation is used
for presentation of such simulations.

Multi-dimensional: Tools working with objects with many attributes need multi-
dimensional visualization. Such objects become points in n-dimensional
space. Visualization tools map objects with these attributes to a 2- or 3-
dimensional representation. In this thesis, work in this direction has been
done with parametric functions of many parameters, which were defined
in Mathematica. In our tool the way of mapping n-dimensional parametric
functions to space coordinates and time can be selected interactively.

Tree: Tree-structured visualization is useful for structures with relations between
parent and child nodes. A tree is a convenient way to represent data struc-
tures of a model. Furthermore, it is possible to automate creation of in-
teractive visualizations based on data structures. This automation has been
designed for C++, ObjectMath and MathModelica.

Networks and general graphs: Arbitrarily linked relations between nodes are con-
veniently visualized by networks and general graphs. This visualization is
used where objects are related by connectors, for instance in Modelica[19]
and Dymola[5]. In mechanical models joints and other contact elements are
used as relations between rigid bodies. These relations can be generated
using a graphical user interface. For instance, relations between bodies are
specified using a CAD interface.

1.5 Thesis structure

This thesis work includes the investigation and development of several methods,
languages and environments, which may appear somewhat diverse. However, all
of these are based on a few common principles. The first of these principles is
object orientation. All visualization tools, interactive environments and methods

22

developed in this work are based on object-oriented specification formalisms as
input data. Target applications are complex, computationally intensive and can be
considered as scientific computing applications. Advanced graphical user inter-
faces and dynamic 3D visualization are necessary in order to handle this level of
complexity. A major theme in this work is that these graphical interfaces can be
generated automatically or semi-automatically from object-oriented models.

The research presented in this thesis is very interdisciplinary, with all the stud-
ies, applications and discussions presented in the following chapters falling into
the triangle between three basic aims of study:

� scientific computing,

� object-orientation

� 2D/3D graphical user interfaces.

This thesis is organized as follows: the thesis overview consists of an introduc-
tion and three other sections that are intended for general discussion and relating
different research items and applications. After that, published papers, extended
variants of published papers, and technical reports are included as chapters. These
are devoted to particular problems or application areas. In the overview they are
referred to as paper 1, paper 2, paper 3, etc.

Section 2 of the overview discusses model diagram editing and automatic gen-
eration of two-dimensional graphical user interface tools which are described in
more detail in paper 1, paper 2 and paper 3.

Section 3 of the overview discusses 3D visualization, about which more de-
tails can be found in paper 4, paper 5, paper 6, paper 7 and paper 9. In the
overview and in the papers we consider techniques for automatic generation of
three-dimensional visualizations from object-oriented models.

Section 4 covers contributions to scientific computing which do not relate di-
rectly to visualization but rather to simulation and simulation environments. These
are described in more detail in paper 8, paper 10 and paper 11. Overviews of
related work are given at the end of paper 3, in the first sections of paper 5 and in
several other papers.

2 Two-Dimensional Visualization

Two-dimensional visualization is a traditional method used in graphical user inter-
faces.

In this thesis two tools based on two-dimensional graphical interfaces are de-
veloped. Section 2.2 describes a graphical environment for editing class inher-
itance and composition diagrams for the object-oriented mathematical modeling
language ObjectMath. The diagram components are mapped to corresponding syn-
tactic constructs of the object-oriented modeling language. Section 2.3 describes

23

a universal environment for editing data values, automatically generated from an
object-oriented model.

2.1 Graphical Tools for Editing Structure Diagrams of Software Sys-
tems

There is a wide spectrum of methods that have been designed in order to assist
programmers in software design. There are also many approaches to using graph-
ical tools in software design. These tools use some mapping between the program
code structure and its graphical representation. Some specific methods are tradi-
tionally used for object-oriented programming. It is easier to visualize the structure
of an object-oriented program than a conventional procedural program since there
exist several language constructs (and relations between these) at a high level of
abstraction. These are denoted differently in different object-oriented languages,
but from an object-oriented methodology point of view these constructs are classes
and objects, and relations are inheritance, association and aggregation.

2.2 Inheritance and Composition Diagrams and Their Use for the
ObjectMath Object-Oriented Language.

During 1990-1993 a new object-oriented language for scientific computing called
ObjectMath was developed at PELAB (Linköping University). The major innova-
tion of this language is the introduction of object-oriented structure into a computer
algebra language, making it possible to group equations, functions and formulae
into classes. Such object-oriented mathematical models typically describe physi-
cal systems for the purpose of simulation. Such grouping is very useful for design
of scientific computing applications. ObjectMath is based on the computer alge-
bra language Mathematica. ObjectMath contains three object-oriented structuring
constructs (class, instance and part), providing classes, single and multiple inheri-
tance, instantiation and composition of parts. An integrated programming environ-
ment for ObjectMath has been developed. Our paper 1 describes the motivation
behind the ObjectMath design and gives an introduction to the language and the
environment.

In many programming environments a mapping between object-oriented con-
structs and graphical elements is available. The Unified Modeling Language (UML)
recently defined a standard for such mappings. However, traditional mapping rules
existed a long time ago. In some programming environments (e.g. MicroSoft Vi-
sual C++) these diagrams cannot be edited directly and are just used for browsing.
In other environments the diagrams can be edited and the editing operations are
simultaneously applied to the designed program code. Different languages enforce
different syntactic rules. Therefore the corresponding graphical environments have
certain constraints that define how diagram components can be placed and attached
to each other. Also there can be different strategies defining how the syntactic rules
are enforced:

24

� all operations with the diagram that can lead to erroneous diagrams are ex-
plicitly forbidden by the tool;

� the tool includes a special feature for checking diagram correctness at any
time during editing;

� the tool checks correctness when editing of a diagram is finished and it is
saved or exported.

In our early work (done in 1994, some time before the UML standard appeared)
we made the following contributions:

� formal definition of syntactic rules for relations between object-oriented con-
structs in ObjectMath;

� definition of a mapping between models in ObjectMath and class relation-
ship (i.e. inheritance and composition) diagrams;

� definition of operations on relationships between object oriented constructs
that can be performed by the user;

� definition and implementation of the above mentioned mapping and opera-
tions in a graphical class diagram editor.

There are two main properties which should hold for the set of defined opera-
tions:

Completeness: For any two syntactically valid class relationship diagrams A and
B there exist a sequence of operations that transforms A to B.

Correctness: If a sequence of operations is applied to a syntactically correct dia-
gram, the resulting diagram will be correct.

This work is described in detail in paper 2.
Code visualization for object-oriented modeling languages may be, for in-

stance, object, and class relation diagrams that can be edited and browsed during
design and maintenance of model specifications. There are context-dependent syn-
tactical rules which should be observed in such diagrams. The challenge here is
to map the rules into a user interaction process, in such a way that any modifica-
tion of any syntactically correct diagram will always lead to a syntactically correct
diagram.

The class diagrams are generated automatically from textual representations
of object-oriented models. Graphical user interfaces are not generated from such
models.

An editor has been designed for inheritance and composition relations between
classes and instances of the object oriented language ObjectMath. The editor al-
lows creation of classes and parts, specification of single and multiple inheritance

25

relations, replacing, collapsing, and deleting diagram fragments as well as sup-
porting consistency checks between the current diagram contents and ObjectMath
syntactic rules. Automatic component layout algorithms are employed for the dis-
play of directed graphs of relationships.

This work was done in 1994. The tool was developed in C++ using an object-
oriented library for GUI programming called Interviews. A reduced variant of the
tool supporting browsing only was developed in early 1997. This variant was based
on C++ and another GUI design tool, Tcl/Tk. Since paper 1 mentions very little
about graphical design issues, a more detailed paper 2 is included in the thesis.

2.3 Automatic Generation of Form-Based Interactive Environments
from Object-Oriented Models

In this work object-oriented data structures are used for automatic generation of
code for GUIs that support data input and editing. Such a GUI can serve as a
default interface for programs written in object-oriented languages and requires no
graphical programming at all.

There is usually an explicit or implicit association between the structure of a
program and the data structures used in the program. The data structures should be
created, filled with data values, used, and finally destroyed. Furthermore, the data
has a nested structure. Therefore the program code for creation, filling in, using,
and destruction has a similar nested structure.

The way software is structured usually matches the structure of corresponding
components in the real world, i.e. in the application area. In order to provide
consistent perception and comfortable navigation from the end-user point of view
the structure of the graphical user interface should reflect the application.

For instance, the windows of a graphical user interface used for mechanical
model description correspond to the bodies in the model. A graphical user inter-
face for a flight ticket booking system corresponds to the structure of information
written on tickets or other documents.

In our system the same object-oriented specification is used for three purposes:

� computation,

� generation of graphical user interfaces,

� generation of persistence routines, i.e. saving and loading application data.

When the code is generated, the graphical user interface and persistence routines
can be compiled, linked and integrated with the rest of the application without any
programming efforts.

Generation of persistence routines for C++ has been developed by Walter Tichy
and Frances Paulisch in [26].

Our contribution is in development of display generation technique, automatic
window layout, and user interface customization technique. Based on these prin-
ciples we created the PDGen (Persistence and Display Generator) tool. This tool

26

automates the creation of graphical user interfaces. The software is intended for
applications which require extensive editing of numerical data and complex data
structures (arrays, trees etc.).

The tool was implemented in 1996. Conference paper 3 gives the motiva-
tion, a history of the search for problem solutions, implementation details, and an
overview of similar systems. The PDGen system is mainly described in Sections
1, 3, and 5 of this paper. Section 2 gives description of an old system; Section 4
discusses some specific issues of application of PDGen for ObjectMath.

More details about this system are given in [9].

3 Three dimensional graphical user interfaces

Development of modern technologies has made it possible to apply three-dimensional
visualization in many application areas. In particular 3D is used for visualization
of computation results and for modeling real world objects, such as objects con-
structed using CAD tools. Due to development of graphic hardware 3D animation
recently became widely available for the users working on average computers and
therefore 4D data (three space dimensions and one time dimension) can be used
for visualization.

3D visualization in scientific computing falls into three categories:

� Visualization of numerical results, where displayed shapes depend on a par-
ticular computation. These shapes might depend on some specific parame-
ters, e.g. time. We assume that points in 3D are denoted as (x; y; z). The set
of displayed points in three-dimensional coordinate space can be expressed
as

f(Fx(u; v); Fy(u; v); Fz(u; v))g;

where umin < u < umax and vmin < v < vmax. Some components of
a graphical user interface for such visualization can be generated automati-
cally. This approach is discussed in Section 3.1.

� Visualization of fixed shapes. Each shape corresponds to a real world object
which is modeled as a rigid body (e.g. by a CAD tool). Movement of the
body is constrained by the laws of physics. This kind of visualization is also
called physics-based visualization. Visualization of results from physics-
based simulations can be automated. This approach is discussed in Section
3.2.

� Volume visualization, where displayed shapes are isosurfaces computed from
some volume data. This data can be the result of some other computa-
tions or measurements. The set of points displayed can be expressed as
f(x; y; z)jF (x; y; z) = 0g. Rendering such visualizations is more difficult
since it is hard to find the set of points and translate to 3D graphic primitives.
Volume visualization is not in the scope of our work.

27

3.1 Interactive Visualization of Numerical Results of Computations
Specified in Mathematica.

Assume that some numerical function (routine) with many input arguments and
many output results is defined in the computer algebra language Mathematica. It
is almost impossible to investigate the properties of this function by traditional
methods, such as 2D plots. For instance, tens or hundreds of 2D plots are needed
in order to find the maximal or minimal value of the function. It is very hard to find
the area of non-continuity and observe how it changes when some of the function
arguments change. The challenge is to automatically generate high performance
4D (three space and one time dimension) visualizations for this function.

Usually parametric surfaces are used for visualization of computational results
when many inputs and outputs are involved in a computation. If two input and one
output variables are used, the visualization of such a function is a surface composed
by all points f(x; y; F (x; y))g , where xmin < x < xmax, ymin < y < ymax. If
three input and three output variables are used, a dynamically changing surface
can be composed from all the points f(Fx(u; v; t); Fy(u; v; t); Fz(u; v; t))g, where
umin < u < umax, vmin < v < vmax, tmin < t < tmax.

In general, an arbitrary function F : Rm
! R

n can be visualized using this
method. The limitations are:

� Input values for a number of dimensions (m�3 dimensions) should be fixed.

� Three dimensions are chosen from n, whereas the other n � 3 dimensions
are omitted.

names and types
parameter function body

Numerical
C++ code

Graphical user interface for
choice of variables and their

values

Mathematica environment

"MathCode" compiler

Mathematica
function

configuration

values

results
Visualization environment

OpenGL-based
animation

Figure 3: Generation of visualization for functions with multiple arguments and
multiple output values defined in Mathematica.

The function F is initially specified symbolically in the Mathematica language
(see Figure 3). This function is then compiled to C++. For this purpose a Math-
ematica to C++ compiler, MathCode[11, 12] is used. A fragment of C++ code is

28

generated which is compiled, linked with graphical user interface libraries and can
be executed outside the Mathematica environment. In the case that Mathematica
internal functions are used, this code can call Mathematica functions via MathLink.

The function F has a parameter list with names and types of the input and
output parameters. A fragment of code used in the construction of the graphical
user interface is generated from this information.

When the function F is visualized the user can interactively choose which three
of the total m function arguments will be used as the surface parameters u and v,
and the time parameter t. The rest of the m�3 arguments should be fixed when the
visualization is running. However they can be freely adjusted interactively during
the visualization using input controls (e.g. scale bars). Also three variables of a
total of n output variables should be chosen, and these will be used as x,y, and z
coordinates of the surface points.

In paper 4 we give an example of a simulation function. The model describes
two balls that fall into the water and the waves that appear on the surface of the
water. The initial coordinates of the two balls are presented by a total of 6 scalar
values. These values are not fixed in the application. Instead, scale bars are created
for each of these 6 variables. The visualization function computes the points of
water surface at each time instant. In this way a specialized environment where a
user can manipulate input parameters and obtain different dynamic visualizations
is automatically generated from a function.

Our contribution is development of this visualization environment, as well as
participation in development of MathCode, compiler from Mathematica to C++.

3.2 A Modelica-Based Design, Simulation, and 3D Visualization En-
vironment for Mechanical Models and its Applications

Modelica [19] is a new object-oriented equation-based modeling language. Models
described in this language are well-structured collections of variables, ordinary
differential and algebraic equations, and functions.

The methodology of object-oriented equation-based modeling have been in-
vented by Hilding Elmqvist in his dissertation [4] and initially implemented in the
Dymola language and tool [5]. This methodology has been further developed by
the international Modelica Design Group [19] which includes participants from
both universities and industry. The result of this development has been reflected
in Modelica language specification [20]. Tutorial and rationale for the language
can be found in [21]. Two papers written by Martin Otter, Hilding Elmqvist and
Sven Erik Mattsson [7, 23] cover the major properties of Modelica and hybrid
modeling technique invented by these authors. The hybrid modeling in Model-
ica integrates discrete and continuous modeling methods in the same language.
Object-orientation techniques used in Modelica are discussed in [13]. Our current
Modelica activities are reflected in [27].

Modelica models can be simulated. The result of simulation is values of all
declared variables during certain time interval.

29

Currently there are two design, simulation, and visualization environments for
Modelica:

� Dymola tool with Modelica Language Support, developed by Dynasim [5]
and

� MathModelica, developed by MathCore[18].

Differences between these environments are discussed in Section 3.4.
In these environments Modelica models can be created using a graphical user

interface. For the purpose of simulation starting conditions and parameters can
be entered by the user, and computation occurs without further user interaction.
Visualization tools in these environments have facilities for construction of simple
2D plots of variables, as well as 3D animations presenting motion of primitive
objects.

One of the distinctive features of Modelica is the ability to describe multido-
main applications. Mechanical, electrical, hydraulic and control components can
be described in the same language within the same model and communicate with
each other. In many application areas (robotics, automotive device modeling, etc.)
mechanical components play the dominant role, whereas electrical, hydraulic, and
control components can be considered as ”subordinated” to mechanics.

Our vision is that the existing environments can be made more efficient and
flexible if the following conditions are fulfilled:

� Use of automatic code generation, and automatic creation of interactive sim-
ulations and visualizations;

� Support for specific application areas, e.g. simulation of mechanical models
and multi-body systems in general.

Our goal, therefore, is to automate generation of interactive mechanical mod-
els. Obviously, the models cannot be created completely automatically; instead,
user-friendly tools working on appropriate level of abstraction, accompanied by
model translation tools should allow designing complex models much easier, faster
and error-free. Our paper 5 contains a detailed discussion on both code generation
and visualization. It explains, in particular, why Modelica has been chosen as a
tool for mechanical modeling. A comparison of Modelica with several other tools
is given in the paper.

Our contribution aimed to achieve this goal has been development of the fol-
lowing techniques and tools:

� Technique and tool for automatic generation of Modelica models (and model
components) from mechanical CAD models.

� Several tools for interactive visualization of mechanical models designed in
Modelica and optionally derived from CAD models.

30

� A technique and an interface between multi-body simulations in Modelica
and collision detection and response routines.

A short overview of these activities can be found in a published paper 7 in
1999. Unfortunately, some important references and updated background informa-
tion are missing in this paper. We wrote a more detailed description of our activities
which is given in paper 5. A collision detection and response interface is discussed
in Section 4.1.

For mechanical modeling we use one of the existing Modelica component li-
braries, the Multibody System (MBS) Library. This object-oriented library has
been invented by Martin Otter in his dissertation [22]. Overviews of the library are
given in [24, 25]. This library has been first implemented in the Dymola language.
Later this library has been translated to Modelica. The equations in this library
are based on Newton’s laws (and their consequences) for systems of rigid bodies
connected by rotating and translating joints. The joints specify degrees of freedom
for the bodies. There exist other component libraries (e.g. electrical and hydraulic)
which can be used in combination with the mechanical library. Currently, in 2000,
a new MBS library for Modelica is being developed, and new compilation and
simulation algorithms are being added into the Dymola tool, which solve [8] many
technical problems discussed in paper 5.

In order to model mechanical systems, first the geometry of the rigid bodies and
the constraints between the bodies of a system should be specified. The most con-
venient way to perform this task is using an interactive design environment. CAD
tools were used for many years for this purpose. Therefore we use an existing CAD
tool and integrate specific features we need into this tool. The SolidWorks system
has been chosen for this purpose. Several other alternative tools are considered in
paper 5. We designed a converter from SolidWorks to Modelica; its implemen-
tation has been done by Håkan Larsson and the author at PELAB[17]. This tool
extracts physical and geometric information from SolidWorks assemblies as well
as information about degrees of freedom which are defined between the objects.

The existing 3D visualization tool for Modelica, called DymoView, which is a
component of the Dymola tool, is not intended for mechanical engineering appli-
cations. However the classes for 3D visualization, developed by Hilding Elmqvist
and included in the Dymola and Modelica tool libraries, can be used for this pur-
pose.

During 1998–1999 in addition to this environment we developed a set of 3D
visualization environments:

� A high performance and portable OpenGL-based environment for interactive
engineering visualization.

� A VRML-based system for visualization via the Internet (developed by Daniel
Larsson and the author at PELAB[27]).

� A system for interactive visualization via the Internet, which uses high qual-
ity rendering technology, called Cult3D (developed by Andreas Gustafsson

31

and the author[14]).

� A tool for creation of non-interactive visualizations (animations) in 3DStu-
dioMax.

In order to add interactivity to Modelica simulations, we have designed a Tcl/Tk-
based graphical user interface. During simulation some variables can get new val-
ues specified by the user. The new values are propagated using the equations to
the output values of the simulation and the user can get immediate visual feedback
corresponding to his actions.

The unique feature of the environment we have developed is the combination
of three properties:

� It will be possible to generate code for high performance physics-based sim-
ulations from CAD models.

� It will be possible to integrate components from many physical domains in
the same application.

� It will be possible to control simulations interactively.

The components of the environment for mechanical design, simulation and
interactive visualization are not yet integrated into a single system. However, sep-
arate components of this system have been successfully used in two major applica-
tions (they are described in detail in paper 6):

Modeling of helicopter flight mechanics. This application demonstrates object-
oriented modeling of helicopter flight dynamics and the use of an external
controller which steers the helicopter model so that certain flight commands
are performed.

Modeling of service robot-manipulator. This application demonstrates the use
of an internal controller that steers the virtual robot according to the plan.
Our paper 6 also contains our Modelica-based solution to the inverse geom-
etry problem.

Future work includes extensions of the integrated environment tools in several
directions:

� More details about the joints and related objects which drive the joint can
be specified at an early stage, i.e. in the Modelica generator interface we
integrated into SolidWorks.

� Visualization can be integrated with a CAD tool, so that the same familiar
environment is used both for mechanical design and for interactive visual-
ization of simulation results.

� Interfaces to other CAD tools, such as Mechanical Desktop, Pro Engineer,
etc. are planned.

32

3.3 Integration of 3D Graphics and Modelica

Our paper 5 (Section 8) presents a description of two ways of integrating 3D
graphics and Modelica:

� Primitive 3D objects can be described. All the object parameters (predefined
geometry, size, color, position, rotation) are specified as Modelica model
variables and constants.

� Arbitrary 3D objects are described in external files. Their geometry and color
is defined by external formats, in particular, DXF[3], Stereo Lithography
Interface (STL)[1], and VRML[29]. Their position and rotation are specified
as model variables.

However there is a need for an intermediate approach. It should be possible to
store all information about the 3D graphics in the same Modelica model. This in-
formation can be later used for both visualization and for computation of collision
response forces. The 3D geometry and graphical information can be described in
two additional ways:

� Complex 3D geometry objects can be constructed from primitives, such as
points, lines, triangles, and quadrilaterals. Each primitive can have certain
color properties, which specify how it is rendered during visualization.

� Objects can be described by inline insertion of descriptions in a format ex-
ternal to Modelica, for instance STL or VRML.

In Modelica models these objects are represented syntactically as class at-
tributes (formal comments) or as instances of classes from a special class library.

In addition to the rigid bodies, the sources of light as well as the positions and
attributes of a virtual camera can be described in the same way as 3D geometrical
objects.

This approach is described in paper 9.

3.4 MathModelica: A Modelica Environment Embedded in the Math-
ematica Environment

The computer algebra tool Mathematica[30] can serve two goals in the context of
Modelica-related tools:

� As a powerful computer algebra language it can serve as an implementation
language for Modelica. Modelica models can be translated to Mathematica
and these models can be simulated as Mathematica functions.

� As a powerful documentation system it can serve as an integrated environ-
ment for design, documentation, and visualization of Modelica models.

33

The major advantage of using Mathematica as a basis for a Modelica integrated
environment is the ability to unify source code of models, documentation, tests,
simulation, computation results, and visualization in the same format. Mathemat-
ica notebooks can be used as a storage place for structured documents. A user can
work in the familiar Mathematica front-end environment with these documents.
Since the notebooks have a strictly defined structure, Mathematica programs can
process this structure and use it for code compilation and as well as for result visu-
alization.

Our paper 8 discusses the initial variant of a MathModelica environment for
this purpose. Our contribution is a prototype translator of equations from Modelica
models to corresponding equations in Mathematica, as well as prototype generator
of graphical user interface for these Modelica models.

It should be noted that the paper describes the MathModelica version of 1998.
The current variant of the MathModelica language and environment (MathModelica-
2000) is designed by MathCore [18]. The major differences between these two
versions are described below:

� In MathModelica-1998 the model was converted to a form appropriate for
Mathematica. The solution was obtained from the numerical solver of dif-
ferential equation systems (NDSolve) available in Mathematica. Only or-
dinary differential equations can be solved this way.

� In MathModelica-2000 the model is converted to (standard) Modelica, and
the same Modelica compiler, simulation code and numerical libraries as
those used in the Dymola environment [5] is utilized for finding the solu-
tion.

There is one major difficulty in designing and simulating with Modelica. When
a Modelica model is specified but not simulated yet, it is very hard to predict
whether a solution exists and if it will be found. When the computation starts
and the solver stops for some reason it is hard to find the cause of this error in the
source model. The failure of computations does not mean that there is no solution,
simply that the solution cannot be found by the currently used integration method
and method parameters (step, accuracy, etc.). Therefore, it is extremely important
for the user to know the reason for a failure at an early stage.

Unfortunately the exact definition of what NDSolve can do and what it cannot
do is missing. The major technical difficulty with MathModelica-1998 is that we
cannot predict the behavior of NDSolve and know whether a system of equations
can or cannot be solved by this tool before it is applied. Furthermore, there is
no support for discrete events, as well as differential-algebraic equations. Only a
subset of Modelica can be implemented this way.

In MathModelica-2000 the diagnostic messages from the Modelica compiler
and the from solver are analyzed and much more information about the reason for
the failure is obtained. It can be noted that this is not the ultimate solution either.

34

It is clear that in general it is not possible to determine whether a differential-
algebraic equation is solvable or not. But at least for some cases certain rules and
heuristics can be developed. Our research activities in the future will be directed
toward increasing robustness and prevention of failures:

� Finding ”robust” model components and rules of connections between them
so that simulation of models correctly built from such components does not
fail. One example of such component collection is the MBS library devel-
oped by Martin Otter (see Section 3.2), where components should be con-
nected according to certain rules.

� Developing methods and tools to analyze a model before computation starts
and find out possible reasons for failure as early as possible.

4 Contributions to Simulation Techniques and Environ-
ments

Mathematical models used in scientific computing are becoming large and the
number of computations needed for simulation is increasing. Simultaneously there
are growing requirements on model performance and accuracy. When simulation
models are designed we encounter several problems that must be solved in order
to achieve these goals. Section 4.1 describe work on achieving higher accuracy
and realism for mechanical models. In section 4.2 we discuss a way to increase
performance of data input and output performed by simulation tools using data
compression. These topic are not related to visualization directly and no graphical
interface generation happens here. However the methods discussed in this section
can be used for increasing the performance and realism of visualizations.

4.1 Collision Detection and Response for Mechanical Simulations in
Modelica.

Collision detection and response is one of the most complicated and important
parts of mechanical analysis. There are many methods for computation of collision
response; some major methods are discussed in paper 10. We consider collisions
of rigid bodies. The surfaces of the bodies are defined by a set of triangles in
3D. It is assumed that a single point of one body collides with a single point of
another body. In the paper we discuss an impulse-based and force-based approach
to collision response. Both of these models can be implemented either in pure
Modelica or as external functions called from Modelica. Using external functions
is more convenient for complex shapes.

In the impulse-based approach, each collision generates an event. When the
event happens, Modelica simulation stops, velocities of objects change and simu-
lation is restarted with new re-initialized velocities. In the general case it is hard to
find the new velocities if there are many bodies linked together by revolute joints.

35

In the force-based model, colliding surfaces are connected by a virtual stiff
spring as soon as they penetrate or occur too close to each other. The collision force
is created by the spring, separating the objects. We have derived a new collision
force equation such that the overall result of a collision matches the result of the
impulse-based collision model.

For the purpose of collision detection a public domain collision detection pack-
age called SOLID has been used. We have made an interface allowing this tool to
read complex shape descriptions in STL[1] files. This format is already in use for
presentation of geometry of the bodies.

In the future several complementary and alternative approaches should be con-
sidered:

� Collision detection of complex shapes can be performed by CAD tools.
Since the shapes are originally defined in CAD, the corresponding appli-
cation programming interface packages can detect the collision and find col-
lision parameters.

� Currently the body surfaces are represented as a set of triangles. Every face
of the body is a plane. Methods exist that make it possible to detect and pro-
cess collisions between two points belonging to objects described by splines
of second order. Therefore these splines can be used instead of plane tri-
angles. The CAD tools, however, typically export geometry information as
triangle sets, not spline surfaces.

Our paper 10 describes the architecture for integration of Modelica and colli-
sion detection software. In the general case (i.e. for models with complex geom-
etry) several external functions need to be called from the Modelica model. The
collision detection software can be used in combination with MBS library in Mod-
elica.

Currently a new, generalized multi-body system library and general impulse
handling model is being developed by Martin Otter [8].

4.2 A Lossless Compression Method for Computational Results.

Complex mathematical models used for simulation generate huge amounts of nu-
merical data. This data is used for visualization, for further processing of compu-
tation results, and as starting values for other simulations.

Traditional text and binary data compression techniques do not work well with
numerical data, such as double precision floating point numbers. Some numerical
method for compression should be applied. This method should take into account
that numerical values typically change smoothly from one simulation step to an-
other.

For the purpose of compression we developed and applied a specialized method
of predictive coding, discussed in paper 11. A series of variable values are com-
pressed by this method. This method assumes that each saved variable value can

36

be extrapolated using several values at the previous time steps, and the residual
(difference between the actual and extrapolated value) is very small.

The method is intended for lossless compression, since it is used in an applica-
tion where precision is extremely important [10]. A lossy variant of the method is
described at the end of the paper. A comparison with other numerical compression
methods (e.g. wavelet algorithms) is given in the paper. When the method is used
in our application (Beast[10]) the lossless variant of the algorithm gives a com-
pression ratio of 3 to 6 times, depending on the contents of the series of variable
values.

5 Conclusion

In this thesis we emphasize the idea of automatic generation of design, simula-
tion, and visualization tools. Most of the work described in the various papers are
attempts to realize this idea. The reader can find conclusions and descriptions of
future work regarding particular tools in each paper or report included in the thesis.
The Modelica effort (see paper 5) is an ongoing project with many activities that
enhance the language as well as design, simulation, and visualization environments
for using this language.

In several cases we succeed in showing that various useful tools can be gen-
erated from object-oriented models. These models and environments can be used
not only in the context of scientific computing, but in a broad spectrum of applica-
tions. We probably cover just a fraction of the diversity of design, simulation, and
visualization environments. The new environments appear on top of old environ-
ments, like our environment for mechanical modeling appears on top of an existing
Modelica environment. The future, in our opinion, belongs to easily configurable,
multi-level environments where some levels require intellectual effort on the part
of the designer (and therefore requires some manual programming), but some other
levels can be generated automatically, without any efforts from the user. All these
levels can be configured and utilized by the users.

List of papers

Paper 1 Peter Fritzson, Vadim Engelson, Lars Viklund, Variant Handling, Inher-
itance and Composition in the ObjectMath Computer Algebra Environment, In
Proceedings of the Conference on Design and Implementation of Symbolic Com-
putation Systems (DISCO 93), vol. 722 of Lecture Notes in Computer Science, pp.
145–160. Springer-Verlag, 1993.

Paper 2 Vadim Engelson, ObjectMath Inheritance and Composition Diagram Ed-
itor. Linköping Electronic Articles in Computer and Information Science, ISSN
1401-9841, Vol. 5 (2000): nr 006. Available at:
http://www.ep.liu.se/ea/cis/2000/006/

37

Paper 3 Vadim Engelson, Peter Fritzson, Dag Fritzson, Automatic Generation of
User Interfaces From Data Structure Specifications and Object-Oriented Applica-
tion Models. In Proceedings of European Conference on Object-Oriented Pro-
gramming (ECOOP96), Linz, Austria, 8–12 July 1996, vol. 1098 of Lecture Notes
in Computer Science, Pierre Cointe (Ed.), pp. 114–141. Springer-Verlag, 1996

Paper 4 Vadim Engelson, Peter Fritzson, Dag Fritzson, Using the Mathematica
Environment for Generating Efficient 3D Graphics. In Proceedings of EduGraph-
ics/ CompuGraphics-97, Vilamoura, Portugal, December 15-17, 1997, pp. 222 –
231.

Paper 5 Vadim Engelson, Tools for Design, Interactive Simulation, and Visualiza-
tion for Dynamic Analysis of Mechanical Models. Linköping Electronic Articles
in Computer and Information Science, ISSN 1401-9841, Vol. 5 (2000): nr 007.
Available at: http://www.ep.liu.se/ea/cis/2000/007/

Paper 6 Vadim Engelson, Simulation and Visualization of Autonomous Helicopter
and Service Robots. Linköping Electronic Articles in Computer and Information
Science, ISSN 1401-9841, Vol. 5 (2000): nr 013. Available at:
http://www.ep.liu.se/ea/cis/2000/008/

Paper 7 Vadim Engelson, Håkan Larsson, Peter Fritzson, A Design, Simulation
and Visualization Environment for Object-Oriented Mechanical and Multi-Domain
Models in Modelica. In Proceedings of 1999 IEEE International Conference on
Information Visualization, IEEE Computer Society, 14-16 July 1999, London, pp.
188-193, ISBN 0-7695-0210-5.

Paper 8 Peter Fritzson, Vadim Engelson , Johan Gunnarsson, An Integrated Mod-
elica Environment for Modeling, Documentation and Simulation. In Proceedings
of The 1998 Summer Computer Simulation Conference (SCSC 98) July 19–22,
1998, Reno, Nevada, pp. 308-313.

Paper 9 Vadim Engelson, Integration of Modelica and 3D Geometry. Linköping
Electronic Articles in Computer and Information Science, ISSN 1401-9841, Vol. 5
(2000): nr 009. Available at: http://www.ep.liu.se/ea/cis/2000/009/

Paper 10 Vadim Engelson, Integration of Collision Detection with Multibody Sys-
tem Library in Modelica. Linköping Electronic Articles in Computer and In-
formation Science, ISSN 1401-9841, Vol. 5 (2000): nr 010. Available at:
http://www.ep.liu.se/ea/cis/2000/010/

Paper 11 Vadim Engelson, Dag Fritzson, Peter Fritzson, Lossless Compression
of High-Volume Numerical Data for Simulations. Linköping Electronic Articles
in Computer and Information Science, ISSN 1401-9841, Vol. 5 (2000): nr 011.
Available at: http://www.ep.liu.se/ea/cis/2000/011/. An abstract of this paper is
published in Proceedings of the 2000 IEEE Data Compression Conference, Snow-
bird, Utah, March 28-30, 2000.

38

References

[1] 3D Systems, Stereo Lithography Interface Specification, 3D Systems, Inc., Va-
lencia, CA 91355. Available via http://www.vr.clemson.edu/credo/rp.html.

[2] Advanced Visual Systems Inc., AVS/Express. Reference Manual.,
http://www.avs.com

[3] Autodesk, Inc., Autocad 2000 documenation. Drawing Interchange File For-
mat., http://www.autodesk.com

[4] Hilding Elmqvist, A Structured Model Language for Large Continuous Sys-
tems, PhD thesis TFRT-1015, Department of Automatic Control, Lund Univer-
sity of Technology, Lund, Sweden.

[5] Hilding Elmqvist, Dag Brück, Martin Otter, Dymola, Dynamic Modeling Lab-
oratory, User’s Manual, Version 4.0, from Dynasim AB, Research Park Ideon,
Lund, Sweden, http://www.dynasim.se

[6] Hilding Elmqvist, Sven-Erik Mattsson. Modelica – The Next Generation Mod-
eling Language – An International Design Effort. In Proceedings of First World
Congress of System Simulation, Singapore, September 1–3 1997.

[7] Hilding Elmqvist, Sven Erik Mattsson and Martin Otter Modelica - A Lan-
guage for Physical System Modeling, Visualization and Interaction. Plenary
paper. 1999 IEEE Symposium on Computer-Aided Control System Design,
CACSD’99, Hawaii, August 22-27, 1999

[8] Hilding Elmqvist, Personal communication, April 2000.

[9] Vadim Engelson, An Approach to Automatic Construction of Graphical User
Interfaces for Applications in Scientific Computing, Linköping Studies in Sci-
ence and Technology, Licentiate thesis No 545, Department of Computer and
Information Science, Linköping University, March 1996, 72 pp.

[10] Dag Fritzson, Peter Fritzson, Patrik Nordling, Tommy Persson. Rolling Bear-
ing Simulation on MIMD Computers. International Journal of Supercomputing
Applications and High Performance Computing, 11(4), 1997.

[11] Peter Fritzson, MathCode C++, Available from MathCore AB,
http://www.mathcore.com

[12] Peter Fritzson, Static and Strong Typing for Extended Mathematica. Innova-
tion in Mathematica - Proceedings of the Second International Mathematica
Symposium, Rovaniemi, Finland, 29 June - 4 July 1997, Computational Me-
chanics Publications, V. Keränen, P. Mitic, A. Hietamäki (Ed.), pp. 153–160.

39

[13] Peter Fritzson, Vadim Engelson, Modelica – A Unified Object-Oriented Lan-
guage for System Modeling and Simulation, In Proceedings of European Con-
ference on Object-Oriented Programming (ECOOP98), Brussels, July 20–24,
1998.

[14] Andreas Gustavsson, Integration of Cult3D and Modelica Simulations, Mas-
ter Thesis, IDA, Linköping University, Sweden, to be published in May 2000.

[15] Bill Hibbard, Vis5D, http://www.ssec.wisc.edu/ billh/

[16] IBM, Open Visualization Data Explorer, http://www.research.ibm.com/dx/

[17] Håkan Larsson, Translation of 3D CAD Models to Modelica, Master Thesis,
LiTH-IDA-Ex-99/30, IDA, Linköping University, Sweden, March 1999.

[18] MathCore, MathModelica, software tool for modeling, simulation, and visu-
alization. http://www.mathcore.com.

[19] Modelica Design Group, Modelica WWW site, http://www.modelica.org

[20] Modelica Design Group, Modelica - A Unified Object-Oriented Language for
Physical Systems Modeling. Language Specification. Version 1.3 December 15,
1999. Available via http://www.modelica.org

[21] Modelica Design Group, Modelica - A Unified Object-Oriented Language for
Physical Systems Modeling. Tutorial and Rationale. Version 1.3 December 15,
1999. Available via http://www.modelica.org

[22] Martin Otter, Objektorientierte Modellierung mechatronischer Systeme am
Beispiel geregelter Roboter. Dissertation, Fortschrittberichte VDI, Reihe 20,
Nr. 147, 1995.

[23] Martin Otter, Hilding Elmqvist and Sven Erik Mattsson Hybrid Modeling in
Modelica based on the Synchronous Data Flow Principle, 1999 IEEE Sympo-
sium on Computer-Aided Control System Design, CACSD’99, Hawaii, August
22-27, 1999

[24] Martin Otter, Hilding Elmqvist and François E. Cellier, Modeling of Multi-
body Systems with the Object-Oriented Modeling Language Dymola, in Pro-
ceedings of the NATO-Advanced Study Institute on Computer Aided Analysis
of Rigid and Flexible Mechanical Systems , Volume II, pp. 91-110, Troia, Por-
tugal, 27 June - 9 July, 1993.

[25] Martin Otter, Hilding Elmqvist and François E. Cellier, Modeling of Multi-
body Systems with the Object-Oriented Modeling Language Dymola, Nonlin-
ear Dynamics, 9:91-112, 1996, Kluwer Academic Publishers.

40

[26] Frances Paulisch, S. Manke, Walter Tichy, Persistence for Arbitrary C++ Data
Structures, In Proceedings of International Workshop on Computer Architec-
tures to Support Security and Persistence of Information, Bremen, FRG, May
1990, pp. 378–391.

[27] PELAB, Modelica activities in PELAB, The Programming Environment Lab-
oratory, Department of Computer and Information Science, Linköping Univer-
sity, http://www.ida.liu.se/˜pelab/modelica

[28] Ben Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualization, in Proceedings of 1996 IEEE Conference on Visual
Languages, Boulder, CO, Sept. 3–6,1996, pp. 336–343.

[29] VRML Consortium, VRML WWW site, http://www.vrml.org

[30] Wolfram Research, Mathematica, Wolfram Research Inc.,
http://www.wolfram.com

41

42

Paper 1

43

44

- 1 -

45

Variant Handling, Inheritance and Composition in the
ObjectMath Computer Algebra Environment1

Peter Fritzson, Vadim Engelson, Lars Viklund
Programming Environments Laboratory

Department of Computer and Information Science
Linköping University, S-581 83 Linköping,

 Sweden

Email: {petfr,vaden,larvi}@ida.liu.se
Phone: +46 13 281000, Fax: +46 13 282666

Abstract. ObjectMath is a high-level programming environment and modeling
language for scientific computing which supports variants and graphical browsing in
the environment and integrates object-oriented constructs such as classes and single
and multiple inheritance within a computer algebra language. In addition, composition
of objects using the part-of relation and support for solution of systems of equations
is provided. This environment is currently being used for industrial applications in
scientific computing. The ObjectMath environment is designed to handle realistic
problems. This is achieved by allowing the user to specify transformations and
simplifications of formulae in the model, in order to arrive at a representation which
is efficiently solvable. When necessary, equations can be transformed to C++ code for
efficient numerical solution. The re-use of equations through inheritance in general
reduces models by a factor of two to three, compared to a direct representation in the
Mathematica computer algebra language. Also, we found that multiple inheritance
from orthogonal classes facilitates re-use and maintenance of application models.

1 Background

The goal of the ObjectMath project is to develop a high-level programming environment
that enhances the program development process in scientific computing, initially applying
the environment to advanced machine element analysis (a machine element can loosely be
defined as “some important sub-structure of a machine”). There is a clear need for such tools
as the current state of the art in the area is still very low-level. Most scientific software is
still developed in FORTRAN the traditional way, manually translating mathematical
models into procedural code and spending much time on debugging and fixing convergence
problems. See [7] for a detailed discussion. The ObjectMath programming environment is
centered around the ObjectMath modeling language which combines object-oriented
constructs with computer algebra. In this paper we describe the ObjectMath language and

1. This paper appears in the Proceedings of DISCO’93 - International Symposium on the
Design and Implementation of Symbolic Computation Systems, Gmunden, Austria, Sept
1993, LNCS 722, Springer Verlag.

- 1 -

46

report experiences from using it for modeling and analyzing realistic machine element
analysis problems.

The current practice in mechanical analysis software modeling and implementation can
be described as follows: Theory development is usually done manually, using only pen and
paper. Equations are simplified and rewritten by hand to prepare for solution of relevant
properties. This includes a large number of coordinate transformations, which are laborious
and error prone. In order to perform numerical computations the mathematical model is
implemented in some programming language, most often FORTRAN. Existing numerical
subroutines might be used, but data-flow between routines must still be written by hand.
Tools such as finite element analysis (FEM) or multibody systems analysis programs can at
best be used for limited subproblems as the total computational problem usually is too
complex. The program development process is highly iterative. If correlation with
experiments is not achieved the theoretical model has to be refined, which subsequently
requires changes in the numerical program. Numerical convergence problems often arise,
since the problems usually are non-linear. Often as much as 50-75% of the total time of a
project is spent on writing and debugging FORTRAN programs.

The ideal tool for modeling and analysis in scientific computing should eliminate these
low-level problems and allow the designer to concentrate on the modeling aspects. Some of
the properties of a good programming environment for modeling and analysis in scientific
computing are:

• The user works at a high level of abstraction.

• Modeling is done using formulae and equations, with good structuring support (such as
object-oriented techniques).

• Support for symbolic computation is provided. One example is automatic symbolic
transformation between different coordinate systems.

• The environment should provide support for numerical analysis.

• The environment should support changes in the model. A new iteration in the
development cycle should be as painless as possible.

Symbolic computation capabilities provided by computer algebra systems [4] are
essential in a high-level programming environment for scientific computing. Some existing
computer algebra systems are Macsyma [15], Reduce [9], Maple [2], or Mathematica [18].
However, their support for structuring complex models is too weak.

In the following sections we describe the ObjectMath programming environment and
language, especially with respect to uses of inheritance, composition and variants. Finally,
we compare ObjectMath with related work and present conclusions.

2 The ObjectMath Programming Environment

The ObjectMath programming environment is designed to be easy to use for application
engineers, e.g. in mechanical analysis who are not computer scientists. It is interactive and
includes a graphical browser for viewing and editing inheritance hierarchies, an application
oriented editor for editing ObjectMath equations and formulae, the Mathematica computer
algebra system for symbolic computation, support for generation of numerical code from
equations, an interface for calling external functions, and a class library. The graphical
browser is used for viewing and editing ObjectMath inheritance hierarchies. ObjectMath

- 1 -

47

code is automatically translated into Mathematica code and symbolic computations can be
done interactively in Mathematica. Figure 1 shows the environment during a typical session.

Fig. 1. The ObjectMath programming environment in use. The displayed tree in the graphical browser
window shows the inheritance hierarchy of classes in the model, the text windows to the left show the
currently edited class definition and the Mathematica window for symbolic computations, whereas the
visualized object (Body1 in the window at upper right) is instantiated from a specialized Sphere class.

The programming environment currently runs on Sun workstations under the X window
system. Recently additional capabilities has been added to the environment, such as
multiple inheritance, composing objects of parts, variant handling of models and classes and
extended code generation support. This is described later in the paper. A description of the
implementation of an earlier version of ObjectMath can be found in [17]. Initial experience
from using an early version of ObjectMath is reported in [8].

3 The ObjectMath Language

ObjectMath is both a language and a programming environment. The current ObjectMath
language has recently been enhanced with features for multiple inheritance and modeling
part-of relations between objects. Both of these features has turned out to be important in
realistic application models. An early version of the ObjectMath language only supported
single inheritance [16].

The ObjectMath language is an hybrid modeling language, combining object-oriented
constructs with a language for symbolic computation. This makes ObjectMath a suitable
language for implementing complex mathematical models, such as those used in machine

- 1 -

48

element analysis. Formulae and equations can be written with a notation that closely
resembles conventional mathematics, while the use of object-oriented modeling makes it
possible to structure the model in a natural way.

We have chosen to use an existing computer algebra language, Mathematica, as a basis
for ObjectMath. Building an object-oriented layer on top of an existing language is not
ideal, but this decision was made to make it possible to quickly implement a stable prototype
that could be used to test the feasibility of our approach. The current ObjectMath language
is a prototype and we plan to redesign the whole language in the future, making it
independent of Mathematica.

Mathematica was chosen over other similar systems partly because it was already in use
by our industrial partner, and partly because of its excellent support for three-dimensional
graphics. The relationship between Mathematica and ObjectMath can be compared to that
between C and C++. The C++ programming language is basically the C language
augmented with classes and other object-oriented language constructs. In a similar way, the
ObjectMath language can be viewed as an object-oriented version of the Mathematica
language.

3.1 Object-Oriented Modeling

When working with a mathematical description that consists of hundreds of equations and
formulae, for instance one describing a complex machine element, it is highly advantageous
to structure the model. A natural way to do this is to model machine elements as objects.
Physical bodies, e.g. rolling elements in a bearing, are modeled as separate objects.
Properties of objects like these might include a surface description, a normal to the surface,
forces and moments on the body, and a volume. These objects might define operations such
as finding all contacts on the body, computing the forces on or the displacement of the body,
and plotting a three-dimensional picture of the body.

Abstract concepts can also be modeled as objects. Examples of such concepts are
coordinate systems and contacts between bodies. The coordinate system objects included in
the ObjectMath class library define methods for transforming points and vectors to other
coordinate systems. Equations and formulae describing the interaction between different
bodies are often the most complicated part of problems in machine element analysis. This
makes it practical to encapsulate these equations in separate contact objects. One advantage
of using contact objects is that we can substitute one mathematical contact model for
another simply by plugging in a different kind of contact object. The rest of the model
remains completely unchanged. When using such a model in practice, one often needs to
experiment with different contact models to find one which is exact enough for the intended
purpose, yet still as computationally efficient as possible. The ObjectMath class library
contains several different contact classes.

The use of inheritance facilitates reuse of equations and formulae. For example, a
cylindrical roller element can inherit basic properties and operations from an existing
general cylinder class, refining them or adding other properties and operations as necessary.
Inheritance may be viewed not only as a sharing mechanism, but also as a concept
specialization mechanism. This provides another powerful mechanism for structuring
complex models in a comprehensive way. Iteration cycles in the design process can be
simplified by the use of inheritance, as changes in one class affects all objects that inherits

- 1 -

49

from that class. Multiple inheritance facilitates the maintenance and construction of classes
which need to combine different orthogonal kinds of functionality.

The part-of relation is important for modeling objects which are composed of other
objects. This is very common in practice. For example, a car is composed of parts such as
wheels, motor, seats, brakes, etc. This modeling facility was missing from the first version
of ObjectMath, which caused substantial problems when applying the system to more
complicated applications. Note that the notions of composition of parts, and inheritance are
quite different and orthogonal concepts. Inheritance is used to model specialization
hierarchies, whereas composition is used to group parts within container objects while still
preserving the identity of the parts. Thus, composition has nothing to do with specialization.
Sometimes these concepts are confused; there have been attempts to use inheritance to
implement composition, usually with disastrous results for the model structure.

Object-oriented techniques make it practical to organize repositories of reusable
software components. The ObjectMath class library is one example of such a software
component repository. It contains general classes, for instance material property classes,
different contact classes and classes for modeling simple bodies such as cylinders and
spheres.

3.2 ObjectMath Classes and Instances

A CLASS declaration declares a class which can be used as a template when creating objects.
ObjectMath classes can be parameterized. The ObjectMath INSTANCE declaration is, in a
traditional sense both a declaration of class and a declaration of one object (instance) of this
class. This makes the declaration of classes with singleton instances compact.

An array containing a symbolic number of objects can be created from one INSTANCE
declaration by adding an index variable in brackets to the instance name. This allows for the
creation of large numbers of nearly identical objects, for example the rolling elements in a
rolling bearing. To represent differences between such objects, functions (methods) that are
dependent upon the array index of the instance can be used. The implementation makes it
possible to do computations with a symbolic number of elements in the array.

The bodies of ObjectMath CLASS and INSTANCE declarations contain formulae and
equations. Mathematica syntax is used for these. Note that the Mathematica context mark,‘,
denotes remote access, i.e. X‘y is the entity y of the object X.

There are some limitations in the current prototype implementation of the ObjectMath
language for ease of implementation. Most notable is that a mechanism for enforcing
encapsulation is missing. Encapsulation is desirable because it makes it easier to write
reusable software since the internal state of an object may only be accessed through a well
defined interface.

On the other hand, access to equations defined in different classes is necessary when
specifying computer-algebra related transformations, substitutions and simplifications.
Such symbolic operations on equations need to access the source representation of those
equations. Since transformations are specified manually and executed interactively,
equations should not be hidden from the user. Enforcing strict encapsulations of equations
is only possible in systems which do not allow manual manipulation of equations.

- 1 -

50

3.3 Single Inheritance Examples: Cylinders and Spheres

In this section we use some of the classes of physical objects from an ObjectMath model to
exemplify the ObjectMath language. In addition to classes describing bodies with different
geometry depicted in the inheritance hierarchy of Figure 2, there are additional classes
which describe interactions between bodies and coordinate systems. The full inheritance
hierarchy is displayed in the lower part of Figure 1 and the full class definitions are available
in Appendix A. Note that the inheritance hierarchy usually is edited graphically so that the
user does not have to write the class headers by hand.

Fig. 2. An inheritance hierarchy of classes for modeling bodies with different geometries such as
cylinders and spheres.

At the top of this inheritance sub-hierarchy is the class Body, which contains definitions
and functions common to all bodies. This includes the function r[S][u_,v_] which
describes the geometry of a body through a parametric surface; partial differentials of this
surface, a general formula for the volume of a body, a function for plotting 3D graphic
images of bodies, etc. This class has two parameters: S which is the name of the body-
centered coordinate system, and B which is the set of bodies this body is interacting with.
For example, when inherited down to Body1, the parametric surface function is instantiated
to r[C1][u_,v_] since C1 is the body-centered coordinated system of Body1.

CLASS Body(S, B)
(* Geometry defined through a parametric surface *)
 r[S][u_, v_];
 r[s_][u_, v_] := S`TransformPoint[r[S][u, v], s];
 ...
(* Partial differentials of surface *)
 ru[S][u_, v_] := D[r[S][u1, v1], u1] /. { u1 -> u, v1 -> v };
 rv[S][u_, v_] := D[r[S][u1, v1], v1] /. { u1 -> u, v1 -> v };
(* Volume of body *)
 V := 1/3 Integrate[r[S][u, v] . Cross[ru[S][u, v], rv[S][u, v]],

 {u, u[min], u[max]}, {v, v[min], v[max]}];
(* Graphic method for plotting bodies *)
 Graphic[s_] := ...
(* Forces and moments, equations for equilibrium, etc ...)
 ...
END Body;

The class Sphere contains a specialization of the parametric surface function to give the

Body

Ring

Body1

Sphere

Cylinder

Body2

- 1 -

51

special geometry of a sphere. Finally the class and instance Body1 instantiates a specific
sphere, which is in contact with the cylinder. It actually rests on top of the cylinder, exerting
a contact force on the cylinder, as is shown in Figure 3. The class Body is also specialized
as class Ring, which is further specialized as class Cylinder and instance Body2. The
definitions of these classes can be found in Appendix A.

CLASS Sphere(S, B) INHERITS Body(S, B)
 R; (* Radius *)
 ...
 u[min] := 0; u[max] := Pi; v[min] := 0; v[max] := 2 Pi;
 r[S][u_, v_] := R * { Sin[u]*Cos[v], Sin[u]*Sin[v], Cos[u] };
 ...
END Sphere;

INSTANCE Body1 INHERITS Sphere(C1, {Body2})
 Con[Body2] := Con12; (* Define contact from this body to Body2 *)
 rho; (* Density *)
 m := rho V; (* Mass *)
 (* External force from gravity *)
 F$[S1][Ext][1] := 0; F$[S1][Ext][2] := 0; F$[S1][Ext][3] := - g m;
END Body1;

Fig. 3. The sphere rests on top of the cylinder.

3.4 Examples of Multiple Inheritance

Multiple inheritance is useful when combining orthogonal concepts. This is exemplified in
Figure 2.

The filled lines denote single inheritance, whereas the dotted lines denote additional
inheritance, i.e. we have multiple inheritance. Since material properties and geometry are
orthogonal concepts there are no collisions between inherited definitions in this example.

- 1 -

52

Fig. 4. Multiple inheritance hierarchy of bodies of different materials and geometries.

If instead we are forced to use a single-inheritance hierarchy as in Figure 5, we are have
to repeat the equations describing material properties twice. This is bad model engineering
since it would force us to repeat any changes to the material model twice. Also, this
precludes the creation of pure material library classes which can be combined with other
classes.

Here, the material equations describing elasticity or plasticity have to be repeated twice.
This model structure is harder to maintain when changes are introduced into the model.

Fig. 5. Single inheritance version of the material-geometry model of Figure 2.

The general form of multiply inheriting class declarations follows below:

CLASS Child INHERITS Parent1,Parent2,... ParentN
 ...
END Child;

If there are conflicts between inherited definitions, e.g. if they have the same name,
definitions from Parent1 will override definitions from Parent2, which will override
definitions from Parent3, etc. The special case when only Parent1 is present
corresponds to single inheritance.

Material
Model

Visco-
Elastic

Elastic Plastic

Body

Sphere Cylinder

Elastic
Sphere

Plastic
Sphere

Plastic
Cylinder

Elastic
Cylinder

Body

Sphere Cylinder

Elastic
Sphere

Plastic
Sphere

Plastic
Cylinder

Elastic
Cylinder

- 1 -

53

Some example classes from the material-geometry model in Figure 2:

CLASS Sphere(S,B) INHERITS Body(S,B)
 R; (* Radius - a variable *)
 r[S][u_, v_] := R * { Sin[u]*Cos[v], Sin[u]*Sin[v], Cos[u] };

END Sphere;

CLASS Elastic INHERITS Material_Model
 Force := k1 * delta;
END Elastic;

CLASS Plastic INHERITS Material_Model
 Force := k2 * Limit /; delta > Limit;
 Force := k2 * delta /; delta <= Limit;
END Plastic;

CLASS Elastic_Sphere INHERITS Sphere, Elastic
 ...
END Elastic_Sphere;

Another useful case of multiple-inheritance is shown below, where an integration
method is inherited into classes from two separate inheritance hierarchies: a hierarchy of
contact classes containing integrated forces and moments between bodies, and classes
describing bodies themselves including integrated moments of inertia, mass and volumes.

Fig. 6. Example of multiple inheritance of a numerical integration method into two different classes.
Here to be used for integrating forces or volumes. One class contains contact equations; another

contains volumes, moments and equilibrium equations.

The entities inherited from class Integration_Method will typically be a
combination of entities such as procedural code, transformation rules (e.g. for symbolic
differentiation), etc.

3.5 Modeling Part-Of Relations

As mentioned previously, the part-of relation is important for modeling objects which are
composed of other objects, also noting that this concept is orthogonal to the concept of
inheritance which is used to represent specialization. For example, a bicycle contain parts

Integration
Method

Body

Contact_12

Cylinder
NonFriction

Contact

Body_1

General
Contact

- 1 -

54

such as wheels, frame, pedals, etc. A rolling bearing contain inner ring, outer ring, rolling
elements, lubrication fluid, etc.

The ObjectMath syntax for expressing composition using the part-of relation is
exemplified below for a Bicycle class:

CLASS Bicycle(C,P)
 ...

PART frontwheel INHERITS Wheel(P);
PART rearwheel INHERITS Wheel(P);
PART frame INHERITS Body;

 ...
END Bicycle;

Another example is a small section of a class from a rather advanced model of four-body
interaction developed by our industrial partner:

CLASS FourCylCurvSegBody(cBody, cmBody, cRef, cInert) INHERITS
 DynRigidBody(cBody, cmBody,cRef, cInert)
 ...

PART sRaceF INHERITS CylinderSeg(cBody);
PART sRaceB INHERITS CylinderSeg(cBody);
PART sSegL INHERITS CylinderSeg(cBody);
PART sSegR INHERITS CylinderSeg(cBody);

 ...
END FourCylCurvSegBody;

4 Variants of Classes

During the development of complex mathematical models there is often a need to explore
different variants of solution strategies and formulations of equations. One would like to
experiment with alternative ways of expressing equations and transformations within a
certain class and still keep the previous version of the class definition in the model. Each
new variant of a class can of course be tried out by creating an entirely new model where all
classes except one are identical compared to the previous model.

Fig. 7. The same example as in Figure 6 but with two available variants A and B. The currently active
variant of the model is B, which will select Variant B of Integration Method and the default of other

classes.

Integration
Method

Body

Contact_12

Cylinder
NonFriction

Contact

Body_1

General
Contact

Variant Variant
A B

Current Variant: B Available Variants: A, B

- 1 -

55

However, this solution is very undesirable from a software engineering point of view
since it leads to a proliferation of almost identical models. For example, if a class within one
model is modified, one will have to manually modify a large number of other, almost
similar, models. This is both error-prone and cumbersome. The updating problem can of
course be remedied by creating library modules which can be imported into models. The
library solution is often not desirable however, since it implies additional restructuring work
in creating libraries, especially if many classes are used only within a single model.

In order to provide a convenient solution to the variant problem we have introduced a
mechanism in the ObjectMath environment which allows several variants of classes within
a model.

The user specifies the names of all allowed variants within the model. For each class, it
is possible to have one or more variants of the class body labeled using some of the specified
variant names. There is also the notion of current variant of the model, which tells which
variant of a class body should be selected when several are available. The most common
case is that only one default unlabeled variant is available for a class, as is the case for all
classes except Integration_Method in Figure 7. Then the single variant should of
course be selected for inheritance or symbolic computations. If several variants are
available, but no one matches, the unlabeled default should be selected. If no unlabeled
variant is available the first one should be selected.

This mechanism is currently implemented as conditional inclusion of class-definitions
using C-preprocessor style directives as shown below. If VariantA is the currently active
model variant then the first definition of Force is selected; if VariantB is active then the
second definition is selected, otherwise the third. An alternative implementation instead of
the conditional inclusion mechanism would be the keep each variant separate. This has the
advantage of looking somewhat cleaner, but the disadvantage of creating problems to keep
the common parts of the variants consistent when the model is modified, which is why we
did not select this alternative.

CLASS Plastic INHERITS Material_Model
#ifdef VariantA
 Force := k2 * LimitA - 35
#elif VariantB
 Force := k3 * Limit +100
#elif 1
 Force := k2 * Limit
#endif
END Plastic;

In this way we obtain a graceful mechanism for variant handling which is not noticed when
it is not needed, and can be applied to a few classes of a model without disturbing the rest
of the model. It also eliminates the problem of proliferation of almost identical models. This
is similar to the notion of variants supported by NSE – the Network Software Environment
[3].

However, a shortcoming of this simple variant mechanism is that it only handles
variants of models when the variations are focussed to the contents of classes. It does not
cope with variations in the structure of models, i.e. the inheritance and composition
structure. This might be handled better by allowing models of different structure to be
defined as different configurations of class definitions imported from a class library, rather
extending the current variant mechanism.

- 1 -

56

5 Code Generation from ObjectMath

There is a clear need to be able to generate efficient numerical implementations from
ObjectMath models. The ObjectMath system provides two alternative mechanisms for code
generation. The first mechanism will translate a set of function definitions in ObjectMath
syntax to corresponding C++ code, either by translating the code in a function as it is, or
applying all available symbolic transformations producing a very large expression, which
then is optimized using common subexpression elimination and used.

The second mechanism makes it possible to include hand-written C++ functions in
ObjectMath classes as shown below. This is described in somewhat more detail in [16].

CLASS FindingContacts(B, Body1, Body2)
 INHERITS GeneralContacts(B, Body1, Body2)
 ...
 (* Declaration of a method written in C++ *)

EXTERNAL "C++" ppa[su1_, v1_];
 ...
END FindingContacts;

The first translation mechanism is now in regular use by our industrial partner SKF
Engineering & Research Centre to translate the computational parts of whole models (i.e.
not the parts which specify symbolic transformations) into C++ code. For example, a two-
body interaction model of approximately 150 kbytes of ObjectMath code was translated into
450 kbytes of Mathematica code, of which the computational part was translated into 440
kbyte of C++ code. Still, this C++ code is rather compact due to the use of overloading
matrix and vector operations on arithmetic operators such as “*” and “+”. The re-use due to
inheritance of ObjectMath classes and composition of parts makes the model approximately
a factor of three more compact than if it would have been represented directly in
Mathematica code.

The translator to C++ code is implemented in Mathematica. The whole translation
process for the twobody model takes approximately 2 hours on a Sun Sparcstation ELC (a
20 Mips workstation). Most of the time is spent on symbolic transformations and
simplifications, and on common subexpression elimination on the very large expressions
generated during the transformations. Separate procedures consisting of many small
statements are usually generated from such large expressions. To be able to generate
efficient type-correct C++ code and to resolve some ambiguities, it was necessary to add
type declarations of variables and functions to ObjectMath models.

Our aim is to eventually provide fully automatic translation of whole models. Currently,
the user has to write calls to explicitly invoke the translator on each ObjectMath function,
expression, or set of equations that should be translated into C++. In order to achieve this
goal, additional type and structure information in the form of declarations will have to be
added to models, as well as extending the capabilities of the translator itself.

6 Applications of ObjectMath

So far the ObjectMath environment has been tested and evaluated by modeling and
analyzing several different problems, two of which are briefly described here:

• A three-dimensional model describing a rolling bearing, see Figure 8.

- 1 -

57

• An advanced surface description model, used for rolling bearing analysis.

The rolling bearing example was designed to be used as a realistic but manageable test
case for the ObjectMath language and environment. It consists of over 200 equations and
can easily be extended, for instance with more realistic contact models. Fritzson et. al.
describes both the mathematical model [6] and the ObjectMath implementation [8]. Figure
8 shows a three-dimensional view of the bearing, automatically generated from equations
in the ObjectMath model.

The bearing consists of an inner ring, an outer ring, and a number of rolling elements in
between. Each of these correspond to an ObjectMath instance declaration, except for the
rolling elements, where the ObjectMath feature of declaring an array of instances is used.

The second implemented ObjectMath model mentioned here is being used in the
development of an advanced surface description model which is used to model the
interaction between bodies. If ObjectMath had not been available, this implementation
would have been developed by hand and coded in FORTRAN.

Fig. 8. A view of the example rolling bearing, automatically generated from an equational description.

7 Related Work

Object-oriented modeling has been used for a number of different application areas, and
mathematical modeling in general [13]. ObjectMath also has a lot in common with
conventional computer algebra systems (in particularly Mathematica). But, as mentioned in
the introduction, these systems usually lack capabilities that are important for advanced
scientific computing, most notably good structuring support, e.g. as provided by object
oriented notions.

There are other computer algebra systems which are to some extent based on object-
oriented concepts. One of the better known examples is AXIOM [11] and its predecessor
SCRATCHPAD [10] which have type systems which in some sense are object-oriented,
even though the language constructs provided are different from the ones usually found in
object-oriented languages. Another example is the TASSO system [12]. However, the
object-oriented notions supported by the ObjectMath language is primarily intended for
modeling in scientific computation, for instance in engineering applications. Most other
computer algebra systems employing object-oriented techniques focuses on using these
techniques for modeling mathematical objects, implementing algebraic algorithms etc.

- 1 -

58

Omola [1] is an object-oriented modeling language with single-inheritance, also
supporting composition. It is primarily designed as a simulation modeling language for
continuous time systems, especially in the application area of control engineering. It
contains no computer algebra support. A similar system, called ASCEND, is described by
Piela et. al. [14].

8 Conclusions

There is a strong need for efficient high-level structuring tools and languages in scientific
computing. We feel that the ObjectMath system is highly successful in satisfying part of this
need. Complex mathematical equations and functions can be expressed at a high level of
abstraction rather than as procedural code. ObjectMath integrates computer-algebra
language features with object-oriented notions such as multiple inheritance, classes, as well
as composition for modeling structured objects. Object-oriented notions allow better
structure of models and permit reuse of equations. Variant support permits convenient
incorporation of multiple solution strategies and different equational representations within
a single model. Our conclusion that these facilities are important is supported by the
successful modeling and analysis of several realistic applications.

9 Acknowledgments

Henrik Nilsson improved the english in this paper. Johan Herber has implemented the
Emacs support in ObjectMath. Joakim Malmén has done most of the implementation work
on the most recent version of the ObjectMath to C++ translator. Dag Fritzson has provided
mathematical expertise and developed the majority of the currently available ObjectMath
models. The ObjectMath parser is partly based on a Mathematica parser in Common Lisp
written by Richard Fateman [5].

This work is supported by The Swedish Board for Technical and Industrial
Development (NUTEK), in part under the Esprit project PREPARE. It is also supported in
part by SKF Engineering & Research Centre, Nieuwegein, The Netherlands.

10 References

[1] Mats Andersson. Omola – an object-oriented language for model representation.
Licentiate thesis, Department of Automatic Control, Lund Institute of Technology,
P.O. Box 118, S-221 00 Lund, Sweden, May 1990.

[2] Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, Benton L. Leong, Michael B.
Monagan, and Stephen M. Watt. Maple V Language Reference Manual. Springer-
Verlag, 1991.

[3] Willaim Courington, Jonathan Feiber, and Masahiro Honda. NSE highlights. In
Mark Hall and John Barry, editors, The Sun Technology Papers. Springer-Verlag,
1990.

[4] J.H. Davenport, Y. Siret, and E. Tournier. Computer Algebra – Systems and
Algorithms for Algebraic Computation. Academic Press, 1988.

- 1 -

59

[5] Richard J. Fateman. A Mathematica parser in Common Lisp. Personal
Communications. Computer Science Division, Dept. of Electrical Engineering and
Computer Science, University of California, Berkeley, California, 1991.

[6] Dag Fritzson and Peter Fritzson. Equational modeling of machine elements – applied
to rolling bearings. Technical Report LiTH-IDA-R-91-05, Department of Computer
and Information Science, Linköping University, S-581 83, Linköping, Sweden,
March 1991.

[7] Peter Fritzson and Dag Fritzson. The need for high-level programming support in
scientific computing applied to mechanical analysis. Computers & Structures,
45(2):387–395, 1992. Also as technical report LiTH-IDA-R-91-04,Department of
Computer and Information Science, Linköping University, S-581 83, Linköping,
Sweden.

[8] Peter Fritzson, Lars Viklund, Johan Herber, and Dag Fritzson. Industrial application
of object-oriented mathematical modeling and computer algebra in mechanical
analysis. In Georg Heeg, Boris Magnusson, and Bertrand Meyer, editors,
Technology of Object-Oriented Languages and Systems – TOOLS 7, pages 167–181.
Prentice Hall, 1992.

[9] A. C. Hearn. REDUCE-3 User’s Manual, version 3.3. The Rand Corporation, Santa
Monica, Califoria, USA, 1987. Publication CP78 (7/78).

[10] Richard D. Jenks. A primer: 11 keys to new SCRATCHPAD. In John Fitch, editor,
Proceedings of EUROSAM 84/International Symposium on Symbolic and Algebraic
Computation, July 1984.

[11] Richard D. Jenks and Robert S. Sutor. AXIOM – The Scientific Computation System.
Springer-Verlag, 1992.

[12] C. Limongelli, A. Minola, and M. Temperini. Design and implementation of
symbolic computation systems. In P. W. Gaffney and E. N. Houstis, editors,
Programming Environments for High-Level Scientific Problem Solving, pages 217–
226. North-Holland, 1992. Proceedings of the IFIP TC2/WG 2.5 Working
Conference on Programming Environments for High-Level Scientific Problem
Solving.

[13] Thomas W. Page, Jr., Steven E. Berson, William C. Cheng, and Richard R. Muntz.
An object-oriented modeling environment. In OOPSLA’89 Conference Proceedings,
pages 287–296, 1989.

[14] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg. ASCEND: An
object-oriented computer environment for modeling and analysis: The modeling
language. Computers & Chemical Engineering, 12(7):53–72, 1991.

[15] Symbolics Inc. MACSYMA Reference Guide, 1985.

[16] Lars Viklund and Peter Fritzson. An object-oriented language for symbolic
computation – applied to machine element analysis. In Paul S. Wang, editor,
Proceedings of the International Symposium on Symbolic and Algebraic
Computation, pages 397–405. ACM Press, 1992.

- 1 -

60

[17] Lars Viklund, Johan Herber, and Peter Fritzson. The implementation of ObjectMath
– a high-level programming environment for scientific computing. In Uwe Kastens
and Peter Pfahler, editors, Compiler Construction – 4th International Conference,
CC ’92, volume 641 of Lecture Notes in Computer Science, pages 312–318.
Springer-Verlag, 1992.

[18] Stephen Wolfram. Mathematica – A System for Doing Mathematics by Computer.
Addison-Wesley Publishing Company, second edition, 1991.

- 1 -

61

Appendix A. The bearing model expressed in the ObjectMath language

This appendix contains the full model SphereCylinder referred to earlier in this paper.

MODEL SphereCylinder;
PACKAGES "Vectors`", "Subst`", "Misc`", "Plot`";

g; (* Gravity constant *)

CLASS AbstractCoordinateSystem
...

END AbstractCoordinateSystem;

CLASS CoordinateSystem(Reference, A, R) INHERITS AbstractCoordinateSystem
...

END CoordinateSystem;

CLASS TranslatedCoordinateSystem(Reference, R) INHERITS
 ...
END TranslatedCoordinateSystem;

INSTANCE C1 INHERITS TranslatedCoordinateSystem(G, {0,0,d})
END C1;

CLASS RotatedCoordinateSystem(Reference, Phi) INHERITS ...
...

END RotatedCoordinateSystem;

INSTANCE C2 INHERITS RotatedCoordinateSystem(G, {Pi/2,0,0})
END C2;

CLASS GlobalCoordinateSystem INHERITS AbstractCoordinateSystem
 FromGlobal := {this};
END GlobalCoordinateSystem;

INSTANCE G INHERITS GlobalCoordinateSystem
END G;

CLASS Body(S, B)
 (* Surface *)
 u[min]; u[max]; v[min]; v[max]; (* virtual *)
 r[S][u_, v_]; (* virtual *)
 r[s_][u_, v_] := S`TransformPoint[r[S][u, v], s];

 (* Partial differentials of surface *)
 ru[S][u_, v_] := D[r[S][u1, v1], u1] /. { u1 -> u, v1 -> v };
 rv[S][u_, v_] := D[r[S][u1, v1], v1] /. { u1 -> u, v1 -> v };

 (* Normal of surface *)
 n[S][u_, v_] := Cross[ru[S][u, v], rv[S][u, v]] /

 AbsVector[Cross[ru[S][u, v], rv[S][u, v]]];
 n[s_][u_, v_] := S`TransformVector[n[S][u, v], s];

 (* Volume of body *)
 V := 1/3 Integrate[r[S][u, v] . Cross[ru[S][u, v], rv[S][u, v]],

 {u, u[min], u[max]}, {v, v[min], v[max]}];

 (* Plot the body *)
 u[step] := 0.2; v[step] := 0.2;
 Graphic[s_] := Block[{expr = r[s][u1, v1]},

 Graphics3D[MakePolygons[Table[N[expr],
{u1, u[min], u[max], u[step]},
{v1, v[min], v[max], v[step]}]]]];

 (* Coordinate system to solve equilibrium in *)
 S1 := S; (* May be overridden in subclasses *)

 (* Contact objects *)

- 1 -

62

 Con[b_]; (* virtual *)

 (* Forces and moments *)
 F[S1][b_] := Array[F$[S1][b], 3];
 F[s_][b_] := AccessMember[S1, "TransformVector"][F[S1][b], s];
 M[S1][b_] := Array[M$[S1][b], 3];
 M[s_][b_] := AccessMember[S1, "TransformVector"][M[S1][b], s];

 (* External loading *)
 F[S1][Ext] := Array[F$[S1][Ext], 3];
 M[S1][Ext] := Array[M$[S1][Ext], 3];
 p[S1][Ext] := {0, 0, 0};

 (* Equilibrium *)
 Eq[1] := Plus @@ F[S1] /@ B + F[S1][Ext] == {0, 0, 0};
 Eq[2] := Plus @@ (M[S1][#] + Cross[AccessMember[AccessMember[#, "Con"]

[this], "p"][S1], F[S1][#]] &) /@ B + M[S1][Ext] + Cross[p[S1][Ext],
 F[S1][Ext]]== {0, 0, 0};
END Body;

CLASS Ring(S, B) INHERITS Body(S, B)
 (* Variables *)
 Rb; (* Inner radius *)
 Ra; (* Outer radius *)
 L; (* Width *)

 (* Definition of parametric surface *)
 u[min] := 0; u[max] := 4; v[min] := 0; v[max] := 2 Pi;

 x1[u_] := Rb + (Ra - Rb) u;
 x2[u_] := Ra;
 x3[u_] := Rb + (Ra - Rb) (3 - u);
 x4[u_] := Rb;

 x[u_] := x1[u] /; 0 <= u < 1;
 x[u_] := x2[u] /; 1 <= u < 2;
 x[u_] := x3[u] /; 2 <= u < 3;
 x[u_] := x4[u] /; 3 <= u <= 4;

 z1[u_] := 1 / 2 L;
 z2[u_] := -L (u - 3 / 2);
 z3[u_] := - 1 / 2 L;
 z4[u_] := L (u - 7 / 2);

 z[u_] := z1[u] /; 0 <= u < 1;
 z[u_] := z2[u] /; 1 <= u < 2;
 z[u_] := z3[u] /; 2 <= u < 3;
 z[u_] := z4[u] /; 3 <= u <= 4;

 (* The is the complete rotation surface *)
 r[S][u_, v_] := { x[u] Cos[v], x[u] Sin[v], z[u] };

 (* Partial differentials of surface *)
 Dx[u_] := x1'[u] /; 0 <= u < 1;
 Dx[u_] := x2'[u] /; 1 <= u < 2;
 Dx[u_] := x3'[u] /; 2 <= u < 3;
 Dx[u_] := x4'[u] /; 3 <= u <= 4;

 Dz[u_] := z1'[u] /; 0 <= u < 1;
 Dz[u_] := z2'[u] /; 1 <= u < 2;
 Dz[u_] := z3'[u] /; 2 <= u < 3;
 Dz[u_] := z4'[u] /; 3 <= u <= 4;

 x' := Dx; z' := Dz;
 u[step] := 1; v[step] := Pi/15; u[steps] := 4; v[steps] := 31;
END Ring;

CLASS Cylinder(S, B) INHERITS Ring(S, B)
 Rb := 0; u[max] := 3;
END Cylinder;

- 1 -

63

INSTANCE Body2 INHERITS Cylinder(C2, {Body1})
 Con[Body1] := Con12;
END Body2;

CLASS Sphere(S, B) INHERITS Body(S, B)
 (* Variables *)
 R; (* Radius *)
 (* Definition of parametric surface *)
 u[min] := 0; u[max] := Pi;
 v[min] := 0; v[max] := 2 Pi;
 r[S][u_, v_] := R { Sin[u] Cos[v], Sin[u] Sin[v], Cos[u] };
 u[step] := Pi/15; v[step] := Pi/15; u[steps] := 16; v[steps] := 31;
END Sphere;

INSTANCE Body1 INHERITS Sphere(C1, {Body2})
 Con[Body2] := Con12;
 rho; (* Density *)
 m := rho V; (* Mass *)
 (* External force from gravity *)
 F$[S1][Ext][1] := 0; F$[S1][Ext][2] := 0; F$[S1][Ext][3] := - g m;
 (* No external moment *)
 M[S1][Ext] := {0, 0, 0};
END Body1;

CLASS GeneralContact(S, Body1, Body2)
 (* Variables: *)
 delta; u[Body1]; v[Body1]; u[Body2]; v[Body2];
 (* The contact point: *)
 p[S] := Body1`r[S][u[Body1], v[Body1]] + 1/2 delta Body1`n[S][u[Body1],
v[Body1]];
 p[s_] := S`TransformPoint[p[S], s];
 (* Equations *)
 Eq[1] := Body1`n[S][u[Body1], v[Body1]] + Body2`n[S][u[Body2], v[Body2]]
 == { 0, 0, 0 };
 Eq[2] := delta Body1`n[S][u[Body1], v[Body1]] ==

 Body2`r[S][u[Body2], v[Body2]] - Body1`r[S][u[Body1], v[Body1]];
 Eq[3] := Body1`F[S][Body2] + Body2`F[S][Body1] == { 0, 0, 0 };
 Eq[4] := Body1`M[S][Body2] + Body2`M[S][Body1] == { 0, 0, 0 };
END GeneralContact;

CLASS NonFrictionContact(B, Body1, Body2) INHERITS GeneralContact(B, Body1,
Body2)
 k[delta_]; (* The contact stiffness function *)
 (* Equations: *)
 Eq[10] := Body1`F[S][Body2] == k[delta] Body1`n[S][u[Body1], v[Body1]];
 Eq[11] := Body1`M[S][Body2] == { 0, 0, 0 };
END NonFrictionContact;

CLASS LinearContact(B, Body1, Body2) INHERITS NonFrictionContact(B, Body1,
Body2)
 k[delta_] := Cstiff[delta] delta - 1;
 Cstiff[delta_] := Csoft /; delta > 0;
 Cstiff[delta_] := Chard /; delta <= 0;
END LinearContact;

INSTANCE Con12 INHERITS LinearContact(C1, Body1, Body2)
END Con12;

INSTANCE Solving
 SetPlotdata := (Body1`R := 1; Body2`Ra := 1; Body2`L := 0.6;

 C1`d := Body1`R + Body2`Ra;
);

 ClearPlotdata := (Clear[Body2`Ra, Body2`L, Body1`R, C2`d];);
 Force := Flatten[Solve[{ Body1`Eq[1], Body2`Eq[1], Con12`Eq[3],

 g!=0, Body1`rho!=0, Body1`R!=0 },
 Body2`F[C2][Ext],
 { Body2`F$[C2][Body1][2], Body1`F$[C1][Body2][3] }]];

END Solving;

64

Paper 2

65

66

ObjectMath Inheritance and
Composition Diagram Editor

Abstract

ObjectMath is a new object-oriented modeling language for scientific computing.
The major innovation of this language is the introduction of object-oriented struc-
ture into a computer algebra language making it possible to group equations and
formulae into classes. ObjectMath contains three object-oriented structuring con-
structs (class, instance and part) providing classes, single and multiple inheritance
and composition of parts. Typical models in ObjectMath include between 10 and
30 such constructs. Inheritance and composition relationships are established be-
tween them. The problem is how to inspect, browse, and modify these relations in a
convenient way. Our solution to this problem is using a graphical two-dimensional
diagram editor connected to a text editor. An integrated programming environment
for ObjectMath includes this editor. The report describes how object-oriented con-
structs of ObjectMath are mapped to their graphical representation. The Object-
Math syntax rules are mapped to diagram editor operations so that only syntacti-
cally correct models can be created.

1 Introduction

ObjectMath is a mathematical modeling language and an integrated environment
for programming in this language [1]. This language combines computer algebra
capabilities available in Mathematica[2] with object oriented constructs. One of
the reasons to introduce object-orientation into Mathematica is to facilitate reuse
of functions and expressions. Knowledge about abstract and real world objects and
their numerical properties can be expressed in variables, functions and equations.
However, in order to reuse them, these variables and equations should be encapsu-
lated into classes, which in turn can be gathered into reusable class libraries.

The use of inheritance facilitates reuse of equations and formulae. It appears
that in the case of ObjectMath, like in many other object-oriented languages, an
application might include many levels of inheritance. In addition, some classes are
composed of objects which instantiate other classes. Multiple inheritance allows
constructing classes from other classes combining different orthogonal kinds of
functionality.

Typical ObjectMath models contain from 10 to 30 classes and instances. It
is hard to get an overview of the whole system without graphical presentation of
relations between classes and instances. This is the reason why a graphical editor
is necessary. Initially an class diagram editor was developed for ObjectMath 3.0 by
Lars Viklund and Rickard Westman. Figure 1 of [1] (paper 1 in this thesis) shows
this graphical editor in use. This editor was able to display directed graphs without

67

loops only and therefore could not be used for multiple inheritance and for part-of
relations between classes. We developed a new editor for ObjectMath, version 4.0,
in 1993.

Figure 1: The ObjectMath environment consisting of a diagram editor window, a
program text window and the start window.

This report contains:

� formal definition of the syntactic rules for relations between object-oriented
constructs in ObjectMath;

� definition of a mapping between models in ObjectMath and class relation-
ship (i.e. inheritance and composition) diagrams;

68

� definition of operations on relationships between object oriented constructs
that can be performed by the user;

� definition and implementation of the above mentioned mapping and opera-
tions in a graphical class diagram editor.

2 Syntactic Rules of ObjectMath and Mapping between
Textual and Graphical Representation

In this section we give an example of textual representation of an ObjectMath
model. There are grammar rules (context-free and context-dependent) defining
the ObjectMath syntax (Section 3).

The graphical representation has been designed in order to reflect the structure
of ObjectMath models written according to the rules. In Section 4 we introduce
the ObjectMath graphical notation and explain the mapping of syntax rules into
operations of the diagram editor.

3 The Textual Syntax of ObjectMath

We consider an ObjectMath model of a bicycle consisting of two wheels (front
and rear) and five tubes (cylinders). Currently we ignore all class variables and all
equations since they do not affect graphical user interface and are not shown in the
diagram. The ellipsis (...) mark the places where variable declarations, functions
and equations can be inserted.

The Figure 2 contains an ObjectMath model of a bicycle in textual notation.

model abc;
...

class Body ... end;
class Material ... end;
class Metal inherits Material ... end;
class Plastic(b,b) inherits Material ... end;
class Sphere inherits Body ... end;
class Cylinder inherits Body ... end;
class Wheel inherits Cylinder, Metal ... end;
class Bicycle inherits Body

part tube[five] inherits Cylinder;
part front inherits Wheel(t);
part rear inherits Wheel;
...

end;
instance bike inherits Bicycle ... end;

Figure 2: An ObjectMath example (bicycle model) in textual notation.

69

To explain the components of the ObjectMath textual representation further we
describe the syntax of ObjectMath using extended BNF notation. The following
syntactic meta symbols are used in this description:

� [] – optional grammar elements.

� f g – grammar elements repeat zero or more times.

� | – alternative elements.

� Keywords are written in bold face.

This description (Figure 3) contains 11 formal rules of the ObjectMath gram-
mar, and 5 rules in natural language defining context dependencies. There are many
more rules which specify how variables and equations are written in ObjectMath.
These rules are ignored here since they do not affect graphical user interface and
are not shown in the diagram.

Rule 8 should be explained in more detail using mathematical notation.
Assume that a graph consists of k nodes fn1; :::; nkg and m directed edges

f(n11 ! n12); :::; (nm1
! nm2

)g. A directed loop is a sequence of edges ((nj1 !
nj2); (nj2 ! nj3); :::; (njp ! nj1)), where p > 0. In Rule 8 we represent all
classes, parts and instances as nodes. An edge (na ! nb) exists if nb inherits class
na or nb contains na. The rule states that if an ObjectMath model is correct there
should be no directed loops in the graph.

4 Graphical Representation of ObjectMath Models

We suggest a notation for ObjectMath diagrams, shown in Figure 4. The exam-
ple in textual notation (Figure 2) corresponds to the diagram depicted in Figure
1. This notation is sufficient for static (non-changeable) graphical representation.
However, in order to work with such diagrams in an interactive environment a
mapping between syntactical rules and operation of the editor should be designed.

The practice of development of interactive environments for diagram editing
suggests that there can be three different strategies defining how the syntactic rules
are enforced:

Violation impossible: All manipulations with a diagram that can lead to erro-
neous diagrams are not available in the tool.

Permanent check: The tool includes a special feature for checking diagram cor-
rectness at any time during editing. All editing operations that lead to incor-
rect diagram are canceled, and therefore cannot be applied.

Commit check: The tool checks correctness when editing of a diagram is finished
and the diagram is saved or exported. Some rules might be violated unless
the diagram is used by some other tool, e.g. a compiler.

All three these types of rules occur in the ObjectMath diagram editor.

70

1 program ::= model model-name ";"
equations

f definition g
2 definition ::= (class class-name formal-parameter-list

| instance instance-name [array-definition])
inheritance
f part-definition g
equations
end ";"

3 Rule: class-names and instance-names are unique within
the model.
4 part-definition ::= part part-name [array-definition]

inheritance ";"
5 Rule: part-names are unique within the container,

i.e. with the class or instance definition.
6 inheritance ::= [inherits

class-name actual-parameter-list
f "," class-name actual-parameter-listg]

7 Rule: Inherited class name should be defined somewhere else
in the hierarchy. This class is called a superclass.

8 Rule: If inheritance and composition relations are
represented as directed edges of a graph they cannot
form loops (i.e. directed loops)

9 Rule: number of actual class parameters in the inherits
clause matches the number of formal class parameters in the
class definition.

10 array-definition ::= "[" name "]"
11 actual-parameter-list ::= name f"," nameg
12 formal-parameter-list ::= name f"," nameg
13 class-name ::= name
14 instance-name ::= name
15 part-name ::= name
16 equations ::= ...
A name is an arbitrary identifier.

Figure 3: The grammar and syntax rules of the ObjectMath textual notation.

4.1 The ”Violation Impossible” Rules

The violation of the following rules (the rule numbers refer to Figure 3) is not
possible in the ObjectMath graphical notation used in the diagram editor:

Rule 1: The diagram consists of icons. The order of the definitions does not affect
ObjectMath semantics. Therefore the icons can be placed in any order.

Rules 2 and 10: there are class and instance icons; there is an instance array icon.

Rule 4 and 10: there are part icons placed within a class or instance icon. There
is a part array icon (same as the instance array icon).

Rule 6: Relations between icons are shown as connection lines. Some lines have
arrow heads. The order in which classes are inherited (in case of multiple in-
heritance) affects the semantics. In the case of conflicts between definitions

71

array of parts or instances

part with name part

class with name

instance with name

Global container

inheritance (sequence no. 2)

class

instance

array

inheritance (sequence no. 1)

inheritance (sequence no. 3)

Figure 4: Graphical notation for ObjectMath class diagrams. The inheritance re-
lations are numbered because the order of classes in case of multiple inheritance
affects the program semantics. The container for global objects (Global container)
is used for two purposes. First it contains global variables, functions and equa-
tions which do not belong to any particular instance. Second, the icon of Global
container is connected to all classes and instances that have no superclasses.

inherited via two different superclasses, the definitions inherited via the first
inheritance override the definitions inherited via the second inheritance re-
lations. A line without arrows is used for single (or the first) inheritance
relation. The direction of this relation is not shown in the diagram, but it
is obvious in most cases. A line with n arrows is used for the (n + 1)-th
inheritance relation.

Rule 7: All connection lines represent inheritance relations and such lines must
go from some icon to a superclass icon.

Rules 13, 14, 15: The names are shown in the icons.

4.2 Permanently Checked Rules

The operation of the editor includes some checks which enforce the following
rules:

Rules 3, 5: Names cannot be repeated in the diagram. Each time a new class,
instance, or part is created (or renamed), its name is checked.

Rule 8: No directed loops can be created when diagrams are modified. This rule
cannot be easily enforced by graphical notation. Non-directed loops are al-
lowed since multiple inheritance exists. Directed loops are not allowed since

72

inheritance cannot form a loop1.

Rules 11, 12: The parameters are not shown in the graphical notation. However,
when an icon or a connection line is created or selected for editing, the pa-
rameters are displayed in the dialog window.

Before each diagram modification that can potentially lead to violation of rule 8,
the new model is checked and the modification is not allowed if the rule is violated.
Rules 3, 5, 11, 12 are checked each time the corresponding icon or connection is
created or modified. If these rules are violated, the operation is canceled.

4.3 Rules Checked when an Editor Session is Finished

The following rule is checked each time the model is read, saved or sent for com-
pilation:

Rule 9: Comparison of number of actual and formal parameters passed at inheri-
tance. The semantics of class parameter passing in ObjectMath is explained
in [1], Section 3.3.

This rule is violated, for instance in the case of the part front (see Figure 2).
The inherits clause contains the class Wheel with one parameter. The num-
ber of the parameter names can be changed if the line representing an inheritance
relation is selected and the relation is edited. The class Wheel, however, has zero
parameters. This can be changed when the class Wheel icon is selected and its
parameters are modified. These two places (class Wheel properties and the prop-
erties of inheritance relation between Wheel and front) can be edited by the
user independently and in arbitrary order. Therefore the violation of this rule can-
not be forbidden. Instead, when the model is read, saved, or sent for compilation,
a message about this error appears.

5 Operations of ObjectMath diagram editor

The operations that can be performed with the diagram editor are presented in
Figure 5.

The major operations that affect the diagram are adding, deleting and moving
objects.

5.1 Adding Objects and Relations

If the currently selected object is a class, then another class (a subclass), or an
instance (of this class) can be created. An inheritance relation is established. Also,
a part can be added to this class.

1One way to obey this rule in the graphical interface is to guarantee that all the icons with inheri-
tance relations should be placed so that the inherited class is located above a subclass or an instance.
Editing diagrams using such editor is, however, quite difficult and is not convenient.

73

Model −>
Compile

Rename ...

Save
Reread

Close

Objects −>

(selected icon)

Rename ...

Delete

Edit ...

Move

Show

Collapse

Connections −>

Add ...

(selected icon)

Delete

(selected line)

Edit ...

(selected line)

Special −>

Top−down / Left−rightShow part inheritance

MENU BAR
Add −>

Class ...

Part ...

Instance ...

Figure 5: Menu choices of the ObjectMath class diagram editor. The alternatives
leading to new dialogs are marked with ellipsis (...)

If the currently selected object is an instance, a part can be added to this in-
stance.

When a class is created, its formal parameters must be specified. When an
instance, a part or a class is created the actual parameters are specified.

To create a new inheritance relation the user selects a subclass or a part, chooses
the corresponding menu item, and then selects the parent class.

These operations allow construction of an arbitrary syntactically correct class
relationship diagram from the empty diagram.

5.2 Deleting objects

If a class is deleted, all descendants of the class are deleted, too.
When the last left inheritance relation to the superclass is deleted, the subclass

is moved to the top level of the hierarchy (i.e. becomes attached to the Global
container).

When a class or an instance is deleted all its components are deleted, too.
This way an empty diagram (i.e. a diagram with a single Global container

icon) can be created from an arbitrary diagram.

5.3 Moving Objects

A class or an instance can be moved. First the icon of a class or an instance is
selected, then the menu item is chosen, and finally a new parent class is selected.

74

Also a part can be moved. First the icon of a part is selected, then the menu
item is chosen, and finally a new container class is selected.

5.4 Other Operations

There are several other operations in the editor:

Edit A class, instance, part, or connection can be selected and its attributes (pa-
rameters, inheritance number, array index) can be edited.

Rename Classes, instances and parts can be renamed.

Show Classes and instances have textual part (i.e. variables, functions, equations)
can be displayed in the text editor and modified there.

Collapse When a class is collapsed all its descendants are temporarily hidden.

5.5 Completeness and Correctness

The operations mentioned above have two important properties:

Completeness: For any two syntactically valid class relationship diagrams A and
B there exist a sequence of operations that transforms A to B.

This can be done in many different ways, for instance:

� all nodes of A can first be deleted;

� only the Global container is left;

� all the class nodes of diagram B can be added in order from the top
classes to the bottom classes of the inheritance hierarchy;

� all instances are added;

� all parts are added;

� all additional inheritance relations in case of multiple inheritance are
added.

Correctness: If a sequence of editing operations is applied to a syntactically cor-
rect diagram, the resulting diagram will be correct.

This is performed by checking the diagrams for violation of the rules as
described in section 2.

6 Layout

Each diagram editor should have facility for automatic layout of the icons in a
diagram. In this section we discuss the layout of a directed acyclic graph. The

75

C1
C2

P

C3

G1

G2

D1 D2D3

Figure 6: Layout algorithm for directed acyclic graphs

ObjectMath diagram is not acyclic, but it has an acyclic subgraph. We also discuss
how users modify the default layout.

The editor uses an automatic layout algorithm for acyclic directed graphs. In
this algorithm the root of the tree is placed at the middle on the top border of the
diagram window. The area reserved for the parent node (P in Figure 6) has the
same width as the sum of all the widths of the child nodes (C1, C2, C3) and the
gaps of width G1 between those. The child nodes are placed below the parent node
at a distance of G2 from each other. The parent node is placed in the middle of the
space above the child nodes so that D1=D2.

The lines from the parent node P to the child nodes start at evenly spread points
(the width D3 is divided by 4).

The graph of relations in ObjectMath diagrams is not acyclic since multiple
inheritance may occur and since parts inherit some classes. In the diagram (see
Figure 1) a cycle consisting of six nodes (Global Container, Body, Cylinder,
Wheel, Metal, Material) occurs. For layout computation we find an acyclic
subgraph. For each class or instance the algorithm chooses the deepest superclass.
Only this inheritance relation is chosen. The depth of the class is the depth of its
deepest superclass plus one. The depth of the Global container is zero. The acyclic
subgraph contains all the nodes of the original diagram, but not all connections are
included.

When the layout of nodes for an acyclic graph is computed, all the connec-
tions of the diagram are placed between the nodes. The inheritance almost always
corresponds to connectors placed in top-down direction.

The default layout can be used as a convenient starting point for the user to
modify. Any node can be shifted, together (or without) its descendants. The dis-
placement between the default and modified node position is stored in a file (as
comments) and this information is preserved from one editing session to the next.

76

7 Conclusions

Given a grammar for textual representation of class relationships and syntax rules
we have developed a mapping from textual to graphical, representation. A more
complicated task has been to design rules for diagram editing consistent with the
syntactic rules. Three types of rules were identified, and they are explained in the
report. A well designed mapping will have most rules belonging to the first group
that does not require additional checks during the operation of the diagram editor.
The rules of the second group may lead to difficulties for the user. The rules of the
third group make difficulties both for the user and for the integrated environment
(e.g. the diagram cannot be saved unless the errors are fixed).

Based on this mapping, a class diagram editor with facilities for multiple inher-
itance and composition relationship was developed. These two features differ this
editor from a number of tree diagram editors which are used traditionally. A simple
but efficient and user-friendly automatic diagram layout facility is implemented in
the editor.

References

[1] Peter Fritzson, Vadim Engelson, Lars Viklund. Variant Handling, Inheritance
and Composition in the ObjectMath Computer Algebra Environment, In Pro-
ceedings of the Conference on Design and Implementation of Symbolic Com-
putation Systems (DISCO 93), vol. 722 of Lecture Notes in Computer Science,
pp. 145–160. Springer-Verlag, 1993.

[2] Mathematica, Wolfram Research Inc., http://www.wolfram.com

77

78

Paper 3

79

80

Automatic generation of user interfaces from data
structure specifications and object-oriented

application models

Vadim Engelson, Dag Fritzson� and Peter Fritzsony

Abstract

Applications in scientific computing operate with data of complex struc-
ture and graphical tools for data editing, browsing and visualization are nec-
essary.

Most approaches to generating user interfaces provide some interactive
layout facility together with a specialized language for describing user inter-
action. Realistic automated generation approaches are largely lacking, espe-
cially for applications in the area of scientific computing.

This paper presents two approaches to automatically generating user in-
terfaces (that include forms, pull-down menus and pop-up windows) from
specifications.

The first is a semi-automatic approach that uses information from object-
oriented mathematical models, together with a set of predefined elementary
types and manually supplied layout and grouping information. This system
is currently in industrial use. A disadvantage is that some manual changes
need to be made after each update of the model.

Within the second approach we have designed a tool, PDGen (Persistence
and Display Generator), that automatically creates a graphical user interface
and persistence routines from the declarations of data structures used in the
application (e.g., C++ class declarations). This largely eliminates the manual
update problem. The attributes of the generated graphical user interface can
be altered.

Now structuring and grouping information is automatically extracted from
the object-oriented mathematical model and transferred to PDGen.

This is one of very few existing practical systems for automatically gener-
ating user interfaces from type declarations and related object-oriented struc-
ture information.

Published in Proceedings of European Conference on Object-Oriented Pro-
gramming (ECOOP96), Linz, Austria, 8-12 July 1996, Pierre Cointe (ed.); Lecture
Notes in Computer Science, vol. 1098, Springer-Verlag, pp. 114-141, ISSN 0302-
9743, ISBN 3-540-61439-7

�SKF ERC B.V., Postbus 2350, 3430 DT Nieuwegein, The Netherlands, adsdtf@skferc.nl
yDept. of Computing and Information Science, Linköping University, S-58183, Linköping, Swe-

den, fvaden,petfrg@ida.liu.se

81

1 Introduction

Almost all applications include some kind of user interface. Graphical user in-
terfaces (GUI) provide the opportunity to control an application’s execution, to
modify the input data and to inspect the results of computations.

Application programs have different data structures. Each application domain
puts special requirements on visual presentation of data. Therefore, graphical in-
terfaces are traditionally designed individually for each application.

The following properties are expected from applications with graphical user
interfaces:

� The data must be presented to the user in a well-structured way. The graph-
ical user interface should be consistent with the computational part of the
application (for example, elements of the graphical user interface for data
input should correspond to components of the application data).

� The user interface should satisfy style guidelines, conventions and standards.
The compromise between large amounts of information and limited screen
space can be achieved if the graphical user interface allows the user to choose
only interesting information and ignore all else.

� The user interface software should be portable and not be dependent on a
specific operating system or compiler.

� Entered data should be persistent: it should be possible to store entered data
outside the program memory and reload it again later.

For realistic applications the design and implementation of a graphical user
interface often become rather laborious, expensive and error-prone. Currently
available toolkits are very powerful. Unfortunately, they are also very complicated
and not user-friendly enough. In order to obtain some result the programmer of-
ten has to take too many implementation details into account. The high cost
of implementing user interfaces can be partly reduced by the use of user interface
generation tools. Such tools usually include a WYSIWYG layout definition tool
that helps the programmer to design the layout of windows, menus, buttons and
other user interface items. The graphical user interface code is generated automat-
ically.

However, every time the application code is updated or the layout is changed,
the interface code between them has to be updated manually.

1.1 User interface generation based on data declarations

In this paper we propose a different approach, based on the automated generation
of user interfaces from data structure information. As a preliminary we present
some terminology.

82

Data structures in traditional languages (such as Pascal or C) are described by
variable and type declarations. In object-oriented languages (e.g. C++) data struc-
tures are defined using classes, objects and relations (inheritance, part-of) between
objects.

The structure of a graphical user interface can be described in terms of graph-
ical elements such as windows, menus, dialog boxes, frames, text editing boxes,
help texts, etc., and layouts that define how these elements are placed on the screen.

In which context is the interface used ? The main purpose of a graphical user
interface is to let the user inspect and modify some data. The input data can be
edited by a stand-alone graphical tool, saved in file and then loaded by the com-
puting application. The output data can be saved by the application and inspected
by a separate tool. The application may suspend computations, initiate a graphical
interface in order to allow data editing, and then resume the computations again.
We consider graphical interfaces that can be used in all these cases.

The data has some structure and it is used to control the application functional-
ity. Therefore the structure of the graphical user interface should be similar to the
structure of the application data.

Typically there is an implicit or explicit correspondence between the structure
of a program and the structure of data. On the other hand, there is a correspondence
between the structure of the interface and data structures of the program. This
means that the way the programmer perceives the structure of the implementation
is close enough to the way the end-user perceives the structure of the application
area.

The basic idea of our approach is to generate the graphical user interface au-
tomatically from the application data structures.

The similarity between the data structures and the structure of the graphical
user interface is characteristic for a wide spectrum of applications, including sim-
ulation tools and information systems.

Data persistence is a generic property that includes saving data structures on
permanent storage such as a file system and being able to restore this data next time
the application is executed. To implement persistence, we need routines that can
save or load all the application data (or some part of the data). Such persistence
routines can be generated automatically from the application data structures.

Automatic support for data persistence as well as generation of graphical user
interfaces will allow designers to concentrate on the main goals of the applications
rather than on mundane tasks such as implementing a graphical user interface and
input/output.

We applied the method of generating user interfaces from data structure decla-
rations to two object-oriented languages: ObjectMath (an object-oriented extension
of Mathematica [Wolfram91]) and C++.

In Section 1.1 we have discussed some reasons and motivation for the design
of a user interface generator according to these principles.

The rest of the paper is organized as follows:
First we describe relevant features of ObjectMath, an environment for scientific

83

computing (Section 2.1) and consider a semi-automatic approach to the creation
of user interfaces from application data structures, which has also been tested in
industrial applications. A new automatic graphical user interface generation
approach is based on our PDGen tool (Section 3) that automatically generates
persistence and graphical user interface code from given data-type declarations.
This tool is applied to ObjectMath models.

In Section 4 we describe how the PDGen tool can be applied to ObjectMath
models.

Section 5 discusses related work on persistence and display generation and we
conclude with proposals for future work. More details can be found in [PDGen96,
E96].

2 The Semi-automatic GUI Generating System

2.1 The ObjectMath Environment

Applications in scientific computing are often characterized by heavy numerical
computations, as well as large amounts of numerical data for input and output.

The data often have a complicated structure including objects with fields of
various types, vectors and multidimensional arrays. This structure often changes
during the course of program design.

An important application area in scientific computing is the simulation of var-
ious mechanical, chemical and electrical systems. These applications can be de-
scribed by mathematical models of the physical systems to be simulated. Addi-
tionally, routines for numerical solution systems of equations are needed, as well
as routines for input/output and routines and tools for user interfaces.

The process of manually translating mathematical models to numerical simu-
lation programs in C or Fortran is both time-consuming and error prone. There-
fore, a high-level programming environment for scientific computing, ObjectMath
[Fritzson95, Viklund95, Fritzson93], has been developed that supports the semi-
automatic generation of application code from object-oriented mathematical mod-
els.

The ObjectMath programming environment has been applied to realistic prob-
lems in mechanical analysis. ObjectMath class libraries describing coordinate
transformations and contact forces have been developed. They are used for math-
ematical modeling of rolling bearings by our industrial partner, SKF Engineering
and Research Center.

In ObjectMath formulae and equations can be written in notation that is very
similar to conventional mathematics. The ObjectMath language is an object-oriented
extension of the Mathematica computer algebra language, in a similar way as C++
is an extension to C.

The ObjectMath language includes object-oriented structuring facilities such
as classes, instances, single and multiple inheritance (for reuse), and the part-of
relation (to compose new classes from existing ones).

84

2.2 The simulation environment for ObjectMath models

First, an ObjectMath model is specified with the help of a class relationship ed-
itor and class text editor. The ObjectMath code generator generates parallel or
sequential programs for systems of equations expressed in ObjectMath. Typically
a system of ordinary differential equations is considered.

The generated code is linked with model-independent run-time libraries. The
executable code requires a large number of input values (such as start values, limi-
tations, model geometry and conditions, solver parameters) in order to start a sim-
ulation.

The input data editor is designed for input data inspection and update. It has
a window-based graphical interface for ObjectMath variable editing and can load
and save a file with variable values. In this paper we present two graphical
user interface generation systems that can create an input data editor from model
specifications. The first system is described here, the second in Section 4.

The simulation program reads the data prepared by the input data editor and
computes a large amount of output data for every simulated time step.

This data can be explored with the help of an output data browser. This
browser can create graphs that illustrate how the variables change during the sim-
ulation.

The animation tool reads the output data step by step and shows the model
geometry in motion.

2.3 An ObjectMath example: a Bike model

In this section we present an ObjectMath model example, a mechanical model of
a bicycle (Fig. 1) in order to explain the relations between classes and instances in
ObjectMath1.

Every model specification consists of classes and instances. The textual part of
classes and instances contain variable declarations, formulae and equations. This is
the way the formulae and equations related to the same phenomenon are grouped.
Classes and instances inherit variables, formulae and equations from one or several
(multiple inheritance) classes. The classes serve as templates for instances.

The class Bicycle in Fig. 1 inherits all variables, equations and formu-
lae from the class Body. The instance bike inherits everything from the class
Bicycle. An instance or a class can also contain its own variable declarations
and formulae. Every instance is created statically and its variables (both its own
and inherited ones) can be referenced in formulae and equations of other classes
and instances.

A Bicycle consists of three parts in this model: the frontwheel, the rear
wheel and the frame consisting of several tubes. The number of tubes is equal
to the value of some variable, in our example it is framesize (this is not shown
in the diagram).

1We discuss the constructs relevant for graphical user interface generation only.

85

Material

Sphere Cylinder PlasticMetal

Wheel

front

rear

multiple
inheritance

part-of relation

tube

Bicycle

class

instancebike

Body

array

Figure 1: An ObjectMath class diagram for a bike model. Arrows denote single
or multiple inheritance. The bike instance contains the parts tube (array of
tubes), front and rear, which inherit from the classes Cylinder and Wheel,
respectively. Such diagrams are editable with a graphical class relationship editor.

2.4 Variables and built-in data types

Let us assume that there are several ObjectMath variables2 declared in the class
definitions:

In Body: Declare [angle, "doubleVec3", "rad", uII]
In Cylinder:Declare [radius, "double", "m", uII]
In Wheel: Declare [pressure, "double", "H/mˆ2",uII]
In Bicycle:Declare [framesize," int", "-", uII]

In the general form variable name, type, physical unit and persistence status
are specified:

Declare[name, type-name, "unit",(uIIjuOOjuL)].

Types. In ObjectMath there is a fixed set of twenty primitive data types that can
be used for variables in the model. Some of the types have complex structure and
may contain up to 100 double precision real numbers, integers and strings.

A variable of type double has a double precision floating value. The type
doubleVec3 is a 3-element vector of double.

Units. A string such as "H/mˆ2" contains the name of the physical unit of the
value this variable represents. This unit name is used as part of the prompting
information for the relevant input field in the input data editor that is generated
from the declarations above.

2This declaration syntax is for ObjectMath version 3.0. The latest version 4.0, fall 1995, has a
different declaration syntax.

86

Persistence status. The variable declarations provide the persistence informa-
tion: whether a variable should be initialized by the input data editor, should be
output and stored as a computed result, or is simply a local variable for intermedi-
ate results.

Here uII means “to input from the input file”, uOO means “to output to the
output file”, and uL means “local variable, neither input, nor output”.

From this information a window with text input boxes (Fig. 2) is generated.
The variable instance identifier, text input area for value editing and “units” are
shown for each variable component.

2.5 Generation of input data editor

The basic idea of this approach is that part of the code necessary for graphical
user interface creation is automatically generated from ObjectMath variable decla-
rations. Then the layout information is manually inserted into this code.

In order to create the input data editor we have to create the hierarchy of win-
dows and variables; this hierarchy is created half-automatically and combines dis-
play routines provided that create widgets for every ObjectMath variable type.

When model specification code is analyzed, the names of variables such as
angle, radius and pressure, are converted to unique names (within the
model) by adding prefixes (part and object names). This is the list of all the vari-
ables available in this model, where the notation name[n] denotes an array with n
elements:

bike‘front‘radius
bike‘front‘pressure
bike‘front‘angle
bike‘rear‘radius
bike‘rear‘angle
bike‘rear‘pressure
bike‘tube‘radius[bike‘framesize]
bike‘tube‘angle[bike‘framesize]
bike‘framesize

A specially designed filter reads the model specification and generates a comma-
separated list of function calls:

var double array("bike‘tube‘radius","m"),
var doubleVec3 array("bike‘tube‘angle","rad"),
var double("bike‘front‘radius","m"),
... ...
The calls of var ...() functions above register the variables as members of

the list of relevant variables and return a frame handle which is used for construct-
ing corresponding windows. The rest of the code needed in order to display these

87

variables in a separate window (see Fig. 2) is inserted manually (manual part is
shown in italic font):

make dialog(
layout vertical(

layout horizontal(
layout vertical(
var double("bike‘front‘radius","m"),
var doubleVec3("bike‘front‘angle","rad"),
var double("bike‘front‘pressure","H/mˆ2")),

layout vertical(
var double("bike‘rear‘radius","m"),
var doubleVec3("bike‘rear‘angle","rad"),
var double("bike‘rear‘pressure","H/mˆ2"))

)
layout frame(

layout vertical(
var int("framesize","-"),
array(”framesize”,

layout vertical(
var doubleVec3 array("bike‘tube‘angle","rad"),
var double array("bike‘tube‘radius","m")

))))));

Figure 2: Example of variable display in the input data editor.

2.6 Presentation of arrays.

Two variables (bike‘tube‘angle and bike‘tube‘radius) represented in
the example (see Fig. 2) are arrays of doubleVec3 and double. They have the

88

same length; therefore they may be grouped together. These arrays share common
control buttons (Vert, Hor, Copy to all etc.) in the upper part of their frame.
(It is also possible to build displays where every array has a separate control panel.)

As shown in Fig. 2 only one element (currently the 2nd element) of each array
is visible, as indicated by the label “2” in the upper left corner. This is the compact
presentation of the array. The buttons with the triangles (“Up” and “Down”) switch
the current element to the previous or the next, respectively. Then the label may
change to “3” (“Up”) or “1” (“Down”). The button “Copy to all” copies all
the values from the visible element of the arrays to all other elements.

The buttons “Vert” and “Hor” change the presentation of the array: they
spread its elements vertically or horizontally, respectively. Then the button
“Collapse” appears that changes the presentation back to compact form.

2.7 Frame hierarchy definition functions

Every application window contains a hierarchy of frames. Each frame is a rectan-
gular area that contains graphical user interface elements (widgets) such as labels,
text input boxes, buttons, as well as compositions of other frames in the vertical
or horizontal direction. A number of functions are needed in order to specify this
hierarchy of frames:

� The function make dialog(frame) specifies the top frame of the window.

� The function frame=layout vertical(frame1,frame2,...,framen)
specifies that the frames frame1; frame2; :::; framen are allocated in a
vertical direction.

� The function layout horizontal allocates them in the horizontal di-
rection.

� The function frame=array("bound-variable", frame1) specifies that
length of all arrays within frame1 is equal to the current value of the vari-
able bound-variable and they are controlled all together by the buttons in the
upper part of the frame. The control buttons for array variables can change
the index of the currently displayed element (see Figure 2).

There are several functions for additional help texts and decorations.

� The function frame=layout frame(frame1) draws a rectangle around
frame1;

� The function frame=layout label("text") specifies a label containing
the text string.

The description this hierarchy is stored as a tree. When necessary, the tree is
traversed, relevant Motif API functions are invoked, and the windows are displayed
on the screen.

89

2.8 Description of variables

For every displayed variable a function for a corresponding data type should be
called. These calls are automatically generated from the list of model variables.
There is a separate function for each data type used in the ObjectMath language:
var double, var int, var doubleVec3 and all others (totally, twenty) Ob-
jectMath basic data types.

For example, frame=var double("bike‘front‘radius","m") spec-
ifies that a text input box is constructed for the variable bike‘front‘radius
of type double and that the physical unit is "m".

Every such call registers a variable and arranges for the value of this variable to
be displayed at an appropriate place in the layout. For every type a certain specific
layout has been designed and hard-coded. For example, for the type doubleVec3
(a structure with three double values) the layout is three vertically aligned text input
boxes. Arbitrary double values can be entered here. For integer,double and
string variables the layout is a single input box with the variable name to the left
and the unit to the right (see Fig. 2). Arbitrary integer, double and string
expressions can be entered into the input boxes respectively. .

Persistence. When the button Save is pressed, the persistence function is called
and all the registered variables are written to the input data file. When the button
Load is pressed all the variables in the list receive their values from the input
data file. Both the input data editor and the application program should register the
variables with the same name and type.

2.9 Evaluation of the first generation system

If the ObjectMath model changes, the graphical user interface programmer has two
ways to solve the update problem. If many changes are introduced, the graphical
user interface code should be generated again and the programmer has to insert the
layout functions manually. If the changes are small and local (such as renaming
some variables), the variable registration function calls (var ...(...)) should
be manually updated.

The first generation system described so far in this paper has several disadvan-
tages:

The update problem. If the model is changed, the new code that is automatically
generated from the variable list must be manually merged with the layout descrip-
tion. Every small change in the list of variables from the ObjectMath model may
lead to inconsistency between the generated application and the input data editor.
Therefore the inherent flexibility of the ObjectMath environment cannot be used to
full advantage.

90

Insufficiency of the basic type set. Only a limited number of basic data types
are supported. These data types are either primitive ones or are specially designed
for a particular application domain. There is no way to specify other types than
these and there are no new type declaration constructs. The persistence routines
and the layout routines are designed for the fixed set of types only.

Variable grouping. There is no automatic graphical user interface generation for
distributing variables between different windows. Moreover, there is no automatic
generation of the menu structure. However the structure of the model (i.e. the
names of classes, objects and parts) can be used for this purpose.

Practical application of the system has also shown its positive features.
The first generation system has proved quite effective in producing practical

user interfaces for specialized application domains such as bearing simulation. Re-
cently SKF ERC researchers used the system to produce user interfaces for 6 new
variants of similar bearing models requiring only 3-4 days of work. The difference
between the variable sets in these models were rather limited and all the adjust-
ments of the graphical interface for the input data editor were done manually.

3 The Persistence and Display Generating tool (PDGen)

The basic idea of PDGen is that display layout for every data item exactly corre-
sponds (by default) to the type structure of this item.

Through the display for a given variable the user can inspect and update all
the data items that can be reached from the variable by recursively traversing its
structure. In the same way, the persistence routines save and load all the data items
that can be reached from a given variable by recursively traversing its structure.

Traversing all of a complex data structure is a non-trivial task if we want to
provide this automatically. Special complications arise in languages with pointers
and dynamic data structures. Code necessary for this purpose can be automatically
generated from data type declarations of the variables we are going to traverse.

We primarily orient PDGen to handling C++ data types. This tool can analyze
almost any C++ data type and class declarations and add graphical user interface
and persistence routines to an arbitrary C++ program. The manual efforts neces-
sary for this are minimal.

The creation of the PDGen tool has been inspired by the PGen (see Section
5.1) approach from which we cite Walter Tichy et al.:

The class and type declarations can be used to generate browsers and
editors. For instance, a class variable can be presented as a dialog box
that contains sub-windows for all members to be inspected or edited.
Pointers could be drawn as arrows to other variables. [...] The
browsers and editors could be used to inspect or modify persistent

91

data on files. More importantly, they could become the default graph-
ical interfaces for all applications. The difference with other interface
construction tools is that they require absolutely no programming. De-
buggers are another application area. [Tichy94]

In Section 3.1 a graphical user interface generation example is given and in
Section 3.2 display generation for every C++ data type is presented . In Section
3.4 we discuss window display issues; the generation process is analyzed step by
step in Section 3.5 and the use of the generated code is discussed in Sections 3.6
and 3.7.

The tool is based on the C++ language (Section 5.3) and the Tcl/Tk toolkit
[Ou94].

3.1 Example of graphical user interface generation

Let us consider some type declarations that can appear in a header file (see Fig.
3(a)) of some application.

The PDGen tool analyzes these data type declarations, recognizes the C++
class hierarchy, and generates necessary code for creation of a graphical interface.
If the application calls the function show(bike) (see Fig. 3(b)) then the dialog
window shown in Fig. 3(c) appears on the screen. The specification of physical
units (rad, H/mˆ2, m) is performed with the help of an attribute specification
script (see Section 3.10).

All the data items that belong to bike are shown and they are available for
editing. This example illustrates the display for classes, arrays and elementary
data items of types int and double.

The array tube is shown at the bottom part of the window. The user can press
the buttons "+" and "-" in order to change the index of the currently displayed
element of the array bike.tube. In the window shown in the picture the index
is equal to 2, i.e. bike.tube[2] is displayed.

3.2 Graphical presentation of variables

Every window may contain one or several variables. The graphical presentation of
every variable depends on its type and it is combined from graphical presentations
of its components.

Types char, char* and char[n]. The types char* and char[n] are typ-
ically used for 0-terminated strings. A text input box is constructed for such vari-
ables and the string can be edited. Scrolling of the text is always provided so that
character strings longer than the text box can be inspected and edited.

The display for variables of type char is similar to char[1].

92

class Bicycle

 { Wheel front, rear;

 int framesize;

 Cylinder tube[8]; }

class Wheel: public Cylinder

 { double pressure; }

class Cylinder: public Body

 { doubleVec3 angle; }

class Body

int main(){

Bicycle bike;
... load(bike, "in.dat");
... show(bike);
... save(bike, "out.dat");}

class DoubleVec3

 { double X,Y,Z; }

 { double radius; }

(a)

(b) (c)

Figure 3: (a) Data type declarations. (b) Function call. (c) The window for editing
the variable bike.

Types integer, float and double. Variables of these types are displayed
as text editing boxes (see Fig. 3(c)). Only numbers or expressions (consisting
of numbers and arithmetical operations) can be entered. The range of permitted
values can be specified (see Section 3.10).

Structures and classes. These are represented as horizontal or vertical3 combi-
nations of the components. The names of the data members of a structure or class
are used as labels that appear to the left of corresponding components (see Fig.
3(c)).

Pointers. In our initial approach a pointer variable is represented by the refer-
enced variable if the address is not NULL. There is a button Delete that deallo-
cates the memory and sets the pointer to NULL. If the address is NULL, then there
is a New button that creates a new variable in the dynamic memory, initializes it if
it is an object and sets the correct value for the pointer variable.

3In order to choose between horizontal and vertical combinations we use some heuristics. For
example, we choose one that makes the resulting frame more similar to a square i.e. the ratio between
the height and the width of the frame is closer to 1. With the help of customization options this default
layout can be altered.

93

Let us specify the class Tree:

class Tree
{ Tree * right;

int elem;
Tree * left;

};

10

5

3 20

Figure 4: The window for editing the pointer structure of type Tree* and memory
diagram of this structure.

A variable of class Tree is displayed as a structure with three components
(right, elem and left). We can also display a variable that contains a pointer
to Tree. A variable of type Tree* is visualized as shown in Fig. 4.

This is a simple and quite straightforward approach if we are not concerned
about the cases when two or more pointers refer to the same address.

In the alternative representation every dynamically allocated object (that has
two or more references) is shown as a separate sub-window and arrows are drawn
from the pointers to these objects in order to indicate the references.

Enumeration. The enumerations are represented as a group of radio buttons (or,
as an alternative, as a pop-up menu). Enumerator names are written beside the
buttons and only one of them may be selected at a time.

An object of class Foo is shown in Fig. 5(a).

enum weekday
{ Mon, Tue, Wed, Thu, Fri, Sat, Sun} ;
enum colors
{ Red, Orange, Yellow, Green, Blue, DarkBlue, Violet};

94

class Foo
{ weekday Days;
colors Colors;};

(a) (b)

Figure 5: The windows for editing variable with (a) enumerators and (b) arrays.

One-dimensional array. Fig. 5(b) shows how an object of class Foo is visual-
ized.

class Foo
{ double start [7];
double end[7];

};

The elements of Foo::start are shown in the complete presentation, i.e.
all of them are available for browsing. In the compact presentation of the array
Foo::end only one element (currently it is the element end[3]) is shown at
a time. By using the buttons + and - we can increase or decrease the index of
the currently visible element. The button Max switches the display to the complete
presentation; the Min button changes the display back to the compact presentation.

An array of dimension larger than one is represented as a combination of one-
dimensional arrays. This is not very convenient for browsing. A special browser
[FWHSS96] has been designed for two-dimensional arrays. We are working on an
universal array browser for an unlimited number of dimensions.

A special interface is provided for dynamically allocated arrays. These can
grow and shrink dynamically. For this purpose the buttons Insert (insert new
element after the current one) and Remove (remove the current element) are added
above the presentation of the array values. This option has some limitations and
requires some additions in the description of data structures: the dynamic array (A)
must belong to some class and an additional integer variable (A length) should
store its length:

95

class Test
{ Element * array_foo;

int array_foo_length; }

3.3 PDGen restrictions

There are some restrictions in the PDGen system that are partly caused by the
restrictions of the PGen tool.

� References, constants, bit fields, unions, pointers to functions, pointers to
members, void* pointers are skipped and ignored, because they cannot be
persistent or are compiler-dependent, or there is no sense in keeping them
persistent.

� Virtual base classes are supported for persistence only.

� Pointers to memory inside an object are supported for persistence only.

3.4 Hiding and detaching windows

The number of data items that can be displayed on the screen simultaneously is
limited. Normally we cannot show a hierarchical layout of more than approxi-
mately one hundred text editing fields. We propose a window handling scheme
where every displayed data item can be in three states (see Fig. 6):

� hidden: only a button with the data item identifier is shown in its default
place;

� normal: the data item is displayed as usual in its default place;

� detached: the button with data item identifier is shown in its default place;
the item is shown in a separate (top-level) window.

Figure 6: The variables front, rear and tube are hidden in the window for
editing the variable bike.

Switching between normal, hidden and detached state is performed by the
mouse buttons. In each case the user has to click on the name of the item.

96

The default status is “hidden” for all non-elementary data elements and “nor-
mal” for elementary ones. The user can specify the default status with the help of
attributes discussed in Section 3.10.

The buttons have the same function as pull-down menu items. The end-user
has complete control over the information layout on the screen and there is no
problem with the windows occupying all the display space. This way the user
can hide unnecessary information and select interesting data for display in separate
windows. Since the buttons have almost the same behaviour as pull-down menus,
this approach is rather close to graphical user interface standards and conventions.

3.5 Data type analysis and code generation.

This section discusses the generation process in detail, phase by phase.
The stages of graphical user interface generation are shown in Fig 7.
The PDGen tool reuses some ideas and essential code fragments from the PGen

tool [Tichy94, PGen94, Paulisch90].

Application with GUI
and persistence

linked

code
Interface

(pd.h)

for GUI and
persistence

Type

(pd.cc, pd.tcl)

table
initialization

data flow
linking

PLib

Persistence
library

Graphical libraries:
DisplayLib, Tk/Tcl

 library

Type
tableScannerCPP Parser

Code
generator

Type
information
collection

definitions
(header file)

Type

code

Main application

Exception list

Figure 7: Phases of graphical user interface generation from C++ code and gen-
eration results.

The basic source of the graphical user interface generation is a file with data
type declarations. In C++ applications it involves one (or several) header files.

Parsing. The file is preprocessed by the standard C preprocessor cpp and ana-
lyzed by the C++ scanner and parser.

Together with the PGen analyzer (see Section 5.1) we reuse the C++ grammar
parser with semantic actions for syntax tree construction.

The syntax tree contains nodes of different kinds and references between them.
The collection phase traverses all the nodes describing typedef,enum,struct
and class declarations and produces the data-type table.

97

The syntax tree contains all the syntactical elements that appear in the input file.
For our purposes we use typedef,enum,struct and class declarations only.
In the class declarations we are interested in data members and constructors only.

Data type table. This table contains the names of all types, the names and types
of class data members, inheritance information, the element type and the length
of arrays, as well as information on elementary data types.

The analyzer assigns a unique type number (used for references); the numbers
are assigned in increasing order: the first few numbers are reserved for fundamental
types such as int and double.

The exception list. This list is optional and helps to prevent inclusion of unnec-
essary classes and data members to the type table.

Generation. The generation phase creates type information and overloaded ac-
cess routines. All the generated code belongs to the class PD (Persistence and
Display) defined in the header file pd.h , with member functions defined in the
file pd.cc

Generation of data type information. The PDGen code generator writes to
pd.cc a code fragment that initializes the data type table.

For the example given above (Fig. 3(a)) a fragment of relevant code is:

initSimpleType(3,"int",sizeof(int));
....
initClassType(33,"Wheel",sizeof(Wheel),0);
initBaseClass(33,32,0, "Cylinder");
initMember(33,12,offsetof(Wheel,pressure), "pressure");

initClassType(34,"Bicycle",sizeof(Bicycle),0);
initMember(34,33,offsetof(Bicycle,front), "front");
initMember(34,33,offsetof(Bicycle,rear), "rear");
initMember(34, 3,offsetof(Bicycle,framesize),"framesize");
initMember(34,35,offsetof(Bicycle,tube), "tube");

initArrayType(35,"Cylinder[8]",sizeof(Cylinder[8]),0,8);

The standard C macro offsetof(Bicycle,rear) calculates the offset
(position) of data member rear within objects of class Bicycle4.

This code fragment is later compiled and linked with the application. When
the application starts, the data type table is initialized. This table is available
to the persistence and display routines at the run time. When the data are saved,

4This approach is more portable and safe than to sum up the sizes of every data member.

98

loaded, or shown, appropriate routines use this table in order to recursively traverse
the data structures.

Generation of overloaded access routines. For every data type or class T that
is defined in the header file the appropriate instances of the overloaded functions
PD::show(T&p), PD::load(T&p),PD::store(T&p) are constructed.

These functions can take the variable of type T as an argument.

3.6 Input and output procedures

When the functions load and store are called, a variable of the corresponding
data type is passed as a parameter.

The function load reads the variable value from the file and restores it in the
memory. The function store saves the value on disk.

These functions traverse the application data that can be reached from the
passed argument variable by recursively following data members, including pointer
references. Every step of this process is controlled by the data type table. When
data items of an elementary type are reached, the functions load/store the data in
some format (textual or binary); see Section 3.8 where formats are discussed.

When the data is loaded, memory is dynamically allocated if a pointer variable
is visited and its value is not NULL. When memory is allocated for class instances,
the class constructor is called without parameters. It is assumed that every class
has a constructor without parameters.

3.7 Data display procedure

The function show activated from the application program displays the required
variable.

For data display we have designed a universal data browser which can show
and edit the data when the data-type table is given. We use the Tcl/Tk graphical
library [Ou94]. First, the C++ variables are associated with Tcl variables.
It produces the following effect: if a Tcl variable changes, the C++ data change
automatically. If a Tcl variable value is requested, then it is taken from the C++
variable.

We recursively traverse all data members, including pointer references. The
algorithm that builds the window as a hierarchy of frames recursively traverses
Tcl variables with the help of the data type table (Tcl script pd.tcl) which is
generated automatically.

When some value is updated by the user, the corresponding Tcl and C++
variables are automatically updated; when it is updated by the application, its text
presentation is changed, too.

If necessary (i.e. when the New button is pressed in the display of a pointer
variable), memory is allocated and a class instance is initialized by the constructor.

99

3.8 Data storage formats

Complex data items are traversed recursively when loaded or stored. The original
PLib library includes load and store routines for two machine-independent
formats, ASCII and XDR [SUN90]. XDR is a data representation format used in
remote procedure call. These formats are not self-describing formats, i.e., there is
no possibility of discovering mismatches between the loaded data and the program
data structures.

In the PDGen tool we extend this format by simply adding the type table in-
formation. When the store procedure writes some data, it also writes the type
table. When the load procedure reads data from file, it also reads the type table
and verifies that it is identical to the original one (for all data types that actually
appear in the loaded file).

Difficulties can arise if old data are loaded by a program with new data struc-
ture. In our approach some basic data scheme correction is provided. If the old
data contain classes with permuted order of data members, the correction works
automatically. Extra members in the old data are ignored, the missing ones are not
initialized. Finally, the user can explicitly specify the old and the new name for
renamed class data members and renamed class names in the exception list.

3.9 Universal browser design

Since the data table is stored together with data (i.e. in a self-describing data for-
mat), a stand-alone universal browser can easily be designed. This is one of direc-
tions of our future work.

This browser automatically adapts the interface to the structure of loaded data.
It works independently on underlying C++ data type declaration files and can
browse and edit a file with arbitrary data structures if it is prepared by the PDGen
persistence routines or by the universal browser.

It should be noted that there will be limitations for dynamic memory alloca-
tion during editing, because the C++ code (where necessary constructors without
parameters are defined) is not available to the universal browser.

A semi-universal browser may contain some application-specific C++ classes
and adapt itself to data structures constructed from these classes and elementary
types.

3.10 Attributes

Attributes are used for additional control over class instances, type components
and single data items in such cases when we want to alter the default behaviour of
the PDGen tool when traversing the data elements.

The attribute information is orthogonal to the type structure declaration. There-
fore it should normally be described outside the code containing the data types.

The graphical user interface designer (or generator) writes the attributes in a
separate script file (the attribute definition file) which can be unspecified until the

100

application program starts. It allows altering many preference settings and options
without recompilation and even during the runtime.

Each attribute specification has syntax:
set attr f component1, component2, ... g f attribute1, attribute2, ... g
Component is specified as path or Class-name::path where the path has the

same syntax as C++ qualified names. This means that the data members are se-
lected with dot (.), and array elements are specified in square brackets [index].

The use of patterns and regular expressions (within quotation marks " ") is
allowed instead of standard C++ path syntax. In this case the attribute specification
applies to all paths that match the pattern.

The attributes are specified as attribute=value.

Example: The attribute specification script

set_attr { Bicycle::front.pressure
Bicycle::rear.pressure }

{ postfix = "H/mˆ2" }

states that for these variables the postfix (area normally used for physical units)
should have the value H/mˆ2. The script is checked for correctness of the syntax;
e.g. the system verifies that pressure is defined as a member of the class Wheel.

The same effect can be achieved by specifying a pattern:

set_attrp { "*pressure" } { postfix="H/mˆ2" }

The complete attribute specification necessary for the window in the Fig. 3(c)
is:

set_attrp { "*angle" } { postfix = "rad" }
set_attrp { "*radius*" } { postfix = "m" }
set_attrp { "*pressure*" } { postfix = "H/mˆ2" }

Several other available attributes are mentioned here:

� validate specifies a Tcl function that will be called each time when the
input text area is altered.

� hidden specifies how and whether the item value is shown at the beginning.
It can be shown, hidden or detached (Section 3.4).

� load and save specify whether the value is loaded from disk file and saved.
By default it is both loaded and saved. required specifies that the user
must enter some value; read-only specifies that the user cannot update it.

� layout specifies whether the array or structure should be displayed in
vertical or horizontal layout. By default a heuristic is applied.

101

� Finally, hook gives the designer “free hands”; it specifies a Tk/Tcl function
that is responsible for complete graphical representation of the value. A Tcl
variable name with the value and Tk window name is given. The function is
written by the designer and it has to create a window with the given name.

4 Automatic Generation of GUI from ObjectMath Mod-
els

The basic idea behind the second generation system is to generate all components
of the graphical user interface from the application model, and to avoid manual
editing when the model is updated and the user interface code is re-generated.

Class converter

C++ data type
definitions ❉

❉GUI code for the
ObjectMath model

PDGen

code

data flow

process

❉
✍

automatically generated
written manually

❉Attribute
specification

C++ classes for
ObjectMath

variables

ObjectMath model ✍

 GUI
for ObjectMath
variable editing

Figure 8: Second generation graphical user interface generating system.

The phases of the generation process are depicted in Fig. 8. First the Object-
Math model is analyzed by the class converter. All the data necessary for the class
converter are contained in the class hierarchy diagram and the ObjectMath variable
declarations. The class converter translates the ObjectMath class hierarchy to the
relevant C++ class hierarchy.

The ObjectMath variables can be of twenty different predefined types which
are implemented as C++ classes. For example, the ObjectMath type DoubleVec3
(contains three double precision real numbers and can serve as operand in various
ObjectMath arithmetic expressions) corresponds (in the simulation code) to the
C++ class DoubleVec3. The data members of these C++ classes can represent
the corresponding ObjectMath variables in the graphical interface. For example,
the class DoubleVec3 is defined as

class DoubleVec3
{ double X,Y,Z; // data members
.... // member functions,

102

// friend functions etc.
}

and the DoubleVec3 type in ObjectMath can be presented in a graphical user
interface as three text input boxes marked with X, Y and Z.

The C++ class hierarchy (generated from the model) and C++ classes (that
correspond to ObjectMath variable data types) are merged together and passed as
the input for the PDGen tool. This tool generates code for a graphical user interface
for the corresponding ObjectMath model.

Attribute specifications are necessary for the application with graphical inter-
face at run-time. They contain some information absent in the C++ class declara-
tions, such as physical units and persistence status. These attribute specifications
are generated separately for the members of every class by the class converter.

4.1 Translation of an ObjectMath model to a C++ class hierarchy

Every single ObjectMath class gives rise to a C++ class. The ObjectMath inheri-
tance means that all variables are inherited by the subclass. The same happens in
the C++ class inheritance.

ObjectMath instances correspond to C++ classes, too. Such ObjectMath in-
stances inherit all variables and formulae from the superclasses and, in addition,
they may declare their own variables. ObjectMath parts serve for aggregation
of class instantiations. They cannot specify their own variables. The parts can be
modeled by C++ class data members.

ObjectMath variables become C++ data members.
The ObjectMath model (as a whole) corresponds to a single C++ class that

includes one data member for every instance in the model.

4.2 Translation example

For the purpose of illustration we take our basic example (Fig. 1), a bicycle model.
When the conversion described above is applied, the C++ type declarations shown
in Fig. 3(a) are generated.

The attribute information is generated from the parameters in Declare state-
ments. The attribute information is created according to the syntax rules described
in the Section 3.10:

set_attr {Body::angle } {postfix="rad"}
set_attr {Cylinder::radius } {postfix="m"}
set_attr {Wheel::pressure } {postfix="H/mˆ2"}
set_attr {Bicycle::framesize} {postfix="int"}

The graphical interface generated for this example is identical to Fig. 3(c).

103

4.3 Advantages of the second generation approach.

The new approach successfully solves the problems arising in the first generation
approach (Section 2.9). There are no update problems because the application
and its graphical user interface are generated simultaneously. The set of supported
types can include arbitrarily complex types because we analyze all type declara-
tions and derive the graphical user interface from them. The variable grouping and
menu structure are automatically derived from the class structure of the Object-
Math model.

An additional advantage of the new approach is the automatic generation of
persistence routines for arbitrarily complex data types.

5 Related work

5.1 Persistence generation systems

There are various ways to make objects persistent in object-oriented database man-
agement systems. In [BB88] such objects must be instances of special classes. In
[Deux91] and [LLOW91] objects are assigned to “persistent variables” or “placed
into persistent sets”. In the OBST system [OBST94, CRSTZ92, ACSST94] appli-
cation developers can program in an object-oriented extension of C. There are no
pointers; unique object identifiers are used for references instead. The language in-
cludes an option to create objects as persistent data. Primitive data components are
not lightweight, therefore high performance necessary for scientific computations
and fitting memory constraints is hard to achieve.

Typically OODBMS automatically provide persistence for a specific language
with the help of an OODB language compiler.

The PGen system [Tichy94, PGen94, Paulisch90] analyses C++ header files
and generates C++ code for reading and writing variables of arbitrary types and
classes defined there. This way persistence of data can easily be achieved. Tra-
ditionally, to make C++ objects persistent the user has to write the Store() and
Load() functions for every class in the application. The PGen tool generates
appropriate functions automatically. In most cases hardly any modifications are
needed in the C++ header files.

One of the difficult problems with persistent data is how the data should be
converted if the type declarations change. This is difficult to do automatically
with C++ header files. A special type declaration editor can be designed to trace
down all the changes in the type definitions. Then a conversion program can be
generated.

Our system reuses the ideas and the code of PGen and extends it for variable
display generation.

104

5.2 Display generation systems

In the OBST system a graphic shell visualizes the OBST objects and is used for
debugging the data.

The systems DOST and SUITE [Dewan87, Dewan91, Dewan90, Suite91] gen-
erate variable displays from C header files. The translator analyzes specially anno-
tated header files and generates C code that controls message-based communica-
tion between the application and a universal display manager. The generated code
is linked with the original application. A variable of arbitrarily complex type can
be displayed. The display manager can show various C data structures (including
pointers and dynamic arrays coded as pointers). The layout can be customized by
a large number of attributes (such as colors, help texts, constraints and validation
functions) that can be adjusted interactively (with the help of a special preference
setting dialog) or in the code. In these systems a single description of data types
can specify the internal data, the data used for communication between the pro-
cesses and the data for structure displays. Despite the large number of attributes
associated with every type, variable or variable element, there is no possibility for
the programmer to construct new graphical elements when necessary. Persistence
can be implemented outside the system.

The SmallTalk visualization system [Dewan90A] uses the fact that all the ob-
jects in the program have an ultimate ancestor, Object, that has access to meta-
information about the objects, e.g. a description of its structure. The display of
any object is based on this meta-information. The user can change the attributes of
object display by adding some extra SmallTalk code. Persistence can be supported
by other SmallTalk methods and it is not part of the visualization system.

Some modern debuggers [Debug92] show displays with selected C, C++ or
Pascal data structures for data inspection. They are based on symbol tables and
dynamically change during program execution. The displays appear automatically
in a manner similar to our approach, but they cannot be customized by the designer.
The user can modify the values, but the validation procedures cannot be specified.

5.3 The C++ language and access to meta-information

C++ is a high level object-oriented language. Nowadays it is widely used in indus-
try for scientific software design, including scientific computing.

C++ supports many ways to simplify the work of the application program-
mer and to avoid writing unnecessary code. Macro definitions, templates, operator
overloading, class inheritance and standard class libraries cover almost all typical
needs of application designers. They allow code to be written at a very high level
and its size is close to the minimal possible if accurate design is applied. Therefore
C++ code analysis and generation is not applied very often. One case where this
is necessary is automatic code generation for persistence and displaying data for
arbitrary C++ data types.

C++ is a hybrid language in the sense that it operates both with objects and non-

105

objects. This creates difficulties when applying a uniform approach to all values.
C++ is a strongly typed language. Therefore when we create code for universal
operations that could be applied to many types, code for every type should be
written.

It is possible to design persistence and display routines for C++ manually. The
problem is that for every data type separate routines should be written. Unlike
a SmallTalk object, a C++ object cannot automatically provide (or inherit) meta-
information about its structure (declarations of types, component names, sizes and
types) during run-time. Therefore it does not know how to read, write or display
itself.

Unlike SmallTalk, in C++ we cannot state simply that the variable foo should
be stored, loaded or shown. For this purpose a relevant function must be declared
and defined. The argument type for this function must be the same as foo has,
and this function must access the internal structure of foo. Obviously, the code
and control information for such a function should be created in advance. Such
information can be extracted from C++ data type declarations. This is what the
PDGen tool does.

6 Conclusions and Future Work

There is a substantial need for automatic generation of graphical user interfaces
for many applications. The first generation system for generating user interfaces
described in this paper has been in industrial use for more than two years. Experi-
ence shows that the model changes tend to require a number of manual changes to
the user interface. We have provided a more flexible system that can automatically
cope with model changes. Therefore, the more universal second generation system
has been designed. The user interface constructed in a partly manual way using the
first generation tool can now be generated completely automatically.

The PDGen tool is applied to ObjectMath, C and C++ programs, but it can also
be adapted to other languages. Type definitions can be extracted in several ways:

� the source code is parsed and analyzed (in our tool we reuse the analyzer
from PGen (see Section 5.1) and apply it to the C++ code),

� analysis of the symbol tables generated by some standard compiler (this is
the approach implemented in Suite, (see Section 5.2),

� extracting type definitions from the model description, if the application is
generated from this model (we apply this to the ObjectMath models),

� creation of the type table with the help of a special data-type definition editor.

The last approach can be combined with the customization tool. In this way
both data-type definitions and information about interface details (attribute values)

106

will be integrated under the strict control of one tool. This reduces the possibility
of data type mismatches and update problems.

In some languages the type information can be available at run-time with the
help of built-in functions; in this case there is no need for it in code analysis and
generation at all.

We are currently working on several extensions to the basic idea implemented
in the automatic graphical user interface generator. Some interesting questions that
could be considered include:

� the application of the PDGen tool to programs in other languages;

� integration of the tool with (extensible) symbolic debuggers;

� automatic generation of a graphical user interface for member functions (not
only for data members). For example, if a member function has no argu-
ments it is displayed as a button. When the button is pressed, the function is
invoked.

� a more general array browser implementation;

� integration of ObjectMath with tools for data visualization, as it is imple-
mented in the output data browser;

� implementation of the universal browser (Section 3.9) that adapts the graph-
ical user interface according to the type tables given together with the input
data;

� the design of a meta-editor that can edit data type definitions.

Remote data editing with the help of widely distributed WWW browsers is
another application area. The data resides on the server and can be updated by
the clients with the help of HTML interactive forms. One of our future research
topics is automatic generation of HTML-based editing tools from data structure
specifications.

Finally we would like to mention that a WWW site devoted to the PDGen tool
has been organized [PDGen96]. More details about the systems discussed in this
paper are available in [E96].

Acknowledgments

Lars Viklund and other members of the PELAB group contributed to the design
of the ObjectMath language and its implementation. Ivan Rankin improved the
English in this paper.

This project is supported by the Swedish Board for Industrial and Technical
Development, the Swedish Board for Technical Research and SKF Engineering
and Research Centre and the PREPARE Esprit-3 project.

107

References

[ACSST94] J.Alt, E. Casais, B. Schiefer, S. Sirdeshpande, D. Theobald. The
OBST Tutorial, Forschungszentrum Informatik (FZI), Karlsruhe, Ger-
many, FZI.049.2, 15nd December, 1994

[BB88] A. Bjrnerstedt, S. Britts, “AVANCE: An Object Management System”,
SIGPLAN Notices, vol. 23, pp. 206-221. Nov. 1988. In Proceedings of
the OOPSLA’88 Conference, San Diego, CA, 25-30 September 1988.

[CRSTZ92] E. Casais, M. Ranft, B. Schiefer, D. Theobald, W. Zimmer. OBST
- An Overview, Forschungszentrum Informatik (FZI), Karlsruhe, Ger-
many, FZI.039.1, June 1992

[Debug92] Debugging a Program. SparcWorks documentation. SunPro, October
1992

[Deux91] O. Deux et al., “The O2 System”, Communications of the ACM, vol. 34,
pp.34-48, Oct. 1991

[Dewan87] P. Dewan, M. Solomon. “Dost: An Environment to Support Auto-
matic Generation of User Interfaces”. In Proceeding of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Soft-
ware Development Environments, SIGPLAN Notices Vol. 22, No. 1, Jan-
uary 1987, pp. 150-159.

[Dewan90] P. Dewan, M. Solomon. “An Approach to Support Automatic Gener-
ation of User Interfaces”. ACM TOPLAS, Vol. 12, No. 4, pp. 566–609
(October 1990)

[Dewan90A] P. Dewan. “Object-Oriented Editor Generation”. Journal of Object-
Oriented Programming, vol. 3, 2 (July/Aug 1990), pp. 35-49

[Dewan91] P. Dewan. “An Inheritance Model for Supporting Flexible Displays of
Data Structures”. Software - Practice and Experience, vol. 21(7), 719-
738 (July 1991)

[Dewan91A] P. Dewan. A Tour of the Suite User Interface Software. Included in
[Suite91]

[E96] V. Engelson. An Approach to Automatic Construction of Graphical User
Interfaces for Applications in Scientific Computing. Linköping Studies in
Science and Technology. Licentiate thesis No 545. Department of Com-
puter and Information Science, Linköping University, 1996.

[Fritzson93] P. Fritzson, V. Engelson, L. Viklund. “Variant Handling, Inheritance
and Composition in the ObjectMath Computer Algebra Environment”.
In Proc. Of DISCO’93 - Conference On Design and Implementation of
Symbolic Computation Systems, LNCS 722, Sept. 1993

108

[Fritzson95] P. Fritzson, L. Viklund, J. Herber and D. Fritzson. “High-level Math-
ematical Modeling and Programming”. IEEE Software, July 1995, pp.
77-86.

[FWHSS96] P. Fritzson, R. Wismüller, Olav Hansen, Jonas Sala, Peter Skov. “A
Parallel Debugger with Support for Distributed Arrays, Multiple Exe-
cutables and Dynamic Processes”. In Proceedings of International Con-
ference on Compiler Construction, Linköping University, Linköping,
Sweden, 22-26 April, 1996, LNCS 1061, Springer Verlag.

[LLOW91] Ch. Lambs, G. Landis, J. Orenstein, D. Weinreb, “The ObjectStore
Database System”, Communications of the ACM, vol. 34, pp. 50-63, Oct.
1991

[OBST94] OBST, a persistent object management system. Available at
ftp://ftp.ask.uni-karlsruhe.de/pub/education/
computer science/OBST, see also
http://www.fzi.de/divisions/dbs/projects/OBST.html

[Ou94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994

[Paulisch90] F.N. Paulisch, S. Manke, W.F. Tichy. “Persistence for Arbitrary C++
Data Structures”. In Proc. of Int. Workshop on Computer Architectures
to Support Security and Persistence of Information, Bremen, FRG, May
1990, pp. 378–391.

[PDGen96] V. Engelson. The PDGen tool. Information available at
http://www.ida.liu.se/˜vaden/pdgen.

[PGen94] PGen, a persistence facility. This software is available at
ftp://ftp.ira.uka.de/systems/general.

[Tichy94] W.F. Tichy, J. Heilig, F.N. Paulisch. “A Generative and Generic Ap-
proach to Persistence”. C++ report, January 1994. Also included in
[PGen94].

[Wolfram91] S. Wolfram, Mathematica - A System for Doing Mathematics by
Computer (second edition), Addison-Wesley, Reading, Mass., 1991.

[Viklund95] L. Viklund and P.Fritzson, “ObjectMath: An Object-Oriented Lan-
guage for Symbolic and Numeric Processing in Scientific Computing”,
Scientific Programming, Vol. 4, pp. 229-250, 1995.

[Suite91] SUITE, user interface software. This software is available as
ftp://ftp.cs.unc.edu/pub/users/dewan/suite. Some
information available as http://www.cs.unc.edu/˜dewan/

[SUN90] SUN Microsystems Inc. Network Programming Guide (Ch. 5,6), 1990

109

Paper 4

111

112

USING THE MATHEMATICA ENVIRONMENT
FOR GENERATING EFFICIENT 3D GRAPHICS

Vadim ENGELSON Peter FRITZSON Dag FRITZSON
Department of Computer and Information Science, Linköping University

S-58183, Linköping, SWEDEN
fvaden,petfr,dagfrg@ida.liu.se

http://www.ida.liu.se/˜vaden

ABSTRACT

Mathematica is an integrated environment for symbolic transformation of mathematical formulas. This
environment has applications in scientific computing, scientific visualization and education. Mathemat-
ica provides the ability to describe visualized objects in form of mathematical formulas and expressions.
Such descriptions are more clear and concise than low-level C or C++ code. Many visualization systems
require input in the form of (sometimes huge) data files, which is a disadvantage for highly interac-
tive and animated 3D graphics applications. This is also the case for graphics expressed in Mathematica
which are computed interpretively and saved in a static data form before display. This causes low graphic
performance. In this paper we describe an approach which uses object geometry descriptions in the form
of efficient program code instead of huge data files. We have built a tool that produces 3D visualizations
of geometrical objects and object trajectories from mathematical specifications expressed as parametric
functions in Mathematica. A compiler has been developed which generates efficient C++ code from
such functions and symbolic expressions. This code is linked together with a powerful 3D browsing
environment and uses OpenGL with possible hardware support. All the computations are performed
within the visualizing application. Object geometry, color, etc. can be changed dynamically during ani-
mations. Thus the flexibility of interactive exploration of 3D scenes and animation become available for
the end-user.

Key Words: Mathematica, Compilation, Surface geometry, Three-dimensional visualization.

Published in Proceedings of EduGraphics/ CompuGraphics-97, Vilamoura, Portugal, December 15-17,
1997, Graphic Science Promotions and Publications, (Harold P. Santo, ed.), pp. 222 – 231.

1 Introduction

Data to be visualized is traditionally prepared out-
side of the visualization tools. However in some
cases the opposite approach is more practical. In
this paper we address the problem of visualization of
mathematical models, particularly models expressed
in the symbolic mathematical modelling and pro-
gramming language Mathematica [Wolfram96] and
an object-oriented extension of this language called

ObjectMath [Fritzson et al. 95, Viklund-Fritzson95,
ObjectMath97].

The functions describing surfaces and trajectories
can be very complicated. Therefore it is easier to
specify those in the form of traditional mathematical
formulas than to write low-level C or C++ code.

Our current prototype implementation, called MAG-
GIE (Mathematical Graphical Generated Interactive
Environment) has shown the feasibility of this ap-

113

proach. In this implementation Mathematica func-
tions are translated to optimized C++ code. An
OpenGL-based graphical environment has been con-
structed, for efficient visualization of such functions.

Currently we work with industrial applications such
as mathematical modelling and simulation of rolling
bearings in cooperation with SKF - the world’s lead-
ing bearing manufacturer. Advanced 3D visualiza-
tion and animation is very important for the end-
users to help in interpreting the results. This an-
imation tool [ObjectMath97] has demonstrated the
usefulness and feasibility of high performance visu-
alization/animation.

In the following sections we explain the role of Math-
ematica, discuss visualization techniques as well as
illustrate the use of our MAGGIE tool. It should be
noted that we primarily consider visualizations of dy-
namically changing surfaces. Volume visualization
problems are outside the scope of this paper.

1.1 The Mathematica Environment

The Mathematica system (we use version 3.0) is an
integrated environment which supports a wide spec-
trum of activities. The user works within a notebook
(a live document) which consists of cells (Fig. 1).
The input cells contain expressions and function def-
initions in traditional mathematical notation. When
they are evaluated, output cells appear, which con-
tain transformed expressions, numerical results and
2D or 3D plots.

The system is widely used in education, particularly
in Calculus, Algebra, Geometry and Physics. The
students modify expressions in the notebooks, apply
algebraic transformations and investigate numerical
and graphical results. Currently 2D plots are cre-
ated quickly, whereas rendering more complicated
3D plots, complex pictures and particularly anima-
tions may take several minutes.

Notebooks are also used for publications and inter-
active presentations. The formulas and equations can
be mixed with ordinary text, such as explanations to
formulas. In this way traditional mathematical pa-
pers or books can be written. The notebooks can be
scrolled up, down, and displayed via a video or over-
head projector, e.g. during lectures. Expressions in
the input cells can be evaluated during presentations.

Figure 1: A Mathematica notebook with results of a
symbolic integration, 2D and 3D plots. The notebook
cell structure is made visible via brackets on the right
side.

Finally, notebooks are used as a format for Internet
document exchange between mathematicians since
mathematical notation is shown in its traditional form
and can be directly edited.

1.2 Graphical Output In The Mathematica
System

The Mathematica system includes several built-in
functions for visualization.

The function Plot[f[x], f x, xmin, xmaxg]
generates 2D plots of the function f(x). The
function Plot3D[g[x,y], fx, xmin, xmax g ,

114

fy,ymin,ymaxg] generates 3D plots of the function
g(x; y). The functions f(x) and g(x; y) can be de-
fined symbolically as shown in Fig. 1

The performance of Plot and Plot3D is currently
rather low for the following reasons: first, the func-
tions f and g are computed symbolically and inter-
pretively. They are not compiled to efficient machine
code. Also, graphics are rendered through a univer-
sal interface (PostScript format). Hardware graphic
acceleration is not used at all.

Creating a single 3D picture of realistic application
models, e.g. of a rolling bearing, takes far too long
(more than an hour).

1.3 The Visualization Problem

Scientific visualization is necessary for interpretation
and making use of data produced from numerical ex-
periments and measurements. When designing sci-
entific visualization tools, several kinds of input and
output format need to be considered. The inputs are:

� data stored in an external file (in tabular form)
� data specified directly by the end-user via di-

alogs and graphical controls
� mathematical formulas (functions) that can

compute or process numerical data
� configuration options that specify the structure

and attributes of visualization

The traditional means of result visualization would
be:

� compute all results and store them on disk
� create a geometry model
� visualize results using a separate visualization

package
� change input parameters
� repeat all the steps again

Instead, our tool automatically produces graphical
output from the inputs. Specifically, the outputs are:

� vector and surface 2D and 3D graphics
� animation of graphics

� constructions that combine elementary graphi-
cal objects into more complex objects.

In our approach the numerical data computed by
functions given as graphic input, generally describe
the 3D geometry of the parametric surfaces, i.e. a set
of points (x; y; z) = f(u; v) for u 2 [umin; umax],
v 2 [vmin; vmax]. Here (x; y; z) are Cartesian coor-
dinates, f is a mathematical function. The rectangle
formed by umin; umax; vmin; vmax is the area of the
grid.

In addition to the coordinates for a point on the sur-
face, auxiliary properties can be defined:

� surface color according to a color scale
� color intensity
� direction of a vector field
� trajectory of the surface or an object in space de-

fined by changing object coordinates as a func-
tion of time.

Example 1. Assume that there exists a table which
contains the position of a point (xi; yi; zi) relative to
coordinate system C for every time ti in the interval
[t0; tn]. We might need to visualize the acceleration
vector movements for the time period [t0,tn] in an-
other coordinate system D.

The scientific visualization software should perform
several steps:

� read the positions of the point from an external
file

� perform mathematical computations to calcu-
late acceleration from position for given time ti

� transform acceleration vector from the coordi-
nate system C to the coordinate system D.

� check configuration options which specify that
in the current case the results should be visual-
ized as a vector

� perform rendering of a vector.

2 A Code Generation Approach

The approach proposed in this paper uses code gener-
ation technique to produce efficient implementation
of visualization code.

115

The input to the code generator is a mathematical
model expressed in Mathematica. In the simplest
case such a model contains a set of parametric func-
tions that describe the graphical objects to be visu-
alized. Every function defines the geometry of the
object surface.

Example 2 We consider a single surface defined by
the parametric function1

F (x; y; t) =

=

Z Z
y

x2 + 1
+ x2 cos(x� ty) + sin(y) dx dy

The surface is the set of points (x; y; z) where z

changes according to additional parameter t, i.e.
z(t) = F (x; y; t) for x 2 [xmin; xmax], y 2
[ymin; ymax], t 2 [tmin; tmax].

In Mathematica notation this function is written as

All the steps described below are performed auto-
matically by our MAGGIE tool. The result of the
processing is a stand-alone application (Fig. 2). This
application allows browsing the surface, rotating it
and manipulating it in various ways.

There are two ways to manipulate the time parameter
t: First, it can be changed manually by the user (via
a scrollbar). The user views the objects at a certain
time instant. Second, it can be used as an argument
for animation. The parameter t changes gradually
from tmin to tmax. For every step the picture is up-
dated, creating the animation effect.

Application generation. Mathematical formulas
like the double integral above are processed by MAG-
GIE, giving symbolic expression as the result. For
the double integral the result is

1This particular function has been chosen for the purpose of
a small demonstration.

Note that in this case the integral can be evaluated
with traditional functions (cos, sin etc.). Otherwise,
Mathematica represents the result with the help of
special functions.

We have built a Mathematica to C++ compiler called
MathCode [Fritzson97]. The symbolic expression is
translated into the C++ code (Fig. 3). Note that com-
mon subexpression elimination (CSE) is applied so
that every expression is evaluated only once. This
significantly improves performance of complex ex-
pression evaluation2.

The function F is linked with OpenGL library and
our browsing package. This way a stand-alone ap-
plication is created. It does not require connec-
tion to Mathematica anymore, and all the data is
calculated on demand within the application. The
libraries GLUT [Kilgard97] and Tcl/Tk with Togl
[Paul-Bederson97] are used for programming the
control dialog windows [Engelson et al. 97].

Browser configuration. Since all the calculations
are performed during the visualization the tool allows

— modify surface grid size, i.e. values of xmin,
xmax, ymin, ymax

— modify the value of t interactively or gradually
(perform animation of dynamically changing surface
in 3D)

— modify the level of detail u, i.e. number of grid
points used for rendering in each direction3. The
function F is evaluated for

x = xmin +
k

u
(xmax � xmin);

y = ymin +
l

u
(ymax � ymin);

2CSE is a standard technique used by many optimizing com-
pilers. However, its implementation is limited to small expres-
sions and cannot be performed if external functions (like sin) are
called.

3In future the level of grid granularity should be automati-
cally adapted: a high zooming rate will automatically switch the
tool to higher resolution.

116

Figure 2: The screen shot of the MAGGIE tool with animation of a parametric surface.

k; l 2 f0::ug

Also the following parameters can be modified, as it
is usually done in 3D browsers: grid, surface, evalu-
ation of normals, smooth shading can be toggled on
and off. The browser has traditional tools for naviga-
tion, including zooming, scaling, viewpoint and ob-
ject rotation, manipulating cameras and lights, and
showing several views simultaneously from different
camera positions.

3 Introducing the Hierarchy of Surfaces and
Objects

Visualizations may require rendering of several sur-
faces simultaneously. A set of surfaces may form ge-
ometrical objects. Some objects can be attached to
other objects, some of them can be in movement.

In order to describe more complex visualizations we

introduce the notion of scene. A scene is a hierarchy
composed from objects. Every object can be com-
posed from one or several surfaces or objects. Every
surface is described by a parametric function, as dis-
cussed above. An object can have a set of attributes
that describe it, specifically mathematical functions
that determine position of the object.

An instance of a hierarchy is shown in Fig. 4.

The output of our visualization generator is an appli-
cation that contains a graphical interactive environ-
ment which allows the user to explore the objects and
functions described in the model.

3.1 Syntax of Hierarchical Scene Description

According to Mathematica syntax we use the
form f[p1,p2,:::, option1-> value1,option2->
value2,:::] to specify the call of the function f

with arguments p1, p2 etc. and optional arguments

117

double F(doubleN &P D Txyt) om T9 = cos(om T2);
/* P D Txyt contains x,y,t */ om T10 = om T9*om T5*om T1;
fdouble om T1,om T2, om T11 = -om T10;
om T3,om T4,om T5,om T6, om T12 = om T5*om T5;
om T7,om T8,om T9,om T10, om T13 = cos(om T6);
om T11,om T12,om T13,om T14, om T14 = om T13*om T12;
om T15,om T16,om T17,om T18, om T15 = -2*om T13;
om T19,om T20,om T21,om T22; om T16 = om T15+om T14+om T11+om T8;
om T1 = P D Txyt(3); om T17 = om T16/om T1;
om T2 = P D Txyt(2); om T18 = om T2*om T2;
om T3 = om T2*om T1; om T19 = atan(om T5);
om T4 = -om T3; om T20 = om T19*om T18;
om T5 = P D Txyt(1); om T21 = om T20/2;
om T6 = om T5+om T4; om T22 = om T21+om T17;
om T7 = sin(om T6); return om T22;
om T8 = -2*om T5*om T7; g

Figure 3: The C++ code generated for the function F , the double integral in Example 2.

Scene

object1
object2

object3 object4

color
movement function

surface3

surface1surface2

attributes

parametric function

movement function
attributes

Figure 4: A hierarchy of scene, objects, its attributes
and surfaces.

(i.e. named parameters) with their values. The form
fe1,e2,:::g is a list of elements e1, e2, etc.

The scene is described as Scene[fo1; o2; :::g,
InputParameters -> f ip1; ip2; :::g] where
oi is an object described below, ipi is a name of a
scalar input parameter. The objects are visualized
in the scene. The user can manipulate the values of
input parameters via dialog boxes.

Objects. There are three kinds of objects:

1. Surface[f, Grid->fumin, umax, vmin,
vmaxg, ExtraParameters-> fip1, ip2,
:::g] defines an object which is visualized as a
parametric function f with arguments u, v on
the grid and additional arguments ip1; ip2; :::.
These additional arguments can be input param-
eters of the scene. The function returns coordi-
nates and color for every grid point: x; y; z; h,

where x; y; z are Cartesian coordinates relative
to the object coordinate system; h is intensity
which can be visualized with some color from
the color spectrum.

2. StandardSurface[(Cube j Sphere j
Polygon), Size->s] defines one of many
standard surfaces, such as cube, sphere or poly-
gon and its size (radius, length and width, if nec-
essary).

3. Compound[f o1; o2; :::g] defines an object
that is not visualized. However, it serves as a
container for several other objects.

The objects have additional options that control their
position and orientation.

TranslateFunction->f,
TranslateParameters->fip1; ip2; :::g speci-
fies that the coordinate system of the object is shifted
from the coordinate system of the parent object.
This shift is described by the function f which
takes arguments ip1; ip2; ::: and returns Cartesian
coordinates x; y; z relative to the parent object.

RotationFunction->f,
RotationParameters->fip1; ip2; :::g specifies
that the coordinate system of the object is rotated
in relation to the coordinate system of the parent
object. The rotation is described by the function
f which takes arguments ip1; ip2; ::: and returns
matrix of rotation relative to the parent object.

118

Generally, all configuration options that are not spec-
ified in the scene description can be adjusted by the
user during visualization. For instance all input pa-
rameter values can be changed manually, or used for
animation. Also, the minimal and maximal value of
the parameters can be specified.

External data access. There are several ways to
access necessary data:

— There are special functions that we designed for
reading numerical data from an input file. The user
can update the file manually or generate (compute) it
using some program. This way the visualization uses
a simulation trace, results of other computations or
measured data.

— External C++ and Fortran functions can be called.

— An extensive collection of built-in Mathematica
functions (the system contains almost 1000 func-
tions) can be called.

4 Example of a Scene

We illustrate diversity of visualizations by a scene
which consists of two spherical stones falling into the
water. The surface of the water illustrates a dynami-
cally changing surface. The stones are rigid bodies,
moving according to some trajectory. They simul-
taneously start falling vertically from different posi-
tions above the water. The observer can see the ani-
mation of falling stones and waves on the water sur-
face. He or she can also modify the starting positions
of the stones.

The model is described in Fig. 5. This description
shows two spheres (stone1 and stone2) which
fall down from their respective positions (x1, y1,
z1), (x2, y2, z2).

The formula of the surface together with information
about the structure of the model is compiled to C++
code. It is linked with the OpenGL library and com-
mon routines for browsing. The result can be seen in
Fig. 7.

The observer can manipulate all input parameters via
an automatically generated dialog window (see Fig.
6). The time parameter t is used for animation. Other

scalar parameter values are set via respective sliders.
The limit values of the sliders can be changed inter-
actively.

For other observations we could leave t fixed and an-
imate the picture by gradually changing one of other
parameters. Such a change of the roles of the param-
eters can be done interactively. In this case the dialog
window contents changes automatically.

Figure 6: A dialog for interactive control of the stone
and water visualization.

5 Related Systems

Universal visualization and animation tools available
on the market are often insufficient for high perfor-
mance industrial applications. Performance is not
sufficient, options to call user-specified functions are
limited or absent, options to configure visualization
are limited. In practice, for most simulation applica-
tion domains, specific application dependent visual-
ization support is usually required.

A Mathematica to VRML compiler. The Mathe-
matica to VRML (Virtual Reality Modelling Lan-
guage) compiler [Fisher97] allows generation of files
with point coordinates that describe sets of vectors
and polygon surfaces. Such files describe sets of

119

fall[t ,x ,y ,z]=fx,y,z-(9.8/2)*tˆ2g; (* Position of falling stone *)
tfall[zs]=Sqrt[2*zs/9.8];(* How long it takes to fall from the height zs *)
dist[x ,y ,xs ,ys]=Sqrt[(x-xs)ˆ2+(y-ys)ˆ2]; (* Distance between two points *)
waterh3[m]=Which[m<0,0, m<2, (m-1)ˆ2-1, m<4, 1-(m-3)ˆ2, m>=4 , 0]; (* Wave height at the point of fall
at time m. We compose the wave from two parabolic curves *)
waterh2[d ,t]=If[t<0,0,waterh3[t-d]/(d/5.0+1.0)]; (* Waves distribute with fading and with speed 1 m/s *)
waterh1[x ,y ,t ,xs ,ys ,zs]=waterh2[dist[x,y,xs,ys],t-tfall[zs]]; (* only distance and time after fall
is important *)
waterh[x ,y ,t ,x1 ,y1 ,z1 ,x2 ,y2 ,z2]=waterh1[x,y,t,x1,y1,z1]+
+ waterh1[x,y,t,x2,y2,z2]; (*effects of two stones are summed up *)
stone1=StandardSurface[Sphere,Size->f0.1g,TranslateFunction->fall,

TranslateParameters->ft,x1,y1,z1g]; (* Stone 1 *)
stone2=StandardSurface[Sphere,Size->f0.2g,TranslateFunction->fall,

TranslateParameters->ft,x2,y2,z2g]; (* Stone 2 *)
water=Surface[waterh,ft,x1,y1,z1,x2,y2,z2g]; (* water *)
Scene[fstone1,stone2,waterg,InputParameters->ft,x1,y1,z1,x2,y2,z2g]; (* time and initial positions of
the stones are controlled by the user *)

Figure 5: A simplified model of falling stones in Mathematica syntax.

graphical objects that can be explored using a VRML
browser. The performance is relatively good because
VRML browsers often use hardware graphic acceler-
ators.

This approach has the disadvantage of being rather
static and not allowing for the dynamic aspects of
graphics. Animations of realistic size cannot be im-
plemented this way since a sequence of VRML files
will occupy large amounts of space. Reading these
files slows down the animation. If picture resolu-
tion (the level of detail) needs be changed, the plotted
function must be recomputed on a more fine grained
grid. This requires the generation of a new VRML
file.

MathLive and similar systems. In these systems
the graphics created by the Plot3D is converted
to sets of 3D vectors and polygons and sent (via
MathLink) to a graphical 3D browser. By using
such a browser the users can rotate, zoom, change
textures of the surfaces etc.

This approach supports more interactivity between
the Mathematica system and the browser. However,
function computation is still performed within Math-
ematica and the performance is not sufficient.

Examples of these systems are the MathLive and
MathLive Pro tools [MathLive97] and Dynamic Vi-
sualizer [Dynamic Visualizer97].

Other graphical systems. Why not just buy an ex-
isting visualization package? Unfortunately, most
available software known to us, e.g. GLView
[GLView97] and AVS [AVS97], require that the ge-
ometry of visualized objects is specified outside the
program and is read from an external file. For in-
stance, the geometry of complex bearing models, es-
pecially with structural deformations, may consist of
more than 10 - 50 thousand polygons. Their coor-
dinates should be rapidly computed and it would be
highly inefficient to store them outside the visualiz-
ing program. Therefore these systems do not match
our requirements.

The animator/visualizer should also include high-
performance functions for reading data files pro-
duced from simulations and for computation of poly-
gons. This option is absent in available systems (or
is available, but inefficient).

Another problem is that no available visualization
package accepts mathematical models as input.

AVS supports construction of process networks.
These networks may contain geometry viewers as
well as components written by the user in C which,
e.g., perform computations and fast I/O. For the mo-
ment the speed of communication between the pro-
cesses is not high enough for our visualization needs.

120

Figure 7: Water surface after the stones fell down and the waves appeared. The stones are below the surface
and we look at them from below. This is a screen shot from the animation sequence.

6 Conclusions and Future Work

This paper presents ongoing work to give more effi-
cient and flexible ways to visualize massive amounts
of numerical data from simulations. We are look-
ing for a compromise between the needs of high per-
formance graphics and our desire too keep down the
complexity of models described in Mathematica.

In a previous project part of simulation software for
rolling bearings was automatically generated by the
ObjectMath system from object oriented mathemat-
ical models at a high level of abstraction. A 3D
animation tool (called BEAUTY, Bearing Animation
Utility) has been implemented for several bearing ap-
plication models.

The unique advantages of the ObjectMath system
in producing both simulation code and visualiza-
tion from the same mathematical models have been
demonstrated on industrial bearing simulation appli-
cations, and have potential applicability in several

additional application areas. This approach ensures
correctness and consistency between the simulation
and the visualization, and saves substantial program-
ming effort and speeds up development considerably.

Our new system, MAGGIE, can be used both for
small models and complex industrial scale applica-
tions.

Our future research will be directed to:

— Closer integration of the 3D graphical browser
with the Mathematica environment.

— More automation and flexibility at code compi-
lation stage, e.g. incremental compilation would be
useful.

— Using the tool with various graphical environ-
ments, e.g. virtual reality modelling systems.

— Using the tool for computational steering[14], on-
line, interactive control of the simulation via graphi-
cal environment.

121

More details can be found on the author’s WWW
page.

REFERENCES

AVS 1997 http://www.avs.com
Dynamic Visualizer 1997 http://

www.wolfram.com/applications/

visualizer/index.html

Engelson, V., Fritzson, P., Fritzson, D. 1996 Auto-
matic Generation of User Interfaces From Data
Structure Specifications and Object-Oriented Ap-
plication Models, Proceedings of European
Conference on Object-Oriented Programming
(ECOOP96), Linz, Austria, 8-12 July, Lecture
Notes in Computer Science, Vol. 1098, Pierre
Cointe (Ed.), pp 114-141. Springer-Verlag.

Engelson, V., Fritzson, P., Fritzson, D. 1997 Gener-
ating Efficient 3D Graphics Animation Code with
OpenGL from Object Oriented Models in Mathe-
matica, Innovation in Mathematics, Proceedings
of the Second International Mathematica Sym-
posium, Rovaniemi, Finland, 29 June - 4 July, V.
Keränen, P. Mitic, A. Hietamäki (Ed.), pp 129 -
136.

Fisher S., WebMath 1997 http://

www.mathsource.com/cgi-bin/

msitem?0208-336
Fritzson, P., Viklund, L., Herber, J., Fritzson, D.

1995 High-level Mathematical Modeling and
Programming, IEEE Software, July, pp 77-86.

Fritzson, P. 1997 Static and String Typing for Ex-
tended Mathematica, Innovation in Mathematics,
Proceedings of the Second International Mathe-
matica Symposium, Rovaniemi, Finland, 29 June
- 4 July, V. Keränen, P. Mitic, A. Hietamäki (Ed.),
pp 153 - 160.

GLView 1997 http://www.viewtech.no/

GLview.html

Kilgard, M. 1997 OpenGL Util-
ity Toolkit, GLUT, http://

reality.sgi.com/mjk asd/glut3/

glut3.html

MathLive and MathLive Pro Tools
1997 http://www.milohedge.com/

products/mathlive/mathlive.html

Neider, J., Davis, T., Woo, M. 1993 OpenGL Pro-
gramming Guide, Addison-Wesley.

ObjectMath Home Page 1997 http://

www.ida.liu.se/labs/˜pelab/omath
Paul B., Bederson B. 1997 Togl —

a Tk OpenGL Widget http://

www.cs.unm.edu/˜bederson/ Togl.html

Viklund, L., Fritzson, P. 1995 ObjectMath: An
Object-Oriented Language for Symbolic and Nu-
meric Processing in Scientific Computing, Scien-
tific Programming, Vol. 4, pp 229-250.

Wolfram, S. 1996 The Mathematica Book, Wolfram
Media Inc., Champaign, IL, USA.

122

Paper 5

123

124

Tools for Design, Interactive Simulation and
Visualization for Dynamic Analysis of Mechanical

Models

Vadim Engelson, PELAB, IDA, Linköping University

Abstract

The complexity of mechanical and multi-domain simulation models is
rapidly increasing. Therefore new methods and standards are needed for
model design. A new language, Modelica, has been proposed by an interna-
tional design committee as a standard, object-oriented, equation-based lan-
guage suitable for description of the dynamics of systems containing me-
chanical, electrical, chemical and other types of components. However, it
is complicated to describe system models in textual form, whereas CAD
systems are convenient tools for this purpose. Therefore we have designed
an environment that supports the translation from CAD models to standard
Modelica representation. This representation is then used for simulation and
visualization. Assembly information is extracted from CAD models, from
which a Modelica model is generated. By solving equations expressed in
Modelica, the system is simulated. We have designed several interactive 3D
visualization tools which display expected and actual model behavior, as well
as additional graphical elements for the purpose of engineering visualization.
We applied this environment for robot movement and helicopter flight simu-
lation.

Keywords: CAD, SolidWorks, Mechanical modeling, Simulation, Animation,
Visualization, Modeling languages, Modelica, OpenGL .

1 Background

The use of computer simulation in industry is rapidly increasing. Simulation is typ-
ically used to optimize product properties and to reduce product development cost
and time to market. Whereas in the past it was considered sufficient to simulate
subsystems separately, the current trend is to simulate increasingly complex phys-
ical systems composed of subsystems from multiple domains such as mechanical,
electric, hydraulic, thermodynamic, and control system components.

In this chapter we concentrate on simulation of mechanical models, in particu-
lar, systems of multiple rigid bodies, as well as simulations where such models are
major components in the simulated system.

125

This means that flexible bodies, fluid and gas mechanics, molecular physics
and some other simulation and visualization areas are outside the scope of this
work.

We define a simulation for our models as a particular execution of the software
that given initial conditions and other input uses physical laws in order to reproduce
the behavior of idealized physical models during some time span.

1.1 Visualization Requirements Induced by Simulation Goals.

When discussing design, simulation and visualization issues it is useful to be goal
oriented, since different goals can be set up. The goals can be either application-
or tool-driven.

The purpose of an application can for example be to optimize product proper-
ties and to reduce product development cost and time. This means that the simu-
lation should be able to predict behavior of the system, or analyze what happened
with some system in case of an unexpected behavior.

The purpose of simulation tools is to provide adequate technology necessary
for applications. In particular, tools should be tested for capabilities and perfor-
mance requirements – whether these can handle complex models and demanding
simulations.

Of course, products will not become better and cheaper if they are just simu-
lated. Attention should be paid to quality of simulation and availability of results.
If there are too many inadequate assumptions and simplifications, the simulation
will be cheap, and may be fast, inaccurate and useless. If the assumptions are ad-
equate, all relevant details are taken into account and everything possible is mea-
sured with highest degree of accuracy, simulation requires very complicated math-
ematical analysis, complex programming models, and is able to produce numeri-
cally correct results. Such simulations may require extremely high computational
power and proceed very slowly; often it is very hard to predict the time needed for
computation. It might happen that these simulations are useless anyway - if the
goal of simulation has been set incorrectly, or if results cannot be visualized in a
comprehensible way.

The efforts of simulation software designers are focusing on finding a golden
middle way between the two mentioned extremes, finding the trade-off between
the computing resources and computation accuracy.

Several categories of general simulation goals are established; these goals can
be described in a mathematical notation. Requirements for visualization of simu-
lation results are depending on the goals of the simulation. Assume that x is some
input data for a simulation function F , that produces simulation results F (x). The
simulation results for mechanical system are movement trajectories (position, ro-
tation, velocity, acceleration) of bodies as well as force, torque, pressure and other
dynamically changing values. The categories of simulation goals are the following:

Design optimization problem. For instance, the optimal size of the balls in bear-

126

ings is searched in order to minimize friction. The function F simulates
movement of some mechanism with a parameter vector x. The function E

estimates how good the movement trajectory is. The goal of simulation se-
ries is to find such xm that E(F (xm)) achieves its maximum. The function
E has many parameters. Therefore engineers use interactive environments
and visual aids in order to find the appropriate xm. In applications for me-
chanical models it is very important to display forces, velocities and accel-
erations that occur in the simulated world. The simulation is not affected
by the user after it starts, and usually the trajectories are analyzed after the
results are computed.

Control system design. Assume that a robot that finds, grabs, moves and releases
a detail should be designed. A control system for this robot should be de-
veloped. This control system should operate so that the robot performs the
mission in minimum time and with maximum accuracy. The function E is
an overall estimation of the quality of robot performance. A simulation func-
tion F for the robot includes Fm (a mechanical component) and Fc (a control
component). The goal of the simulation is to find an algorithm Fc such that
E(F (x)) is maximal. Visualization of such simulations should include dis-
play of trajectories of movements and comparison tools for such trajectories.
A simulation can be affected by the user after it starts; in particular the user
can feed different inputs (mission descriptions) to the control system. If the
control system is designed so that it is able to compensate for errors in the
movements of the machine elements, the numerical accuracy of computa-
tions can be reduced without excessively affecting the overall precision of
the simulation.

Simplification problem. Quite often there exists a numerical method to find f(x)
which can be used as an approximation of F (x), i.e. f(x) � F (x), and f(x)
can be computed much faster. In particular, linearized results from finite
element model computations are often used in order to reduce computation
time. It is important to visualize the differences between F (x) and f(x), and
to investigate (e.g. using interactive visualization) how these can be reduced.

Presentation. Artistic, emotional and educational side effects of simulation, i.e.
evaluation of F (x), is useful in many cases, such as computer games, movie
industry, digital art, and human operator training. Numerical accuracy of
computations can be reduced unless deviations between the simulated world
and the real one can be perceived by the human during the simulation. How-
ever, color and texture choice is important in visualization. In order to use
simulation interactively fast response time should be achieved. There is a
trade-off between response speed, model complexity and accuracy.

Assessment of correctness. Often the simulation is performed just in order to
check the correctness of F (x). In certain simple cases there exist analyti-

127

cal solutions to mechanical problems, and F (x) can be compared with this
solution. Another variant of verification is comparison between results pro-
duced by two different software tools that perform simulation of the same
mechanical model. Finally, it is possible just to observe dynamic model vi-
sualization and check whether it matches our intuition about model behavior.
In an early stage of debugging of mechanical models this is a typical way of
correctness assessment. Visualization requires forward and backward ani-
mation, trajectory visualization, rendering with varying level of details as
well as interruption of running simulation. Simultaneously with assessing
the correctness of F (x) the user can check the correctness of the simulation
tool: the correctness of simulation libraries, the correctness of the translation
from the simulation language to machine code, as well as the correctness of
the numerical solver.

1.2 External Factors Important for Simulation Software and its Life
Cycle

A simulation life cycle is often extremely complex because it includes the life
cycles of many software components, and the simulation goal might change during
or after initial design. Here we consider several steps of the life cycle of dynamic
model simulations, as well as assumptions used for these steps.

First a virtual prototype of a simulated product (robot, toy model, car, aerial
vehicle) should be designed. It might be based on an existing product, or it can
be result of an engineer’s creative imagination. An informal application model is
then created by removing unnecessary details and adding important features of the
prototype. During this stage the objectives of the simulation should be taken into
account. For instance, when some machine element is represented as a rigid body,
we can obviously ignore its color and heat conductivity. However, if a simulation
engineer expects that the model will be visualized for presentation purposes, color
information should be preserved. If in some simulation thermodynamics is com-
puted, the heat conductivity and heat capacity of the rigid body is quite important.

The informal application model can be expressed in the form of requirement
specifications written in natural language, as sketches of model geometry, and col-
lections of mathematical formulas that can be potentially useful for describing the
considered phenomena (e.g. Newton’s laws).

During the next stage the informal application model is converted into a formal
model expressed in a modeling language. This language can be more general (a
general purpose programming language, or an equation-based language), or less
general and more application specific (a language for the description of models
in a specific application area). The distinction between these tools is discussed in
Section 2 in more detail.

It is important to know the model of the environment for the particular simu-
lation. For instance, whether weather conditions should be taken into account in
flight simulation. Or whether torques applied to joints of a virtual robot are directly

128

obtained from the virtual control system (electrical motors are not modeled) or the
electrical properties of the robot motors are simulated too. It might happen that
modeling the environment is much more complicated that modeling of the base
product.

The I/O aspects, e.g. for sensors, are important too. For instance, during design
of a control system the question ”how much the control system knows” should be
clarified. For instance, whether the system or subsystem (e.g. an autonomous
robot) has a positioning system (knows its location), vision (knows the positions of
other objects) and communication (other components know about this subsystem).

During the next stage the formal model (written in a modeling language) can
be translated into efficient code and simulated for certain starting conditions, pa-
rameters, and input data which become available after simulation starts.

As a rule the result of the simulation is visualized online (during simulation)
or offline (after simulation), necessary assessment is performed by the user, cer-
tain starting conditions, parameters, and input data are modified, and after that the
simulation is repeated many times with the ”human in the loop”.

1.3 Structure of the report

Simulations of multidomain physical systems are performed for many different
purposes. Assuming that mechanical components are at the focus of attention of a
multidomain model, multibody system analysis becomes one of the most important
applications. In particular, dynamic analysis answers the question how the mechan-
ical components move within a given (possibly, interactively steered) environment.
Static analysis computes static equilibriums of mechanical systems.

In this work we concentrate on tools for dynamic analysis of mechanical mod-
els and visualization of results of such analyses. We are reviewing existing tools
for this purpose as well as presenting our solution to this problem. We propose
that mechanical models are designed in geometry modeling tools, and that these
models are converted into a high level object oriented modeling language.

Therefore this paper includes an overview of existing techniques for dynamic
analysis of multidomain systems, as well as some details of our approach. Sec-
tions 2, 3, 4, 5.1–5.3 and 7 describes the background of our work, including ex-
isting techniques, tools and requirements from the practice. Three main categories
of tools are considered: simulation tools (Sections 2 and 3), tools for design of
mechanical models (Sections 4 and 5), and visualization tools (Sections 7, 8 and
9). Sections 5.4–5.7, 6, 8 and 9 describe our techniques, tools and applications
of these. Section 6 describes the overall architecture of our integrated system.
Sections 2, 4 and 7 contain application requirements and an overview of existing
techniques. Sections 3, 5, 8 and 9 describe our solutions to arising problems.

129

2 Overview of Approaches to Dynamic Simulation of Me-
chanical Models

Mechanical models, assuming certain approximations, are described as collections
of rigid bodies with mass and inertia, connected with constraints that limit the
freedom of movement as well as motors, springs and dampers that force bodies to
move. The behavior of such bodies is described by Newton’s laws which can be
mathematically expressed as a system of ordinary differential equations (ODE) for
every rigid body:

_v =
F

m

_x = v

where v is a velocity vector, x is a position vector, m is mass and vector F is
the sum of forces applied to the body.

The motion of the bodies is determined by starting positions and applied forces.
The acceleration is defined by forces acting upon the bodies. Forces might be in-
duced by gravity, mechanical constraints, drives (motors), springs, dampers, colli-
sions, and user-defined active forces.

When the motion of the system is computed the results are the positions, ve-
locities and accelerations of each body in the model for each time step.

Assuming ideal conditions, the actual motion trajectories of the bodies de-
scribed by the model can be found as a solution of the corresponding system of
(non-linear) algebraic and ordinary differential equations.

It is too hard, however, to find analytical solutions for non-trivial mechanical
systems. Therefore, approximate numerical methods are used to solve the system
of equations.

The problem of dynamic analysis of mechanical systems therefore consists of
three stages:

� Translation of an idealized mechanical model into some computer readable
format that can define the computations to be performed by the computer.

� Applying numerical methods to solve the equations.

� Representing (i.e. visualizing) the solution in a comprehensible form. The
visualization consists of two-dimensional plots of variables and three-dimensional
scenes with the mechanical model in motion as well as other required infor-
mation.

The systems which are able to translate mechanical models into machine read-
able formats can be divided into two categories:

130

� MBST – multibody simulation tools, using a mechanical model description
as input.

� EBST – equation based simulation tools, using a collection of algebraic and
ordinary differential equations as input.

The main difference between these two group of tools is the level of abstraction
used when input is given to the tools. MBST requires descriptions of mechanical
bodies and their properties (see Section 2.1). EBST requires the specification of
collections of equations (see Section 2.2). Modelica has the benefits of both ap-
proaches since mechanical elements are represented as class instances, and arbi-
trary auxiliary class instances can be added to the mechanical parts of a model (see
Section 3).

There exists a spectrum of various methods to perform dynamic simulation and
analysis of motion for mechanical models. Many of these methods have difficul-
ties to interact with model components from other application domains, such as
electrical systems, control systems, hydraulic systems, etc.

Since the goals of simulation are broader than just testing a mechanical model,
some other potential properties of simulation tools become very important:

� Integration of mechanical systems with control systems and other multido-
main components.

� Performing visualization during simulation and steering the simulation via
the user’s input.

� Using experiment descriptions (experiment setup scripts), e.g. for running
series of simulations in batch and comparing the results from the simulations.

2.1 Multibody Simulation Tools

The purpose of multibody simulation tools is to perform various kinds of static
and dynamic analyses of mechanical systems. Mechanical elements are fetched
from libraries of ready components and their position and orientation is defined
via a CAD-like 3-dimensional user interface. The connections between the ele-
ments are set up interactively using a CAD-like tool. Such tools are usually tightly
coupled with the simulation tool, and a uniform graphical user interface and three-
dimensional representation of mechanical parts is used both at the modeling stage
and during visualization of simulation results.

2.1.1 ADAMS

Adams[2] is the world’s most widely used multibody mechanical simulation soft-
ware. It can be used in different configurations: as a full simulation package
(Adams/View, Adams/Solver and other components) or as Adams prototyping ca-
pabilities integrated within CAD/CAM environments.

131

user

modeling

GUI

(3D CAD−like)

Adams/View
dataset

(statements)

Adams/Solver

experiment

specification

shell

result analysis

GUI (2D charts)

commands

trace with

results

Figure 1: Cooperation between simulation engineer, Adams/View and
Adams/Solver

Full simulation package In the full simulation package (see Figure 1) machine
parts are initially created using a 3D graphical user interface (called Adams/View)
and assembled. The parts are connected by joints, and motion generators (motors)
are attached. The items causing forces, such as springs, dampers, friction and
impact, can be applied to certain points on the machine parts. The simulation
engine (package Adams/Solver) is “hidden” behind the user interface and can be
invoked when the user requires.

The initial model can be refined in order to apply more realistic features of the
model.

� By default all the bodies are assumed to be rigid. Using a finite element
modeling program and the Adams/Flex package, flexible body deformations
can also be modeled. The flexibility of bodies and the dynamic behavior of
the total system affect each other.

� Automatic collision detection between parts can be performed. For this pur-
pose descriptions of part geometries are supplied.

When a series of computational experiments should be organized, parametric prop-
erties can be swept through a range of values, and parametric design relationships
can be set up. The results of the model definition phase are stored as an Adams
dataset file, essentially Adams program code in a proprietary declarative language.
If necessary, external functions in FORTRAN can be specified in such definitions,
and these functions are linked to the application when the models are simulated.

The Adams program code is normally generated via a graphical user interface
and the code is not intended to be very “user-friendly”. However, it is easy to
modify already written code. The four statements described in Table 1 give some
clues about the Adams program notation (words in italics are replaced by relevant
numbers). Adams notation is based on statements, where integers are used to refer
to other statements.

The expressions in Adams may contain any geometric, kinematic and dynamic
values available in the model, logical conditions (IF-functions) as well as the cur-
rent modeled time. External functions written in FORTRAN can be called within

132

PART/partid,
QG=x,y,z,
REULER=e1; e2; e3,
MASS=m,
CM=markerid,
IP=i1; :::; i6

Each marker in Adams represents a local coordinate
system, i.e. a point in 3D space serving as an origin
of a coordinate system rotated in a certain way. The
specification above describes a rigid body of mass m
located at x,y,z in the world coordinate system, and ro-
tated by angles e1; e2; e3. The center of mass of this
body is a marker markerid; the inertia matrix is given
as i1; :::; i6 .

MARKER/markerid,
PART=partid,
QP=x,y,z,
REULER=e1; e2; e3

The reference point markerid is attached to the part par-
tid at a certain position (in the coordinate system of the
part) x,y,z and it has rotation e1; e2; e3.

JOINT/jointid,
REVOLUTE,
I=marker1id,
J=marker2id

A revolute joint is attached to two markers, which ap-
parently belong to different parts and are joined at the
same location in the 3D space.

MOTION/motionid,
I=marker1id,
J=marker2id, B3,
FUNCTION=expr

There is a prescribed motion of the joint around the Z
axis (i.e. the 3rd axis – therefore the keyword B3 is
used), and the joint angle during this motion is defined
by the expression expr.

Table 1: Four typical ADAMS statements.

these expressions. Also these functions can obtain values from “input channels”
in order to cooperate with a control system. Such control systems are described
outside Adams, using, e.g., the MATLAB tool.

The notation provides a relatively high flexibility of Adams models. The same
model can be used for three different kinds of simulations:

� Kinematic simulation: All motions are already prescribed by the user. The
system has zero degrees of freedom. All part positions can be computed
from the motions. Forces are ignored.

� Static simulation: This simulation re-positions parts so that all forces are
balanced. It finds the so called equilibrium configuration.

� Dynamic simulation: This simulation computes the combined effect of forces
and constraints. It can be used for any number of degrees of freedom. The
dynamic simulation package contains four different integrators. The user
should tune these integrators by giving appropriate accuracy, integration step
minimum and maximum, as well as other tuning parameters.

Adams in Control System Context. Integration of model simulations specified
in Adams with external input and output (such as control systems or operator con-

133

trol graphical user interface) requires some special adjustments in the model struc-
ture. In order to integrate Adams with control systems, the mechanical model
is exported from Adams into a special module. Then this module can be used
in SIMULINK, and control system components should be designed and coded in
SIMULINK.

Visualization. During simulation or after the simulation terminates (in Adams/Solver)
the user can see dynamic visualizations of machine elements. However there are
no options to steer an ongoing simulation. Adams has a rich set of constructs help-
ing to run a series of simulations as a batch. In the 3D visualization the results of
two (or more) simulations can be displayed and compared. However, this is only
possible if all the simulations have the same number of steps and the same step
size. This limitation makes it difficult to visualize the results from simulations that
require varying time steps.

user

dataset

(statements)

Adams/Solver

(dynamic simulation)

Native

CAD tool

with

Adams

plug−in

result analysis

GUI (2D charts)

trace with

results

movements

Figure 2: Cooperation between a simulation engineer (user), and Adams plug-in
embedded in a CAD application.

Adams Plug-in Integrated with CAD Environment. When Adams is integrated
with CAD tools (see Figure 2), the user works in his or her native CAD environ-
ment where parts and assemblies are normally designed. When dynamic simulation
is required, the parts and assemblies are translated internally to Adams program
code, the model is simulated and feedback in the form of animation within the
same CAD environment is returned. Additionally many parameters of simulations
(forces, torques, speed etc.) can be measured and displayed in form of 2D graphs.

Integration of Adams with CAD tools from Autodesk, Unigraphics, Solid-
Works and many other products is available.

The Mechanical Designer simulates the model and the model movement is dis-
played online, during the simulation. When more detailed modeling is necessary,
the Adams program code can be saved, modified and later used with the full Adams
simulation package.

134

Unfortunately, the integrated variant of the Adams package has some limita-
tions regarding the complexity of the simulation system. In particular, expressions
that are used to specify the force values cannot call external functions, and cannot
interface with external programs.

Example. An experiment has been done with the Mechanical Designer, a plug-in
utility for the SolidWorks CAD tool. A double pendulum has been constructed (see
Figure 3). The pendulum consists of two bars and one box in a fixed position; these
are connected by a revolute joint, i.e. a joint with one rotational degree of freedom.
Such revolute joints are labeled as door hinges in the schematic presentation of this
mechanism. The tool generates code in Adams dataset format:

ADAMS/View model name: Designer
UNITS/, FORCE=NEWTON, MASS=KILOGRAM,

LENGTH=MILLIMETER, TIME=SECOND

PART/1, GROUND
MARKER/54, PART=1, QP=-248.06, 147.27, -162.19

PART/2, QG=-595.51, -50.91, -162.19,
REULER=119.700423D, 90D, 180D, MASS=0.64, CM=10000,
IP=8618.6, 8618.6, 170.66, 0, 0, 0

MARKER/50, PART=2, QP =0,0, 0, REULER=0D, 90D, 60.29D
MARKER/53, PART=2, QP =0,0, 400, REULER=0D, 90D, 60.29D
MARKER/10000, PART=2, QP=20, -20, 200

PART/3, QG=-611.96, -14.45, -122.19,
REULER=-65.71D, 90D, 0D, MASS=0.64, CM=10001,
IP=8618.66, 8618.66, 170.66, 0, 0, 0

MARKER/49, PART=3, QP=40, -40, 0, REULER=180D, 90D, -114.28D
MARKER/10001, PART=3, QP=20, -20, 200

JOINT/1, REVOLUTE, I=49, J=50
JOINT/2, REVOLUTE, I=53, J=54
ACCGRAV/, JGRAV=-9810

END

2.1.2 Working Model 3D

Working Model 3D [29] is an advanced tool providing dynamic analysis within
an integrated modeling and simulation environment. It supports design of simple
mechanical models, as well as import of CAD models from SolidWorks, SolidCad
and Mechanical Desktop. The tool performs dynamic simulation of systems of
rigid bodies. When a system is constructed, the revolute, prismatic, spherical and
many other kinds of joints can be specified (Figure 4). The tool is able to detect
collisions and produce response impulses. The results of analysis can be displayed
as 3D scenes as well as 2D graphs of any variables computed during simulation.

Models in Working Model 3D (version 4.0) cannot interact with any external
software during simulation (see also Section 4.2.2). There is no way to attach mul-

135

Figure 3: Pendulum model designed in SolidWorks with Adams plug-in.

tidomain components, and no options to attach controls to steer the model during
running simulation. There is no experimentation language and no batch simulation
is possible.

Prescribed motion, or prescribed external forces can be described in the form of
mathematical expressions. Such expressions can be arbitrarily complex and nested.
The expressions can include other variables of the system (position, velocity of the
bodies) as well as the current value of time.

In the documentation of Working Model 3D the numerical results obtained for
several simulations are compared with results computed by analytical methods as
well as the results of identical mechanical systems constructed in different tools,
e.g. ADAMS. The comparison shows a high accuracy of the results.

2.1.3 Integrated Environments for Computer-Based Animation (3D Studio
Max)

Computer animation software (such as 3D Studio Max and Maya) provides a large
variety of features in order to make computer-based animations more realistic in
movements. For this purpose these tools can model mechanical systems (see Figure
5) and compute trajectories of rigid and flexible bodies according to physical laws.
These trajectories can be saved in the proprietary format of the computer animation
tools. Normally there are no options for external steering of the mechanical model

136

Figure 4: Double pendulum model in Working Model 3D

during computation of the trajectories.
Instead, computer animation packages can quickly compute rough approxima-

tions of dynamic movements.
In 3D Studio Max ([5] , see also 4.2.3) , mechanical or similar models with

moving parts are constructed in a hierarchical fashion. All the objects of a mech-
anism should belong to a directed acyclic graph (see Figure 6). The edges of the
graph define relations between parents and children and there is one and only one
parent for every node (except the root of the hierarchy which has no parents).

The lock (constraint rules) of the children define how it can be translated and/or
rotated with respect to the parent (see Figure 7). If, for instance, Rotate/X and
Rotate/Z are selected, the child object can only rotate around its local Y axis. If
Move/X and Move/Z are selected, the child can only move along the Y axis.

By combining different degrees of freedom all typical joint types can be mod-
eled (revolute, prismatic, spherical, cylindrical, etc.). The joint properties are not
clearly visualized during model editing, and it can be difficult to choose correct

137

Figure 5: A pendulum model in 3D Studio Max

directions of constraints. External force (Push option) and torque (Motor option,
as well as environment settings (Gravity and Wind) can be applied to the objects.
These objects are included in the hierarchy of a 3D Studio Max scene (see Figure
6)

The 3D Studio Max Dynamics subsystem analyses collisions and generated
motion taking collision response into account. Collisions can be computed at dif-
ferent level of accuracy (using just bounding box, bounding sphere, or using a
detailed mesh of the object). There exist material properties, which are applied to
the object: collision restitution coefficient (bounce coefficient), static and sliding
friction coefficient. These numbers are in the [0.0,1.0] interval.

The dynamic capabilities of 3D Studio Max do not include springs and dampers.
Kinematic loops cannot be constructed because the kinematic skeleton always has
tree structure. Tests we have run show that computations are very approximate
and sometimes they produce non-adequate results (objects penetrate, or locks are
broken).

2.2 Equation-Based Simulation Tools

Equation based simulation tools are intended for modeling and simulation of al-
most arbitrary dynamic systems. Such tools are able to integrate mechanical sys-
tems with, for example, control, electrical, hydrodynamic and user-interface sys-
tem components. It is not very feasible, however, to perform modeling of complex
systems by writing equations directly. Instead, a structuring approach should be

138

Figure 6: Hierarchy of objects in the model of a pendulum in 3D Studio Max

used. The modeled systems are designed in several layers. Physical phenomena are
usually described by collections of variables and equations. Such a collection can
be reused. Therefore, the block approach (replaced by object-oriented approach in
modern systems) should be used. A block contains a collection of equations which
is reused many times in the same model or in different models. Blocks can be con-
nected, and connections specify additional equations. Furthermore, blocks can be
parameterized, and the parameters can serve as coefficients in equations. Finally,
blocks can be nested.

Here we discuss three tools for equation based modeling: SIMULINK (Section
2.2.1), Mathematica (Section 2.2.2) and Modelica (Section 3). These tools use
different level of abstraction for equation blocks.

2.2.1 SIMULINK/Systembuild

SIMULINK is a graphical interactive environment integrated with the MATLAB
tool. MATLAB is an interactive numeric programming tool with command shell
based interaction.

SIMULINK is a graphical environment that exclusively uses input/output blocks
for model specification. There is no specific support for mechanical modeling.
Multibody systems when translated to SIMULINK lose their “kinematic structure”
and the designer must provide the whole chain of mathematical transformations
needed for computations.

For instance, the double pendulum becomes a very complex model in SIMULINK

139

Figure 7: Lock (i.e. degrees of freedom) specification for a pendulum model in
3D Studio Max. The child object can rotate around the Y axis only. Scaling is not
locked, but it cannot happen in dynamic analysis.

(Figure 8). It can be seen that the two pieces of the double pendulum cannot be
identified as two separate independent blocks in this diagram. The same problem
is revealed when SIMULINK is used for simulation of electrical circuits. There-
fore it is difficult to use SIMULINK for physically-based simulations: the model
structure does not in general correspond to the physical structure of the system.

In order to visualize computation results as 2D plots some default MATLAB
graphical functions can be used. MATLAB also supports 3D plotting and display
of 3D scenes. However there is no specific support for visualization of simulated
mechanical models.

2.2.2 Mechanical Packages for General Purpose Computer Algebra Systems

Computer algebra systems such as Mathematica[57] are intended for expressing
mathematical function definitions and equations, and providing symbolic and nu-
merical tools for solving such systems. There exist libraries of functions and equa-
tions designed for various application areas. These packages are able to integrate
mechanical models with control system models and models from other application
domains. However it is difficult for the user to describe mechanical models since
the tools do not provide any graphical user interface to specify the body geometry
and assembly information. Also, rules for constructing an application for dynamic
analysis of mechanical systems are quite complex.

Mechanical Systems for Mathematica Mechanical Systems is an application
package written in the Mathematica language that can be used within the Math-
ematica environment. There exist subpackages for two- and three-dimensional
kinematics. Mathematica function calls are used in order to describe a mecha-
nism consisting of bodies and constraint specifications. The tool can compute both

140

Double Pendulum System II
(Double click on the "?" for more info)

To start and stop the simulation, use the "Start/Stop"
selection in the "Simulation" pull−down menu

Mux

state
vector1

Demux

state
vector

[a aD g gD]

Mux

state
vector

sin(u)

sin(gamma)

sin(u)

sin(alpha)

scope

Mux

modified
state

vector

s

1

gammaDot

f(u)

gammaDDot
s

1

gamma

s

1

alphaDot

f(u)

alphaDDot
s

1

alpha

State
Scope

f(u)

S

Double click
here for

SIMULINK Help

?

f(u)

C

pndanim3

Animation
Function

u*u

(gammaDot)^2

u*u

(alphaDot)^2

Figure 8: Sample mechanical model (double pendulum) described in SIMULINK
notation. This example is taken from the SIMULINK demo collection.

forward and inverse kinematics. Positions, velocities and accelerations can be ob-
tained from the simulation.

Mechanical Systems does not contain any specific support for friction, collision
detection and collision response. The system does not take the surface geometry
into account. These details are left to the user who can specify the values and
directions of external forces applied to the bodies. An advantage of this package
is that functions of arbitrary complexity available in Mathematica can be used for
description of external forces.

The tool creates symbolic representations of all equations in the mechanical
simulation model. There equations are, however, solved numerically, using an
adaptive ODE solver.

The solution cannot be affected interactively during simulation. Since Mathe-
matica is an interpreted language the performance of such simulations is relatively
low.

Visualizations of mechanical model simulations can be designed by the user.
For this purpose standard Mathematica 3D graphics functions are used. The output
can be accumulated and transformed into animation sequences.

141

3 Using the Modelica Language for Dynamic Analysis

In Section 2 we discussed properties of multi-body simulation tools and equation-
based simulation tools. Modelica is an equation based system. However, it can
accept descriptions of mechanical models. In this work we have designed an inter-
face between a CAD tool and Modelica that allows simulating arbitrarily complex
mechanical models by translating them to Modelica equations. Therefore we can
claim that now, with these additional technologies, Modelica integrates the best
properties of multi-body simulation and equation-based simulation approaches.

3.1 Modelica

Modelica [35] is a new object-oriented equation-based modeling language. Models
described in this language are well-structured collections of variables, ordinary
differential and algebraic equations, and functions.

The methodology of object-oriented equation-based modeling have been in-
vented by Hilding Elmqvist in his dissertation [14] and initially implemented in
the Dymola language and tool [15]. This methodology has been further developed
by the international Modelica Design Group [35] which includes participants from
both universities and industry. The result of this development has been reflected in
Modelica language specification [36]. Tutorial and rationale for the language can
be found in [37].

The first version of Modelica, version 1.0, was announced in September 1997.
The most recent, version 1.3, was released in December 15, 1999.

Two papers written by Martin Otter, Hilding Elmqvist and Sven Erik Mattsson
[17, 43] cover the major properties of Modelica and hybrid modeling technique
invented by these authors. The hybrid modeling in Modelica integrates discrete
and continuous modeling methods in the same language. Object-orientation tech-
niques used in Modelica are discussed in [25]. Our current Modelica activities are
reflected in [40].

The language unifies and generalizes previous object-oriented modeling lan-
guages, e.g. such as Dymola [15], Omola [4], ObjectMath [24, 41], Smile [22],
NMF [49], etc. Compared with the widespread simulation languages available to-
day this language offers three important advances:

� non-causal modeling based on differential and algebraic equations;

� multidomain modeling capability, i.e. it is possible to combine electrical,
mechanical, thermodynamic, hydraulic etc. model components within the
same application model;

� a general type system that unifies object-orientation, multiple inheritance,
and templates within a single class construct.

Modelica is a general standard notation which can be used for standard ap-
plication domain libraries and for applications that use these libraries. Tools and

142

environments are built to comply with this standard.
Currently there are two design, simulation, and visualization environments for

Modelica:

� Dymola tool with Modelica Language Support, developed by Dynasim [15]
and

� MathModelica, developed by MathCore[31].

Our contributions to using the MBS library are the following:

� CAD to MBS conversion (Section 5) that enables creating complex mechan-
ical models quickly and correctly;

� MBS visualization (Sections 8 and 9) that makes it possible to perform de-
tailed verification of the movements of modeled bodies.

� Collision detection and response [20] that makes it possible to conveniently
produce more realistic models than before.

3.2 Basic Features of the Modelica Language

The Modelica language is primarily intended for the description of systems that
have variables with continuously changing values. Additionally, discrete variables
are supported giving the language hybrid modeling capabilities. Models written
in Modelica specify which variables exist in the mathematical model, and how the
variable values are related. Values of continuously changing variables are usually
represented as floating point values. The floating point variables are usually in-
volved in such models. The type of these is denoted as Real. Relations between
the variable values are described by differential-algebraic equations (DAE), such
as

x+ 1 = cos(T ime)

or
y
0 = x

The DAE of Modelica system are formulated, according to [36] as system

0 = f(_x; x; y; u)

where x are unknowns that are differentiated, y are variables that are not differen-
tiated, u is known input data. In Modelica DAEs may have discontinuities and the
structure of a DAE system may change at certain points in time.

In the general form such hybrid DAE system are mathematically described by
a set of equations:

� Residue Equations: 0 = f(_x; x; y; t;m)

� Monitor Functions: z = g(_x; x; y; t;m)

143

� Update Equations: 0 = h(_x; xknown; xreinit; y; t;m; pre(m))

Additionally these functions depend on simulation parameters p which are con-
stant during simulation and input data u(t). The different classes of variables are
described below:

� t – independent time variable,

� x(t) – differentiated variables, xknown – known part of vector x, xreinit –
reinitialized part of x,

� y(t) – non-differentiated (algebraic) variables

� u(t) – known input data

� m – discrete variables, pre(m) – values of discrete variables before update
at most recent event.

Mathematical models of complex physical system usually contain many vari-
ables and equations. Since most physical systems have a natural object structure
this fits well with the object-oriented programming paradigm. All the equations,
variables, and constants related to some class of objects can be encapsulated in the
same class. By applying inheritance, other classes can reuse equations, variables
and constants. Variables can be instances of other classes.

The execution of a Modelica model results in a solution of each unknown vari-
able (e.g. x) as a function of time, x(t), where t 2 [tstart; tend]. In order to find
x(t), usually the initial value x(tstart) has to be supplied.

Examples of problems that can be formulated in the form of DAEs and solved
by Modelica are:

� Positions of point masses in space can be found when acceleration is given.

� Control system behavior can be computed when continuous input is given.

� Dynamic motion of mechanical systems can be computed when the masses
of included bodies as well as constraints and forces acting on them are given.

The distinctive feature of Modelica is its non-causal programming model. The
programmer does not specify the order of evaluation of elements in the model. The
Modelica execution semantics does not depend on the order in which equations
are written. Instead, before the simulation starts, the compiler finds the appropriate
order of evaluation for every instantiation of each equation (if such an order exists).

For instance, the equation
a = b+ c

can be used as
a := b+ c

144

or
b := a� c

or
c := a� b

depending on the data flow context where the corresponding variables a, b, and
c are instantiated. Certain equation systems cannot be converted into assignment
statements since they are mutually dependent on other equations, forming a system
of simultaneous equations.

It should be noted that an equation belongs to some class. Each class can be in-
stantiated several times within the same application. Therefore the same equation
can be instantiated several times. Depending on the context an equation can be con-
verted into different explicit forms, as for the three examples above. Furthermore,
several equations can occur in a system of linear or non-linear differential-algebraic
equations (DAEs). A relevant method for equation system solution is chosen, and
a, b and c are found using this method.

Modelica classes are intended for reuse. The classes are usually collected into
libraries. There exist libraries for electrical, mechanical, thermodynamics, hy-
draulic and other application domains. Libraries serve as collections of knowledge
for each application domain. Equations based on the laws of physics, as well as
rules describing how the classes can be applied are stored in the libraries. Unfor-
tunately not all information describing the rules for correct library usage can be
stated formally within a model. Some rules are described in documentation (as
plain text), and it is the user’s responsibility to follow them.

3.2.1 Implementation of Model Simulation

Instances of classes in a model, including equations, are translated into a flat set
of equations, constants and variables. After flattening, all the equations are sorted
according to the partial order of data dependence.

The symbolic solver/simplifier performs a number of algebraic transformations
to simplify the dependencies between the variables. It can also solve a system of
differential equations if it has a symbolic solution. Finally, C code is generated
which is linked with a numeric solver (Figure 9).As the result of executing this
code functions of time (t), e.g. R2.v(t), can be computed during a time interval
[t0,t1] and displayed as a graph or saved in a file. This data presentation is the final
result of system simulation.

3.3 Introduction to Modelica Syntax

Despite the fact that our discussion in the coming sections is devoted to mechanical
models, we have chosen an electrical model example to introduce Modelica since
this example is very simple and easy to understand but still demonstrates major
Modelica features.

145

Model

specified

by the user

Model

libraries

C code

Input/output

library

Solver

library

Initial values

and parameters

Input

signals
Simulation

output

2D function

plots

Modelica translator

C compiler

Linking

Simulation

3D animation

Figure 9: Components of the Dymola design, simulation and visualization envi-
ronment.

As an introduction to Modelica we will present a model of a simple electrical
circuit. Our goal is to describe major syntactic features of the Modelica language,
which can be used in applications in various domains (such as e.g. electric, me-
chanical or chemical). A detailed description of this example can be found in [37].

3.3.1 Introduction to the library of Electrical Components

An electrical circuit model consists of electrical components. Most components
have one or two pins. All components with two pins can inherit variables and
equations from a general class TwoPin. Such components are e.g. Resistor,
Capacitor, VoltageSource and Inductor (see Figure 10).

Each class has a corresponding icon (see Figure 11) designed to be easily rec-
ognizable by engineers in the corresponding application area.

In addition to basic elements of electric circuits there also exist Modelica classes
for other elements, e.g. switches, diodes, current sources, voltage sensors, trans-
formers, and electromotoric sources.

3.3.2 Example

Assume that the example model (Figure 11) consists of a voltage source, two resis-
tors, an inductor, a capacitor and a ground point. Models of such components are

146

TwoPin

Pin

2

Ground

Resistor CapacitorVoltageSource Inductor

Figure 10: Inheritance diagram for some electric components. The graphical nota-
tion is explained in Figure 14.

Figure 11: Example circuit structure using Modelica graphical notation associated
with Modelica classes.

available in the Modelica standard class library for electrical components.
A declaration like the one below specifies R1 to be an instance (i.e. an object)

of the standard library class Resistor. This class contains several variables, con-
stants (having the prefix parameter in Modelica), and equations. The equality
(R=10) sets the default value of the resistance parameter, R, to 10 (i.e. R1.R is
10).

Resistor R1(R=10);

A Modelica description of the complete circuit appears as follows:

class circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;

147

Ground G;
equation
connect(AC.p,R1.p); connect(R1.n,C.p);
connect(C.n,AC.n); connect(R1.p,R2.p);
connect(R2.n,L.p); connect(L.n,C.n);
connect(AC.n,G.p);
end circuit;

A composite model like the circuit model described above specifies the system
topology, i.e. the components and the connections between the components. The
connections specify interactions between the components.

In the connect statements above .n means the negative pin of the relevant
component; .p is the positive pin of the component. Each connect statement
corresponds to an electric wire between the specified pins.

3.3.3 Using connectors

In this section we consider definitions of the Modelica language constructs used
above.

The components (Resistor, Capacitor, etc.) are subclasses derived from
the class TwoPin which in turn contains two Pin objects:

class Voltage = Real; //Voltage, Current and Resistance are used
class Current = Real; //the same way as Real
class Resistance = Real;

connector Pin
Voltage v;
flow Current i;

end Pin;

class TwoPin
Pin p, n; //positive and negative pin
Voltage v; //voltage difference between the pins
Current i; //current through the element
equation
v = p.v - n.v; //voltage difference
p.i = - n.i;
i = p.i; //current i going inside
end TwoPin;

class Resistor extends TwoPin
// inherits p, n, v, i and all equations from TwoPin.
parameter Resistance R=1.0;

equation
v=R*i; // Ohm’s law

end TwoPin

148

A connection statement connect(Pin1,Pin2), with Pin1 and Pin2 of
connector class Pin, connects the two pins so that they form one node. This im-
plies an equality for v and a flow balance for i, since there is a prefix flow in the
declaration of i. The two equations resulting from the connect statement are:

Pin1.v = Pin2.v

and

Pin1.i + Pin2.i = 0 .

Only connector instantiations can be connected. If several connectors are con-
nected by connect statements, it implies equality of all non-flow variables:

AC.p.v=R1.p.v=R2.p.v

and balance of all flow variables:

AC.p.i+R1.p.i+R2.p.i=0.

Modelica and its standard libraries for electrical models provide short, clear,
extensible and concise notation for such models.

During system simulation the variables i and v evolve as functions of time.
The solver of algebraic and differential equations computes the values of all vari-
ables in the model during the specified simulation time interval.

3.4 Introduction to the Modelica Multibody System Library

To facilitate mechanical system modeling we use one of the existing Modelica
component libraries, the Multibody System (MBS) Library. This object-oriented
library has been invented by Martin Otter in his dissertation [42]. Overviews of the
library are given in [44, 45]. This library has been first implemented in the Dymola
language. Later this library has been translated to Modelica.

This section, as well as Section 3.5 aim at giving a gentle introduction into
using the MBS library for simple mechanical models. More details can be found
also in MBS documentation, included in [15]. Some MBS terminology will be
used later in Section 5 as well as in our reports [19, 20].

The purpose of the MBS library is to simplify modeling and dynamic analysis
of mechanical models. Given an idealized mechanical model and external forces,
a Modelica simulation can compute the position of each body as a function of
time. For this purpose each physical body, joint, external force, etc. of a multibody
system is modeled as an object, i.e. an instance of the corresponding library class.
The object contain equations of motion, as well as equations for conversion of
physical quantities (position, speed, etc.) between different coordinate frames used
in a multi-body system. Since the library works with bodies that have some extent,
their dynamics cannot be simplified to the dynamics of point masses. The rotation
of bodies, as well as the speed and acceleration of rotation are taken into account.

The MBS library operates on idealized rigid bodies described by mass and
inertia tensors. Massless joints and bars can be set up between bodies with mass.

149

Motors and other driving and braking forces and torques can be applied to the
joints. Also, springs, dampers and external forces can be modeled.

The major areas that MBS does not handle (and is not intended to handle) are
flexible bodies (bodies with deformations). This requires solution of partial differ-
ential equations which currently cannot be formulated in Modelica. Furthermore,
these equations require very high efficiency in computation, as well as very detailed
control of solution method choice, which is missing in current implementations.
However there is ongoing research in this area[26, 51].

The MBS library is a collection of Modelica classes. In order to do modeling
of a mechanical system certain classes need to be instantiated in the user’s model.
These should be properly connected, according to certain rules. Mechanical system
models can be used for several purposes, since there are different ways to analyze
dynamic systems. However, the most typical use of such models is to analyze the
movements of bodies resulting from the application of certain forces and torques,
as well as other changes in the environment. The forces and torques can have
different origins: these can produced by drive trains, electrical motors, controlling
devices, or combination of those. Additionally, external forces and torques can be
directly applied to bodies in mechanical models.

150

C
ut

B
as

e

M
bs

C
ut

A

M
bs

O
ne

C
ut

A
M

bs
O

ne
C

ut
B

M
bs

C
ut

B

M
bs

T
w

oC
ut

M
bs

O
ne

C
ut

In
er

ti
al

E
xt

F
or

ce
B

as
e

E
xt

F
or

ce
,

E
xt

Li
ne

F
or

ce

E
xt

T
or

qu
eB

as
e

E
xt

T
or

qu
e,

E
xt

Li
ne

T
or

qu
e

In
te

ra
ct

T
re

eJ
oi

nt
In

te
ra

ct
2

C
ut

Jo
in

t
F

or
ce

Li
ne

F
or

ce

S
pr

in
g

D
am

pe
r

S
pr

in
gD

am
pe

rS
er

B
ar

B
od

yB
as

e

B
od

y
M

bs
S

ha
pe

V
is

ua
lS

ha
pe

(a
)

B
od

yB
ar

B
ox

B
od

y

C
yl

in
de

rB
od

y

B
od

yS
ha

pe
B

ar
C

ut
B

ar
C

ut
2

S
p

h
er

ic
al

C
u

t
R

ev
ol

ut
eC

ut
3D

P
ris

m
at

ic
C

ut
3D

R
ev

ol
ut

eC
ut

2D

P
ris

m
at

ic
C

ut
2D

B
o

d
yM

E

V
is

u
al

M
B

S
O

b
je

ct
E

xt

V
is

u
al

M
B

S
O

b
je

ct
(a

)

F
ig

ur
e

12
:

C
la

ss
es

of
th

e
M

B
S

lib
ra

ry
(e

xc
ep

td
es

ce
nd

an
ts

of
T
r
e
e
J
o
i
n
t

).
T

he
gr

ap
hi

ca
l

no
ta

tio
n

is
ex

pl
ai

ne
d

in
F

ig
ur

e
14

.

151

T
re

eJ
oi

nt

S
ub

In
er

tia
lB

as
e

S
ub

in
er

tia
lR

ot

R
ev

ol
ut

eB
as

e
P

ris
m

at
ic

B
as

e
S

cr
ew

B
as

e

R
ev

ol
ut

e
R

ev
ol

ut
eS

P
ris

m
at

ic
P

ris
m

at
ic

S
S

cr
ew

S
cr

ew
S

S
cr

ew
F

F
re

eC
ar

da
n2

F
re

eC
ar

da
n2

S

S
ph

er
eC

ar
da

n

S
ph

er
eC

ar
da

nS

U
ni

ve
rs

al

U
ni

ve
rs

al
S

C
yl

in
de

ric
al

C
yl

in
de

ric
al

S
P

la
na

r

P
la

na
rS

F
re

eC
ar

da
n

F
re

eC
ar

da
nS

3
2

3
3

2

R
ev

ol
ut

eF
P

ris
m

at
ic

F
S

ub
in

er
tia

l

D
riv

eC
ut

P
os

D
riv

eC
ut

N
eg

T
ra

ns
C

ut
P

os

T
ra

ns
C

ut
N

eg

F
ig

ur
e

13
:

C
la

ss
es

of
th

e
M

B
S

lib
ra

ry
:
T
r
e
e
J
o
i
n
t

an
d

its
su

bc
la

ss
es

.
T

he
gr

ap
hi

ca
l

no
ta

tio
n

is
ex

pl
ai

ne
d

in
F

ig
ur

e
14

.

152

class

class used in CAD−to−Modelica translation

superclass

subclass

class A

class includes

an object of class A

class A

class includes

N objects of class A

N

Figure 14: Notation for class diagrams (Figure 12 and 13)

The figures 12 and 13 contain the inheritance and aggregation hierarchy of
the 73 classes of the library. We use non-traditional notation for inheritance and
aggregation relations in these diagrams. This notation is explained in Figure 14.
The links used in the diagrams are more convenient for libraries with multiple
levels of inheritance. In aggregation we emphasize how many subcomponents are
used in the class. Figure 13 is continuation of the Figure 12 and it displays all
classes that inherit from the class TreeJoint.

Our detailed description covers ten major classes only. Most mechanical sys-
tems can be constructed from these. Many other classes are variations and opti-
mized combinations of the basic classes.

3.5 Using the MBS library

3.5.1 Kinematic outline

There can be different approaches to constructing an MBS model for a mechanical
model using a collection of Modelica classes. If a CAD-to-Modelica translator is
used, there is no need for manual construction of the MBS model. Otherwise, the
construction process depends on the context, in particular what type of analysis
that will be applied to the model, and whether simulation efficiency should be
taken into account. Here we suggest here the process of stepwise refinement of an
MBS model first using so called kinematic outline (kinematic skeleton), and later
introducing details of model dynamics and visualization based on this outline.

The kinematic outline is a graph consisting of nodes, connectors belonging to
the node, and edges between the connectors. The nodes of the outline correspond to
mechanical bars and joints. The edges of the outline are connections between them.
The edges are attached to the nodes in connectors that correspond to mechanical
connectors.

In many cases the graphs are acyclic. However there exist mechanisms that
correspond to graphs with loops. Such loops are called kinematic loops and require
special treatment when MBS library classes are used. More details are discussed
in Section 5.4.1.

153

Mechanical connector MbsCut1 (also referred as MbsCutA or MbsCutB)
specifies a local coordinate system (a local frame of reference).

A bar (class Bar) describes the (static) position of one mechanical con-
nector with respect to another. A joint specifies how one mechanical connector
can move with respect to another. The possible movements are constrained by cer-
tain degrees of freedom: rotational (class Revolute*2), translational (class
Prismatic*) or their combinations.

The kinematic outline consists of the inertial system, the bars, and the joints
that define the kinematic features of the system. Given angles of rotation for rev-
olute joints and the length of translation for prismatic joints, the MBS system can
compute the position of any mechanical connector. For this purpose it uses the
coordinate transformation matrix between adjacent mechanical connectors.

The following classes are used for constructing the kinematic outline:

connector MbsCutA Each instance of MbsCutA describes a local coordi-
nate system (also called frame A). This connector contains several non-flow vari-
ables:

� Real Sa[3,3] - rotation matrix describing frame A with respect to the
inertial frame.

� Real r0a[3] - vector from inertial frame to A.

� Real va[3], wa[3], aa[3], za[3] - translational and angular ve-
locities and accelerations

According to Modelica semantics, if connectors from several objects are con-
nected, the non-flow variables with the same name become constrained to have
identical values through equality equations. This corresponds to a common local
coordinate system used by several model components.

Connectors also contain two flow variables:

� Real fa[3] - resultant force acting on A.

� Real ta[3] - resultant torque acting on A.

According to Modelica semantics, if n connectors from several objects are
connected together, the sum of all flow variables is equal to zero, i.e. F1 + F2 +
:::+ Fn = 0.

connector MbsCutB This connector has exactly the same variables, but
uses the B frame, and the names of its components are: Sb, r0b, vb, wb, ab, zb,
fb and tb.

1The MBS library has been translated from Dymola to Modelica. A Modelica connector corre-
sponds to the cut construct in Dymola.

2The notation Revolute* means that there are several similar classes: Revolute,
RevoluteS and RevoluteF.

154

The Connection Rules There is a rule regarding connections between the MBS
library classes discussed further. Connector a can be connected only to connector
b of other object3.

This rule implies the tree-like structure of the kinematic skeletons. When a
connection between two connectors is set up, the coordinate frames that the two
connectors represent become identical: the position, rotation, velocities and accel-
erations are equal. However, the sum of all acting forces (plus the resulting force
taken with negative sign) and the sum of all torques (plus the resulting torque taken
with negative sign) are zeroes. This equation is implied by the fact that force and
torque are flow variables of the connector.

class Inertial An MBS model should contain one (and only one) object
(class Inertial) representing the global coordinate system and force of grav-
ity. It has a connector b. All other components in the model should be directly or
indirectly connected to the connector b (MbsCutB) of the Inertial object.

class Bar This class has connectors a (of connector class MbsCutA) and b
(MbsCutB), as well as parameter Real r[3]. This parameter describes a fixed
translation between the frames A and B in the coordinates of A. An object of this
class represents a massless bar between these two points.

class Revolute (RevoluteS) This class has connectors a (MbsCutA)
and b (MbsCutB), as well as parameter Real n[3]. This vector defines the
direction of the axis of rotation when the B frame rotates around the A frame.
There is a variable q which contains the current angle of the joint. There is also
a connector pDrive which allows connecting the driving force (i.e. motors)
to state variables for objects of class RevoluteS. The class Revolute is used
when motion is predefined, or within kinematic loops.

class Prismatic (PrismaticS) This class has connectors a (MbsCutA)
and b (MbsCutB), as well as parameter Real n[3]. This vector defines the di-
rection of translation when the B frame moves relatively to the A frame. There is a
variable q which contains the current relative distance of the joint. There is also a
connector pTrans which allows connecting the driving force (i.e. motors) to
state variables for objects of class PrismaticS. The class Prismatic is used
when motion is predefined, or within kinematic loops.

3.5.2 Example: Kinematic Outline of Double Pendulum

In this section an idealized model of a double pendulum is considered. This pen-
dulum consists of two boxes linked by a hinge. The upper box is lined by a hinge
to a non-movable platform, i.e. an inertial system. Both the boxes can move in the

3This rule, however can be violated when closed kinematic loops and external forces are used.

155

XY plane. The corresponding kinematic outline consists of two revolute joints,
one bar and one inertial system. The structure is displayed in Figure 15.

Inertial i

RevoluteS rev1

Bar arm

RevoluteS rev2

b

b

b

a

a

a

Figure 15: Connection diagram of a kinematic skeleton of a double pendulum
without masses.

3.5.3 Adding masses.

The motion of dynamic system cannot be defined just by its kinematic outline,
since an outline does not contain mass objects yet. The class BodyBase represents
mechanical objects with mass. This class has a connector a (MbsCutA) as well as
the following parameters supplied by the user:

� Real m - mass of the body.

� Real rCM[3] - position of center of mass with respect to frame a.

� Real I[3,3] - inertia tensor with respect to the position of the center of
mass. This 3 by 3 tensor is defined by six numbers since it is symmetric:

0
B@

I11 I21 I31

I21 I22 I32

I31 I32 I33

1
CA

3.5.4 Adding Masses to the Double Pendulum Example.

In the double pendulum example two bodies can be added to the kinematic outline.
Since the description of class BodyBase contains the distance between its

frame A and its center of mass, such objects can be directly connected to connec-
tor b of revolute joints rev1 and rev2. The kinematic skeleton with masses is
displayed in Figure 16.

The instances of Modelica classes (such as P1, P2, rev1 etc.) have attributes
that can be modified. For instance, Body has attributes that define mass, inertia

156

Inertial i

RevoluteS rev1

Bar arm

RevoluteS rev2

Body P1

Body P2

b

b

b

a

a

a

a

a

Figure 16: Connection diagram of a kinematic skeleton of a double pendulum with
masses.

tensor and the location of its center of mass relative to the local coordinate system
(rCM). Instances of RevoluteS (revolute joint) have an attribute n that define
the direction of axis of rotation. Instances of PrismaticS (prismatic joint) have
an attribute that specify the direction of the allowed translation. For a Bar the
coordinates of its end are specified by the vector r.

Several important parameters should be defined for a double pendulum: L1

and L2 are the lengths of the boxes. Their masses are m1 and m2. The center of
mass of the first box is located at the distance L1=2 from the first rotation point.
Rotation axes of the revolute joints are directed along the Z axis. Therefore these
are described as the vector f0,0,1g.

The textual representation of the Modelica model is as follows:

class Pendulum
parameter Real L1;
parameter Real L2;
Inertial I;
Body P1(rCM=fL1/2,0,0g);
Body P2(rCM=fL2/2,0,0g);
RevoluteS rev1(n=f0, 0, 1g);
RevoluteS rev2(n=f0, 0, 1g);
Bar arm(r=fL1, 0, 0g);

equation
connect(I.b, rev1.a);
connect(rev1.b, P2.a);
connect(rev1.b, arm.a);
connect(arm.b, rev2.a);
connect(rev2.b, P1.a);
end Pendulum;

The corresponding mechanical structure is shown in Figure 17.

157

��
��
��

��
��
��

���
���
���
���

����
����
����
����

������
������
������

������
������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
���
���
���

���
���
���

������
������
������
������
��
��
��
��arm

rev1

rev2

Inertial

L/2
L

L/2

P2

P1

Figure 17: Mechanical structure of the pendulum.

3.5.5 Adding Geometrical Shapes

There are two ways to create 3D visualizations of mechanical models for systems
constructed from the MBS library. The information about object position and rota-
tion can be saved in a file and read back later for visualization. Alternatively, this
data can be sent to external functions for visualization.

Objects of MBS classes can be connected with special classes intended for sav-
ing position and rotation of objects during simulation. In particular, in the Dymola
tool[15], class VisualMbsObject can be used for this purpose4. The objects of
this class require the following parameters and variables for visualization:

� Connector a (MbsCutA) which is normally connected to connector a of the
corresponding body.

� Real nx[3], ny[3] specify the orientation of the visualized shape (di-
rection of its axes X and Y) with respect to the frame of the connector a.

� The vector Real r0[3] specifies the point of insertion of the shape with
respect to the rotated frame of the connector a.

� The array Real Material[4] specifies the color of the shape.

Other variables specify a predefined shape5 (and its size) or the custom shape.
The detailed description of geometry and other graphical properties of custom
shape can be stored outside Modelica code in some standard format, e.g. DXF
([15]), STL or VRML (see Section 8), or can be stored inside the Modelica code
as annotations, as proposed in [21].

4This class does not belong to the MBS library. Interpretation of the data as graphical information
is not part of Modelica semantics and is specific for the particular tools that implement visualization,
e.g. DymoView[15], or MVIS (Section 8).

5The standard predefined shapes are box, cylinder, sphere, pipe, cone, beam, wirebox and gear-
wheel.

158

3.5.6 Adding Shapes for Double Pendulum

In order to use shapes for pendulum visualization we can utilize class BodyV
which includes classes Body (Section 3.5.3) and VisualMbsObject (Section
3.5.5). The parts of the pendulum can be treated as a box of size L1 �K1 �K1

and L2 �K2 �K2. Such points have the default point of insertion in the center of
the left face (Figure 18).

Z

Y

X

Figure 18: The default position and rotation of a ¨box¨ – a predefined shape of
the MBS library.

The textual representation of Modelica model is following:

class Pendulum
parameter Real L1;
parameter Real L2;
Inertial I;
BodyV P1(mass=M1,r=fL1/2,0,0g
Shape="box", Size=fL1,K1,K1g, r0=f0,0,0g,
Material=f1,0,0,0.5g);

BodyV P2(mass=M2,r=fL2/2,0,0g
Shape="box", Size=fL2,K2,K2g, r0=f0,0,0g,
Material=f0,1,0,0.5g);

RevoluteS rev1(n=f0, 0, 1g);
RevoluteS rev2(n=f0, 0, 1g);
Bar arm(r=fL1, 0, 0g);

equation
connect(I.b, rev1.a);
connect(rev1.b, P1.a);
connect(rev1.b, arm.a);
connect(arm.b, rev2.a);
connect(rev2.b, P2.a);
end Pendulum;

159

3.5.7 Interface to Non-Mechanical Parts of the Model

When a multidomain model in Modelica is designed, mechanical part of the model
receives energy from some other parts of the model. The mechanical part should
usually be connected with the part describing the drive train, which is in turn con-
nected to the part describing the energy source, e.g. electrical circuit. There are
standard Modelica libraries for all these components.

However, sometimes the attention is focused on an isolated mechanical part of
the model. In this case the forces and torques acting on the model can be specified
directly.

There exist three major ways to set up an interface between the mechanical
part of Modelica model and other parts. These ways correspond to three connector
types: MbsCut, DriveCut and TransCut.

Using MbsCut. Any object with connector of type MbsCut can be connected
to model of external force or torque. This external force (or torque) will
be applied to the corresponding point on the relevant body. This can be
demonstrated as follows:

...
ExtForce E;
// or ExtTorque E;

MbsCutB MB;
Bar B;

equations
connect(B.b,E.b);
// or connect(MB,E.b);

E.fb={fx, fy, fz};
// Force given in the local coordinate frame

// or

E.fb=E.Sb’*{fx, fy, fz};
// Force given in the global coordinate frame

Using DriveCut. A torque can be applied to a revolute joint with a state vari-
able. First, a motor (torque source) model is declared, and then it is used.
Currently the MBS library uses old nonstandard syntax for specifying vari-
ables included in the connector. Function foo is often defined through the
control equation t = k*(qref-q) - d*qd, where k and d are large
constants obtained from experiments, and qref is the reference angle which
can vary. The motor steers the joint so that q tends to be very close to qref .
The intermediate connector D is sometimes used when R is encapsulated in
some other class (e.g. this occurs in the SolidWorks-to-Modelica translator
output).

160

model Motor;
Cut nDrive(accross={q;qd;qdd}, through=-t);

equations
t=foo(q, qd, qdd);
// for example t = k*(qref-q) - d*qd;

end Motor;
...

RevoluteS R;
Motor M;
DriveCutPos D;

equations
conect(M.nDrive,D); connect (D,R.pDrive);
// or connect(M.nDrive,R.pDrive);

Using TransCut. A force can be applied to a prismatic joint with a state vari-
able. First, a motor model producing linear force is declared, and then it
is used. Function foo is often defined through the control equation f =
k*(qref-q) - d*qd, similar to the case above. Here qref is the refer-
ence relative position.

model MotorP;
Cut nTrans(accross={q;qd;qdd}, through=-t);

equations
f=foo(q, qd, qdd)

end Motor;
...

PrismaticS P;
MotorP M;
TransCutPos T;

equations
conect(M.nTrans,T);connect (T,P.pTrans);
// or connect(M.nTrans,P.pTrans);

3.6 Advantages of Using MBS for Dynamic Analysis

There are two major advantages in using the MBS and Modelica library for Dy-
namic Analysis.

� The simulation is not interpreted, but compiled.

� Multidomain modeling is made possible.

3.6.1 Interpretation and Compilation in Mechanical Simulation

There exist two ways to specify a model for mechanical simulation software. The
software can interpret the model or compile it to an executable code.

In mechanical simulation libraries a particular mechanical model is usually
described as a collection of program objects. These objects can be created by
calling library functions, or they can be created by instantiating some classes from
a class library. Alternatively the mechanical model is described in a proprietary
format (or specified via graphical user interface), as this is done in Working Model

161

3D and ADAMS. In all these cases interpretation of the model information takes
place.

In contrast, when using Modelica/MBS the mechanical model is first compiled
to a set of equations, which are optimized. Then C code only including necessary
arithmetic operations for the specific mechanical model is generated, optimized by
C compiler, and finally compiled into a specific executable application. This results
in much faster applications.

3.6.2 Multidomain Simulation

Modeling mechanical systems is one of the major Modelica applications. In Mod-
elica this can be done by employing the Multi-Body System library (MBS). Classes
from this library can be instantiated. A proper collection of instances as described
in section 3.5 constitutes a system of differential and algebraic equations. The so-
lution of this system yields the dynamic behavior of the corresponding mechanical
system.

Another major Modelica application area is modeling of multi-domain sys-
tems. This means that for instance electric, hydraulic and control models can be
incorporated into the same mathematical model as the model of a mechanical sys-
tem. This is obtained by instantiation of classes from the corresponding libraries.

3.7 Difficulties of using the MBS library

There are two types of difficulties with the usability of the MBS library.

� There are connection rules for the MbsCut connectors, rules for using classes
with or without state variables, and rules for constructs with kinematic loops.
It is hard to see a mapping between these rules and physical objects. These
rules should be used very carefully; if they are violated, there is a little
chance that appropriate diagnostic messages are generated, since useful in-
formation is lost when class structures are converted into flat set of equations.

However, currently, in 2000, a new MBS library for Modelica is being devel-
oped, which solve many technical problems[18]. In particular, the rules for
kinematic loops are simplified via state deselection during simulation. New
algorithms that perform state deselection are based on [34].

� Descriptions of mechanical models contain many numerical values. Typi-
cally for a rigid body dynamics model (when the surface geometry is ig-
nored) at least 20 numerical parameters are necessary. These values cannot
be derived by just looking at the bodies and reasoning about them. Instead,
they should be obtained from some reliable source.

162

4 CAD Tools

In order to simplify the design of mechanical Modelica models, CAD tools can be
utilized.

In this section we discuss the following questions:

� Which properties of CAD tools are important and necessary for dynamic
analysis?

� Which properties are necessary for conversion of CAD models to Modelica
code based on the MBS library?

� Comparison of several tools (SolidWorks, Pro/ENGINEER, Mechanical Desk-
top, WorkingModel 3D, 3D Studio Max) with respect to possibilities of con-
version into Modelica/MBS.

� How constraints (mates in SolidWorks terminology and Joints in Model-
ica/MBS terminology) are specified in SolidWorks.

4.1 CAD Tools and Dynamic Analysis

There exist hundreds or even thousands of different software tools that assist in
general design – so called computer-aided design tools. Only a small fraction
of those can be used for dynamic analysis of mechanical systems. The minimal
requirements for dynamic analysis are:

� The tool should be able to construct and extract information about 3D me-
chanical components (bodies) which can serve as point masses (abstrac-
tion of rigid bodies with all mass concentrated at their center of mass).
There should be some way to specify initial position and rotation of three-
dimensional shapes. The shapes can be either primitives (box, sphere, cylin-
der, cone), or complex (combination of primitive shapes), or feature-based
(constructed by applying a sequence of operations in 3D), or arbitrary poly-
tope (constructed by specifying a set of triangles in 3D).

� The tool must be able to describe mechanical constraints between the bodies,
such as joints. It should be possible to specify reference points (alternatively
axes, edges, faces, planes) on two bodies and choose which constraints ap-
plies to the bodies.

� The tool should be able to compute (or have all necessary information for
computation of) the mass, the center of mass, and (preferably) the matrix of
inertia for each component. In many cases CAD tools are able to automat-
ically compute volumes of complex shapes and their centers of mass. The
densities of bodies are considered as homogeneous. Therefore the mass can
be found from the volume and density. In the general case the computation of

163

the volume and the center of mass can be a complicated and computationally
intensive task. It should be noted that many CAD tools (e.g. VRML con-
struction tools) operate with surface presentation only, and therefore volume
and mass cannot be found.

These requirements are enough for the automatic construction of models which
have no external interactions (forces, torques, collisions) applied. Typically some
information should be specified in addition to the CAD model in order to simulate
some mechanisms. For instance, definition of an external force should be attached
to some point of certain body. This force can be either specified by the user within
the CAD tool, or it can be described later in a simulation language, or by using a
simulation environment interface. In the first case these specifications are stored as
additional, user-defined attributes (user-defined properties) of mechanical parts. In
the later cases all the bodies should have some distinctive names and the name of
the body should be used as a reference.

4.2 Comparison of Various CAD tools

In this section we consider several CAD tools. We investigate whether and how
it is possible to extract information necessary for dynamic simulation from these
tools.

4.2.1 SolidWorks

The SolidWorks[52] environment supports two kinds of documents for mechanical
design: the part model and the assembly model. An assembly might consist of
parts and other assemblies. Each part corresponds to mechanical body. The parts
are constructed by applying a sequence of CSG (constructive solid geometry) oper-
ations, called features. Each such operation converts a solid body model to another
solid body model. The operations preserve or update some important features of
solid bodies, for instance mass, position of the center of mass and value of the
tensor of inertia.

SolidWorks does not support the description of movement constraints between
the bodies in the form of joints. Instead a set of mates between points, axes, edges,
faces or planes of two bodies is configured by the user. The translation between
such representations is a difficult problem. Our variant of this translation is dis-
cussed in Section 5.4. SolidWorks automatically computes the volume of a part,
the center of the volume and the tensor of inertia, assuming that the part has uni-
form density. The value of the density can be specified as a property of the part
when it is created.

SolidWorks uses an application programming interface based on COM (Mi-
crosoft Component Object Model) to give access for browsing and modification of
virtually all properties of parts and assemblies. This way all information about the
kinematic features of the model can be extracted.

164

4.2.2 Working Model 3D

In the Working Model 3D ([29], see also Section 2.1.2) tool users create set of
bodies (mechanical parts) and describe how these are pairwise connected by joints.
Only primitive shapes can be constructed within Working Model 3D. However, it
can import arbitrarily complex shapes from various CAD tools. Mechanical joints
that can be specified in Working Model 3D directly correspond to joints in the
Modelica MBS library. The mass, the center of mass and the inertia tensor are
automatically computed from user-specified density. However, all these can be
overridden by the user. The major drawback of Working Mode 3D is the absence
of communication with the ”outer world”. The information in Working Model 3D
is available mainly inside the tool. Sometimes useful information is displayed by
the tool but cannot be automatically extracted for use by external programs. The
data export capabilities of Working Model 3D are limited: simulation results can
be exported, but joint information cannot.

4.2.3 3D Studio Max

This tool ([5], see also 2.1.3) is able to specify object geometry in a very detailed
way. However, there is a gap between geometry and physical properties. 3D Studio
Max has several degrees of approximation between its objects and the correspond-
ing physical objects. This quite useful approximation feature does not appear in
other modeling tools.

The objects can initially be constructed as solid bodies or as surfaces. When
such objects are used for dynamic simulation either a bounding volume (box or
sphere), or a mesh subdivision of the object can be used as the geometry model for
dynamic simulations. This choice is up to the user. Obviously, computations using
bounding volumes are much faster and usually more inaccurate than computations
using a mesh.

3D Studio Max is primarily oriented towards description of graphical and ge-
ometrical properties of surfaces. Therefore the computation of certain physical
properties is not always adequate: objects might contain just a surface (e.g. a
square) which has no solid body properties such as mass and volume. To solve this
problem, the tool computes mass and volume using a certain degree of accuracy, in
particular using bounding box around the surface, bounding sphere or (much more
exact for complex shapes) using mesh subdivision.

Movement constraints in 3D Studio Max are specified as locks6 (these forbid
translation and rotation of child objects with respect to parent object in certain
directions).

The mass and the position of the center of mass are either computed using the
rules mentioned above, or can be overridden by the user. The inertia tensor is not
computed nor used at all.

6This is 3D Studio Max terminology.

165

3D Studio Max uses MaxScript (a proprietary interpreted command and pro-
gramming language) or a C++ API for manipulation and extraction of data from
3D scenes. Geometry can be extracted in VRML, STL, DXF and some other for-
mats. Specification of locks and physical (dynamic properties) overridden by the
user cannot be extracted by MaxScript, but apparently can be accessed via the C++
API. A tool for extraction of this information from 3D Studio Max to Modelica is
being designed by Dynabits[13].

4.2.4 Mechanical Desktop

Mechanical Desktop (version 4)[6] is an environment which integrates the Auto-
CAD 2000 (a tool for modeling of parts and surfaces), ACIS 5.1 kernel for mod-
eling complex geometry as well as features of Genius Desktop 3 and AutoCAD
Mechanical 2000. Details about these products and various formats mentioned in
this section can be found in [6].

It is one of the most popular tools for mechanical design. This tool is one of
about 200 CAD tools related to AutoCad, which use the ACIS engine for internal
representation and processing of CAD information.

All tools using the ACIS engine can exchange geometry data using the ACIS
format (ASCII .sat files and binary .sab files). However applications use spe-
cialized formats for storage of all other information but geometry. In particular
Mechanical Desktop uses binary DWG format.

Products of the AutoCad family have specialized support for many areas of
computer-aided design. Special applications are targeted for building industry, geo-
graphical information systems and mechanical design. Also there is a whole series
of applications for static and dynamic visualization of AutoCad models, including
3DStudio Viz. It uses Mechanical Desktop files for automatic assembly animation.
Each modification of a model in 3DStudio Viz is reflected in Mechanical Desktop
and vice-versa.

In order to construct an assembly, all the parts should be first referenced or
localized into the assembly drawing. Mechanical models with motion constraints
(assembly constraints in the AutoCad terminology) are constructed in Mechani-
cal desktop by means of menu commands (Mate, Insert, Flush, Angle).
These menu choices invoke command line interface commands with correspond-
ing prompts:

� AMFLUSH specifies two parallel planes and a fixed distance between the
planes (the distance is 0 by default).

� AMANGLE specifies an angle between two planes, two vectors (or axes) or
between a plane and a vector (or an axis). The angle is 0 by default.

� AMMATE specifies that two planes, axes, points or non-planar faces (sphere,
cone, cylinder, or torus) are coincident.

166

� AMINSERT specifies that two faces (e.g. cylindrical surfaces or edges) are
coplanar and share common axis.

In order to extract information about relations between bodies it is possible to
use ObjectARX (Object AutoCAD Runtime Extension) which provides a mecha-
nism to manipulate the Mechanical Desktop programmatically from within or out-
side of the Mechanical Desktop. This Automation (Application Program Interface)
gives C++ programs (clients) access to the internal representation of assembly in-
formation. Programs written using this interface are installed as plug-ins in the
Mechanical Desktop environment.

In particular, C++ clients can access McadConstraintDescriptor ob-
ject which contains information about two geometric objects operated on by
this constraint, the type of constraint (one of mcCompMate, mcCompFlush,
mcCompInsert, mcCompAngle) as well as a value which for example could
be the offset distance or the angle.

The facilities for constraint definition in Mechanical Desktop are similar to
those in SolidWorks (see Section 5)). As part of our future work we plan a con-
verter from Mechanical Desktop assemblies to Modelica.

4.2.5 Pro/ENGINEER Tool Family

Pro/ENGINEER
Foundation (GUI)

Mechanical Design
Extension (GUI)

Design Automation
Option (GUI)

Application
Programming Toolkit (API)

Motion Simulation
Package (GUI)

Structural Simulation
Package (GUI)

Motion Simulation
Programming Toolkit (API)

Pro/MECHANICA

Pro/ENGINEER

No API ?

Figure 19: Structure of layers of Pro/ENGINEER and related tools.

167

Pro/ENGINEER[39] is one of the most widely spread tool families for mechan-
ical design. It is targeted primarily for industrial applications and design optimiza-
tion of products. Several different environments for different purposes are com-
bined together, and a common CAD data representation model is used for informa-
tion exchange. In order to create a mechanical model consisting of several bodies, a
static model of collection of parts is created initially in the Pro/ENGINEER Foun-
dation Tool (see Figure 19). When an assembly is created from parts, locations of
future joints should be correctly aligned.

Pro/ENGINEER has several extension packages, in particular Mechanical De-
sign Extension. This extension enables designers to specify motion of assembled
Pro/ENGINEER parts. When the parts are assembled, joints of different types con-
nect them. These joints are Pin, Slider, Cylinder, Planar and Ball. Every such joint
define certain limitations of part movement relatively to each other. Rotational and
translational degrees of freedom are reduced, and the motion is constrained.

Mechanical Design Extension has other important facilities for assemblies: ev-
ery part of the assembly can be moved (dragged by mouse); predefined (prescribed)
movements can drive the parts. Some performance features of the mechanisms can
be assessed at this stage, e.g. clashes can be detected, and model extents in the
coordinate space can be evaluated.

Pro/ENGINEER has a Design Automation option. This makes it possible to
create animation sequences of moving mechanisms. The designer specifies posi-
tions of parts in assemblies for some key frames, and smooth movement of these
parts is automatically generated.

Pro/MECHANICA is another product family which is built on top of core
Pro/ENGINEER, and used for model simulation. This package contains several
simulation tools, in particular the Motion Simulation Package for kinematic analy-
sis (using equations of motion of rigid bodies) and Structure Simulation for struc-
ture deformation and stress studies (using finite element analysis). Kinematic anal-
ysis uses description of parts defined in Pro/ENGINEER Foundation Tool, and
joint definitions defined in Mechanical Design Extension. Since Mechanical De-
sign Extension is useful in the context of Pro/MECHANICA only it can be also
considered as part of Pro/MECHANICA.

Kinematic simulation is used as a foundation for the more advanced features of
Pro/MECHANICA: sensitivity analysis and automated design optimization. When
multiple design parameters are specified and a design goal is expressed in mea-
surable physical quantities, the tool can perform automatic design optimization.
These simulation capabilities can be augmented even more by the Motion Simula-
tion Programming Toolkit. This toolkit enables in particular extracting the equa-
tions of motion (in an encapsulated form) so that the simulation can be driven by an
external program. This way components from other application domains (electric,
control, hydraulic, etc.) can be attached to mechanical simulation in order to build
a single application.

Access to information describing model geometry and all model features cre-
ated by the Pro/ENGINEER Foundation Tool can be done by exporting data in the

168

MNF (Mechanica Neutral File) format or via the Application Programming Toolkit.
The features specified by the Mechanical Design Extension (i.e. joints of differ-
ent kinds) are stored in MNF and not accessible via the toolkit. This API offers
the possibility of adding user-defined objects to the model. This way it would be
possible to add special joints. These new joints would not be compatible with the
joints defined in Mechanical Design Extension.

Regarding translation of mechanical models with joints from Pro/ENGINEER
to Modelica we can conclude in its current version (Pro/ENGINEER 2000) neither
Application Programming Toolkit nor MNF can be used for this purpose. New
user-defined objects can be created, however. These objects can be defined in the
same way as joints. The model together with such objects (Modelica’s joints) can
be translated to Modelica. The disadvantage of this approach is that these joints
cannot be used in Pro/MECHANICA.

5 Mechanical Model Design in SolidWorks and Model Trans-
lation

5.1 Design of SolidWorks Parts and Assemblies

The system currently used in our project is SolidWorks[52].
SolidWorks uses the concepts of parts and assemblies. Each solid component

(a rigid body) is modeled as a separate part document.
In the assembly document these parts are put together to form a complete

model. Each part model can also occur more than once in the assembly.
The assembly document defines the mobility between the parts of an assem-

bly. Between two parts, several so called mates are connected, each adding some
constraint to the mobility between the parts.

A part consist of entities, such as planes, faces, edges, axes and points. A mate
connects two entities from different parts. There exist several mate types. The
most typical are coincident (all the points of one entity are inside another entity) or
parallel (it keeps entities parallel to each other).

Two parts can be connected by one, two or more mates. Some combinations
of mates are valid, some are not. Invalid combinations of mates (over-constrained
systems) are automatically rejected by SolidWorks.

5.2 Mating Example

The example in Figure 20(a) describes a fragment of the pendulum model. The part
P1 has a front face (f1) and an upper edge (e1). The part P2 has a front face (f2)
and a bottom edge (e2). There is a mate that specifies that the planes of f1 and f2
are coincident. Another mate specifies that the edges e1 and e2 are coincident,
i.e. they belong to the same line in the coordinate space. The SolidWorks system
analyzes the mates and adjusts the positions of the parts (Figure 20(b)). The system
automatically rejects invalid mate combinations. In this case our translator [30]

169

Z

X

Y

(a) (b)

Figure 20: Parts and their mates specification before (a) and after (b) adjustment
according to the mates.

finds that there is a joint with one rotational degree of freedom between the parts
P1 and P2, and calculates the position and orientation of the rotation axis. This
pair of mates corresponds to an instance of class RevoluteS from the Modelica
MBS library with an attached Body instance.

5.3 Classification of mates

There are seven different mate types:

Coincident: One entity belongs to another entity

Concentric: Cylinders and cones have a center line. This line can be shared be-
tween several round entities, or it can be coincident with some other line in
the model.

Perpendicular: Planes or lines keep a 90� degree angle to each other.

Parallel: Entities are parallel to each other

Tangent: An entity touches a cylindrical entity

Distance: Two entities keep a fixed distance.

Angle: Two entities keep a fixed angle

When mates are applied to entities, the number of degrees of freedom (3 trans-
lational and 3 rotational degrees) are reduced. Table 2 shows the degrees of free-
dom between two parts with plane and line entities connected by one of the four
most used mates. The complete table can be found in [30].

170

Entities Mate type Translational DOF Rotational DOF

coincident 2 1
Plane/Plane distance 2 1

parallel 3 1
perpendicular 3 2

coincident 2 2
Line/Plane distance 2 2

parallel 3 2
perpendicular 3 1

coincident 1 1
Line/Line distance – –

parallel 3 1
perpendicular 3 2

Table 2: Degrees of freedom which are left between parts connected by mates in
their entities.

5.4 Translation of mates into joints

In the example above the simplest case of translation of SolidWorks mates into
MBS joint is demonstrated. Two lines (edges) are coincident and two planes (faces)
are coincident. Parts free of constrains can rotate around and translate along all the
axis. This can be denoted as movement freedom symbols (TX TY TZ RX RY
RZ). The coincident lines (see Figure 20(b)) are directed along the Z axis. The
coincident planes are located in a plane which is parallel to the XY plane.

The mates reduce degrees of freedom in the following way:

� Coincidence of two lines forbids (i.e. reduces freedom of) rotation around
the X and Y axes and translation along X and Y axes. The symbols TX, TY,
RX, RY are removed.

� Coincidence of two planes further forbids (i.e. reduces the freedom of) trans-
lation along the Z axis, and does not allow the parts to rotate around the X
and Y axes.

Therefore the symbols TZ, RX, RY should be removed. The only symbol left is
TZ. Therefore a revolute joint (one rotational freedom degree) should be inserted
between the parts, and its axis is parallel to the axis Z. The point of the joint is
chosen as the intersection point between the lines and the planes.

Each SolidWorks assembly consists of a set of parts, and stores a set of mates.
All these are validated and translated to a set of Modelica MBS class instances and
appropriate connections between them. The mass, position of center of mass and
inertia tensor are extracted from the corresponding part documents by SolidWorks.

In the general case when mates are translated to joints a more complex method
is used (see Figure 21). We consider two parts and all the mates between them

171

Part Part

mate
mate
mate

Part PartSolidWorks
joint

RX RY RZ
TX TY TZ

Joint
Joint

Joint

Body Body

(a)

(b)

(c)

(d) Joint
with/without state variable
with/without connector
cut joint of kinematic loop

Figure 21: Translation of SolidWorks mates to Modelica joints.

(Figure 21(a)). Each mate is analyzed and translated into a CDOF (Class Degree
of Freedom) object. This object stores the directions of the orthogonal vectors
corresponding to TX, TY, TZ, RX, RY, and RZ. This object also contains a boolean
array (with 6 elements) defining which of the vectors correspond to freedom of
movement.

The resulting SolidWorks joint (Figure 21(b)) between two parts is derived
from combination of all CDOF objects made for the corresponding mates. The case
when two mates are applied at the same point of rotation is relatively simple. Axes
of translation and rotation existing in both terms are left in the result. Otherwise
the algorithm checks whether lines and planes considered are parallel or not, and
in some cases a new rotation axis is created. The details of the algorithm are given
in [30]. Each SolidWorks joint corresponds to (from one to five) Modelica joints
(Figure 21(c)) directly attached to each other in a chain.

When the joints between all the parts are established, a multibody tree structure
is built. The SubInertial object serves as the reference point and the root of
the tree. The parts that have fixed position in the SolidWorks coordinate frame
are directly attached to the SubInertial via Bar objects. For each pair of parts
with joints a connection in the form of a Bar and one or several Joint instances is
created. The Bar serves as a link from the frame of the a connector of a Body (its
main reference point) to the point where the joint is attached to the body. Finally,
a kinematic outline is obtained. This kinematic outline is a graph with vertices
corresponding to parts (Body objects in MBS), Bars and joints. The edges of the
graph correspond to the connectors.

172

5.4.1 Multibody Systems with a Kinematic Loop

A kinematic outline, in particular one created from SolidWorks assembly, may
contain a cycle. Such cycles are called kinematic loops. In this case some special
MBS library classes are used instead of usual RevoluteS and PrismaticS
joints. These classes are called cut joints (SphericalCut, RevoluteCut2D,
RevoluteCut3D). A cut joint replaces a usual joint in the outline so that the
remaining joints build a tree. All other joints are divided to joints with state
variables (RevoluteS,PrismaticS) and a group of joints without state vari-
ables (Revolute, Translate). The number of joints without state vari-
ables in the loop must be identical to the number of constraints in the cut
joint. SphericalCut has 3 constraints, RevoluteCut2D has 2 constraints,
RevoluteCut3D has 5 constraints.

For instance, the following way of programming a kinematic loop:
(SubInertial - RevoluteS - SphericalCut - Revolute - Revolute
- Prismatic - SubInertial) is legal. Another legal example
is (SubInertial - PrismaticS - PrismaticS - PrismaticS -
RevoluteCut3D - Revolute - Revolute - Revolute - Revolute -
Revolute - SubInertial)

In the case when all the movements take place in the same plane,
a planar 2D kinematic loop occurs, and RevoluteCut3D should be
replaced by RevoluteCut2D. A legal example is (SubInertial -
PrismaticS - PrismaticS - RevoluteCut2D - Revolute - Revolute
- SubInertial). Another legal example is (SubInertial - Revolute -
RevoluteS - RevoluteCut2D - Revolute - SubInertial).

The choice of type of joint between a joint with state variables, a joint without
state variables, or a cut joint is performed by the user. The correctness of the choice
is verified by the SolidWorks-to-Modelica translator.

In future an automatic algorithm to perform a choice of joint types can be
implemented in the translator. Furthermore, a new MBS library is being developed,
and the rules for kinematic loops are simplified since state deselection can be done
during simulation[18]. New algorithms that perform state deselection are based on
[34].

5.5 User Interface for Configuration of Joints

There are several ways how a mechanical joint found from a combination of Solid-
Works mates can be translated into one or several instances of MBS joint classes.
The attributes (Figure 21(d)) of the joint are available via a special menu item
Edit Joint Attributes in the SolidWorks-Modelica plug-in. Every SolidWorks joint
contains between zero and five degrees of freedom. A drive connector can be prop-
agated for each separate degree of freedom. A DriveConnectorPos connector
is available for rotating degrees and a source of external driving torque (e.g. a
motor) can be attached to such a connector. A TransConnectorPos connec-

173

tor is available for translating degrees of freedom, and a linear actuator (external
driving force) can be attached to it. The motors and actuators should currently be
attached manually in the external code; in the future it will be possible to specify
them directly via dialog windows of the plug-in.

The user can specify whether a Modelica joint has state variables or not. A
joint without state variables should be used if it is included in a kinematic loop.
The user can specify whether the joint is a cut joint or not.

5.6 Mechanism Example – Crank model

To illustrate the use of the SolidWorks–to–Modelica converter we consider an ex-
ample of a crank mechanism (Figure 25). It includes several important features:
joints of different kinds, kinematic loops, and external mechanical connectors.

A crank model has been designed in SolidWorks. It contains the fixed basement
and two empty cylinders rigidly attached to the basement. A piston is moving in
each cylinder. Each piston is connected to the crank by the rod.

When a force (e.g. an explosion) is applied to the pistons in the vertical direc-
tion, they move. This causes the crank to rotate. In order to apply a force to the
pistons, mechanical connectors are defined in the dialog window of the translator.
These connectors are attached to the pistons. They are called pist 1 explo and
pist 2 explo in the generated Modelica code.

Inertial

Bar

Bar

Bar

Revolute

Bar Bar

Revolute Revolute

Bar Bar

Revolute Revolute

Prismatic Prismatic

Bar Bar

rod rod

crank

pistonpiston

base

Figure 22: Kinematic outline of the crank mechanism. The type of the revolute
joints is not defined yet.

174

When the model is translated from SolidWorks to Modelica (see Figure 22), all
the revolute joints have state variables by default.

The model of the crank contains two kinematic loops. Therefore two cut joints
should be inserted into the outline. The converter issues an error message that no-
tifies that correct Modelica model cannot be generated since there are kinematic
loops and no cut joints yet. The user should choose which joints should be re-
placed by cut joints. According to the rules of programming with the MBS li-
brary, the loops should be cut so that the kinematic outline is transformed into a
tree. There are several ways to do that. The Revolute joint can be replaced by
RevoluteCut2D joint in four different ways. In addition, one Revolute joint
should have state variables, i.e. be an instance of RevoluteS. This can be done
in three different ways. Since there is just one degree of freedom in this system,
only one joint with state variables should be used. A non-convergence error during
solution of the equations may occur if the value of a state variable (i.e. rotation
angle for revolute joints and displacement value for prismatic joints) is close to
the limit of possible values due to geometric constraints. Therefore the prismatic
joints should not be used here as joints with state variables. When all these ob-
servation are taken into account, the joints between the crank and the rods (J22
and J23, see Figure 23) are replaced by the RevoluteCut2D joints. The joint
between the base and the crank (J21) becomes a revolute joint with state variables
RevoluteS7. As a result, in each kinematic loop there are two joints without state
variables: J26 and J27 in one loop, J24 and J25 in another loop.

The model r1 generated from SolidWorks should be used together with a
wrapper model which defines external forces acting on the pistons. This wrapper
model is defined as follows:

model world
Inertial I;
ExtForce EF1;
ExtForce EF2;
Real F1 "force applied to piston 1";
Real F2 "force applied to piston 2";

parameter Real F1per = 1;
parameter Real F2per = 1;
parameter Real F1amp = 1;
parameter Real F2amp = 1;
parameter Real F1offs = 0;
parameter Real F2offs = 3.14;
r1 r;

equation
connect(I.b, r.a);
F1= F1amp*sin(2*3.14* Time/ F1per + F1offs);
F2= F2amp*sin(2*3.14* Time/ F2per + F2offs);
connect(r.pist_1_explo, EF1.b);

7From mechanical engineering point of view the axes of the joints J21, J22 and J23 should not
belong to the same plane, as it is in our model, since a ”dead” position may occur when no forces
from the pistons can shift the crank anymore.

175

Figure 23: Modelica diagram for the crank mechanism (model r1).

EF1.fb=0,F1,0;
connect(r.pist_2_explo, EF2.b);
EF2.fb=0,F2,0;

end world;

In this case the force is defined as a simple periodic function. In the engineering
application any other function depending on any parameters (e.g. position and
velocity of the piston) can be used here.

Engineers can use a 2D plot describing the angle of rotation r.J21.q in order
to draw conclusions about the result of applied force function. In this case the crank
rotates in the opposite direction for some time (3 < time < 5), but rest of the time
it rotates correctly. The 3D visualization is automatically created for this model by
the MVIS tool. The result can be seen on Figure 25.

5.7 Mechanism Example – a Swing Model

A model of a man on a swing (Figure 29) illustrates a mechanism with kinematic
loop and a motor force applied to a revolute joint. The swing contains a fixed
basement with two rotating rods that are attached to a platform (a ”horse”). A
”man” is sitting on the platform. It is attached by a revolute joint to the platform;
this joint performs oscillating movements. The model illustrates a well known
effect: when the force applied to the swing is oscillating with the same frequency

176

Figure 24: Angle of rotation (r.J21.q, solid line) and angular speed
(r.J21.qd, long dashes) of the crank caused by the applied periodic force (F1,
short dashes).

as the swing’s own, a resonance occurs.
This mechanism (see Figure 26) contains four revolute joints in the loop and

one outside the loop. Of the four joints one should be with state variables (be-
cause of one degree of freedom), two without state variables (because there are
two constraints in the cut joints RevoluteCut2D), and one joint is replaced by
RevoluteCut2D. In this mechanism these joint types can be chosen arbitrarily
between the four joints in the loop. The resulting Modelica diagram is shown in
Figure 27.

The wrapping model should define the torque applied to the connector ”roll”
(a black square in Figure 27) so that the joint between the ”man” and the ”horse”
oscillates.

177

Figure 25: Dynamic 3D visualization of the crank model. Annotations were added
to the image later for clarity.

model Motor
"produces a torque such that the angle of the joint q is close to qref"
parameter Real k = 0;
parameter Real d = 0;
Real qref, q, qd, qdd, torque;
LineCut nDrive(across={q; qd; qdd}, through={-torque});

equation
torque = k*(qref-q) - d*qd;

end Motor;

model world
Inertial I;
Motor D1 (k=10000,d=1000);
Swing1 swing "generated from SolidWorks";
parameter Real period_start=0.252;
parameter Real period_speedup=0.015;
Real period "changes gradually";
parameter Real amplitude = 1.5;

equation
period=period_start+time*period_speedup;
connect(I.b, swing.a);
connect(D1.nDrive, swing.roll);
D1.qref=amplitude * sin(time* 3.1415*2 / period);

end world;

The wrapper model in this case describes an experimental setup. The period of

178

InertialBar Bar

Revolute Revolute

Bar Bar

Revolute

Bar

Revolute

Bar

Revolute

man

Figure 26: Kinematic outline of the swing mechanism. The types of the revolute
joints are not defined yet.

oscillation changes from 0.252 to 0.327 during 5 seconds. Starting from a certain
instant (see Figure 28) the resonance effect can be observed.

The simulation can be dynamically visualized by the MVIS tool (see Figure
29).

179

Figure 27: Modelica diagram of the swing mechanism.

Figure 28: Oscillation period (changes from 0.252 to 0.327) and the angle of rota-
tion of joint J14.

180

Figure 29: Dynamic visualization of the swing model: a stylized ”man” swings on
a swinging ”horse”-like platform. This dynamic visualization not only shows the
model in motion, but also helps to validate the design, for instance, detect clashes
(i.e. undesirable collisions).

181

6 Structure of the Integrated Environment

Figure 30 represents components of our integrated environment for design, simu-
lation and visualization of mechanical models. A model designed in SolidWorks
serves as the starting point in the system design. The model consists of an assembly
document and several part documents. The parts are used in the assembly.

The assembly contains information about position, orientation and categories
of the mates. From each part information about its geometry as well as mass and
inertia can be extracted. Our translator from SolidWorks to Modelica takes in-
formation about the mates and produces a corresponding set of Modelica class
instances with connections between them. The mass and inertia tensors for each
part are computed by SolidWorks. These are extracted and used in the Modelica
model. Geometry information is saved in a separate STL [1] or VRML [54] file for
each part.

By default the gravity force is applied to the mechanical model. Usually this
is not enough for simulation. All external forces that are applied to the bodies,
as well as motor forces that are applied to revolute and prismatic joints, should
be specified. This is done outside the SolidWorks model by adding code for new
class instances to the Modelica model. For instance external forces can be specified
by adding an instance of the ExtForce class from the MBS library. Forces can
be passed to mechanical model objects from drive train objects or from electrical
objects through corresponding transformations. Such objects can be instantiated
from classes described in the Drive Train library and Electrical component library.
A control subsystem that controls the forces according to a certain plan (mission)
can be written in Modelica. If necessary, arbitrary external functions can be called
from the model.

All instances of classes in the system constitute a collection of equations bind-
ing a set of variables. This is a system of differential and algebraic equations. If
initial conditions are given, the solver is normally able to find a solution, i.e. val-
ues of all variables for each time step. When a mechanical model is simulated,
the position and the orientation for each time step for each part (Body instance)
is computed. Other useful information, like forces, torques, linear and angular ve-
locity, linear and angular acceleration for each Body instance is also available and
can be used for analysis of the dynamic system.

For Modelica simulations we have used the Dymola tool with Modelica support
[15].

The results of a simulation can be presented to the user in many different ways.
Two main types of presentation are 2D and 3D visualizations.

The 2D visualizations are graphs that represent values of some variables (e.g.,
v) of the model relative to the modeled time (t,v(t)). It is also possible to generate
parametric plots (e.g. w with respect to v). Such plots are built by the concatenation
of lines between consecutive points (v(t),w(t)). The 2D visualization is available
from the Plot window of the Dymola environment.

The 3D visualizations are scenes that display the geometry of the parts in mo-

182

tion prescribed by simulation results. There are several variants of 3D visualiza-
tions available. The choice of variant is determined by the environment preferred
by the user. We make a difference between offline and online visualization. Offline
visualization starts when the simulation is finished and visualizes a recorded trace
of the simulation. Online visualization takes place during simulation. The user can
steer simulation via a graphical user interface and obtain feedback from the simu-
lation via 3D visualization. Additionally, an online visualization tool can be used
in order to record and replay a certain fragment or a whole simulation.

The following visualization possibilities have been investigated in the context
of integrated Modelica environments:

� The offline visualization tool DymoView, as a component of the Dymola
environment. This tool is already integrated into that environment. It can
display certain predefined shapes in the MBS library (box, cone, cylinder
etc.). It has also facilities for visualization of external files in the DXF[7]
format.

� Our offline visualization tool MVIS (Modelica VISualization tool). This tool
reads the trace of information on position and rotation of bodies and is able to
display complex geometric 3D shapes of arbitrary complexity, stored exter-
nally in STL[1] or VRML[54] format. This tool can display the predefined
shapes as well.

� The online visualization toolkit MVIS-server. This tool is linked together
with the simulation application and obtains the position and rotation of each
body via the Modelica external function interface. The tool has the same dis-
play capabilities as the MVIS tool. Besides that, MVIS-server is integrated
with our MODIC (MODelica Interactive Control) graphical user interface in
order to steer a running simulation by control signals from the user.

� Our online visualization toolkit Modelica-VRML. This tool consists of both
client and server applications. The server is linked together with the simu-
lation application and sends position and rotation of every simulated object
at each time step. The client is a combination of compiled Java code and a
VRML[54] browser, running as an Internet browser plug-in (e.g. to Internet
Explorer). The tool can display arbitrary shapes, which should be given as
VRML files. The performance of the application is limited by the capabili-
ties of VRML browsers. There is a configurable dialog window that can be
used for steering simulation via this visualization environment. Users can
specify values for signals which are sent to the simulation.

� The online visualization toolkit Modelica-Cult3D. This tool also consists of
a client and a server application. The server is also linked together with the
simulation application and sends positions and rotations of all simulated ob-
jects at each time step. The client is a Cult3D[11] object with compiled Java

183

code embedded in it. This object is displayed in the usual Internet browser
window. The Java routines communicate with the server via sockets. There
is a configurable dialog window that can be used for communicating steering
signals to the simulated model. The tool can display arbitrary shapes, which
should initially be given as VRML or STL files. These files are translated
afterwards to 3DStudioMax objects, which in turn are converted to Cult3D
objects.

Part

Geo-
metry

Mass &
inertia

Mates

Modelica
execution

Libraries

posi-
tions

other

Simulation results

Non-mechanical
model components

Translator

format
3D graphics

Bodies

Bars

Joints

Mechanical
Modelica

model

Assembly

SolidWorks model

3D-Visualizer

2D - Graph viewer
Display

Script

Opti-
mizer

Binary
form

Figure 30: The path from a SolidWorks model to dynamic system visualization.

184

7 Requirements for Visualization of Mechanical Models

Simulations of mechanical and multidomain models can be interactively visualized
in many different ways. It is a difficult task to chhose the right functionality and
to guarantee satisfactory interactive performance. To acieve these goals, creation
of visualization software is usually a combined effort of its designer and its po-
tential user. In many cases, this is the same person. Since visualization is often
used for revealing new phenomena that are not known in advance, it is hard to
predict in detail all the visualization requirements needed by potential users. Still,
experience has lead to a rather comprehensive set of general requirements, both de-
sign requirements (how this software should be designed) and usage requirements
(visualization needs by the end user).

7.1 Design Requirements

Since substantial design, coding and debugging efforts are usually spent on visual-
ization of computational results, it is important that such software adheres to some
general design requirements.

� Component-oriented design Visualization software should be created in a
component-oriented way, i.e. using, re-using and combining tools, toolk-
its, libraries and other software components. In particular, the efforts spent
for writing specific program code for each visualization application should
be minimized. An application should ideally just incorporate the neces-
sary reusable components which have well-defined functional interfaces.
The AVS/Express[3] tool often used in scientific visualization (especially
for volume visualization) and FEM visualization, is a typical example of
component-based design. This tool has an extensible library of fine-grain vi-
sual programming objects that provide a complete design and visualization
environment.

� Program design automation Visualization software should ideally be cre-
ated automatically. This would eliminate substantial programming efforts.
For each specific application and specific engineering goal appropriate con-
figuration settings can be chosen. Of course, software is never created com-
pletely automatically. By automatic programming we mean machine trans-
lation of concise and user-oriented high-level formal specifications into non-
trivial amounts of procedural program code in some programming language.
This can be achieved in two ways: through compilation from one computer
language (or specification format) to another, or as interpretation of specifi-
cations using an interpreter.

� Open design Software should have open interfaces in order to attach new
program components when necessary. This can be achieved by using li-
braries of classes and by object-oriented design. Availability of source code
makes debugging, performance tuning and porting much easier.

185

� Lightweight components and core Since rendering speed is very important
in visualization applications, the design should avoid using computationally
“heavy” components that can affect visualization performance. Such com-
ponents can be interpreters of high-level specification languages (that can be
rather slow), data preprocessing during visualization, using program mem-
ory heap extensively, network communication and file input/output during
dynamic visualization.

7.2 Usage Requirements

The usage requirements of visualization software depend on the goals of visualiza-
tion. Several typical goals are enumerated below:

� Visual testing and debugging Visualization is usually necessary in order to
check the correctness of a model. The simulation engineer may have some
expectations about the model behavior. At this stage he or she can possi-
bly observe that the movements of the model do not match the expectations.
Strictly speaking, the only formal way to validate model correctness is to
check that the mathematical model matches the physical laws and that the
simulation result matches the mathematical model. In practice engineers
build different mathematical models for the same phenomena, perform sim-
ulation by different simulation tools, and if the results are identical, this can
be used as a strong argument for the correctness of the mathematical model.

Visual testing and debugging normally requires schematic representation of
the 3D world (including object geometry and coordinate systems), naviga-
tion facilities, and display of object trajectories. If the 3D objects move from
one position of the 3D world to another, the virtual camera should be moved
too. Therefore it is often necessary to attach the camera target point to a
point on the moving object. Sometimes it is necessary to visualize objects
that do not exist in the physical model, but they are used in computations,
e.g. abstractions of obstacles should be displayed when obstacle avoidance
algorithms are used.

� Comparison of simulations Often simulation is performed for the purpose
of parameter optimization. It can be difficult to formulate formal criteria for
the choice of parameters. Instead, simulations with different parameter sets
are compared, and the visualization of the results is used for this compari-
son. When two 2D plots are compared, it is necessary to place them in the
same coordinate system. Observing the difference between these plots can
be very useful for comparison. When two 3D visualizations of mechanical
models are compared, these should be usually placed in different windows.
As an alternative, two models can be rendered in the same window, but using
different rendering styles (e.g. wire-frame and filled color).

186

� Search and presentation of phenomena Visualization can be performed to
facilitate searching for certain phenomena, such as oscillation, unexpected
motion trajectory, unusual velocities and forces. These can be first observed
in 2D plots. After that, a more detailed study of 3D motion is often necessary.
It might happen that the relative motion of 3D objects is much smaller than
their size. If the motion is so small that it maps to a distance less than one
pixel, the phenomena cannot be observed at all. In this case zooming is
necessary in order to enlarge the visualization scale of some region.

Alternatively, motion magnification is used. All displacements of objects
from their home position are multiplied by some coefficient (magnification
coefficient) and are then displayed. Such visualizations have been success-
fully used in a roller bearing visualization tool[23] where the motion cor-
responding to studied phenomena is between 100 and 10000 times smaller
than size of the whole model.

� Model presentation Often visualization is used just for presentation of the
models. In this case, the computations can be approximte, but the visual re-
alism of the visualization is the primary concern for the users. Such visual-
izations require more information than normally used for engineering appli-
cations: colors, textures, lighting models, background color, smooth shading
and realistic shadows. A visualization can potentially become a piece of art
which requires substantial creative work. It is important to ensure that de-
fault settings for all these parameters give a reasonably good visualization.
However, it should be possible to tune these attributes further in order to
achieve even better image quality.

� Performance The number of frames per second, or number of triangles per
second, is normally used to measure the performance of graphical applica-
tions. For engineering visualizations, the bottleneck is usually the number
of triangles of complex mechanical graphic models. When CAD models are
designed, many round features are created. Each such feature corresponds
to one or several spline surfaces (also called NURBS [58]). Certain graphics
acceleration hardware may have support for such surfaces in future. Most
graphics hardware today has no such support. Therefore hundreds or thou-
sands of small triangles need to be rendered when such surfaces are visual-
ized. It is important to reduce the number of the triangles in this case. This
also can be done automatically by increasing the granularity of subdivisions.
A performance between 5 and 10 frames per second is sufficient for typical
engineering goals.

For non-engineering applications visualization realism becomes more im-
portant. Appropriate materials, textures, and lighting models should be used.
These features, however, decrease application performance. A performance
of between 15 to 25 frames per second is necessary.

187

In this section we have only discussed certain generic requirements for visual-
ization. Each application domain and each application usually have some specific
requirements, which have not been covered here. In Section 8 below we discuss
how the requirements apply for visualization of Modelica simulations.

8 MVIS - Modelica Interactive Visualization Tool

Currently available tools for visualization of mechanical models simulated in Mod-
elica (DymoView) do not match the requirements formulated in Section 7. The
reason is, in particular, that DymoView was not designed for technical visualiza-
tion of such models, but primarily for rough estimation and validation of the 3D
layout of models and their movements.

In particular, DymoView (a component of the Dymola tool[15] used for 3D vi-
sualization) currently lacks support for visualization of lines, online visualization
(i.e. visualization simultaneously with running simulation), using graphic hard-
ware acceleration on UNIX machines, etc.

In addition to the requirements formulated in Section 7 there are the following
needs:

� Portability.

� Possibility to use hardware graphics acceleration.

� Possibility to extend the visualization with new graphical objects (such as
lines and coordinate axes),

� Visualization of arbitrary shapes with specific color, material, or texture on
each face.

We have made experiments with a number of graphical tools, such as AVS[3],
3DStudioMax[5], MultiGen[38] and graphics libraries such as Maverik[9]. Some
of our requirements cannot be satisfactory resolved by these tools. Therefore a new
tool has been constructed.

Our contribution to this area is the development of a new visualizing tool,
MVIS (Modelica VISualizer) for dynamic visualization of Modelica simulations.
This visualizer has a dual purpose: it is designed both for technical visualization
and for high quality model presentation.

Depending on the particular application and the simulation goals either online
or offline visualization should be created for Modelica models.

The visualization architecture and tool names are shown in Figure 31.
Online visualization occurs during simulation execution. In this case the sim-

ulation routines are linked together with our visualization routine library (MVIS-
LIB), or they communicate via TCP/IP sockets. In the latter case, the simulation
tool works as a server, and the visualization tool is a client.

188

DymoView

(internal

library)

Simulation

 result

reader

OpenGL STL and

VRML

reader GLUT Tcl/Tk

MVISLIB

Online

visualization

MVIS

Modelica

simulation

Server for online

remote

visualization

Socket

server

C socket

library
Java socket

library

Socket

client

Cult3D

viewer

VRML

browser

Figure 31: Visualization tool architecture. The Internet-based visualization is dis-
cussed in Section 9.

Offline Modelica visualization tools (MVIS and DymoView) read the simula-
tion results from a file which is initially created and saved by the simulation tool.
Depending on file format and file writing routines, the offline tool can start reading
before the simulation has finished writing. This, however, is currently not possi-
ble to do with the Modelica implementation in the Dymola tool because it uses a
special binary format to store simulation results which cannot be read until it is
completely written.

All graphical facilities of online visualization and the MVIS tool are based
on the MVISLIB library, which works with OpenGL, processes various geometry
formats, creates windows and menus using GLUT and Tcl/Tk.

8.1 Offline and online Visualization Interfaces from Modelica

This section discusses the way in which Modelica simulations currently create data
structures used in visualizations (using the tools MVIS and DymoView). The func-
tionality of MVIS and MVISLIB is discussed in Section 8.2.

8.1.1 Data structures used in visualization

Data values for online and offline visualization are the same, but their use is differ-
ent. In the offline variant the data is stored in Modelica output variables , which
automatically appear in the simulation result file (see Figure 32). In the online
variant these data are sent over to a special external function (see Figure 33)

Modelica simulations in Dymola tool save static and dynamics data used for
visualization together with other simulation results in a MATLAB-compatible for-
mat. This format and corresponding Dymola and Modelica classes were designed
by Hilding Elmqvist[15]. Files written in this format contain several MATLAB
array variables, in particular a list containing Modelica variable names with ref-
erences to the corresponding column in the array of values. For each visualized

189

Result
file

Replay
(offline)

Modelica simulation

Visual
MBS
Object

Visual
MBS
Object

Visual
MBS
Object

Visualization tool MVIS

Geometry
and color
(STL or
VRML
files)

Figure 32: Offline visualization of Modelica simulations.

Visual
MBS
Object
Ext

Visual
MBS
Object
Ext

Visual
MBS
Object
Ext

socket communication
module
(server)

sendposition()
calls

Storage in
memory

Display
(online)

Replay
(offline)

Result
file

Geometry
and color
(STL or
VRML
files)

Modelica simulation

OR

...then...

collect all objects

Visualization toolkit

Figure 33: Online visualization of Modelica simulations.

object several variables are needed. They are represented in Table 3. Some of the
variables change during simulation.

The format described in Table 3 is an extension of a format used in the Dymola
environment. Predefined shapes can be displayed in DymoView (a 3D visualization
tool used in Dymola). Custom shapes are displayed there as bounding boxes only.
The MVISLIB library can visualize all three kinds of objects: predefined shapes,
custom shapes and lines.

The MVIS tool is a stand-alone application that reads visualization data from
a file with simulation results. MVISLIB has facilities to read and parse necessary
STL or VRML files (mi.stl or mi.wrl, where i =stlIndex) with geometry
and color definitions, and display the corresponding graphical objects.

A Modelica model should use certain library classes in order to have visualiza-
tion data saved in the described format. These classes differ by the method they
use to obtain position and rotation of the shape from the simulation. This position

190

Field name Type Meaning

Shape Integer
(101...108)
encoded into
Real

One of the eight predefined shapes (box,
sphere, cylinder, cone, pipe, beam, wirebox,
gearwheel). The value 101 is used for cus-
tom shapes and lines.

r0 Real[3] Vector from the origin of the world coordinate
system to the current origin of the shape (or
line)

rx Real[3] Current direction of the x axis of the shape
ry Real[3] Current direction of the y axis of the shape
size Real[3] These values are specified in the local trans-

lated and rotated frame. Size of the predefined
shape. Size of the bounding box for custom
shapes. Current vector for a line.

mat Real[4] Color (red, green, blue and alpha compo-
nents) for predefined shapes and lines. De-
fault color for custom shapes (can be overrid-
den by colors in VRML).

extra Real Extra size used for predefined objects cone
and pipe.

stlIndex Integer 0 for predefined shapes; 11–999 : index of
a file in STL or VRML format; 2001–2099 :
line of specific thickness

Table 3: Visualization data format saved by Modelica applications

191

and rotation can be obtained via a mechanical connector MbsCut. This connector
is used in mechanical models and contains position, rotation, force and some other
variables (see Section 3.5.1). In mechanical systems bodies and other components
of multibody systems connect to each other using this connector. This connector is
also used for objects describing visualization.

8.1.2 Force and Torque Equations for Visualization Classes

This section explains a subtle difference between two groups of classes in the exist-
ing MBS library, defining visualization data in Modelica models. This difference
does not affect visualization, but should be taken into account when connections
between class instances are set up, and when new classes are created. This sections
explains the meaning of the column 3 in Table 4.

A difficulty arises with the force component8 of the MbsCut connector. Mod-
elica models contain objects describing physical bodies (with mass and inertia)
and objects describing visualization data (with colors, shapes etc.). These objects
should be attached (connected) to the rest of Modelica model using MbsCut con-
nectors. When two or more MbsCut connectors are connected, equality of po-
sition and rotation between corresponding frames is established. Simultaneously,
a balance of forces is established, since the variable f (force) is included in the
connectors.

Ext Ext
Body
f=mx’’

BodyAndShape

f=mx’’

b a a
a

b a a
a

a

BodyAndShape

(a) (b)

Shape
f is free

Shape, f=0

Figure 34: Relations between mechanical cuts of bodies and shapes. Two variants
are considered: (a) shape within the body and (b) shape is connected to the body.

There are two variants of connections between body classes and visualization
classes:

� The visualization object can be a subcomponent of an object describing a
mechanical body, e.g. the BodyAndShape object in Figure 34(a). In this
case the forces (represented by the flow variable f) in the connectors are
constrained by equation BodyAndShape:a:f + Shape:a:f = 0. Since the
visualization should not affect the forces, Shape:a:f is a free variable in the
Shape object.

� The visualization object can be attached as an independent component to
the connector used for the body (Figure 34(b)). In this case three MbsCut

8The same discussion and classification applies to the torque component.

192

connectors are connected together. The forces (f) in the connectors are con-
strained by the equation BodyAndShape:a:f+Body:a:f+Shape:a:f = 0.
Since the visualization should not affect the forces, the equation f = 0
should be specified in the Shape object.

Because of these two different situations, two different classes are needed for
shapes classes with the equation f = 0 and without it.

8.1.3 Standard and New Classes for Visualization

A summary of standard classes and additional classes is given in Table 4. The
column Body specifies whether a model of a physical body (with mass and inertia)
is included in the model. The column Number of MbsCuts specifies how many
connectors of type MbsCut belong to the model.

The class VisualMbsObject is typically used in applications. In particu-
lar, the SolidWorks-to-Modelica translator produces models which directly or in-
directly include VisualMbsObject. This class computes output variables de-
scribed in Table 3. The simulation environment provides that these variables are
written to the file with simulation results.

The class VisualMbsObjectExt is an alternative to
VisualMbsObject. It contains a call to the external function
sendposition. This function has the following signature:

function sendposition
input Real t;
input Real id;
input Real shape;
input Real Form;
input Real rxvisobj[3];
input Real ryvisobj[3];
input Real rvisobj[3];
input Real size[3];
input Real material;
input Real extra;
input Real stlIndex;
output Real dummy;

equation
external

end myfun;

This function has the same formal parameters as the output variables of Visual-
MbsObject. When the model is used for online visualization all these parameters
are sent to the visualizing part of the program (see Figure 33). As soon as the data
with positions and rotations of all the objects has arrived, the program draws all the
objects in their current position. The function returns a value to a dummy output
variable. Therefore the simulation environment calls this function at each commu-
nication step9.

9The size of the communication step defines a fixed simulation time interval between two con-
secutive records in the file with simulation results. This is not the solver iteration step.

193

Model name Body Number of
MbsCuts

Shapes Remarks

Standard classes

BodyV yes One, f is
free

predefined Uses VisualMbsObject

Visual-
Shape

no no predefined Requires input variables for
position and rotation

Visual-
Object

no no predefined Requires input variables for
position and rotation

BodyShape yes Two predefined Uses MbsShape
Bar com-
bined with
VisualMbs-
Object

no Two predefined Can be constructed if needed

VisualMbs-
Object

no One, f is
free

MbsShape no One, f = 0

Cylinder-
Body

yes Two pipe Uses VisualMbsObject

BoxBody yes Two box Uses VisualMbsObject
- yes no - Mass cannot be used of the

object is not connected via
MbsCuts

Extension for offline visualization

BodyME yes One, f free custom Uses VisualMbsObject
ShapeME no One, f free custom Uses VisualMbsObject
BodyME0 yes One, f = 0 custom Inherits BodyME
ShapeME0 no One, f = 0 custom Inherits ShapeME

Extension for online visualization

BodyMEF yes One, f free custom Uses
VisualMbsObjectExt

ShapeMEF no One, f free custom Uses
VisualMbsObjectExt

BodyMEF0 yes One, f = 0 custom Inherits BodyME
ShapeMEF0 no One, f = 0 custom Inherits ShapeME

Table 4: Summary of Modelica classes used for visualization.

194

All information regarding the positions and rotations of the bodies is saved in
memory and can be replayed again.

The Table 4 contains the entries for the eight classes we designed for online
and offline visualization.

8.2 Rendering Properties and Design Aspects

The integrated environment includes a visualizer that provides online dynamic dis-
play of the assembly (during simulation) or offline (based on saved state informa-
tion for each time step).

The STL (STereo Lithography) format [1] is a very simple format suitable for
visualization. All surfaces are divided into triangles. The coordinates of the trian-
gle vertices, as well as the normal vectors of the triangles, are listed in the STL-file.

The VRML (Virtual Reality Modeling Language) format [54] is a standard
language which is primarily used for the definition of complex scenes consisting
of virtual objects in three-dimensional space. The objects defined in this language
contain a geometry (defined via primitives or sets of polygons), materials (color,
texture mapping, lighting properties), light sources and cameras.

The visualizer loads the corresponding STL or VRML file for each part and
optimizes it for rendering. After that, rendering is performed by OpenGL [50]
library functions. During the optimization all the vertices positioned very close
to each other are merged together. Arrays with point coordinates are stored in a
binary file (cache) for future use. On the average, these binary cache files are four
times smaller than the original STL files and can be read much faster.

The user of the visualizer can alternatively utilize the pop-up menu system,
keyboard shortcuts, or a command string in order to control various options. We
found that the following facilities (that can be turned on and off) should be avail-
able. All these facilities have been implemented and evaluated in our MVISLIB
library and are available for online and offline visualization.

Moving the camera The major advantage of 3D visualization is the possibility to
observe objects from different viewpoints. For this purpose rotating, moving
and zooming facilities have been implemented. The most often used facility
is rotating the model around the target point of the camera. Initially the target
point coincides with the origin of the coordinate system. The rotation of the
model can be performed in two directions (left-and-right and up-and-down).
In some cases it is necessary to displace the camera, together with the target
point. This can be done in three orthogonal directions (X, Y and Z). After
the camera is moved, rotation is performed around the new target point.

Zooming in and out Zooming in and out changes the scale of the image. The
camera is not moved during zooming in and out. An automatic zooming
facility chooses such a scale that all of the objects fit into the window10.

10This facility is not implemented at the moment of writing this report.

195

Attaching a camera to a body For visualization of a small object moving a rela-
tively large distances it is desirable to direct the camera so that the moving
object is seen all time at the center of the view. For this purpose the camera
can be targeted to the reference point of a particular part. When the part
moves, the camera will move together with the object. An extension of this
mode is a facility to rotate the camera together with the target part.

Projections A perspective and orthographic projection can be used for visualiza-
tion. For engineering purposes an orthographic visualization should be used.
It preserves the sizes and the angles of the model independent of the distance
between the camera and the model. The perspective projection is used when
more realism is necessary.

Lighting 3D visualization depends on the positions of light sources, their proper-
ties, positions of surfaces of the visualized objects relative to the light sources
and their material properties. We found that in order to obtain high qual-
ity technical visualization lighting should often be adapted for the model.
The visualization tool has facilities to change light source positions, and to
change the ambient and diffuse component of each light source. In this way
any number of light sources can be manipulated. However, for technical vi-
sualization it is enough to operate with just two light sources. In some cases
only outline (wire-frame) of the model or rendering in flat shading is used.
The user can also combine the wire-frame and light shading together in order
to observe the exact borders of objects in the scene.

Hiding Certain parts in 3D environments occlude others. To solve the occlusion
problem and observe occluded fragments of the model it is often necessary
to hide some parts.

Environment Display of an application-specific landscape, for instance, a road
for car simulation, or a runway surrounded by a hilly landscape for flight
simulation. Such a landscape can be created as a large mechanical part that
does not move, or directly in C using OpenGL. The rendering of the envi-
ronment is very important for achieving realism, for presentation purposes.
It can also be used for engineering visualization, in order to put mechanisms
into an environment familiar to the engineer.

Trajectory One of the most important purposes of visualization is the comparison
between the expected behavior of a simulated system (mission) and the ac-
tual behavior of this system (motion trajectory). For this purpose a special
file with mission description can be given to the visualizer. The mission is
visualized as a line in 3D coordinate space connecting several control points
displayed as small boxes. The motion trajectory of a moving object in the
simulated mechanism can be displayed and compared to the mission.

196

Grid For engineering visualization the origin of the coordinate space and the ori-
gin of each body are shown with three coordinate axes (red, green and blue,
– corresponding to the X, Y, and Z axes). In order to estimate the distances
between bodies in the visualization environment, a grid is used. The grid can
be placed in the XY, YZ or XZ plane.

Pseudo-shadow The pseudo-shadow is not dependent on light at all. We found
that for flight simulation it is convenient to display a projection of a vehicle
and its trajectory on the ground plane.

Animation Animation is very important for engineering visualization. 3D ani-
mation helps the user to observe complex motion patterns, relative rotation
of some parts, relation between motion of different mechanism components.
There are standard controls for animation: starting, stopping, continuing an-
imation, stepping forward and backward. There are controls specific for
simulation applications: changing the stride, i.e. the number of simulation
output steps which are omitted between two consequent displayed frames.
For instance, animation can be configured so that it displays only every sec-
ond or every third simulation step. If the animation is displayed too fast, or
time steps are not equidistant, it is useful to synchronize the animation with
the machine clock. In this case, a special delay is inserted between animation
steps.

8.3 MODIC, Modelica Interactive Control Interface

Modelica simulations can input and output values via a graphical user interface
during simulation. From the Modelica side this is done using external function
calls. Then these external functions create or modify graphical windows, output
values to these windows, or read the signal value which is currently set by the user.

8.3.1 Interface for Output Values

In the simplest form the external function signature for output values is defined as
follows:

function outfun "sends data to GUI"
input String label "label for the widget";
input Real val "current value";
output Real funres "result is ignored";

equation
external

end outfun;

This function is called the following way:

output Real dummy "help variable";
Real val "a value to be output";

equation
dummy=outfun("Label",val);

197

The Modelica language specification does not guarantee that the function outfun
is called with a certain frequency. However, the Modelica simulation environments
([15] and [31]) have a facility to specify the communication step i.e. how often the
output variables (e.g. dummy) are written to the simulation result file. Normally
the function outfun is called with the same frequency as that specified by the
communication step size.

Figure 35: Presentation of output data in the dialog window of interactive simula-
tion.

When the function is called for the first time, a label with the specified text
appears in the interactive dialog window (Figure 35). Each time the function is
called a numerical value is printed in the window near the label.

The position of the label in the dialog window can be specified by row and
column parameters:

function outfungrid
input String label;
input Real val;
input Integer row;
input Integer column;
output Real funres;

equation
external

end outfun;

This function is called the following way:
...
output Real dummy;
Real val;

equation
dummy=outfungrid("label1",val,1,1)+

outfungrid("label2",val,1,0)+
outfungrid("label3",val,0,1);

The + sign is used just in order to reduce the number of necessary dummy
variables. The columns in the window are numbered from zero, starting from left
to right; the rows are numbered from zero, starting from the top and downwards.

If necessary the output can be encapsulated into an instance of a library class:

198

model OutputWindow " Library class for output window"
Real val;
parameter String label="Undefined";
parameter Integer row=-1;
parameter Integer column=-1;
output Real dummy;

equation
dummy=outfungrid(label,val,row,column);

end OutputWindow;

model World "example of use"
OutputWindow w1(label="Speed",row=3,column=4);
...

equation
w1.val=robot.speed;

end World;

8.3.2 Interface for Input Values

In the simplest form the function call for input values is defined as

function infun "a signature for input function"
input String label "a text label to place in GUI";
input Real timeval "current simulation time";
input Real startval "a value to begin with" ;
input Real minval "expected smallest value";
input Real maxval "expected largest value";
output Real funres;

equation
external

end infun;

...
Real force;

equation
force=infun("Label",time,0.0,-20.0, 20.0);

When this function is called for the very first time, a label, a window for editing
the value, and a scale bar is created. The scale bar has the a lower and an upper
limit (minval and maxval). The row number (input Integer row) can be
specified when the function infungrid is called. The code fragment

force1=infungrid("label4",time, 10, 1.0, 20.0, 2)
force2=infungrid("label5",time, 0.6, 0.1, 0.7, 4);

creates a fragment of input data window displayed in Figure 36.

8.4 Synchronization Problem in the Interface for Input Values

This section explains the problems caused by simultaneous input and output of
time- dependent data in interactive visualizations.

In interactive simulation environments human users interact with simulations.
Users get some visual information for each simulation step and are able to instantly

199

(a) (b)

Figure 36: Presentation of input data in the dialog window of an interactive simu-
lation, (a) – with scale bar; (b) – with buttons for incrementing and decrementing
values.

respond with signals which are based on this visual information and immediately
affect the simulation.

For a human, the interaction with an ideal simulation environment should not
differ from interaction with a physical system in the real world. Just as a steering
wheel of a car changes driving direction, moving the scale bar control should affect
the solver and new motion should be reflected in the interactive online visualiza-
tion. It can be noted that interactive simulation is similar to simulation where an
external control system is involved.

The visualization of simulation results is a function of the growing simulation
time value t. For interactive simulation it is necessary, that visualization goes
forward all the time, and it is synchronized with the human perception of time.
The user receives some visual information, and almost immediately responds with
a signal.

The input signal (i.e. input for Modelica) at an instant t is the user response,
based on visualization of the output signal for some time interval up to the instant
t � �t, where �t > 0 is a very small time interval. An ideal value �t would be
simulation time interval between two subsequent frames of visualization.

Visualization and interaction is more realistic if the simulation time matches the
time of the machine clock. However for some simulation models this is very hard
to guarantee, since solution methods with adaptive step are often used. One second
of simulation time may correspond to a CPU time interval of a length between 0.1
and 100 seconds.

The major problem of using interaction during computations is that interac-
tive simulation output cannot always be synchronized with interactive simulation
input11.

11Another major problem is discontinuity of the input signal, discussed later.

200

A numerical ODE solver is used in order to obtain the simulation results. The
solver work consists of a number of solver iterations. At each iteration certain
simulation time instant is used for approximate computation of all state variables.
At each iteration external functions needed for computation of state variables are
called. These external functions, in particular, should perform input of signals from
the user interface.

There are two major groups of numerical ODE solvers – fixed step solvers and
adaptive solvers. They have different stability properties, in particular, fixed step
solvers cannot handle non-trivial mechanical simulations in realistic time. Adap-
tive solvers attempt to predict an appropriate step size each time. At each iteration
computation error is calculated, and if it is too large then a smaller step size is
used. As result, it often happens that a larger time value is used in a solver iteration
before a smaller time value. Therefore, time sometimes goes ”backwards”.

The simulation environments have facility to specify k, a communication step
size12. At solver iteration steps with simulation time t = 0; k; 2k; 3k, etc., the
state variable values are found (with specified accuracy), and all external functions
called, if they are needed for computation of output variables. In particular, a func-
tion producing online visualization is called (since its result is a dummy output
variable).

In order to solve the ODE system the adaptive solver should know the input
for a simulated time t in order to produce the output for time t. Since time can go
”backwards” such solver cannot directly be used for interactive visualization.

Let us consider the situation closer in order to highlight the problem.
During Modelica model simulation a system of differential and algebraic equa-

tions is solved. Assume that a differential equation x
0(t) = F (t; u(t)) is being

solved during the simulation. We assume that x(t) is an output value, and that u(t)
is an input value. In order to visualize the output value x(t1) at simulation time t1
the equation should be solved at the time value t1.

For some differential equation solvers (e.g. based on the Euler method) it is
enough to know F (t; u(t)), where t � t1. However, many other solvers, specially
those handling stiff problems (solvers with adaptive time steps, using an implicit
method of solution), utilize so called trial steps and time step prediction methods
(see Figure 37). Therefore F (t1 + h; u(t1 + h)) is needed for the computation of
x(t1). Here h > 0 is the predicted time step. Usually several prediction steps are
tried in a sequence, with smaller and larger values of h.

The value of u(t1 + h) is requested from the graphical user interface, i.e. from
the user. However the user cannot specify this value because he or she have not
seen the development of the visualization between the time step t1 and t1 + h.
The only thing the user can do is to specify the value (we denote it u1) based on
observation at the previous visualized step of the simulation, e.g. the very last step
observed at time t1 ��t.

12The size of the communication step defines a fixed simulation time interval between two con-
secutive records in the file with simulation results. This is not the same as solver step.

201

s2
�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

t =t +h/2

1t +h/2=t +h
2 1

u

2 1

t
1

2u

Simulation time

OUT

OUT

s
1

Solver iterations,
CPU time

Figure 37: History of solver iterations and values obtained via the input from the
user interface during these interactions. This diagram assumes that a method with
prediction steps is used and some new input value is obtained at each solver it-
eration. The boxes with out mark places when communication step occurs and
therefore the visualization function is called. Both u1 and u2 are input signals
coming from the user interface and specify input value for the simulation time
instant t1 + h.

The solver continues the solution process assuming that u(t1 + h) = u1.
Assume, that after some simulation steps the solution for time t2 = t1 + h=2

is searched. The prediction step may occur to be any small positive number, for
instance h=2. I order to find the solution F (t2 + h=2; u(t2 + h=2)) is needed for
computations. This expression is equal F (t1 + h; u(t1 + h)). This time the same
value u(t1 + h) is requested from the user, who already observed the behavior of
the visualization until t2. Based on these observations, the user specifies a new
value u2. This value may differ from u1. The solver continues the solution process
assuming that u(t1 + h) = u2.

Normally ODE solvers assume that the function F (t; u(t)) is continuous and
differentiable up to a certain order and that it can have only one value at t = t1+h.
In case of interactive input it might occur that this function gets two different values
at t = t1 + h.

This leads to a contradiction, and the solver behavior is undefined in this case.
The solver might produce wrong results, or it does not converge at all, causing
fatal simulation error. The larger is difference between u1 and u2, the less stable is
the solver. Obviously, this is inadmissible in case of end-user interaction with the
system.

There are three solutions to this problem. All of them attempt to avoid simula-
tion errors, causing, however some other disadvantages.

Using sampling for interactive data input The statement

202

when sample (offset,period) then ... end when;

stops integration each period simulation seconds, activates equations within
the statement, calls the function, and restarts the integration with new values
of the variables. An example of using this statement is given below.

when sample(0,0.1) then
grab := infun("Grab", time, 0.0, 0.0, 1.0);

end when;

The function infun is called only once for each sampled instant, and it
happens every 0.1 seconds. No contradiction between values may occur. A
disadvantage, however is that due to restart of the numerical integration, the
simulation works slower than without interactive input. Another disadvan-
tage is that the input data from the user is not propagated to the application
immediately: it takes up to 0.1 seconds of simulation time to deliver the new
value to the equation solver.

It is not clear how to stop integration just when user changes some value and
do not stop it in other cases, like below:

when user_changed_input_value() then
grab := infun("Grab", time, 0.0, 0.0, 1.0);

end when;

The problem is that the value of condition in when statement is computed
”literally”. The fact that user will change the value at simulation time t

should be known to the solver in advance, i.e. some time before the model
is processed at event instant t.

Using solvers without prediction A Modelica simulation has a choice of using
different types of solvers. In some cases solvers that do not use prediction
work well enough. In this case no contradiction between values may occur.
The input signal from the user is directly delivered to the solver. It is not
continuous and therefore must be smoothed some way.

The disadvantage is that solvers without prediction are less stable than adap-
tive solvers with prediction. It is hard to guess whether a given equation
system can be solved by a solver without prediction. This is even harder to
do if parameters and some input variables can unexpectedly change.

Indirect change of values In some cases input values can be changed indirectly.
The user can, for instance, manipulate the average speed of changes of a
variable. Assuming that t0 and u0 are fixed, and v(t) is an input signal from
the user, we define u(t) = u0 + (t � t0)v(t). The values t0 and u0 can
also be specified at run time by the user, but they should not change as often
as v(t). The difference between u1 and u2 will be small, and u1 = u2 if
the input signal v does not change. The disadvantage is that this way of

203

manipulation is rather unnatural for the user. This approach can be used if
the user ”behavior” is known in advance and only some parameters should
be tuned slightly. This approach generates a function that is continuous and
has the second derivative 0 in most intervals.

Smoothing of input signals The Modelica solvers require that all external func-
tions during continuous integration are differentiable up to n-th order (where
n � 1 is the order of numerical integration method used in the solver).

t1 t 2 t 3

input function
value

time

t1 t 2 t 3

input function
value

time

t1 t 2 t 3

input function
value

time

(a) discontinuous
 signal

 signal

(c) signal with
continuous first
derivative

(b) continuous

Figure 38: Smoothing data before it is returned from external function. The circles
represent the values obtained at sampling time t1, t2, t3. Since an external function
cannot be discontinuous, one of smoothing algorithms should be performed.

Therefore all input data should be smoothed using one or several splines
connected together. Two variants of smoothing of the initial discontinuous
signal (Figure 38(a)) the are represented : continuous (Figure 38(b)), and
signal with continuous first derivative (Figure 38(c)). The last one is con-
structed by gluing together two second order polynomials and one constant
interval. Higher order splines can potentially be used too. This approach
requires some more experimentation with different solvers and applications
which will be performed in the future. Similar problem with discontinuous
input signal which is, however, rather smooth, is discussed in [19].

204

As we see from this discussion there is no ultimate methods to deal with syn-
chronization between input and output yet. Several approaches with advantages
and disadvantages are considered. Our future work will be directed to finding an
appropriate combination of solvers, their parameters and input signal smoothing
techniques.

9 Modelica Visualization on the Internet

There are several reasons why it is highly relevant to visualize Modelica simula-
tions using the Internet:

� Modelica simulations can be executed on a powerful workstation. An end-
user or model designer can continuously access the result of certain simula-
tions on his/her local personal computer with limited computational power.
High speed networks or modem communication can be used for interaction
between these computers.

� If the designers working on a certain Modelica model are geographically
distributed it is necessary to communicate simulation results in visual form.
Collaborative environments, such as virtual offices and meeting rooms for
design of mechanical models can be created using virtual reality technolo-
gies. Currently, commercial solutions exist only for static CAD models. For
instance, CoCreate Software Inc. developed the OneSpace tool[8] based on
their special CAD tool SolidDesigner. This tool can be used for collabora-
tion between developers who can observe and point on model components
simultaneously. At each time interval the model is ”owned” by just one of
the designers.

Another virtual collaborative environment, Dive[12] supports cooperative
work with virtual objects. These objects or their parts can move, and these
movements are either responses to events triggered by the user, or some pre-
defined movements which can be programmed in Tcl/Tk. There is a project
on using broadband communication with Dive and other systems for dis-
tributed collaborative CAD engineering[53].

However there are no mature tools yet that support cooperative work with
interactive, physically based simulations of mechanical models.

There exist general purpose collaborative work tools, such as Microsoft Net-
meeting. However, they use bitmap images of the screen for sending infor-
mation over the network which greatly reduces the communication speed.
The tools for cooperative work should primarily send over 3D geometry and
motion data13, like what is done in the Dive environment and our Internet-
based Modelica visualization environments with VRML and Cult3D dis-
cussed in more detail in the next two sections.

13Of course, video and bitmap data can be useful as well.

205

� Modelica simulation results should be made available to a wide range of
users working on different platforms. These results should be placed in in-
teractive environments. For the end user the Modelica technology behind
the simulation should be ”transparent”, i.e. the user gives input signals and
inspects the output, without noticing whether Modelica or some other simu-
lation environment is used for simulation.

Two approaches to visualization of results of mechanical modeling on the In-
ternet have been developed in our work: using VRML and Cult3D. In both cases
two software components, a client and a server, are used. Socket communication
is established between these components. The components can run on the same
computer or via the Internet:

Modelica server A Modelica simulation server computes the positions and rota-
tions of bodies in 3D and sends this information at each simulation step to
the client. The server can also accept user input signals and place the signal
values into some Modelica variables (see Sections 8.3.2 and 8.4 for details
regarding the problems of interactive input).

Java-based client The client reads the correct positions and rotations of the bodies
from the socket, and displays the objects. If the user changes any signal
values, the client sends user input signals to the server.

9.1 VRML-Based Simulation Visualization

VRML (Virtual Reality Modeling Language) is a standard format for static and
dynamic scenes used on the Internet and on Intranets. The format contains nodes
placed in a tree hierarchy. The nodes define shapes (spheres, triangular meshes
etc.), colors, lighting and behavior (reaction to events). During dynamic visualiza-
tion events are triggered by the user or by behavior nodes.

VRML files can be edited by conventional text editors. However, usually
VRML data is exported from modeling tools (CAD tools, computer animation tools
or specialized VRML tools).

In the VRML-based simulation visualization, a Java program (client) is con-
nected together with a scene description in VRML so that coordinates of objects
shown in a VRML browser are affected by the current values in the client (Figure
39). In order to connect Java and VRML the External Authoring Interface (EAI)
is used. The Java applet is running on the client computer in an Internet browser.
This applet communicates with the server through an Internet TCP/IP socket con-
nection.

There exist two design alternatives for connecting Java with VRML:

� The VRML97 standard uses a mechanism of VRML events and requires
definition of Java script nodes. The script nodes receive information about
user actions and events that happen in other nodes. After that the nodes

206

Figure 39: Interactive visualization of pendulum simulation in Modelica using a
VRML browser.

execute a program module and send events to other nodes. In particular, such
a node can refer to a .class file. During browsing the node can activate
a Java class, and a link between the VRML scene and the Java applet or
application can be established.

Normally this method should be used when movements are initiated and
controlled primarily by the VRML scene and VRML browser.

� VRML2.0 which adopted the name VRML97 has another method called Ex-
ternal Authoring Interface. This method is not standardized yet, but is imple-
mented by several major VRML browsers. This method has better control
over the VRML scene. In particular, it has access to functionality of the
Browser Script Interface. Also, it can send events to nodes inside the scene
and get events which are sent from nodes of the scene.

207

This method is preferable when the movements are initiated and controlled
by an external program written in Java.

In an External Authoring Interface-based applet, a handle of an instance of the
browser is obtained in the applet start() method. After that the Java program
using External Authoring Interface classes can navigate in the tree of the VRML
scene, fetch nodes and manipulate with events and nodes responsible for translation
and rotation.

As a VRML browser we use the most popular one, CosmoPlayer[10]. It is
implemented as a plug-in for Internet Explorer and Netscape.

The major problem of this approach is performance limitations of the link be-
tween VRML and Java. The actual 3D rendering is fast, but Java libraries and the
link between these libraries and the browser have quite low performance. Since the
External Authoring Interface facility in an internal part of the browsers we could
not easily overcome this problem.

For a scene containing 8 bodies (there were 18 triangles in each body) the
animation performance is just 2 frames per second. This speed is not affected by
the socket communication. However the same scene in the same browser without
the Java interface is rendered with approximately 30 frames per second14.

Our conclusion about this approach is:

� VRML-Modelica communication is robust, it is easy to control and maintain.

� The currently available VRML browser do not reach the performance neces-
sary for engineering applications.

9.2 Cult3D Approach

Cult3D[11] is a recently developed format and plug-in rendering engine for static
and dynamic 3D graphics on the Internet. Scenes described in this format contain
the following components:

� A static tree of nodes is the skeleton of a scene. The nodes represent 3D
objects, light sources, cameras, etc.

� Surface geometry, position, rotation, color, and lighting parameters are at-
tributes of the nodes. These can change dynamically.

� An event map is stored in the Cult3D format. When Cult3D objects are
interactively visualized, events are triggered by user actions. There are also
internal events, e.g. ”World start” and ”World step” which are triggered by
the browser. Calls to Java methods or modification of node attributes can be
responses to these events.

14Here and in the further experiments we were using a 266 MHz PentiumII-based computer with-
out graphic card and with 128 MB RAM.

208

� Compiled Java classes. Java programs can manipulate dynamic attributes of
the nodes, in particular, position and rotation.

� Textures are attached to 3D object geometry.

� Sounds are additional resources and can be activated by events.

import (STL, VRML)

C3D file
event

map

Java

.class

files

Cult3D

project,

C3P file

Cult3D

Player

file

(CO)

CAD tool

3DStudioMax

Cult3D Exporter

Cult3D Designer
Cult3D

plugin

design

design

Internet

Browser

Visualization

Figure 40: Steps of Cult3D design.

Cult3D Player file

User
interaction
window

Java
Socket
client

Cult3D
geometrical objects

moves

signal C
Socket
server

position and
rotation.
outfun()

ODE solver

Compiled

user input signals

object position
and rotation

in Modelica
Simulation

infun()

modelica model

SOCKET

Figure 41: The client-server model of Cult3D-based visualization.

Files in the Cult3D format can only be produced by a tool called Cult3D de-
signer. These files are stored in an internal, very compact, binary format and there-
fore cannot be modified. The design of Cult3D objects goes through several steps

209

(see Figure 40). Initially a model is designed in some CAD tool and imported into
3DStudioMax[5]. Alternatively, the model is designed in 3DStudioMax directly.
A Cult3D exporter plug-in for 3DStudioMax extracts the information about 3D
objects, light sources, and cameras, and stores it in a binary Cult3D design file (a
C3D file). The Cult3D Designer is an interactive tool that reads the C3D file and
has facilities for the specification of an event map and Java functions calls. The re-
sulting Cult3D player file contains all necessary components and can be displayed
by the Cult3D plug-in in an Internet browser window.

When Cult3D is used for visualization of Modelica simulations, the Java classes
contain the following components (see Figure 41).

� The Java client obtains the current position and rotation of each body via
socket communication.

� A pop-up Java AWT window is created for interactive control of simulations.
The user can specify input signal values during simulation. These values are
then delivered to the server and affect the simulation.

� Cult3D API methods are called in order to specify the position and the rota-
tion of each 3D object for the current time frame.

� The method connected to the ”World Step” event is activated each time
Cult3D is about to redraw its objects. This method calls routines that obtain
the new positions and rotations of all the objects from the server. After that
these positions and rotations are sent to the corresponding Cult3D object.

Our experiments show that this application has fairly good performance. A
mechanism consisting of 6 bodies (totally 900 triangles) is visualized with the
speed of 10 frames per second. The major difficulty with Cult3D visualization
construction is that a number of design tools have no command line interface. The
availability of command line interfaces for these tools would allow automatic con-
struction of Cult3D environments directly from CAD models.

9.3 Using 3DStudioMax

3DStudioMax[5] has a facility for automatic creation of non-interactive frame se-
quences (animations). This is done by importing positions and rotations of 3D
objects at certain time moments. The geometry of the 3D objects used in sim-
ulation is imported into 3DStudioMax. STL or VRML format are used for this
purpose.

Frame sequences in 3DStudioMax are defined via keyframes. A keyframe is
associated with a certain frame index (moment of time) and a key. A position and
an orientation of objects are examples of the keys. In order to define an animation,
it is enough to specify the position and orientation of the objects at some keyframes,
and 3DStudioMax automatically interpolates these keys to obtain smooth motion
of objects between these frames.

210

The moment of time, rotation angles and object position can be specified in
the script language MaxScript which consists of interpreted commands used in
3DStudioMax. A sample script is shown below:

at time 0.51 (
r=[89.92,0.01,-88.73]
p=[160.6,146.2,823.6]
f.rotation=(eulerangles r) as quat
f.position=p)

at time 0.57 (
r=[89.92,0.01,-88.73]
p=[185.7,175.4,823.6]
f.rotation=(eulerangles r) as quat
f.position=p)

This script specifies different object positions at the time moments 0.51 and
0.57 produced as a result of the simulation. 3DStudioMax interpolates the posi-
tions at the time moments between these steps and produces a smooth animation
sequence. The script is automatically generated from simulation results of a multi-
body system simulation. 3DStudioMax has facilities to specify camera and light
source positions and attributes (they can change during animation). In the final re-
sult a high quality animation can be obtained and saved in the AVI or MOV format.

This visualization tool has an advantage of high flexibility of rendering. Light
conditions, shadows and many advanced rendering and animation features of 3DStu-
dioMax can be used. The resulting animation in AVI format can run with virtually
any speed. A disadvantage is that when the animation is ready, the user cannot af-
fect the visualization, and even cannot take different view angle. In addition, AVI
files are rather large. Rendering with quality suitable for engineering application
takes 5 seconds per frame, and each frame occupies between 30 and 50 KBytes
(depending on desired color quality). A one minute animation (with frequency 12
frames per second) is rendered in one hour and it occupies at least 20 MBytes.
If textures are added for higher scene realism, rendering takes 15-30 seconds per
frame.

10 Conclusions

Several design and visualization components for integrated environment for simu-
lation of mechanical and multi-domain models has been implemented using Mod-
elica as a standard model representation. Many mechanical and general-purpose
simulation tools exists, but only Modelica is able to integrate CAD-based design,
extendibility of equation collections, interactivity, reasonable performance and ro-
bustness, and high performance interactive visualization environment. Complex
models can be rapidly created, simulated, and visualized locally or via the Internet.

In addition to crank and swing models described in this paper, helicopter and
industrial robot model [56, 47, 19] were successfully designed and simulated.

Connection between CAD and Modelica made possible also to integrate colli-
sion detection and response into mechanical simulations in Modelica[20].

211

The tools described in this report were implemented as working prototypes
which should be further developed and extended, in particular as part of the Math-
Modelica environment[31] and as contribution into the RealSim project [48] of the
European Commission.

11 Acknowledgments

The Modelica definition has been developed by the Eurosim Technical Committee
1 (Modelica Design Group)[35] under the leadership of Hilding Elmqvist (Dy-
nasim AB, Lund, Sweden) and Martin Otter (DLR, Germany). The Dymola tool
has been designed by Dynasim AB. The Multibody Simulation Library has been
developed by Martin Otter. The work has been supported by the Wallenberg foun-
dation as part of the WITAS project [56] and the European Commission as part
of the RealSim project [48]. The master students Håkan Larsson [30], Daniel
Larsson[40] and Andreas Gustafsson [27] participated in tool development.

References

[1] 3D Systems, Stereo Lithography Interface Specification, 3D Systems, Inc., Va-
lencia, CA 91355. Available via http://www.vr.clemson.edu/credo/rp.html.

[2] ADAMS and Mechanical Dynamics Adams, ADAMS and Mechanical Dynam-
ics, Inc., http://www.adams.com

[3] Advanced Visual Systems Inc., AVS/Express. http://www.avs.com

[4] Mats Andersson Object-Oriented Modeling and Simulation of Hybrid Systems.
PhD thesis ISRN LUTFD2/TFRT–1043–SE, Department of Automatic Con-
trol, Lund Institute of Technology, Lund, Sweden, December 1994.

[5] Autodesk Inc., 3DStudioMax, http://www.ktx.com

[6] Autodesk Inc., Mechanical Desktop, http://www.autodesk.com

[7] Autodesk, Inc., Autocad 2000 documentation. Drawing Interchange File For-
mat., http://www.autodesk.com

[8] CoCreate Software Inc., OneSpace, http://www.cocreate.com/

[9] Jon Cook, Maverik, a system for managing display and interaction in virtual
reality applications. http://aig.cs.man.ac.uk/systems/Maverik/

[10] Cosmo Software, CosmoPlayer (VRML browser),
http://www.cai.com/cosmo/

[11] Cycore AB, Cult3D Home Page, http://www.cult3d.com

212

[12] Dive research group, Interactive Collaborative Environments Lab-
oratory, Swedish Institute of Computer Science, The DIVE tool,
http://www.sics.se/dive/

[13] Dynabits, WWW page, http://www.dynabits.com

[14] Hilding Elmqvist, A Structured Model Language for Large Continuous Sys-
tems, PhD thesis TFRT-1015, Department of Automatic Control, Lund Univer-
sity of Technology, Lund, Sweden.

[15] Hilding Elmqvist, Dag Brück, Martin Otter, Dymola, Dynamic Modeling
Laboratory, User’s Manual, Version 4.0, from Dynasim AB, Research Park
Ideon, Lund, Sweden, http://www.dynasim.se

[16] Hilding Elmqvist, Sven-Erik Mattsson. Modelica – The Next Generation
Modeling Language – An International Design Effort. In Proceedings of First
World Congress of System Simulation, Singapore, September 1–3 1997.

[17] Hilding Elmqvist, Sven Erik Mattsson and Martin Otter Modelica - A Lan-
guage for Physical System Modeling, Visualization and Interaction. Plenary
paper. 1999 IEEE Symposium on Computer-Aided Control System Design,
CACSD’99, Hawaii, August 22-27, 1999

[18] Hilding Elmqvist, Personal communication, April 2000.

[19] Vadim Engelson, Simulation and Visualization of Autonomous Helicopter and
Service Robots. Linköping Electronic Articles in Computer and Information
Science, ISSN 1401-9841, Vol. 5 (2000): nr 013. Available at:
http://www.ep.liu.se/ea/cis/2000/008/

[20] Vadim Engelson, Integration of Collision Detection with Multibody Sys-
tem Library in Modelica. Linköping Electronic Articles in Computer and In-
formation Science, ISSN 1401-9841, Vol. 5 (2000): nr 010. Available at:
http://www.ep.liu.se/ea/cis/2000/010/

[21] Vadim Engelson, Integration of Modelica and 3D Geometry. Linköping Elec-
tronic Articles in Computer and Information Science, ISSN 1401-9841, Vol. 5
(2000): nr 009. Available at: http://www.ep.liu.se/ea/cis/2000/009/

[22] Thilo Ernst, Stefan Jähnichen, and Mattias Klose, The Architecture of the
Smile/M Simulation Environment, in Proceedings of the 15th IMACS World
Congress on Scientific Computation, Modeling and Applied Mathematics, Vol.
6, Berlin, Germany, pp. 653-658, 1997

[23] Dag Fritzson, Peter Fritzson, Patrik Nordling, Tommy Persson, Rolling Bear-
ing Simulation on MIMD Computers, International Journal of Supercomputer
Applications and High Performance Computing, 11(4), 1997.

213

[24] Peter Fritzson, Lars Viklund, Dag Fritzson, Johan Herber. High-Level Math-
ematical Modelling and Programming, IEEE Software, 12(4):77-87, July 1995

[25] Peter Fritzson, Vadim Engelson, Modelica – A Unified Object-Oriented Lan-
guage for System Modeling and Simulation, in Proceedings of European Con-
ference on Object-Oriented Programming (ECOOP98), Brussels, July 20–24,
1998.

[26] Peter Fritzson, personal communication.

[27] Andreas Gustavsson, Integration of Cult3D and Modelica Simulations, Mas-
ter Thesis, IDA, Linköping University, Sweden, to be published in May 2000.

[28] ISO, ISO 10303, Industrial Automation Systems and Integration - Product
Data Representation and Exchange, ISO TC 184/SC4, 1992.

[29] Knowledge Revolution Inc., Working Model 3D, MSC Working Knowledge /
Knowledge Revolution Inc., http://www.krev.com

[30] Håkan Larsson, Translation of 3D CAD Models to Modelica, Master Thesis,
LiTH-IDA-Ex-99/30, IDA, Linköping Univ., Sweden, March 1999.

[31] MathCore AB, MathModelica , available from MathCore AB,
http://www.mathcore.com

[32] MathWorks Inc., MatLab, http://www.mathworks.com/products/matlab

[33] Sven Erik Mattsson, Hilding Elmqvist, Martin Otter, Physical system model-
ing with Modelica, Control Engineering Practice, 1998, vol. 6, pp. 501–510.

[34] Sven Erik Mattsson, G. Söderlind, Index reduction in differential-algebraic
equations using dummy derivatives, SIAM Journal of Scientific and Statistical
Computing, 1993, 14:3, pp. 677-692.

[35] Modelica Design Group, Modelica WWW site, http://www.modelica.org

[36] Modelica Design Group, Modelica - A Unified Object-Oriented Language for
Physical Systems Modeling. Language Specification. Version 1.3 December 15,
1999. Available via http://www.modelica.org

[37] Modelica Design Group, Modelica - A Unified Object-Oriented Language for
Physical Systems Modeling. Tutorial and Rationale. Version 1.3 December 15,
1999. Available via http://www.modelica.org

[38] MultiGen-Paradigm, Inc., MultiGen, http://www.multigen-paradigm.com

[39] Parametric Technologies Inc., Pro/ENGINEER, http://www.ptc.som

214

[40] PELAB Modelica activities in PELAB, Programming Environments Labora-
tory, Department of Computer and Information Science, Linköping University,
http://www.ida.liu.se/˜pelab/modelica

[41] PELAB, ObjectMath Home Page, http://www.ida.liu.se/labs/pelab/omath

[42] Martin Otter, Objektorientierte Modellierung mechatronischer Systeme am
Beispiel geregelter Roboter. Dissertation, Fortschrittberichte VDI, Reihe 20,
Nr. 147, 1995.

[43] Martin Otter, Hilding Elmqvist and Sven Erik Mattsson Hybrid Modeling in
Modelica based on the Synchronous Data Flow Principle, 1999 IEEE Sympo-
sium on Computer-Aided Control System Design, CACSD’99, Hawaii, August
22-27, 1999

[44] Martin Otter, Hilding Elmqvist and François E. Cellier, Modeling of Multi-
body Systems with the Object-Oriented Modeling Language Dymola, in Pro-
ceedings of the NATO-Advanced Study Institute on Computer Aided Analysis
of Rigid and Flexible Mechanical Systems , Volume II, pp. 91-110, Troia, Por-
tugal, 27 June - 9 July, 1993.

[45] Martin Otter, Hilding Elmqvist and François E. Cellier, Modeling of Multi-
body Systems with the Object-Oriented Modeling Language Dymola, Nonlin-
ear Dynamics, 9:91-112, 1996, Kluwer Academic Publishers.

[46] Jon Owen, STEP – An Introduction, Information Geometers Ltd., 1993, ISBN
1-874728-04-6.

[47] Johan Parmar, Modeling an Autonomous Helicopter and its Maintenance
using Modelica, Master Thesis, LITH-IDA-Ex-99/63, IDA, Linköping Univ.,
Sweden.

[48] RealSim, European Commission Research and Development – Project Real-
Sim Consortium Page, http://www.ida.liu.se/˜pelab/realsim

[49] Per Sahlin, Alex Bring, and Ed F. Sowell, The Neutral Model Format for
building simulation, Version 3.02. Technical Report, Department of Building
Sciences, The Royal Institute of Technology, Stockholm, Sweden, June 1996.

[50] SGI, OpenGL Web Site, http://reality.sgi.com/opengl

[51] Sheshardi, K., Peter Fritzson, A Mathematica-based PDE-Solver Generator,
in Proceedings of 1999 Conference of the Scandinavian Simulation Society,
Linköping, Sweden, October 18-19, 1999.

[52] SolidWorks, SolidWorks Corporation, http://www.solidworks.com

215

[53] Peter Törlind, Mathias Johansson, Mårten Stenius, Dis-
tributed Engineering, Project report, Luleå University, 1999,
http://www.mt.luth.se/division/dmk/research/integration/ding.html

[54] VRML Consortium, Virtual Reality Modeling Language – Repository,
http://www.web3d.org/vrml/vrml.htm

[55] Waterloo Maple Inc.,Maple, http://www.maplesoft.com

[56] WITAS group, The Wallenberg Laboratory for Research on Infor-
mation Technology and Autonomous Systems, Linköping University,
http://www.ida.liu.se/ext/witas

[57] Wolfram Research Mathematica, Wolfram Research Inc.,
http://www.wolfram.com

[58] Mason Woo, Jackie Neider, Tom Davis, OpenGL Programming Guide, Sec-
ond Edition, Addison-Wesley Developers Press, 1996.

216

Paper 6

217

218

Simulation and Visualization of Autonomous
Helicopter and Service Robots

Vadim Engelson, PELAB, IDA, Linköping University

Abstract

To decrease the costs and the time it takes to develop and test new prod-
ucts, computer simulations are very helpful. Models can be simulated, and
their behavior can be examined. This applies not only to hardware, but even
to software products that can be divided to several components, so that their
cooperative work is simulated in a virtual environment. Some components
of this environment can later be replaced by physical, real world devices.
Some other components can be just prototypes, and they are replaced later
with more complex and realistic software components. In any case the idea
is to construct a model and simulate both software and hardware before the
actual production starts. In the WITAS project there is a need to develop a
system which contains helicopters, robots and various control software and
hardware. In particular there is a need to simulate the dynamic behavior of an
autonomous aircraft within a virtual environment. There is a need to simulate
a service environment, where robots can interact with the landed helicopter.

In this report a study of object-oriented modeling of mechanical systems
using Modelica is presented. Mechanical features of an autonomous heli-
copter have been modeled in order to verify the control system. A robot
which is able to grab, move and release objects using automatic or manual
control has been modeled. The geometry and dynamic structure of these
systems has been designed in CAD tools and later integrated with control
systems for steering these devices. The simulation has been performed in
Modelica.

1 Introduction

The paper contains a study of simulation of autonomous helicopters and service
robots that has been performed in the framework of the WITAS [14] project. That
project concerns research in the area of autonomous aircraft and other autonomous
systems. One of major objectives of the project is to investigate tasks that un-
manned autonomous aircraft will be able to solve in future. For this purpose a
virtual environment is needed to simulate these tasks and solutions. The environ-
ment includes a command and control architecture with a system of active vision.

219

One of the tasks for an unmanned autonomous aircraft, i.e. a helicopter could be
to monitor traffic situations as well as providing emergency help. The tasks of the
robots include servicing the helicopters, as well as loading and unloading various
objects to and from the helicopter.

The most complex part of the project includes design of control systems work-
ing in several layers. These control systems are organized as software tools in three
layers (see Figure 1):

Deliberative layer

Reactive layer

Process layer

Modelica-based
simulation
platform

Modelica simulation

Visualization

Physical

device

OR

Figure 1: Layers of simulation architecture for an autonomous vehicle.

� A deliberative layer produces plans, e.g. a plan of movement.

� A reactive layer produces responses when certain events happen.

� A process layer gets information from sensors and produces signals for mech-
anism actuators (e.g. motors).

The mechanical model is placed ”under” these layers. Depending on the en-
vironment either a mathematical model of the mechanism is linked to the control
system software, or a real physical device in the laboratory or on the field is used
as a mechanical model. In order to test and verify the control system the mathe-
matical model and the real device should respond to actuators in the same way and
give the sensors the same answer.

Therefore, it is necessary to enhance the realism of simulations in order to
verify the correctness of the control systems.

This can be done in different ways; in the case of flying and moving mecha-
nisms it is quite important to take the dynamics of the mechanisms into account.

220

Initially the models were represented as point masses. Since the dynamics can be
simulated in Modelica[7] we designed the corresponding models of the helicopter
and the robot in this language.

The assemblies contain many components that move and rotate in certain ways.
This information has been extracted [5, 4] from CAD models designed in the
SolidWorks tool [13] and glued with other Modelica code. Simulation has been
performed using the Dymola tool [2], multibody system library[6], together with
online and offline visualization and interactive control[4].

The report contains a description of the helicopter model (Section 2) and the
robot model (Section 3). Conclusions are given at the end of these sections.

2 Helicopter modeling

The helicopter model consists of two major parts:

� A control system [12] written in Ada (later translated to C). This control
system has been initially tuned with a simplified helicopter model [10, 11]
described using expilicit motion equations.

� A mechanical dynamic system modeled in Modelica where the major part of
the code is generated automatically by the SolidWorks–to–Modelica transla-
tor.

These parts communicate with each other via function calls.

2.1 The control system

The part of the control system which communicates with the Modelica model is
the process layer. This system takes the plan (helicopter mission) as commands
expressed in a language FCL (Flight Command Language). Typical commands
in this language look like FLY-TO- POINT(x,y,z,v,p) or LAND() where
(x,y,z) are space coordinates of a mission point, v is the required velocity, p
is the required precision. The command FLY-TO-POINT means that the control
system will try to steer the vehicle to a specified point so that the magnitude of
velocity is v. Each command is considered as executed as soon as the vehicle
occurs at a distance less than p from the target point. Then the next command is
requested from the upper layer of the control architecture. For testing purposes the
test sequence of FCL commands is just read from an input file.

In order to describe the architecture of the control system, the coordinate frames
(Figure 2) should be considered. The origin coordinate frame O corresponds to the
ground, inertial system. The body-fixed coordinate system, F is attached to the
main part of the helicopter. The relation between these systems is determined by
the position of the helicopter and its rotation around each axis. The rotation an-
gles 	, � and � are yaw, roll and pitch rotations around the Z , X and Y axes
correspondingly.

221

X

Z

Y

O

X

Z

Φ
Θ

Ψ

F

Y

Figure 2: The origin (O) frame and the body-fixed (F) frame.

������������
������������
������������
������������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������Frotor

Ftail

X

Z

BetaX

Center of mass

Figure 3: Positions of the forces Frotor and Ftail on the helicopter. The angle �x is
the deviation of the rotor plane from axis X .

The magnitude of two forces (Frotor and Ftail) and values of two angles (�x
and �y) are delivered to the helicopter model by the control system (see Figure 3).
The force Frotor is a lifting force applied to the main rotor of the helicopter. The
rotor is located above the center of mass of the helicopter. The rotor is tilted to the
angle �x around the local Y axis and angle �y around the local X axis. Finally,
Ftail is the force created by the tail rotor.

The control system switches between different modes. A switch happens
when the execution of a new command starts, or the helicopter position or rota-
tion reaches a certain value (i.e. reaches a threshold value and cause an internal
event). Each mode has a specific feedback loop which maps current position, ve-
locity and rotation to new force magnitudes and angle values. Rules defining these
modes are described in [12, 8].

222

Figure 4: Helicopter model designed in SolidWorks.

2.2 Mechanical model of the helicopter

The mechanical parts of the helicopter model (see Figure 4) has been designed in
SolidWorks [13]. There are eleven parts in the model. The kinematic skeleton for
the moving parts of the model is shown in Figure 5. The Modelica connection
diagram of the helicopter is shown in Figure 6.

The major parts are the main body of the helicopter, the main rotor, the tail
rotor, left and right landing gears, and the door. There exist minor parts, which
were convenient to define for debugging of the model and integrating with the robot
model. The ”reference cylinder” and load platform are attached to the main body.
Three intermediate parts used for rotation are inserted between the main body and
the rotor. All the parts are considered as rigid bodies. They are connected by rigid,
revolute (rotational) and prismatic (translational) joints.

The size of the helicopter used in the project is 1:5 � 0:5 � 0:5 m, the weight
is about 50 kg.

The mechanical part of the helicopter is just one of components in the heli-
copter model. There exist a set of components which cannot be defined just by
drawing in the CAD tool. In Modelica these components are connected to the
mechanical part by ten MbsCutB connectors.

This connector is a data structure which contains position and rotation of a
coordinate frame attached to some mechanical part at some point. In addition, this

223

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�

���
���
���

���
���
���

�������
�������
�������
�������

�������
�������
�������
�������

���
���
���
���

�������
�������
�������
�������

�������
�������
�������
�������

���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�
�
�
�
�

�
�
�
�
�

Landing gears

Door

Tail rotor

Main rotor

Main part

revolute joint

prismatic joint

Figure 5: Kinematic skeleton of the helicopter. Five revolute joints, two prismatic
joints and one rigid joint are used.

connector contains variables defining the force and the torque that can be applied to
this point. They are denoted as pentagons on the leaves of the Modelica connection
diagram (Figure 6)

The components used in the model are the following:

Springs in the landing gears. A spring and a damper is inserted between the land-
ing gear and the helicopter. This models the flexibility of the landing gear
necessary for soft landing.

Motors for rotating the rotors and the door. These motors have a reference an-
gle which changes with constant or varying velocity. A feedback torque is
applied to the main and tail rotors according to the current and desired angu-
lar position and velocity:

t = k(qref � q)� d _q;

where q is the current angle, qref is the reference angle, k and d are feedback
coefficients, t is the resulting torque.

Cabin floor contacts. Four MbsCutB connectors are placed on the floor of the
helicopter. These can be used in order to attach a load to the helicopter. If a
load has the corresponding four MbsCutB connectors, some attraction force
is set up between the points at the helicopter floor and the points at the load.

Ground contacts. There are four ground contact point specified for landing gears.
There exist two points (front and rear) for each gear. A force is created
as soon as a contact point is close enough to the ground (otherwise it is

224

Figure 6: Modelica diagram of the mechanical part of the helicopter.

zero). The force is defined as a sum of horizontal friction force and vertical
collision force.

F = �(f1S
0

b
ny) + (�f2S

0

b
nx) + (�f3S

0

b
nz)

f1 = c(s� s0) + dvy

f2 = cfricvx

f3 = cfricvz

where

� Sb is the current rotation matrix of the contact connector on the landing
gear.

� nx; ny; nz are unit vectors.

� (vx; vy; vz) is the current velocity of the contact connector relative to
the ground.

� s is the current height of the landing gear contact point relative to the
origin.

� s0 is the height of the ground level relative to the origin. It is a constant

225

if a flat ground is modeled. Otherwise it is a value defined externally
as function s0(x; z).

� c and d are spring and damping coefficients for collision with the ground.
We use here a simplified force-based collision model. More advanced
models have been designed later, see [3].

� cfric is the coefficient of the friction constant preventing the helicopter
from sliding after landing.

Just after a landing, if four such forces are applied to the landing gears of the
helicopter, these forces compensate the gravity force and the helicopter stays
on the ground. Guessing the right values of the coefficient is a difficult tasks.
This has been done by trial and error. In order to achieve naturally looking
movements during the landing: c = 105; d = 103; cfric = 15.

There are some other components that can be easily attached to the model

Load. A load of appropriate size can be attached to the floor of the helicopter. The
force between the load and the floor is modeled by stiff springs.

Ground level height. The height of the ground level can be defined by a table or
by an external function which contains the geometry of the ground. This
gives the possibility to model a landing failure if the landing point is on a
slope. However if a ”mountain” appears between two mission points, the
control mechanism cannot prevent collision, since there is no built-in colli-
sion avoidance model.

Wind. Additional constant, random or customized forces and torques in arbitrary
directions can be applied in order to destabilize the helicopter. This way
wind and turbulent air flows can be modeled.

2.3 The Integration of the Helicopter Control System and the Heli-
copter Mechanical System

The mechanical system (the Modelica model) and the control system (the C or
Ada model) have their own loops for finding solutions of arising mechanical and
control equations. The control system uses an Euler method and fixed time steps
(0.01 seconds).

The mathematically correct way of integration of Modelica model with sam-
pled, discontinuous, external signal is using a when sample(...) statement.
This statement triggers an event, updates the variables, and restarts integration each
time an event occurs. Unfortunately, integration restart takes too much time, and
computation time will be non-realistically large in this case. However, the control
system is designed so that its output values change smoothly. Therefore we use
external functions directly.

In order to synchronize the solvers special interface routines have been devel-
oped. One iteration of the control system loop might correspond to many iterations

226

of the mechanical system loop. The time in the control system increments by a
fixed value at every solver step. The time values used in the solver steps in the me-
chanical system are dependent on the used solver. We found that an adaptive solver
should be used, since other solvers lead to simulation failure (see below). There-
fore, the time steps might vary. Simulation code generated by Dymola tool for the
Modelica model of helicopter contains a number of solver iterations. During each
iteration the external functions are called as follows:

� A solver step starts.

� Modelica simulation calls an external function that obtains the most recently
saved values for forces and angles. These values were saved in the memory
buffer during one of the previous steps.

� According to the equations of mechanics, the current helicopter acceleration,
velocity and position is determined.

� The Modelica simulation calls an external function with the current heli-
copter position, the current time and other variables as parameters.

� If the modeled time in Modelica simulation code is larger than or equal the
modeled time in the control system, the control system takes the parameters
of the helicopter and evaluates new forces and angles that should be applied
to the helicopter. New forces and angles are stored in the memory buffer.
Also, the control system advances its time.

It is also possible to move the first call of the external function to the end. Since
Modelica language specification does not explicitly define the order of evaluation
of external functions, this order can be controlled indirectly by adding artificial
dependencies between function calls. In this case the compiler attempts to reorder
the sequence of the calls. For instance if two equations a = f1(b) and c = f2(a)

are specified, and b is a known variable, f1 will be called first. This is not a safe
way, however, and should be used with care.

Additional uncertainty arises since functions in Modelica can be called many
times at different solver iteration steps with ”trial” time which can go forward
and backward. In our simulations we made a simplification and used the largest
reached time value and ignored all new simulated time values which were less than
the largest one.

In the solver the external function for retrieving the data from the controller is
called at every iteration of the solver, and different values of time are given to this
function. As soon as time becomes larger than the communication instant, e.g. t1
at iteration s1, the controller is called and returns values (forces and angles). These
values either remain constant until the iteration s2, or smoothly change (using one
of smoothing approaches) as described below.

227

t 3

t1

2t

c

c

c

c
interaction with controller(sends and gets new values)

solver iteration

CPU time

simulation time

iteration of solver,

last received values are considered as constants

Figure 7: An approach to sampling values at regular simulated time interval from
external source. The solver iterations are represented as small black boxes. As
soon as time corresponding to the iteration is larger than t1 (the same applies to
t2, t3, etc.), a value is read from the external source.

The solvers of ordinary differential equations, in particular those used with
Modelica simulation code, require that all external functions during continuous in-
tegration are differentiable up to n-th order (where n � 1 is the order of numerical
integration method used in the solver).

Therefore all input data should be smoothed using one or several splines con-
nected together. Three variants of smoothing were tried: initial discontinuous sig-
nal (Figure 8(a)), continuous (Figure 8(b)), and signal with continuous first deriva-
tive (Figure 8(c)). The last one is constructed by gluing together two second order
polynomials and one constant interval. Despite of these variations the numeri-
cal results and simulation performance were roughly the same in all three cases.
Therefore we made a conclusion that discontinuity of the input data does not affect
the solver substantially in our model.

We have a hypothesis regarding an accurate approach to the co-simulation of
the control system and the mechanical system. If the control system uses a fixed-
step explicit equation solver, the mechanical system should use the same, fixed-
step explicit equation solver, with probably smaller step size. In practice, however,
the mechanical system is quite complicated, therefore the time step for it should
be extremely small in order to use an explicit method and obtain a solution that
converges. Computation time will be non-realistically large in this case.

228

t1 t 2 t 3

input function
value

time

t1 t 2 t 3

input function
value

time

t1 t 2 t 3

input function
value

time

(a) discontinuous
 signal

 signal

(c) signal with
continuous first
derivative

(b) continuous

Figure 8: Three variants of smoothing data in external function. The circles rep-
resent the values obtained at sampling time t1, t2, t3. Since an external function
cannot be discontinuous, one of three smoothing algorithms is performed.

2.4 Helicopter Visualization

The helicopter visualization is obtained by the MVIS tool. The following proper-
ties were particularly useful for visualization:

The mission lines. The points used in the flight specifications in the Flight Com-
mand Language (mission points) are shown as boxes in space, connected by
straight lines. Helicopter normally should fly along the lines and turn near
the boxes. It is easy to see cases when the flight deviates from the mission
lines.

Helicopter trajectory. The trajectory of some part of helicopter is shown on the
screen and compared with the mission line. If the main part of the helicopter
is observed, the line describes the general path of the flight (see Figure 10).

229

Figure 9: Trajectory of the tail rotor of the helicopter.

If the tail rotor position is observed, stability of helicopter rotation can be
visually assessed (see Figure 9).

Shadow. The shadow from the helicopter is a projection of its parts on the ground
plane. It helps to determine exact position of the helicopter in the horizontal
direction.

2.5 Conclusions on Helicopter Simulation and Visualization

The helicopter modeling, simulation and visualization project was the first large
model obtained by the SolidWorks–to–Modelica compiler. It turned out to be pos-
sible to change the design of the helicopter in the CAD tool and rapidly produce a
corresponding Modelica model.

The generated model can be conveniently connected to other, non-generated
components, such as landing, ground model and load model. This added some

230

Figure 10: The whole trajectory compared to the mission path.

more complexity to the set of equations to be solved.
The mechanical model of the helicopter was initially considered separately

from the control system. It is necessary in order to validate position of the cen-
ter of mass with respect to the rotors, as well as to test functionality independent of
the controller (e.g. landing). The model behaves as expected, and the solver com-
putes the movements quite fast (10 seconds of flight are modeled using 5 seconds
of the CPU time1)

When the model is connected to the external control system, various problems
arise, both instability and performance problems. The trajectory of the flight, the
success of mission and time it takes to perform the simulation depends on many
aspects of the model and its simulation.

In many cases the mission was performed successfully, i.e. all the points were
visited, flight was stable, and the helicopter landed in normal vertical position at
the landing point. Simulation time have been close to the real time (30-50 seconds
of CPU time are necessary for simulation of 30 seconds of flight).

The simulation currently fails in the following three cases:

1Here and in the further experiments we were using a 266 MHz Pentium II-based computer
without graphic card, with 128 MB RAM.

231

� The control system loses control over the horizontal position of the heli-
copter and cannot steer it to the target position. The helicopter flies away
from the target.

� The control system loses control over the vertical or/and rotational position
of the helicopter. It chaotically applies various forces and angles, but the
helicopter falls down anyway.

� The adaptive solver takes too small integration steps so that simulation takes
30 times more than the real time, i.e. 1 minute of flight is modeled using 30
minutes of CPU time.

The following factors affect the failures:

Control system simulation step size. The step size in the original model was 0.01
sec. Variations of this value (0.02, 0.03) sometimes caused failures, some-
times removed the failures.

Mechanical system solver step size. Larger steps typically causes less stability
and faster simulation.

Mechanical system solver precision. Larger precision threshold caused less sta-
bility and faster simulation.

Mechanical coefficients. A number of unknown coefficients were guessed, such
as density of material, speed of rotation of the rotors, weight of the rotors,
etc. Small changes of these coefficients affect the failures.

Mission properties. Sharp corners of the mission line and short distances between
the points caused failures. Actually all the failures occurred in the case of
very short flights (less than 30 seconds), and typically due to small distance
between mission points (less than 20 m). All experiments with larger mis-
sions were much more successful, however they were no so spectacular for
visualization and not so convenient for validation.

As a result of the simulation some errors in the control system were identified.
Some coefficients used in this system were adjusted. Therefore the goal of the
experiments was partially achieved. However the mechanical model is certainly
too simplified. Currently the interaction between the helicopter and the air is mod-
eled by a single lifting force. More accurate models should be created including
aerodynamic properties of rotor blades.

3 Robot Modeling

A study of service robots based on modeling and simulation was initiated in the
framework of the WITAS [14] project. The major objective of the project was

232

to predict tasks that a service robot-manipulator cooperating with unmanned au-
tonomous aircraft will be able to solve in the future. The service tasks that the
robot will perform in the future can, for instance be the following:

� Refueling the helicopter.

� Loading and unloading of cargo.

� Exchange of components of the helicopter.

� Minor repairs.

The initial plans contained a study of cooperation and interaction between a
service robot and a helicopter. However in a typical situation the task of the robot
can be described as ”to take some load from one container and to place it to another
container”. A helicopter can serve as one of these containers. The position and
rotation of the containers are known to the control system of the robot. Finally the
robot modeling problem was formulated the following way:

� Input:

– Given positions of containers (later also slots) and their identifiers, such
as c1 or c2.

– Given a sequence Robot Command Language (RCL) commands (mis-
sions), such as MOVE(c1,c2).

– Given a virtual robot constructed in SolidWorks[13].

� Output:

– Torques applied by the motors in order to perform the mission, for
instance, to grab a load from container c1 and move it to container c2.

– The movement trajectory of the robot and all its joints when the mission
is performed.

3.1 Mechanical Part of the Robot and the Load Model.

The mechanical part of the robot model was initially designed in SolidWorks and
then automatically translated to Modelica. The model contains seven rigid bodies
with six rotational joints between them. There is a motor controlled by the control
system at each joint. In addition, the robot is placed on a mobile platform. The
mobile platform is located on the ground (floor) and has two translational joints.
All the joints are steered by motors, which are controlled by the controller. The
platform can reach any point on the plane. From the platform the robot can reach
any point in the volume 2� 2� 1m above the center of the platform.

The robot can interact with the load. Loads represent spare parts or cargo. The
load is a cube of size 0.1 m in each dimension. There are three connectors on

233

the grip of the robot, which correspond to three connectors on the load. When the
grabbing mode is turned on, three stiff springs-and-dampers are activated between
the grip and the load. After some interaction the robot keeps the load firmly in its
manipulator.

The load has a simplified model of collision detection with the ground. When
the load reaches the ground, and some of the vertices of the load occur under the
ground a stiff spring-and-damper is activated and pushes the vertex away from the
ground. After some interaction the load rests still on the ground.

3.2 Environment Model

Figure 11: A virtual environment includes a robot, load (a small cube) and two
containers.

The operating environment consists of two or more containers (see Figure 11).
Containers represent helicopters, or storehouses with spare parts or cargo. Each
container has an identifier and it contains three or more slots which have their
identifiers. Containers are constructed as open boxes (approximately 0:5 � 0:5 �

0:5 m) with the top and front wall missing. The slots have fixed positions within
the containers. The load can be placed at the slots or removed from them. We
assume that all the containers in the simulated world are standardized, i.e. the slots

234

have fixed position. The position and rotation of container is known to the control
system.

3.3 Scenario for Load Movement

Step Platform Manipulator Grabbing Terminate if

0 origin home off immediately
1 source home off Dplatf < "

2 source source off Dmanip < "

3 source source on Dgrab < "

4 target home on Dplatf < "

5 target target on Dmanip < "

6 target target off immediately
7 origin home off Dplatf < "

Table 1: Steps of scenario for moving a load from source to target.

The scenario for load movement is shown in the Table 1. The controller switches
from one step to another when certain conditions become true. At each step spe-
cific target values for the actuators are specified. The platform motors can move on
the plane between the origin position, source and target container. Every container
has a reference point where the platform should be located. The actuators for the
platform compute force necessary to move the platform in needed direction.

SLOT 1 s

s

SLOT N

d

-

arms

container

center of robot platform,

container reference point

Figure 12: Container with three slots. View from above.

The manipulator can be in three positions: home, source slot and target slot
position. In the home position the grip is at a position about 1 m above the ground.
The slot positions are shown in Figure 12. The slot position for each slot (relative

235

to the container reference point) is known from the container geometry. However
since the robot has six revolute joints, the inverse geometry problem should be
solved in order to move the grip to the necessary position and rotation. We discuss
our solution to inverse geometry problem in Section 3.4.

The grab flag turns on and the stiff spring between the manipulator grip and the
load, modeling a magnet-based manipulator.

The termination conditions are defined by functions Dplatf ,Dmanip andDgrab.
If the difference between required value and actual state (angles of the revolute
joints, position of the prismatic joint, length of the spring) is close to zero, and
its derivative is close to zero, we consider that the required value is reached. It
appeared to be difficult to derive appropriate values for " for each case. Therefore
the termination condition is computed ”visually” by the user, and he or she can
interactively control the simulation by giving an order to shift to the next step of
the plan.

The plan is implemented as an array in Modelica, and the value of variable for
indexing the array is obtained via a graphical user interface (GUI) input function.

In order to get the new value from GUI, a sampling method is used:

when sample (0, 0.1) then
step=infun(...)

end when;

Each 0.1 seconds the integration stops, new value from GUI is obtained, and
integration restarts with possibly different target value for the new step, according
to the Table 1. If the value from the GUI is still old, no variable change occur, and
therefore the integration restart does not take much time from the solver.

3.4 The Inverse Geometry Problem

Objects in the simulated world can be easily located using three Cartesian coordi-
nates, and their rotation is defined by additional three angles. When robot links are
connected by revolute joints, the position and rotation of the grip of the robot is
defined by six angles. The inverse geometry problem in our case is finding such
angles of the robot joints, so that the grip is located at the required position (in
Cartesian coordinates) and the required rotation.

3.4.1 The Inverse Robot in 2D

The 2D case is illustrated in Figures 13 and 14. In Figure 13 a manipulator (direct
robot) is shown. It has two motors, two bars (links) and the tip. The position of the
tip (X;Y) is defined by the angles A and B. Therefore we call such model a direct
robot.

The inverse geometry problem is to determine values for A and B from the
given X and Y . For this purpose the model depicted in the Figure 14 has been
constructed. The angles (joints) A and B are free now. In addition a revolute joint

236

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

tip
Y

X

A

B

Figure 13: Direct kinematics model for two links with two revolute joints.

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���������������������
���������������������
���������������������
���������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

tip
Y

X

A

B
free

free
MotorY

MotorX

Figure 14: Inverse kinematics model for two links with two revolute joints.

appears at the tip. Two prismatic bars with actuators are added to the model. One
bar moves along the X axis. Another bar is attached to the first one and moves
along the Y axis. The positions of these bars define (X;Y)–position of the robot
tip. The angles at the revolute joints A and B can be obtained. This model is called
an inverse robot.

3.4.2 Alternative Solutions

Generally, the inverse geometry problem can be solved by trigonometric computa-
tions in 3D, and requires complete information about the kinematics of all the links
(i.e. the positions of the joints and their types). The inverse geometry problem is
a special case of the inverse kinematics problem where movement of a point in
Cartesian coordinates should be mapped to the change of angles in revolute joints.

237

The inverse geometry problem is solved by finding a Jakobian, which describes the
relations between the changes. It might appear that the solution is missing or that
the process of solution reaches a singularity point.

3.4.3 The Inverse Robot in 3D.

In our approach we use a kinematic loop in order to obtain necessary values for
the inverse geometry. For this purpose from original (direct) robot model a corre-
sponding model of the inverse robot is created. This model has the same geometry
as the original robot, but is controlled in a different way.

Figure 15: The inverse robot with additional bars has a kinematic loop. Required
position of the tip is set up by the three scale bars (for X , Y , and Z).

The direct robot has six revolute joints with state variables. The inverse robot
(Figure 15) has five revolute joints without state variables and one revolute joint
RevoluteCut3D2. instead. These joints connect the links from the base to the
grip. In addition three prismatic joints with state variables are added, and their
movement is visualized by three bars. The reference position of the prismatic joints

2The model RevoluteCut3D is a model of revolute joint with one rotational degree of freedom.
In the MBS library[2, 6] when kinematic loops occur such joint model should be used instead of usual
revolute joint model RevoluteS

238

(scale bars for X , Y , and Z position) can be controlled interactively, just like the
motors MotorX and MotorY in Figure 14.

The inverse geometry problem is solved in the following way. Initially all the
joints stay in the home position. The user interactively specifies reference positions
for the three orthogonal, consequently connected bars. Actuators apply forces to
the bars and these move to the specified position. Since the inverse robot grip is
attached to the last bar, all the joints of the robot move correspondingly. Finally
the grip reaches the target and the angles (�1; :::; �6) at all the revolute joints of the
robot are stored for future use.

Now we don’t need the inverse robot anymore. We start simulation of the direct
robot, which has motors attached to the revolute joints

When the angles �1; :::; �6 are used as reference angles for the joints of the
direct robot, the grip of this robot will be gradually moved to the required position.
The same angles �1; :::; �6 can potentially be applied to the joints of a physical
robot.

The inverse kinematics problem is solved just as a slight extension of the
method described above. If the required position of the three prismatic joints is
given as a function of time, the corresponding values of the angles for certain time
span can be saved, and used later in order to directly steer the direct robot.

3.5 Conclusions on Robot Simulation

A framework for mechanical simulation of manipulators has been developed. We
considered a specific manipulator (with six rotational degrees of freedom, on a
mobile platform), but the method can also be applied to other virtual devices. We
show that a simplified deliberative and reactive layer of control for a robot can be
designed using Modelica. Alternatively to table-driven plan, the robot operation
plan can be composed also as a set connected primitive plan steps.

Currently the plan is hard-coded in Modelica model. As alternative, it can be
obtained from the interactive environment during simulation, or read from an input
file. This way programmable virtual robots can be modeled.

If inverse and direct robot are integrated in the same simulation it is possible
to give robot commands which include Cartesian coordinates. It greatly simplifies
construction of the movement plan.

The disadvantages with our approach are that it can potentially be rather slow,
and can, just as other methods, reach a singularity point. Also it is difficult to
handle with cases when the required position is out of reachable space for the
robot.

The advantage is that the same model (or model with small and well-defined
modifications) can be used both for direct and inverse kinematics.

239

4 Acknowledgments

The Modelica definition has been developed by the Eurosim Technical Committee
1 (Modelica Design Group)[7] under the leadership of Hilding Elmqvist (Dynasim
AB, Lund, Sweden) and Martin Otter (DLR, Germany). The Dymola tool has been
designed by Dynasim AB. The Multibody Simulation Library has been developed
by Martin Otter.

This work has been supported by the Wallenberg foundation as part of the
WITAS project [14].

References

[1] 3D Systems, Stereo Lithography Interface Specification, 3D Systems, Inc., Va-
lencia, CA 91355. Available via http://www.vr.clemson.edu/credo/rp.html.

[2] Hilding Elmqvist, Dag Brück, Martin Otter, Dymola, Dynamic Modeling Lab-
oratory, User’s Manual, Version 4.0, from Dynasim AB, Research Park Ideon,
Lund, Sweden, http://www.dynasim.se

[3] Vadim Engelson, Integration of Collision Detection with Multibody System
Library in Modelica. Linköping Electronic Articles in Computer and In-
formation Science, ISSN 1401-9841, Vol. 5 (2000): nr 010. Available at:
http://www.ep.liu.se/ea/cis/2000/010/

[4] Vadim Engelson, Tools for Design, Interactive Simulation, and Visualization
for Dynamic Analysis of Mechanical Models. Linköping Electronic Articles in
Computer and Information Science, ISSN 1401-9841, Vol. 5 (2000): nr 007.
Available at: http://www.ep.liu.se/ea/cis/2000/007/

[5] Håkan Larsson, Translation of 3D CAD Models to Modelica, Master Thesis,
LiTH-IDA-Ex-99/30, IDA, Linköping Univ., Sweden, March 1999.

[6] Martin Otter, Hilding Elmqvist and François E. Cellier, Modeling of Multibody
Systems with the Object-Oriented Modeling Language Dymola, Nonlinear Dy-
namics, 9:91-112, 1996, Kluwer Academic Publishers.

[7] Modelica Design Group, Modelica WWW site, http://www.modelica.org

[8] Johan Parmar, Modeling an Autonomous Helicopters and its Maintenance
using Modelica, Master Thesis, LITH-IDA-Ex-99/63, IDA, Linköping Univ.,
Sweden.

[9] PELAB Group, Modelica activities in PELAB, Linköping University,
http://www.ida.liu.se/˜pelab/modelica

240

[10] Erik Skarman. An aircraft model, Linköping Electronic Articles in Computer
and Information Science, ISSN 1401-9841, Vol. 4 (1999): nr 013. Available at:
http://www.ep.liu.se/ea/cis/1999/013/

[11] Erik Skarman. An helicopter model, Linköping Electronic Articles in Com-
puter and Information Science, ISSN 1401-9841, Vol. 4 (1999): nr 014. Avail-
able at: http://www.ep.liu.se/ea/cis/1999/014/

[12] Erik Skarman. A helicopter control system, Linköping Electronic Articles in
Computer and Information Science, ISSN 1401-9841, Vol. 4 (1999): nr 015.
Available at: http://www.ep.liu.se/ea/cis/1999/015/

[13] SolidWorks Corporation, SolidWorks, http://www.solidworks.com

[14] WITAS group, The Wallenberg Laboratory for Research on Infor-
mation Technology and Autonomous Systems, Linköping University,
http://www.ida.liu.se/ext/witas

241

Paper 7

243

244

An Environment for Design, Simulation and Interactive
Visualization for CAD Models in Modelica�

Vadim Engelson, Håkan Larsson, Peter Fritzson
Linköping University, Sweden y

Abstract

The complexity of mechanical and multi-domain
simulation models is rapidly increasing. Therefore
new methods and standards are needed for model
design. A new language, Modelica, has been pro-
posed by an international design committee as a stan-
dard, object-oriented, equation-based language suit-
able for description of the dynamics of systems con-
taining mechanical, electrical, chemical and other
types of components. However, it is complicated to
describe the system models in textual form whereas
CAD systems are convenient tools for this purpose.
We have designed an environment that supports the
translation from CAD models to standard Model-
ica notation. This notation is then used for simula-
tion and visualization. Assembly information is ex-
tracted from the CAD models, from which a Mod-
elica model is generated. By solving equations ex-
pressed in Modelica, the system is simulated. A 3D
visualization tool based on OpenGL visualizes ex-

�Published in Proceedings of 1999 IEEE International Con-
ference on Information Visualization, IEEE Computer Society,
14-16 July 1999, London, pp. 188-193, ISBN 0-7695-0210-5.
Submitted for publication in the International Journal of Com-
puter Integrated Construction, special issue on Visualization in
Architecture, Engineering and Construction.

yThe contact address: Vadim Engelson, IDA, Linköping
University, S-58183, Sweden; telephone: +46 13281979, fax:
+46 13284499, e-mail: vaden@ida.liu.se

pected and actual model behavior, as well as addi-
tional parameters. The environment has been applied
for robot and flight simulation.

Keywords: CAD, Mechanical modeling, Simu-
lation, Animation, Interactive Visualization, Model-
ing languages, Modelica, Bridge construction, In-
door climate. .

1 Background

The use of computer simulation in industry and con-
struction is rapidly increasing. Simulation is typ-
ically used to optimize product properties and to
reduce product development cost and time to mar-
ket. Whereas in the past it was considered suffi-
cient to simulate subsystems separately, the current
trend is to simulate increasingly complex physical
systems composed of subsystems from multiple do-
mains such as mechanical, electric, hydraulic, ther-
modynamic, and control system components.

A new language called Modelica [10, 4, 11, 5] for
hierarchical physical modeling is being developed
through an international effort. Modelica 1.1 was an-
nounced in December 1998. It is an object-oriented
language for modeling of physical systems for the
purpose of efficient simulation. The language uni-
fies and generalizes previous object-oriented model-
ing languages. Compared with the widespread sim-
ulation languages available today this language of-

245

fers three important advances: 1) non-causal mod-
eling based on differential and algebraic equations;
2) multidomain modeling capability, i.e. it is pos-
sible to combine electrical, mechanical, thermody-
namic, hydraulic etc. model components within the
same application model; 3) a general type system
that unifies object-orientation, multiple inheritance,
and templates within a single class construct.

Modelica is a language for dynamic simulation. In
particular, mechanisms (such as construction tools,
robots, vehicles) and constructs under dynamic load
(such as hanging bridges [20]) have been modeled,
and interactively simulated. Thermodynamics appli-
cations are modeled too; in particular, models for in-
door climate and energy simulations were developed
in NMF which is similar to Modelica ([21]). This
application inputs a building map designed in a CAD
tool and generates equations for indoor climate sim-
ulations.

Future application areas can be e.g. modeling of
the dynamics of buildings during earthquakes.

Modelica is a standard notation which is used for
standard domain libraries and for applications that
use these libraries. Tools and environments are built
to comply with this standard.

CAD

simulation
visualization

standard component libraries

models
mechanical

other
code

Modelica

Figure 1: Structure of the integrated environ-
ment.

The structure of the environment that leads the
user from interactive design to interactive visualiza-
tion is shown in Figure 1. Section 2 gives an intro-
duction to the Modelica language and its standard li-

braries for electrical and mechanical modeling. Sec-
tion 3 describes the CAD tool we use and translation
from CAD models to the standard Modelica nota-
tion. Sections 4 and 5 describe simulation and visu-
alization issues.

2 The Modelica Language

2.1 Simple Electric Circuit

As an introduction to Modelica we will present a
model of a simple electrical circuit. Our goal is to
describe features of universal Modelica standard no-
tation, which can be used in applications in various
domains (such as electrical, mechanical or chemi-
cal). A detailed description of this example can be
found in [5, 10]. The system can be broken into a set
of connected electrical standard components.

Figure 2: Sample circuit structure in Modelica
graphical notation.

Assume that the sample model (Figure 2) consists
of a voltage source, two resistors, an inductor, a ca-
pacitor and a ground point. Models of such com-
ponents are available in Modelica standard class li-
braries for electrical components.

A declaration like the one below specifies R1 to be
an instance (i.e. an object) of standard library class

246

Resistor and sets the default value of the resis-
tance, R, to 10 (i.e. R1.R is 10).

Resistor R1(R=10);

A Modelica description of the complete circuit ap-
pears as follows:

class circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect(AC.p,R1.p);
connect(R1.n,C.p);
connect(C.n,AC.n);
connect(R1.p,R2.p);
connect(R2.n,L.p);
connect(L.n,C.n);
connect(AC.n,G.p);
end circuit;

A composite model like the circuit model described
above specifies the system topology, i.e. the com-
ponents and the connections between the compo-
nents. The connections specify interactions between
the components.

The components (Resistor,Capacitor, etc.)
are subclasses derived from the class TwoPinwhich
in turn contains two Pin objects:

class Voltage = Real;
class Current = Real;

connector Pin
Voltage v;
flow Current i;
end Pin;

class TwoPin
Pin p, n;//positive and negative pin
Voltage v;
Current i;
equation
v = p.v - n.v;//voltage difference
p.i = - n.i;//current going in-

side via two pins
i = p.i;
end TwoPin;

A connection statement
connect(Pin1,Pin2), with Pin1 and Pin2
of connector class Pin, connects the two pins so
that they form one node. This implies an equality
for v and flow balance for i, namely: Pin1.v =
Pin2.v and Pin1.i + Pin2.i = 0 .

Modelica and its standard libraries for electrical
models provide short, clear, extensible and concise
notation for such models.

During system simulation the variables i and v
evolve as functions of time. The solver of algebraic
and differential equations computes the values of all
variables in the model for all simulation time steps.

2.2 Implementation of Model Simulation

Instances of classes in a model, including equations,
are translated into a flat set of equations, constants
and variables. After flattening, all the equations are
sorted in order of data dependence.

The symbolic solver/simplifier performs a number
of algebraic transformations to simplify the depen-
dencies between the variables. It can also solve a
system of differential equations if it has a symbolic
solution. Finally, C code is generated which is linked
with a numeric solver. As the result a function of
time (t), e.g. R2.v(t) can be computed for a time
interval [t0,t1] and displayed as a graph or saved in a

247

file. This data presentation is the final result of sys-
tem simulation.

2.3 Mechanical System Modeling in Model-
ica

To facilitate mechanical system modeling there ex-
ists a standard Modelica class library for modeling
multi body mechanical systems (MBS) [9, 13], i.e.,
systems of rigid bodies connected to each other with
certain degrees of freedom.

A model that uses MBS consists of an inertial sys-
tem (instance of class Inertial), joints (instances
of classes RevoluteS or PrismaticS), mass-
less bars (class Bar) and bodies (class Body) with
mass. The objects are connected together with the
Modelica connect statement.

The Inertial object defines the global coordi-
nate system and the gravitational force. All other ob-
jects are in some way connected to this object, either
directly or through other objects.

The use of the MBS library can be represented by
a double pendulum example (see Figure 3):

class Pendulum
Real L = 0.5;
Inertial I;
Body P1(rCM=fL/2,0,0g);
Body P2(rCM=fL/2,0,0g);
RevoluteS rev1(n=f0, 0, 1g);
RevoluteS rev2(n=f0, 0, 1g);
Bar arm(r=fL, 0, 0g);

equation
connect(I.b, rev1.a);
connect(rev1.b, P2.a);
connect(rev1.b, arm.a);
connect(arm.b, rev2.a);
connect(rev2.b, P1.a);

end Pendulum;

The instances of Modelica classes (such as P1,

��
��
��

��
��
��

���
���
���
���

����
����
����
����

������
������
������

������
������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
���
���
���
���

��
��
��
��

��
��
��

������
������
������
������
��
��
��
��arm

rev1

rev2

Inertial

L/2
L

L/2

P2

P1

Figure 3: Logical presentation of the pendulum.

P2, rev1 etc.) have attributes that can be modi-
fied. For instance, Body has attributes that define
mass, inertia tensor and location of center of mass
relative to the local coordinate system (rCM). In-
stances of RevoluteS (revolute joint) have an at-
tribute n that defines direction of rotation axis. In-
stances of PrismaticS (prismatic joint) have an
attribute that specifies direction of allowed transla-
tion. For a Bar the coordinates of its end are speci-
fied as r.

The classes of the MBS library have connectors
called a and b, of type MBSCut. A connect state-
ment usually connects two MBSCuts attached to two
different instances. This specifies equality of rota-
tion, position, velocity and acceleration. It also spec-
ifies that there is a balance for force and torque be-
tween the connectors.

Every MBS class contains differential equations
that specify relations between rotation, positions,
and forces at its connectors a and b.

During system simulation all equalities, balances
and differential equations are solved and the values
of all the numeric items are computed for each time
step.

There are 70 other classes in the MBS library (for
bodies and joints) and 30 classes in drive train library
(for motors and other mechanical elements).

248

3 CAD Tools

In order to simplify design of mechanical Modelica
models, CAD tools can be utilized. The system used
in our project is SolidWorks[16].

SolidWorks uses the concept of parts and assem-
blies. Each solid component (a rigid body) is mod-
eled as a separate part document.

In the assembly document these parts are put to-
gether to form a complete model. Each part model
can also occur more than once in the assembly.

The assembly document defines the mobility be-
tween the parts of an assembly. Between two parts,
several so called mates are connected, each adding
some constraint to the mobility between the parts.

A part consist of entities, such as planes, faces,
edges, axes and points. A mate connects two entities
from different parts. There exist several mate types.
The most typical are coincident (all the points of one
entity are inside another entity) or parallel (it keeps
entities parallel to each other).

Two parts can be connected by one, two or more
mates. Some combinations of mates are valid, some
are not. Invalid combinations of mates are rejected
by SolidWorks automatically. In [7] we analyze valid
sets of mates between pairs of parts and translate
them to corresponding sets of Modelica joints. There
are similar concepts for parts, assemblies and mates
in other 3D CAD tools, e.g. [19].

3.1 Example

The example (Figure 4(a)) describes a fragment of
the pendulum model. The part P1 has front face (f1)
and upper edge (e1). The part P2 has the front face
(f2) and bottom edge (e2). There is a mate M1 that
specifies that planes of f1 and f2 are coincident.
The mate M2 specifies that the edges e1 and e2
are coincident. The SolidWorks system analyzes the
mates and adjusts positions of the parts (Figure 4(b)).

(a) (b)

Figure 4: Parts and their mates specification
before (a) and after (b) adjustment according
to the mates.

The system automatically rejects invalid mate com-
binations. Our translator [7] finds that there is a joint
with one rotational degree of freedom between the
parts P1 and P2, and calculates the position and ori-
entation of the rotation axis. This pair of mates cor-
responds to an instance of class RevoluteS from
Modelica MBS library with attached Body instance.

3.2 Modelica Model

Each SolidWorks assembly consists of a set of parts,
and it stores a set of mates. All these are validated
and translated to a set of Modelica MBS class in-
stances and appropriate connections between them.
Mass, position of center of mass and inertia tensor
are extracted from the corresponding part documents
by SolidWorks. The result of a Modelica model
simulation is position, rotation, velocity, acceleration
and other physical properties of each Body as func-
tions of time during the simulated time period.

249

4 Translation and simulation

Figure 5 represents components of the environ-
ment needed for visualization. Our translator from
SolidWorks to Modelica takes information about the
mates and produces a corresponding set of Modelica
class instances with connections between them. The
mass and inertia tensors for each part are computed
by SolidWorks. These are extracted and used in a
Modelica model. Geometry information is saved in
a separate STL [17] file for each part.

By default the gravity force is applied to the me-
chanical model. Usually this is not enough for simu-
lation. All external forces that are applied to the bod-
ies, as well as motor forces that are applied to revo-
lute and prismatic joints should be specified. This is
done outside the SolidWorks model by adding code
for new class instances to the Modelica model.

A control subsystem that controls the forces ac-
cording to a certain plan (mission) can be written in
Modelica. If necessary, external code in C can be
added to the model.

When a Modelica model is simulated, the posi-
tion, orientation, velocity and acceleration for each
part (Body instance) is computed. For Modelica
simulation we use the Dymola tool with Modelica
support[3].

5 Visualization

The integrated environment includes a visualizer that
provides online dynamic display of the assembly
(during simulation) or offline (based on saved state
information for each time step).

The STL format[17] is a very simple format suit-
able for visualization. All surfaces are divided into
triangles and the the coordinates of the triangle ver-
tices, as well as normal vectors of the triangles, are
listed in the STL-file.

Part

Geo-
metry

Mass &
inertia

Mates

Translator

Mechanical

model
Modelica

Modelica
execution

Libraries

posi-
tions

other

Simulation results

STL
format

Non-mechanical
model components

Assembly

SolidWorks model

3D-Visualizer

2D - Graph viewer
Display

Script

Opti-
mizer

Binary
form

Figure 5: The path from SolidWorks model to
dynamic system visualization.

The visualizer loads the corresponding STL file
for each part and optimizes it for rendering. Af-
ter that, rendering is performed by OpenGL [8] li-
brary functions. During optimization the vertices po-
sitioned very close are merged together. Optimized
STL code is stored in a binary file for future use.

The user of the visualizer can alternatively utilize
the pop-up menu system, keyboard shortcuts, or a
command string in order to control various options.
We found that the following options (that can be
turned on and off) should be available, and we have

250

implemented them.
— Rotating the camera in 2 degrees of freedom

(DOF), moving the camera in 3 DOF, zooming in
and out.

— Using perspective and orthographic projection.
— Display of a part as a wire-frame, filled with

certain color, using a lighting model with certain
light sources, or hiding a certain part.

— Display of an application-specific landscape,
for instance, road for car simulation, or a runway
surrounded by hilly landscape for flight simulation.
Such a landscape can be created as a SolidWorks as-
sembly that does not move, or directly in C using
OpenGL.

— Display of planned trajectory (mission) of
some parts.

— Display of actual trajectory of some parts.
— Display of origin and coordinate axes (local for

bodies and global one) as well as grid lines.
— Display pseudo-shadow. The pseudo-shadow

is not dependent on light at all. We found that for
flight simulation it is convenient to display a projec-
tion of vehicle and trajectory on the ground plane.

— Synchronization of animation with machine
clock.

— Starting, stopping, continuing animation, step-
ping forward and backward.

— Targeting camera center of view on a particular
part, so that camera follows the part all the time.

— Rotating camera together with the target part.
The integrated system has been used for modeling

industry robot behavior as well as helicopter flight
simulation (Figure 6). We have designed a robot and
helicopter control models and performed design op-
timization for the control system [18, 15]. The heli-
copter is designed in SolidWorks and consists of 10
parts, 4 revolute and 2 prismatic joints.

It is possible to export the visualization to 3D
Studio MAX [1] (to create and save movies) and

Figure 6: Helicopter dynamic visualization.

MultiGen[12] on SGI (to design Virtual Reality ap-
plications).

6 Related Work

Our approach has similarities to the Working Model
3D tool [19]. This tool permits construction of
a mechanical model with joints (free and motor-
controlled), springs, dampers and ropes. It also has
built-in collision detection options. Working Model
3D can import assemblies from SolidWorks.

However, Working Model 3D is a closed system
and user-defined control code can be used there in a
very limited way. On the contrary in Modelica we
specify arbitrary control algorithms for mechanical
and mechatronic models. Working Model 3D is lim-
ited to certain types of mechanical systems, whereas
Modelica supports general multi-domain modeling.

Similar mechanical simulation features are avail-
able in some other advanced CAD tools.

251

7 Future work

7.1 Using STEP/EXPRESS for Contact
Computation

STEP (Standard for the Exchange of Product data)[6,
14] is an international standard for data exchange.
It includes a language called EXPRESS, that can be
used for exchanging advanced geometric informa-
tion between CAD/CAM systems. This is an ad-
vanced file format where the geometry of the solids
is represented in a more mathematical way than in
STL. This format could be useful when calculating
points of contact between parts or if a representation
of the part geometry on a closed form was to be in-
cluded in the Modelica model.

7.2 True Multidomain Applications

Modelica is suitable for multiple application do-
mains. Components from several domains (mechan-
ical, electrical, hydraulic simulation) can be used
within the same Modelica model. For instance, elec-
trical components can be combined with mechanical
components in the model. The electrical parts can be
written by hand, or designed using a block-oriented
editor, or extracted from an electric CAD system.
The generated Modelica code for electrical compo-
nents in combination with a mechanical design tool
produces a multidomain Modelica model.

8 Conclusions

An integrated environment for simulation of multi-
domain models has been implemented using Model-
ica as a standard model representation. The user can
work with arbitrary SolidWorks models, extend the
corresponding Modelica model in various ways, and
analyze the simulation results in high performance
visualization environment. A complex model such as

a pendulum consisting of seven bars can be created in
ten minutes. It is simulated 5-7 times faster than cor-
responding model in Working Model 3D [19]. The
helicopter and industrial robot models [18, 15] were
successfully designed and simulated.

9 Acknowledgments

The Modelica definition has been developed by the
Eurosim Modelica technical committee [10] under
the leadership of Hilding Elmqvist (Dynasim AB,
Lund, Sweden). The work has been supported by the
Wallenberg foundation as part of the WITAS project
[18].

References

[1] 3D Studio Max, Autodesk Inc.,
http://www.ktx.com

[2] Cult 3D Home Page, Cycore AB,
http://www.cykar.se

[3] Dymola Home Page, Dynasim AB,
http://www.dynasim.se

[4] H. Elmqvist, S. E. Mattsson. Modelica – The
Next Generation Modeling Language – An Inter-
national Design Effort. In Proceedings of First
World Congress of System Simulation, Singa-
pore, September 1–3 1997.

[5] P. Fritzson, V. Engelson, Modelica – A Unified
Object-Oriented Language for System Modeling
and Simulation, In Proc. of Eur. Conf. on Object-
Oriented Progr. (ECOOP98), Brussels, July 20–
24, 1998.

[6] ISO 10303, Industrial Automation Systems and
Integration - Product Data Representation and
Exchange, ISO TC 184/SC4, 1992.

252

[7] H. Larson, Translation of 3D CAD models to
Modelica, Master Thesis, IDA, Linköping Univ.,
Sweden, April 1999.

[8] J. Leech, OpenGL Web Site,
http://reality.sgi.com/opengl

[9] M. Otter, H. Elmqvist and F. E. Cellier, Mod-
eling of Multibody Systems with the Object-
Oriented Modeling Language Dymola, Nonlin-
ear Dynamics, 9:91-112, 1996, Kluwer Aca-
demic Publishers.

[10] Modelica WWW site, Modelica Group,
http://www.modelica.org

[11] Modelica activities in PELAB,
PELAB Group, Linköping University,
http://www.ida.liu.se/˜pelab/modelica

[12] Multigen, OpenFlight section, MultiGen-
Paradigm, Inc., http://www.multigen.com

[13] M. Otter, Objektorientierte Modellierung
mechatronischer Systeme am Beispiel geregelter
Roboter. Dissertation, Fortschrittberichte VDI,
Reihe 20, Nr. 147, 1995.

[14] J. Owen, STEP – An Introduction, Information
Geometers Ltd., 1993, ISBN 1-874728-04-6.

[15] J. Parmar, Modeling Autonomous Helicopters
using Modelica, Master Thesis, IDA, Linköping
Univ., Sweden, To appear in June 1999.

[16] SolidWorks, SolidWorks Corporation,
http://www.solidworks.com

[17] StereoLithography Interface Specification, 3D
Systems, Inc., Valencia, CA 91355. Available via
http://www.vr.clemson.edu/credo/rp.html.

[18] WITAS group, The Wallenberg Laboratory
for Research on Information Technology and

Autonomous Systems, Linköping University,
http://www.ida.liu.se/ext/witas

[19] Working Model , MSC.Working Knowledge,
http://www.krev.com

[20] F. Fischer, J. Seybold, Modeling, Optimiza-
tion and Visualization of Multibody Systems ex-
emplary shown at the Example of a pedestrian
Bridge in Kiel, Interner Bericht Nr. 109, Insti-
tute for Computer Applications, University of
Stuttgart, September 1995.

[21] Brisdata, Indoor Climate and Energy,
http://www.brisdata.se/ice/

253

254

Paper 8

255

256

257

AN INTEGRATED MODELICA
ENVIRONMENT FOR MODELING,

DOCUMENTATION AND
SIMULATION1

Peter Fritzson, Vadim Engelson, Johan
Gunnarsson

PELAB, Programming Environment
Laboratory

Department of Computer and Information
Science

Linköping University, S-581 83
Linköping, Sweden

Email: {petfr,vaden,johgu}@ida.liu.se

KEYWORDS

Modelica, Mathematica, programming environments, simu-
lation, documentation

ABSTRACT

Modelica is a new object-oriented multi-domain modeling lan-
guage based on algebraic and differential equations. In this paper
we present an environment that integrates different phases of the
Modelica development lifecycle. This is achieved by using the
Mathematica environment and its structured documents, “note-
books”. Simulation models are represented in the form of struc-
tured documents, which integrate source code, documentation and
code transformation specifications, as well as providing control
over simulation and result visualization.

Import and export of Modelica code between internal struc-
tured and external textual representation is supported. Mathematica
is an interpreted language, which is suitable as a scripting language
for controlling simulation and visualization. Mathematica also sup-
ports symbolic transformations on equations and algebraic expres-
sions, which is useful in building mathematical models.

BACKGROUND

Integrated simulation environments are advantageous in or-
der to work effectively and flexibly with simulations. Users
prepare and run simulations as well as investigate simulation
results. Several auxiliary activities accompany simulation
experiments: requirements are specified, models are de-
signed, documentation is associated with appropriate places
in the models, input and output data as well as possible con-
straints on such data are documented and stored together
with the simulation model. The user should be able to repro-

duce experimental results. Therefore input data and parts of
output data as well as the experimenter’s notes should be
stored for future analysis.

Traditionally, simulation and accompanying activities
have been expressed using heterogeneous media and tools:

• a simulation model is traditionally designed on paper
using traditional mathematical notation;

• simulation programs are written in a low-level
programming language and stored on text files;

• input and output data (if stored at all) are saved in
proprietary formats needed for particular applications
and numerical libraries;

• documentation is written on paper or in separate files
that are not integrated with the program files;

• the graphical results are printed on paper or saved using
proprietary formats.

When the result of the research and experiments, such as a
scientific paper, is written, the user normally gathers togeth-
er input data, algorithms, output data and its visualizations as
well as notes and descriptions. One of the major problem in
simulation development environments is that gathering cor-
rect versions of all these components from various files and
formats is difficult and error-prone.

USING MATHEMATICA NOTEBOOKS

Our approach to the integration problem is based on the
Mathematica (Wolfram 1997) environment and its program-
mable notebooks. Every notebook corresponds to one docu-
ment (one file) and contains a tree structure of cells. A cell
can include other cells and/or arbitrary text or graphics. In
particular a cell can include a code fragment or a graph with
computational results. The hierarchy of cells corresponds to
the traditional hierarchy of chapters, sections, and para-
graphs used in textual documents and available in advanced
word processors like FrameMaker or MSWord. The text can
be written in different styles, including certain font families,
bold, italic, color and size as well as mathematical typeset-
ting.

The contents of cells can be

• parts of models (a formal description that can be used for
verification, compilation and execution of some
simulation model);

• text/documentation (used as comments to executable,
formal model specifications);

• dialogue forms for specification and modification of
input data;

• result tables (the results can be immediately represented
in table form);

1. Published in Proceedings of The 1998 Summer Computer
Simulation Conference} (SCSC 98) July 19--22, 1998, Reno, Ne-
vada, pp. 308-313.

258

• graphical result representation (with 2D vector and
raster graphics as well as 3D vector and surface
graphics);

• 2D graphs that are used for various model structure
visualizations:

• class diagrams

• variable dependency diagrams

• data structure diagrams

THE MODELICA LANGUAGE

The language called Modelica (Modelica 1998) for hierar-
chical physical modeling has been developed in an interna-
tional effort. It is an object-oriented language (Elmqvist,
1997, Fritzson and Engelson, 1998) for modeling of physical
systems. The language unifies and generalizes previous ob-
ject-oriented modeling languages. Modelica is intended to
become a de facto standard. It offers three important fea-
tures: 1) non-causal modeling based on differential and alge-
braic equations; 2) multidomain modeling capability, i.e. it
is possible to combine electrical, mechanical, thermodynam-
ic, hydraulic, etc. model components within the same appli-
cation model; 3) a general type system that unifies object-
orientation, multiple inheritance, and templates within a sin-
gle class construct.

Modelica models are built from classes. Like in other
object-oriented languages, a class contains variables, i.e.
class attributes representing data. The main difference
compared to traditional object-oriented languages is that
instead of functions (methods) the programmer uses
equations to specify behavior. Equations can be written
explicitly, like a=b, or can be inherited from other classes.
Equations can also be specified by the connect statement.

Modelica model of lunar landing

As an introduction to Modelica we will present a model of a
rocket landing on the moon surface.

There are two components (Rocket and Planet) used in
the Landing class. The class Rocket embodies floating
point (Real) variables, simulation-time constants
(parameter) and equations for vertical motion of the rocket
above the planet surface. The motion is influenced by
gravitational force and rocket motor force (Thrust). Rocket
mass varies since the rocket loses fuel mass proportional to
the amount of thrust from the rocket motor. Velocity and
acceleration are time-derivatives of height and velocity as
specified by the der(...) construct.

The class Landing includes apollo (an instance of
class Rocket) and moon (an instance of Planet with
specified planet mass and radius).

Dynamic systems are described by models where

behavior evolves as a function of time, i.e. all the variables
in the model evolve as functions of time. Modelica has a
predefined variable timewhich steps forward during system
simulation. The simulation models the rocket behaviour
from time=0 until the rocket touches the ground.

Equations describe the thrust function, a step function
with an initial thrust force level f1 during the time interval
[0..thrustDecreaseTime] and a second thrust level f2
during the time interval [thrustDecreaseTime..
thrustEndTime]. The step functions can conveniently be
expressed using Modelica conditional expressions (the if-
then-else construct).

The gravitational field is expressed as:

The Lunar landing model expressed in Modelica

class Rocket "generic rocket class"
 Real height(start=59000);
 Real velocity(start=-2000);
 Real mass(start=1000);
 Real acceleration;
 Real Thrust;
 Real gravity;
parameter Real massLossRate=0.000277;
equation
 Thrust-mass*gravity=mass*acceleration;
der(mass)=-massLossRate*abs(Thrust);
der(height)=velocity;
der(velocity)=acceleration;
end Rocket;
class Planet "generic planet class"

parameter Real mass;
parameter Real radius;

end Planet;
class Landing "landing of a rocket onto a
planet"

parameter Real force1=36000;
parameter Real force2=1500;
parameter Real thrustEndTime=210;
parameter Real thrustDecreaseTime=43;
parameter Real G=6.672e-11;

 Rocket apollo;
 Planet moon(mass=7.382e22,

 radius=1.738e6);
equation
apollo.Thrust=
 if (time<thrustDecreaseTime) then force1
 else if (time<thrustEndTime) then force2
 else 0;
apollo.gravity=(G*moon.mass)/
 (apollo.height+moon.radius)^^2;
end Landing;

g t()
GMplanet

h t() radiusplanet+()2
--=

259

Note that Modelica equations do not specify which variables
are inputs and which are outputs. Thus, the causality of equa-
tions-based models is unspecified. This is fixed only when
the equation system is solved.

Simulation Semantics

Classes, instances, and equations are translated by the Mod-
elica compiler into a flat set of differential-algebraic equa-
tions, constants and variables. The initial values for time=0,
specified by the (start=...) construct can be taken from
the model definition. A simulation engine finds a numerical
solution of the system of ordinary differential equations. All
model variables are functions of (modeled) time during the
simulation.

The simulation engine is a fairly complex piece of
software that can be implemented in many different ways. In
each case this engine sorts equations (Elmqvist, 1997), finds
algebraic loops, checks consistency of ordinary differential
equations (ODE), controls an ODE solver, and computes
requested variable values from the solution found.

Existing Environment and Need for MathModelica

There is an environment for the Modelica language and en-
gine for Modelica simulations, based on the Dymola system
(Dymola 1998). The code, documentation, input data, graph-
ical and numerical results are represented in different, heter-
ogeneous formats, which is a disadvantage of the system.
Furthermore, the user is not able to extend the system and in-
troduce new software components. Additionally, the user
cannot perform user-specified symbolic (algebraic) manipu-
lations with the formulae used in the code.

For these reasons, we are developing the extensible
integrated MathModelica environment which is partly based
on the Mathematica system and notebooks.

A specific feature of Mathematica is that models are
normally not written as free formatted text. Instead,
Mathematica expressions (terms) are used. These can be
conveniently written in a tree-like prefix form, or entered
using standard mathematical notation. Every term is a
number, an identifier or a form such as:

head [term1,..., termn]

In order to satisfy this requirement, we designed the new
MathModelica language1. Note that MathModelica has the
same abstract syntax and the same semantics as Modelica,
but a different concrete syntax. This means that essentially
the same language constructs are written differently, as illus-
trated below.

The MathModelica language uses some Mathematica

notation, such as:

term1;...;termn, {term1,...,termn},
term1 term2, term1==term2, term’, term1‘term2,

and arbitrary arithmetic expressions composed from terms.
The ’ (tick) means time-derivative. The ‘ (backtick)

character in MathModelica corresponds to . (dot) notation in
Modelica.

Lunar Landing Example in MathModelica

Class[Rocket;
Declare[
 Real[start->59000,unit->"m"] height;
 Real[start->-2000,unit->"m/s"] velocity;
 Real[start-> 1000,unit->"kg"] mass;
 Real acceleration;
 Real Thrust;
 Real gravity;
Parameter Real massLossRate=0.000277 ;
];
 Equation[
 Thrust-mass*gravity==mass*acceleration;
 mass’==-massLossRate*Abs[Thrust];
 height’==velocity;
 velocity’==acceleration;
]
];

Class [Planet; "**********************"
Declare[
Parameter Real mass;
Parameter Real radius;

]
];

BeginClass[Landing];
Declare[
 Parameter Real force1=36000;
Parameter Real force2=1500;
Parameter Real thrustEndTime=210;
Parameter Real thrustDecreaseTime=43;
Parameter Real G=6.672*10^-11;

 Rocket apollo;
 Planet[mass->7.382*10^22,

 radius->1.738*10^6] moon;
];

Equation[
 apollo‘Thrust==
 Which[time<thrustDecreaseTime, force1,
 time<thrustEndTime, force2,
 True, 0];

1. This paper presents the preliminary syntax of MathModeli-
ca.

260

];
EndClass[Landing];

Expressions used in MathModelica are "dynamic". This
means that they can be created as result of symbolic and al-
gebraic transformation performed by Mathematica. These
transformations can be integration, differentiation, expan-
sions of series, simplification, etc.

Formal Syntax of MathModelica

The formal concrete syntax of MathModelica is described by
a BNF grammar1 as shown below, where keywords are all
marked with bold, other terminals are courier (if they are
written as here) or italic (generic tokens, like integers or
strings):

program::= class*
class::= shortClass | longClass
shortClass::= Class [classname;
 (ext | decls | equations)*];

When the short class definition is evaluated in Mathematica,
the class description is added to the model.

longClass::=BeginClass [classname];
(ext | decls | equations | comment)*

 EndClass [classname];

The constructs BeginClass[] and EndClass[] are bal-
anced. Class definition can be split, and written in several
cells. The EndClass[name]; adds (when evaluated), defi-
nition of class name to the syntax tree. These constructs al-
low the user to insert documentation into class code
(Figure 1).

A class can extend (inherit) other classes as in Java:

ext ::= Extends [classname*];
decls ::= Declare [onedecl*];
equations ::= Equation[oneequation*];
onedecl ::= [Parameter] type

 [[attr *]] [[idx *]]
 varname [= value];["short comment";]

Note that "parameters" are simulation time constants and
their value can be stated in the simulation model.

idx ::= integer (used for array declaration)
attr ::=

 start->value; (bound value of variable for time=0)
 |unit->"string" (unit used for user interface only)
 |varname->value; (specifies value for component)
comment::= text written in a separate notebook cell
type ::= Real | Integer | classname
oneequation ::= expr == expr ;
expr ::= varname’ | expr+expr
 | expr-expr | expr/expr | expr*expr
 | builtinfunction(expr) | expr[[expr]]
 | expr‘varname | number | exprexpr

Fig. 1. Notebook fragment with MathModelica class declaration
and comments.

In Figure 1 the symbols in the right margin denote different
kinds of cells and the hierarchy constructed from the cells.
The bracket means a cell with code (an executable com-
mand); the bracket with the horizontal bar means a cell
with text (a fragment of documentation). A larger -brack-
et marks a cell that contains eight smaller cells. A hierarchy
of cells of unlimited depth can be easily created.

THE EXPERIMENTAL ENVIRONMENT

MathModelica is both a language and an environment.
The Mathematica built-in functions and MathModelica

environment functions can be used in order to manipulate the
model. Naturally, the most important operation using the
model is simulation. This can be performed in different
ways:

• translation of the model to Mathematica, and simulation
using the Mathematica built-in ODE solver;

• translation to Modelica, and using the Dymola-based
environment for simulation;

• translation to C++ using the MathCode system
(MathCode 1998, Fritzson 1997), a Mathematica to C++
compiler.

1. In BNF notation [F] means optional text F; F|G is an alter-
native between F and G; F* is repetition of F 0 or more times (Aho
et al. 1986).

apollo‘gravity
G moon‘mass⋅

apollo‘height moon‘radius+()2
--

==

Description of landing
In[23]:=BeginClass [Landing];

In[24]:=Declare[Parameter Real force1=36000;];

In[25]:=Declare[Parameter Real force2=1500;];

In[26]:=EndClass[Landing];

This class describes the landing process and evaluates

This force variable is needed...

This force variable is needed too...

the height of the rocket and other dynamic parameters

261

TRANSLATION FROM MATHMODELICA TO
MATHEMATICA

In order to convert a MathModelica model to Mathematica
the function ModelicaToMathematica[] is called. Vari-
ables and functions declared in the model then become inter-
actively accessible by the user working in the Mathematica
environment.

Classes, variables and equations in the MathModelica
model are converted to a flat list of variables and equations.
First, the constants are set:

setparam[]=(apollo‘massLossRate = 0.000277;
 thrustDecreaseTime=43;
 thrustEndTime=210;
 moon‘mass=7.382*10^22;
 moon‘radius=1.738*10^6;
 force1=36000;
 force2=1500;
 G=6.672*10^-11);

The Mathematica differential equation solver (NDSolve) re-
quires that only differential equations are specified in the
equation list, so algebraic equations have to be handled sep-
arately.

There is an equation (here named eq1) with the variable
apollo‘acceleration the translator has to extract:

eq1:=
 apollo‘Thrust[t] - apollo‘mass[t]*
 apollo‘gravity[t] ==
 apollo‘mass[t]*apollo‘acceleration[t];

To extract the variable apollo‘acceleration the alge-
braic equation solver is called:

 Solve[eq1,apollo‘acceleration[t]];

The Solve function expresses the variable apollo‘ac-

celeration[t] in terms of other variables. A new func-
tion definition for the acceleration is created:

apollo‘acceleration][t_]:= - ((
 apollo‘gravity[t] * apollo‘mass[t] -
 apollo‘Thrust[t]) / apollo‘mass[t]);

Two other functions are already given in the MathModelica
code:

apollo‘gravity[t_]:=(G*moon‘mass) /
 (apollo‘height[t]+moon‘radius)^2;

apollo‘Thrust[t_]:=
 If[t < thrustDecreaseTime ,force1,
 If[t < thrustEndTime, force2, 0]];

Now, three ordinary differential equations are specified:

eqs={
 apollo‘mass’[t]==- apollo‘massLossRate*
 Abs[apollo‘Thrust[t]],
 apollo‘height’[t]==apollo‘velocity[t],
 apollo‘velocity’[t]==apollo‘acceleration[t]
};

Initial conditions are necessary for the solution:

initcond={
 apollo‘height[0]==59000,
 apollo‘velocity[0]==-2000,
 apollo‘mass [0]==1000};

Solutions are required for these functions:

vars={apollo‘height[t],apollo‘velocity[t],
 apollo‘mass[t]}

When the function ModelicaSimulate[timemax] is
called, initial conditions, equations, and functions are passed
to an ordinary differential equation solver which is a Mathe-
matica built-in function:

res=NDSolve[Join[eqs,initcond],var,
 {t,0,timemax}];

As a result, Mathematica creates polynomial approximations
for all functions we want to find, known as interpolate-func-
tions.

Result visualization

Fig. 2. The apollo‘height value for time in [0,timemax]
(timemax=500)

The functions computed by NDSolve can be visualized
graphically. For instance, the height of the rocket can be vi-
sualized (see Figure 2) by the call

 ModelicaPlot[apollo‘height[t],
 "Lunar landing: Altitude"];

262

Other Scripting Utilities

Three scripting utilities – ModelicaToMathematica[],
ModelicaSimulate[] and ModelicaPlot[] have been
illustrated above.

ImportModelica[] accepts textual traditional
Modelica code, parses it and converts to MathModelica
code. ExportModelica[] performs the opposite
translation. It can be used with a Modelica implementation,
available in the Dymola environment.

Input Data Specification

Another script command, ModelicaInData[] allows se-
lecting parameter values and specifying boundary conditions
interactively. The dialogue window is created automatically
from specification of data structures (Engelson and Fritzson,
1996) in the Modelica code (see Figure 3). Variable values
can be edited and new simulation runs can produce results
immediately. In the future this can be used for computational
steering of Modelica simulations.

Fig. 3. A Mathematica dialogue box for setting input variable
values of a MathModelica simulation. The boxes apollo and
moon represent cell instances with several components.

CONCLUSION

The MathModelica is an extension of the Modelica lan-
guage targeted for work within the Mathematica environ-
ment. This language is object-oriented (the programs consist
of collections of classes). The language is equation based:
instead of traditional functions and procedures we use non-
causal equations which specify algebraic and differential re-
lations between numerical variables. Input-output causality
is not specified, and therefore these equations can be used in

multiple ways.
The environment integrates most activities needed in

simulation design and use: documentation, modeling
(coding), symbolic processing and transformation of
formulas, input and output data visualization. This advanced
programming environment can be applied in various
simulation applications.

ACKNOWLEDGMENTS

This work had been supported by the Wallenberg Founda-
tion in the WITAS project.

REFERENCES

Aho, A., Sethi, R., Ullman, J., Compilers - Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

Dymola Home Page, http://www.Dynasim.se, 1998.

Elmqvist, H., Mattson, S.E., Modelica - The Next Genera-
tion Modeling Language - An International Design Effort, in
Proceedings of First World Congress of System Simulation,
Singapore, September 1-3, 1997.

Engelson, V., Fritzson, P., Fritzson, D., Automatic Genera-
tion of User Interfaces From Data Structure Specifications
and Object-Oriented Application Models. In Proceedings of
ECOOP96, Linz, Austria, 8-12 July 1996, Pierre Cointe
(Ed.), pp. 114-141. Springer-Verlag, 1996 .

Fritzson, P., Static and Strong Typing for Extended Mathe-
matica. In Innovation in Mathematics. Proceedings of the
Second International Mathematica Symposium, Rovaniemi,
Finland, July 1997, V.Keränen, P. Mitic, A. Hietamäki (Ed.),
pp. 153-160.

Fritzson, P. and Engelson, V., Modelica - A Unified Object-
Oriented Language for System Modeling and Simulation.
Accepted for publication in Proceedings of ECOOP-98,
Brussels, July 1998.

Fritzson, P., and Fritzson, D., The need for high-level pro-
gramming support in scientific computing applied to me-
chanical analysis. Computers and Structures, Vol 45, No 2,
pp 387-395, 1992.

Modelica Home Page, http://www.Modelica.org 1998.

MathCode Home Page, http://www.mathcore.com, 1998

.Wolfram, S., The Mathematica Book, Wolfram Media,
1997.

Paper 9

263

264

3D Graphics and Modelica - an integrated approach.

Vadim Engelson

Abstract

The Modelica[8] standard library and available Modelica tools [4, 7] con-
tain some facilities for specification of 3D geometry and 3D graphics. Ge-
ometry and graphics is associated with physical objects included in simulated
Modelica models. However, important graphics properties are missing from
this model. In particular, physical objects cannot change their shape (geom-
etry) and rendering features (graphics) dynamically. The physics of simula-
tion, is often not affected by geometry of physical objects. For instance, a
body is often approximated by its center of mass under certain conditions.
Either simple predefined shapes or specifications of geometry via external
files are used. The last facility leads to separation between the model and the
corresponding graphics and geometry.

Our proposal is to integrate 3D geometric and graphical features with
Modelica models of physical objects. The 3D graphics information is speci-
fied explicitly via annotations containing certain graphics primitives or using
instances from a specially designed geometry class library. The motivation,
syntax and implementation outline for this approach are discussed in this
report.

1 Background

Modelica[8] is an object-oriented language for modeling dynamic systems. When
Modelica models are simulated, variables constrained by algebraic and differential
equations evolve in time. The current tools for visualization of Modelica simula-
tion results [4, 7, 6] have facilities to render static objects only. These objects are
rigid, i.e. they cannot change their shape. Modelica is a perfect tool for modeling
physical processes, especially mechanical systems. However, the bodies in these
processes are modeled using very simplified geometries. One of the reasons is that
there are limited facilities for specification of body geometry and 3D graphical in-
formation in Modelica. Either a fixed set of primitive shapes should be used, or
external files with shape and graphics description are referenced.

Modelica is a convenient tool for modeling mechanical systems. The Multi-
body Simulation library (MBS)[10] is intended for this purpose. The dynamic
properties of bodies are obviously in dependent on their geometry. This circum-
stance is only used in MBS for a limited set of bodies with primitive shapes (box,
cylinder, etc.). Furthermore, the shape of the bodies is not utilized for collision
detection and contact force computation.

265

Our solution to the problem of integrating Modelica and graphics is to develop
a standard notation for 3D geometry data in Modelica, and to incorporate this
information into appropriate classes used in Modelica models. This information
will be created during model design, updated when the model changes, used for
computation of certain physical quantities (which can vary) of the bodies during
simulation, and used for rendering of the bodies during online or offline visualiza-
tion. Initially this information can either be created manually, or imported from a
modeling tool, e.g. a CAD system.

This solution is motivated by several factors:

� Modelica models and their visualizations have the same structure. Therefore
this structural consistency should be supported. The geometry of a whole
Modelica model is the same as the union of the shapes of all class instances
in the model.

� Values can be reused between a Modelica class of a physical object, corre-
sponding geometric construction and 3D graphical model. In particular, con-
stants defined in a geometric model are reused as constants in the Modelica
physical model since they are related to the same physical object. Parame-
ters from the Modelica model affect the visualization of the corresponding
3D graphic model.

� Graphics and model code can be kept together by including all the necessary
information into the same document. Such documents, together with textual
documentation which is already included as a textual annotation in Modelica
models, can be used for information exchange between developers.

There are also some disadvantages of inserting geometry descriptions into Mod-
elica models. If a complex geometry is used the model becomes very large, having
the following consequences:

� It can be cumbersome to edit the textual representation of the model. How-
ever the geometry descriptions can be hidden when connection diagrams are
edited, using special model editing environments (MathModelica[7]) or their
customization (e.g. special Emacs[5] mode).

� Compilation of models with complex geometries can take too much time. A
solution to this problem can be placing geometry descriptions in Modelica
code such way that these can be ignored during normal compilation. This
issue is discussed in Section 3.

It is important to note that annotations in general, and geometric annotations
in particular, do not change the semantics of Modelica models. They do not cre-
ate any new equations or new variables. However, they can affect the execution
of Modelica code (if the user specifies function calls that request data based on
geometry), in a similar way as input data can affect execution.

266

2 Simulation and Visualization Requirements

There are several requirements which are essential for the simulation of physical
models with non-trivial geometry:

� The volume, mass (when density is given), position of the center of mass
(assuming that bodies are homogeneous), and the matrix of inertia should be
automatically evaluated for each body.

� In the context of simulations where contacts between bodies are important,
collisions can be detected. Collisions between bodies can be detected only
if the complete geometric information is given for all the bodies.

� Contact force evaluation: if a collision of bodies is detected, an external
force caused by the collision should affect the physical model behavior.

� Partial differential equations (PDEs) are not part of Modelica yet. However
it is clear that geometry information related to domain, distribution and grid
generation is necessary for solving PDEs. This geometry data should be
described in Modelica model somewhere.

For some application areas the geometry associated with physical models can
be used for simulation; in some others there is no relation between simulation and
geometry at all. In particular, geometry is ignored in electrical modeling. The
body geometry is partially used in dynamic analysis of mechanical systems (the
kinematic outline is usually sufficient). In chemical processes a few simple shapes,
e.g. cylinders are sufficient. Complete and exact geometry descriptions are, how-
ever, necessary for computing contact forces between bodies, i.e. friction of sur-
faces and collision. Complete geometry information is necessary for visualization
of physical processes.

The most important features that should be available in the visualization envi-
ronment are:

� primitive graphic objects with vertex coordinates (point, line, triangle, quadri-
lateral1 and polygon) in 2D and 3D; These coordinates can be constants or
variables computed during simulation.

� colors;

� objects with fixed shape that change position and orientation over time (rigid
body visualization).

Other features that should be available in the environment are:

� normal vectors to surfaces (necessary for correct rendering);

1Quadrilateral is a polygon with four vertices in 3D.

267

� material illumination and transparency properties;

� texture raster and texture mapping;

� coordinate transformations, such as translation, rotation, scaling (including
transformations and rotation matrices such as those available in the MBS
library);

� predefined non-primitive objects with size and position attributes, such as
box, cylinder, beam, sphere, cone, etc.;

� surfaces defined as splines2;

� trees with nodes for transformations, switches3 , levels-of-detail etc.;

� visualization of forces, speed, acceleration etc., e.g. in the form of arrows;

� objects that are able to refer to graphic data in other formats (such as VRML[12]
or STL[1]) and/or other files;

� objects that change their shape during dynamic visualization (non-rigid, flex-
ible body visualization). The shape is specified by some constants and vari-
ables, and the values for the variables is computed during simulation.

Visualizations defined in Modelica models can be highly dynamic since all the
numerical values used in graphic definitions can be not only constants, but arbitrary
Modelica variables or numerical expressions.

3 Graphic Object Representation in Modelica Code

An important question is how to add geometric or graphic information to a Mod-
elica model. These are not equations, not functions, not variables, but tree-like
graphs with structural information, numerical constants and variables. The struc-
ture should match certain syntax rules to be readable by simulation and visualiza-
tion software.

Two alternatives can be considered (see Figure 1):

Using classes: User-defined models of physical objects should inherit certain gen-
eral graphic classes (from a new special graphic Modelica library) or include
components of those classes. For instance, currently for visualization with
DymoView[4] or MVISLIB[6] a special class VisualMbsObject should

2Sometimes there is a need to visualize surfaces defined via parametric functions given in a
Modelica model. This case requires a very special treatment of these functions, and using function
names in the same way as variables. Since this deviates too far from Modelica syntax and complicates
implementation we don’t cover this topic in this report.

3Switch nodes allow the user to specify several completely different graphic objects, and alternate
between them depending on the switch variable value.

268

model C "using classes"
PrimitiveGeometry x(c={Sphere(p={0,0,0},radius=1)});
...

end C;

model A "using annotation"
annotation(PrimitiveGeometry({Sphere(p={0,0,0},radius=1)}))
...

end A;

Figure 1: Example of Modelica classes with graphical annotations and with graph-
ical classes.

Icon(
Rectangle(
extent=[-90, 15; 0, -15],
style(color=8 , gradient=2 ,

fillColor=8 , fillPattern=1)),
Rectangle(
extent=[0, 50; 100, -50],
style(color=8 , gradient=3 ,

fillColor=8 , fillPattern=1)),
Text(
extent=[-100, 60; 100, 122],
string="%name")),....

Figure 2: Example of Modelica annotation defining an icon.

be used (or classes that use or extend this class). Each class instance can
include a description of some corresponding graphics.

Using annotations: The classes might contain special annotations which define
geometric and graphic properties. Annotations in Modelica are tree-like
structures with labeled branches and attribute values, e.g. as the example
shown in Figure 2

Currently annotations are used for icons, diagrams (here a particular gram-
mar for the structure of the annotations is used) and for documentation (a
string with free contents).

3.1 Choice Between Classes and Annotations

The first alternative (using classes) requires creating a Modelica visualization li-
brary (with a set of Modelica classes) and adding new classes for particular geo-
metric structures to this library. The second variant might require a specific ana-
lyzer (parser) for graphic annotations, which can be an extension to the Modelica
parser.

Sometimes there is a need to include some format (e.g., VRML[12]) directly
(verbatim) into the Modelica model code. In this case annotations can conveniently

269

be used since they are effectively ignored when the model is compiled for the
purpose of simulation.

Sometimes there is also a need for dynamic modification of parameters of some
geometric features during simulation or visualization. For instance, the height of
a box increases as a function of time; its mass and center of mass should be com-
puted for simulation; the shape of the box should be updated for online and offline
visualization [6] as well. This can be done by placing some variables into geomet-
ric classes and setting up some equations to connect these variables with the rest of
the simulation. This cannot be done easily in the annotation approach, since anno-
tations do not affect the simulation and cannot affect the visualization of simulation
results.

The architecture of a special environment for handling shape annotations is
described in Section 7.

It would be convenient to ignore all information related to graphics when the
model is simulated just to obtain numerical values of model dynamics. In such a
case classes and instances with graphic information should be “detached” from the
model in order to reduce the number of classes, equations and variables. This can
be needed for higher performance, memory reduction and speed-up of the Model-
ica compiler. It is easy to detach all the annotations at once, but it is more difficult
to switch off all geometry-related classes of an application.

Each Modelica class or instance might have an annotation defining some ge-
ometric and/or graphic properties. Obviously, there can be classes that contain
graphic annotations only, and these can be instantiated or extended (inherited) in
other classes. Therefore both syntax alternatives have roughly the same capabili-
ties.

There are annotations defining icon geometry in Modelica [9]. The icons can be
displayed graphically in Modelica implementations[4, 7] (Figure 2). These icons
are displayed as 2D graphic primitives when appearing in Modelica connection
diagram editors. These annotations are not used for simulation purposes and not
stored in the simulation output data.

In the second alternative the proposed graphic annotations will represent 3D
graphic primitives. Some special component in the Modelica implementation
should care of the task of analysis and appropriate handling of these specific anno-
tations.

A problem arises with geometry definition in annotations since sometimes the
geometry contains connectors (such as MbsCutA) and there is no place in the
Modelica syntax to specify connection between a class instance inside an annota-
tion with the rest of the model. However, it is possible to write a variable name in
the annotation.

For describing the structure of graphics there is a need for non-homogeneous
arrays, i.e. arrays consisting of instances of different classes. This is not possible
in standard Modelica class syntax, but it is allowed in annotations.

Thus, both approaches have some drawbacks. The rest of this report is based
on the second alternative (using annotations). The syntax of annotations, however,

270

is described by Modelica class notation.

3.2 Shape Structure and Modelica Model Structure

A Modelica model refers directly and indirectly to a number of classes. These
classes have components (variables) of types defined by some other classes. In-
stantiation of variables and equations always starts from the last (the main) class of
the model (this class corresponds to the root node in the tree of Modelica classes),
and continues recursively to the components.

The total collection of geometric bodies included in a Modelica model (when
used for simulation or visualization) is specified recursively. The shape corre-
sponding to a whole Modelica application is a combination of the shapes of all
instances declared in the last (the main) class of the textual presentation of the
application model.

If a class defines its own geometric annotations it can refer (within its attribute
structures) to the annotation of the parent class (for this purpose we introduce a
special keyword Super) and attributes of the components of the class (we intro-
duce the keyword Component(name)). By default the annotation of the parent
class is overridden and annotations of all components are ignored.

If a class does not define its own shape attributes, then the shape of the super-
class and the shape of components are just joined together:

Super, Component(name1), Component(name2), ...

Figure 3 gives definitions of five classes with geometric information. The ac-
tual shapes associated with each class are given in the comments.

Visualization and geometric properties are inferred from the shape properties.
The visualization of a complete Modelica application consists of the shapes of all
the object instances. If geometric information is enough for computation of object
volume, then the volume associated with a whole Modelica application is just the
sum of volumes of all the instances (it is assumed that they do not penetrate each
other).

4 Geometry Definition Syntax in Modelica

The library of data structures that can be used for geometric data description is
presented in Figure 4.

Generally, graphics can be defined using two main approaches:

� Specification of a set of primitives (including triangles, spheres, etc.) and
operations (translation, rotation, extrusion, etc.).

� Using an external graphics format (such as STL[1], VRML[12], DXF[2],
etc). The names of the files that contain the graphics are specified or the
graphics in its external format is included directly (verbatim) into the model.

271

model A
annotation(PrimitiveGeometry({Sphere(p={0,0,0},radius=1)}))

end A;
model B extends A;
Real r;
annotation(PrimitiveGeometry({Sphere(p={0,0,0},radius=r)}))
// This annotation overrides the annotation inherited from A

end B;
model C extends A;
A a;
B b;
annotation(PrimitiveGeometry({Super,Box(...),Component(b)}))
// This annotation overrides the annotation inherited from A.
// C contains two spheres and a box.

end C;

model D extends A;
A a;
B b;
// No annotation. D contains three spheres.

end D;

model E;
C c; D d; // contains five spheres and a box.

end E;

Figure 3: Example of Modelica annotations defining geometries.

4.1 Syntax for External Graphic Format Specification

Some components or classes might have their graphics and geometry stored in an
external graphics format.

If an external graphics format is used for a Modelica model, we need to specify
the following:

� the format identifier,

� the external file name of the graphic file,

� (optional) file component identification.

In these cases an annotation is attached to a component or a class, e.g. as below:

annotation(ExternalGeometry(format="STL",
file="arm001.stl"))

There exist many different 3D graphics formats. The STL format is just one of
the available portable formats for description of static rigid bodies.

This format may include sub-parts in the geometry description. Typically, as-
semblies of components are described as trees. It is possible to access subcompo-
nents via a unique name or a sequence of names.

annotation(ExternalGeometry(format="STL",file="robot.stl",
component="17"))

272

Geometry

(used in annotation(...))

ExternalGeometry

−−−−−−−−−−−−−

String format

String file

String component

PrimitiveGeometry

−−−−−−−−−−−−−−

Primitive c [:]

Primitive

Face

−−−−−−−−−

Real color[4]

Triangle

−−−−−−

Point3D p[3]

Quadrilateral

−−−−−−−−−

Point3D p[4]

Sphere

−−−−−

Point3D p

Real radius

IndexedFaceSet

−−−−−−−−−−−

Point3D p [:]

Integer idx[:]

Position

Translate

−−−−−−−

Point3D p

Rotate

−−−−−

Point3D dir

Real angle

RotateMatrix

−−−−−−−−−

Real [3,3] matrix

Node

−−−−−−−−−

Primitive c[:]

ExternalPrimitive

Point3D

−−−−−

Real [3]

Extrude

−−−−−−

Primitive prim

Real depth

Construction

DirectGeometry

−−−−−−−−−−−−

String format

String code[:]

Super Component(name)

Figure 4: Relationship diagram for data structures describing geometric annota-
tions.

Graphic information in an external format can be included into the Modelica
model directly (verbatim), as an array of strings:

annotation(DirectGeometry(
format="STL",
code={"solid arm",

"facet normal 0.0 -1.0 5.9e-08",
"outer loop",
"vertex -1.9e+01 5.1e-07 1.08e+01",
"vertex -1.9e+001 -6.2e-007 -8.3",

...}))

5 Primitive Geometric Objects

A geometric model might contain many different primitive objects like triangles,
quadrilaterals, spheres, boxes, and parametric surfaces.

In particular the following types should be available:

273

type PrimitiveGeometry=Primitive [:];

record Primitive;
// has no specific components
end Primitive;

type Point3D = Real [3];

record Face
extends Primitive;
Real color[4]; /* RGBA */
/* other features can be here */

end Face;

record Triangle
extends Face;
Point3D p[3];

end Triangle;

record Quadrilateral
extends Face;
Point3D p[4];

end Quadrilateral

record Sphere
extends Face;
Point3D p;
Real radius;

end Sphere

record IndexedFaceSet
extends Face;
Point3D p[:];
Integer idx[:];

An annotation defining a geometry might look like:

annotation(
PrimitiveGeometry({

Triangle(p={{0.3, 0.4, 0.2},
{1.4, 0.4, 0.2},
{1.4, 0.5, 0.3}}),

Sphere(p={0.2,0.4,0.6}, radius=1.2)
}))

6 Position Specification

Generally geometry is specified as a tree. The semantics of Translate,Rotate
and Scale re the same as in OpenGL[11]. Other OpenGL-like constructs can be
added in the same way. These primitives define transforms from an old coordinate
system to the new coordinate system, and all further drawing in the current list of
primitives is applied in the new coordinate system.

Corresponding definitions are:

274

record Position extends Primitive
end Position;

record Translate
extends Position;
Point3D point;

end Translate;

record Rotate
extends Position;
Point3D direction;
Real angle;

end Translate;

record RotateMatrix
extends Position;
Real [3,3] matrix;

end Translate;

record Scale
extends Position;
Point3D size;

end Scale;

A Node is a Primitive that might contain a number of other nodes:

record Node
extends Primitive; /* it is a primitive */
Primitive [:];
/* contains some other nodes and other primitives */

end Node

The position specification is stored in the tree, together with the faces. The
example below defines two spheres. As result of combination of two translations,
the center of one of them is shifted to (1,0,1), the other becomes (1,0,-1) .

annotation(
PrimitiveGeometry({

Translate(point={1,0,0}), // Translates both nodes
Node({

Translate(point={0,0,1}), // Translates only one sphere
Sphere(point={0,0,0}, radius=1)

})
,

Node({
Translate(point={0,0,-1}), // Translates only one sphere
Sphere(point={0,0,0}, radius=1)

})
}))

6.1 Specification of Level of Detail

In case of rendering we can consider specification of levels of detail (LOD). The
primitive list can differ depending on the LOD required. Different primitive lists
will be chosen from a particular branch, depending on the current detail level.
Different LOD levels can be specified for the attribute and for the class.

275

There can be a Switch nodes that selects a particular child node (from sev-
eral alternative nodes) according to some parameter or variable. For example, the
variable p can only take the value 1 (a sphere will be seen) or 2 (a box will be seen).

annotation(
PrimitiveGeometry(

Switch(
name=p ,
alternatives={

Sphere(p={0,0,0}, radius=1.0),
Box (p1={-1,-1,-1}, p2={0,0,0})
})))

There is a similar Switch construct in the VRML language.

7 Implementation Outline

In this section we present an outline of a future implementation of environment
components necessary for integration of 3D geometry and 3D graphics with Mod-
elica.

The structure of this implementation is shown in Figure 5.
Usually the Modelica model is supplied to the compiler, and all the annotations

are ignored. In order to extract necessary information a special pre-compiler should
be designed. It takes Modelica model with 3D geometry and graphical annotations
and transforms it to labeled tree representation (LTR). The labels at the top level of
the tree correspond to the variable paths of the variables containing some graphical
annotations. For instance. model E in Figure 3 corresponds to the tree in Figure 6:

The labeled tree representation (LTR) should be supported as a tree in memory.
Additionally, it should be possible to write and read such structures to and from a
file.

When a simulation is running, external functions can be called in order to
obtain some geometry data. For instance, the current volume of some body, or
collision force that currently occur between the bodies. These functions (e.g.
GetVolume(‘‘d’’)) find the corresponding branch or set of branches in the
LTR. If some variables (such as d.b.r) are needed during the computations, the
values can be obtained from the runtime data table. This table contains the names
of all available variables and their current values.

Some functions (e.g. to find the volume of a rigid body, which never changes
during simulation) should be called just once, before the actual simulation starts.
The result of these functions can be used in the same way as parameters in
Modelica.

The same LTR is used when the geometry is required during visualization.
Necessary variable values are fetched from the file with simulation results.

276

Modelica model Geometrical

Annotations

Compiler for

equations

Execution

of simulation

Result of simulation:

Names ov variables/

Value at each step

Online

visualization

Geometrical Annotation compiler

Labelled tree

representation

for geometrical

annotations

(LTR)

Other

annotations

Runtime data table:

Name/current value

External functions

for geometry processing

Offline

visualization

<− MODELICA MODEL

Operation in usual environment

Operation in case when variables are present in geometry

Operation with geometry annotations

traverseobtain value

supports

calls

Figure 5: Implementation structure for Modelica environment working with graph-
ical annotations.

8 Conclusions

In this report a flexible notation for geometry description is discussed. In order to
obtain the necessary flexibility and short notation, some deviation from the stan-
dard Modelica syntax is necessary. This is one of the reasons in using annotations
instead of classes where a new standard can easily by defined and old standards
can be extended. The proposed standard requires implementation of some extra
tools, including an annotation translator. These tools do not break the current im-
plementation of Modelica [4, 7] and furthermore require no essential changes in it.
Therefore it can be considered as a pure Modelica extension.

References

[1] 3D Systems, Stereo Lithography Interface Specification, 3D Systems, Inc., Va-
lencia, CA 91355. Available via http://www.vr.clemson.edu/credo/rp.html.

[2] AutoDesk, AutoCad documentation. DXF Format, http://www.autodesk.com

277

c d

sphere

box

sphere

d.super d.a d.b

sphere sphere sphere

(model E)

Figure 6: Labeled tree representation for geometric annotations.

[3] Cycore AB, Cult 3D Home Page, http://www.cult3d.com

[4] Hilding Elmqvist, Dag Brück, Martin Otter, Dymola, Dynamic Modeling Lab-
oratory, User’s Manual, Version 4.0, from Dynasim AB, Research Park Ideon,
Lund, Sweden, http://www.dynasim.se

[5] Emacs, http://www.emacs.org

[6] Vadim Engelson, Tools for Design, Interactive Simulation and Visualization
for Dynamic Analysis of Mechanical Models. Linköping Electronic Articles in
Computer and Information Science, ISSN 1401-9841, Vol. 5 (2000): nr 007.
Available at: http://www.ep.liu.se/ea/cis/2000/007/

[7] MathCore AB, MathModelica , software tool for modeling, simulation, and
visualization. Available from MathCore AB, http://www.mathcore.com.

[8] Modelica Design Group, Modelica WWW site, http://www.modelica.org

[9] Modelica Design Group, Modelica - A Unified Object-Oriented Language for
Physical Systems Modeling. Tutorial and Rationale. Version 1.3 December 15,
1999. Available via http://www.modelica.org

[10] Martin Otter, Hilding Elmqvist and François E. Cellier, Modeling of Multi-
body Systems with the Object-Oriented Modeling Language Dymola, Nonlin-
ear Dynamics, 9:91-112, 1996, Kluwer Academic Publishers.

[11] SGI, OpenGL Web Site, http://reality.sgi.com/opengl/

[12] VRML Consortium, VRML Repository, http://www.sdsc.edu/vrml/

278

Paper 10

279

280

Integration of Collision Detection with Multibody
System Library in Modelica

Vadim Engelson, PELAB, IDA, Linköping University

Abstract

Collision detection and response is one of the most difficult areas in sim-
ulation of multibody systems. Two known approaches, the impulse-based
method and the force-based (penalty) method, can be applied for multibody
simulation in Modelica. The impulse-based method requires instantaneous
modification of some variables, but such modification is not always possible
in Modelica. The force-based method leads to stiff ODE, which can be han-
dled by solvers used with Modelica. We suggest a new way to express the
penalty coefficients. The force-based method, however, requires computa-
tion of penetration depth which is time-consuming.

We suggest a combined method for computation of penetration depth.
Calling external functions is a preferable method integrate collision de-

tection algorithms with in practical physical models, since body geometry
is stored exernally. We describe an interface with collision detection tool
SOLID.

Keywords: Mechanical modeling, Simulation, Modelica, Collision Detection

1 Introduction

In mechanical systems certain machine elements usually interact with each other.
When a mathematical model of such a system is designed, the interactions between
the parts can be divided into the two following categories:

� Mechanical joints are used for definition of permanent constraints of motion.

� Mechanical contacts are almost instantaneous, typically short-time interac-
tions caused by non-penetration contact forces arising between the bodies in
the model. The forces occur when the body surfaces touch each other.

Two major phenomena occur in mechanical contacts:

– friction contacts (causing static or dynamic friction forces) and

– collision contacts (causing collision response forces).

281

Computation of contact forces is a difficult task. The bodies might move in a
complicated way, and they might have a complex geometry. When at some instant
they touch each other, penetration of the bodies should be prevented. There is a
tradeoff between efficiency and accuracy. One of the goals of Modelica simulations
is interactivity, therefore the computation should have at least the same speed as the
processes in the real mechanisms. There exist accurate methods for contact force
computation based on finite element methods and other methods using subdivision
of bodies into very small fragments. Currently these cannot run at interactive speed.

The most accurate and realistic methods used in mechanical simulations of
contacts available in the area of mechanical analysis called tribology. This theory
contains equations that take hydrodynamic properties of the lubricant that occurs
between bodies into account. Contact forces appear already when bodies have
some distance from each other. These forces are caused by compression and de-
compression of the lubricant.

One of the difficulties with the computation of contact forces is the variety of
surface geometries. For certain kinds surfaces (plane, spline of 2nd order) there
exist collision checking methods and approaches to generalize the forces that arise.
Such systems in general use higher order polynomials to compute forces from ge-
ometrical relations. Theory and applications of contacts situations are discussed in
[13].

An accurate method for contact (e.g. a FEM method) force computation re-
quires that the surfaces of two colliding bodies are covered by a mesh, and that
the relevant contact force is computed for each point on the mesh. The resulting
force is then found by integrating of all the forces acting on the contact surface.
Experiments with contact computation of rolling bearing models [4] show that this
method is accurate, but requires tremendous computing resources.

However, many simulation applications do not require extreme accuracy. Their
goal is to demonstrate qualitative characteristics of the behavior, not numerical
ones. Therefore in many cases additional assumptions are taken into account, that
may reduce accuracy, but provide high simulation speed. Often different assump-
tions lead to different computation methods but to the same (or nearly the same)
computation results. In that case this it makes no major difference for the applica-
tion what assumptions and methods were used.

The Multibody System (MBS) library in Modelica is used for mechanical
model simulation. Currently this library supports simulation of models with rigid
bodies and joints. Friction occurring in the joints can optionally be taken into ac-
count in the models. However, collision detection and collision response is not
supported. As a result, the mechanical parts may penetrate each other freely dur-
ing simulation. This significantly decrease the realism of mechanical simulations.
The simulation results might even be wrong.

The goal of this report is to identify the ways to add collision response to me-
chanical simulation models based on MBS.

Our approach to modeling collisions is based on combining several compo-
nents. In order to do that, collisions between bodies should be detected, collision

282

response should be evaluated, and this response should some way affect the sim-
ulation. Therefore the following basic components of collision simulation models
have been identified:

� Mechanical models use certain classes describing physical bodies. Mechan-
ical models including collision response force should extend these classes
to describe colliding physical bodies. Such bodies should be distinguished
from non-colliding bodies.

� There should be routine that can detect collisions in the simulated mecha-
nisms and return detailed information regarding collision parameters, such
as collision points and their velocities.

� A special routine should calculate the collision response from collision pa-
rameters. The collision response is calculated as force and torque applied
to the point of collision at the colliding body (or bodies). Alternately, this
routine might change the velocity of the bodies or some other model vari-
ables. This component seems to us the most problematic and controversial,
since there exist many approaches to collision response computation which
require different input information and may produce quite different numeri-
cal results.

Each of these three components should have an interface that allows replacing
its implementation without doing major redesign of the other components. In par-
ticular, the collision detection package as well as the force computation functions
shioukd be easily replaceable when necessary.

The overall architecture of mechanical simulation models with collision detec-
tion and response is presented in Figure 1.

Thiss report reflects ongoing research and development. Therefore some frag-
ments of work related to this report will be done in the future. The structure of the
report and the relation between its parts is shown in Figure 2.

The two major collision models used in the simulation are impulse-based and
force-based models. Both assume that the bodies are rigid. The impulse-based
approach uses collision impulses between the bodies (Section 2). The force-based
approach computes a non-penetration force (Section 3). A traditional variant of the
force-based approach is the penalty method which assumes that bodies in contact
behave like objects connected by a spring. We consider these methods in appli-
cation to Modelica. A new method for computing force from penetration depth is
given in Section 4. There is a number of common properties of collision detection
tools (Section 5). A the particular tool, SOLID, is used for finding the penetration
depth (Section 6). Section 7 illustrates how the routines for computing the forces
are integrated with mechanical models in Modelica.

283

Geometry of the

surface

of each body

 The base fragment of

mechanical model in Modelica

Position of each body

Collision detection test

Penetration depth and direction,

collision point location

Collision response force and torque

External forces and

torques applied to

colliding bodies

Yes

No

Figure 1: The overall architecture of mechanical simulation models for computing
collision detection and response.

2 Impulse Model

A standard way of handling collisions in mechanics is based on the linear momen-
tum preservation law.

2.1 Impulse and Velocity Equations

The following notation is used in the equations below:

� ma, mb – masses of bodies A and B;

� va, vb – velocity vectors of bodies A and B before the collision; v0

a, v0

b – the
velocity vectors of the bodies after the collision;

The movement of a body is described as movement of its center of mass (linear
velocity) and rotation of the body around its center of mass (angular velocity). The
linear momentum is the mass multiplied by the linear velocity. The total linear
momentum of a system consisting of A and B is preserved if there is no external
impact. This is also true for colliding point masses and it can be expressed by the
equation

mava +mbvb = mav
0

a +mbv
0

b:

In order to describe the collision further, we need to build a collision plane and the
vector ~n which is normal to the collision plane.

284

Force
->
multibody
dynamics

Collision models

Impulse Force

Penetration
->
Force

Collision
detection

SOLID

Collision
->
Penetration depth

Impulse
->
multibody
dynamics

Figure 2: The structure of the report.

The change of the projections of the velocities of point masses on ~n can be
expressed using the restitution coefficient ":

" =
v0

a � v0

b

vb � va
:

In the case of absolutely elastic collision " = 1. In the case of absolutely non-
elastic (completely damped) collision " = 0. Actual physical values of " always
belong to the interval 0 < " < 1. Experimental measurements show that the
restitution coefficient " depends mainly on material properties of bodies A and B.

The object B can be rigidly attached to the inertial system. It can be a static
obstacle, such as a ground plane or a wall attached to the ground. In this case
(mb ! 1; vb = 0), the equations for point masses are simplified, and they yield
the following equation:

v0

a = �"va:

The simplest case of one-dimensional collision is shown in Figure 3. The case
of two- or three-dimensional collision is similar. The trajectory of collision of point
masses in 2D is shown in Figure 4.

However, when bodies collide (see Figure 5), the collision points differ from
the center of mass, which should be taken into account.

Several assumptions (see e.g. [9, 15]) are taken into account when the law of
linear momentum preservation is used for physics-based simulation:

� Collision duration is negligible.

285

Before collision

After collision

m m

mm

V V

V V

a

a

a

a

b

b

b

b

A

B time

X

Figure 3: One-dimensional collision of two point masses A and B.

A B

Figure 4: Two-dimensional collision of two point masses A and B. The collision
plane is shown as a dashed line.

� There exists just one point of collision.

� The colliding bodies don’t move during the collision.

� No other forces than collision force act on the bodies.

� The impulse gives instantaneous change to the linear and angular velocities
of the colliding objects.

A derivation of the equations we use here is available in [13]. Assuming that
pa and pb are points of collisions, xa and xb are positions of the centers of mass,
and ! is the angular velocity of the body, the velocities of the points can be found
as

_pa = va + !a � (pa � xa) and _pb = vb + !b � (pb � xb);

286

A

B

n

J

xa

va

vb xb

a

b

r

r
p
b p

a

. .

Figure 5: Two dimensional collision of bodies A and B.

the relative velocity is defined as vrel = ~n � (_pa � _pb),
and the restitution coefficient is expressed as " = �v0

rel=vrel.
Also, the angular momentum of two colliding bodies is preserved:

Ia!a + Ib!b = Ia!
0

a + Ib!
0

b

where I is inertia tensor.
The collision impulse J is the change of momentum. Knowing the velocities of

the bodies before the collision, the point of collision, and the restitution coefficient
we can find the velocities after the collision. These velocities can for each body be
expressed from

(v0

a � va)ma = J and (v0

b � vb)mb = �J

(!0

a � !a)Ia = ra � J and (!0

b � !b)Ib = rb � J

where ra = pa � xa is position of the collision point relative to the center of
mass of body A.

In order to find J some algebraic manipulations are needed. If we ignore the
angular velocities it can be expressed as

J = �(1 + ")vrel=(m
�1

a +m�1b)

But if we care about correct angular velocities, the expression is more complex
[13]:

287

J =
�(1 + ")vrel

m�1a +m�1b + ~n � (I�1a (ra � ~n))� ra + ~n � (I�1b (rb � ~n))� rb
:

2.2 Simulations Using Impulse-Based Model

In order to use the impulse-based approach,the computation model should assume
that collision takes place if the distance between the closest features of two bodies
is less than some threshold T .

Some systems [15] are constructed so that

� The exact time of collision (if it happens at some instant between two time
frames) is not computed.

� Penetration is avoided at all by choosing a safe time step (�t) and estimating
the maximum speed (vmax), so that T > vmax�t.

Nevertheless, if penetration occurs (because of erroneous estimations) the time
step should be changed and some backtracking in the solution process must be per-
formed. Of course, this requires fine-grained control over the differential equation
solver that is used for numerical simulation.

Other systems [13] search for exact time of contact, using the method of bi-
section. The time interval normally used in the solver is divided to two, and the
contact is searched in one of two time intervals. This subdivision continues until
some tolerance bound is reached. This requires even more control over the solver.

The collision plane for disjoint objects is defined as follows. We assume that
bodies consist of such features as vertices, edges and faces. If one of the colliding
features is a face, this face is used as a collision plane. If vertices or edges are the
closest features, the shortest line between them is used as a normal to the collision
plane.

The situation when a body is resting on a surface is treated as a constraint
(giving additional equation) or as series of micro-collisions (as proposed in [9]).

Since the velocity is not continuous in the impulse-based model, it is not very
appropriate for use with traditional ODE solvers. Actually, the solver should stop
at the instant of collision and continue with the new velocity, as it is done, for
instance, in Modelica.

An alternative approach is based on writing a system of non-differentiable
equations and applying a Newton method specially devised for such equations
[12]. This method have successfully been applied for body impact with friction
by Johansson and Klarbring [5].

Variations of the same impulse-based model [9] can describe rolling, sliding,
resting and bouncing. This mathematical model has been combined by Zhang [15]
with collision detection algorithm I COLLIDE [6] to form an ODE-based simu-
lation tool. This model, however, assumes that between the collisions the objects
have ballistic trajectories i.e. they are not constrained by revolute and translational
joints.

288

2.3 Impulse-based Approach and Modelica

Modelica has capabilities for modeling the impulse-based collision response algo-
rithm.

The Modelica language, like some other modeling and simulation tools, has
support for instantaneous change of some variable values during simulation. This
change might happen at special simulation steps, called events. At these events
the continuous integration (i.e. the process of solution of the system of differential
and algebraic equations) stops, specific equations valid for this event are solved,
variables obtain new values, and then the integration continues. This is the way
Modelica carries out hybrid modeling, where continuous and discrete behavior of
the system are described in the same model.

In a simple mechanical model, described in Modelica, it is possible to change
the velocity variable v when some condition triggers an event.

The when statement may contain a call to collision detection routine. When
collision happens, Modelica event occurs. The angular and linear velocity of bodies
can be measured and instantly changed at specific points in time (events) during the
simulation. In this case the integration stops, the initial conditions for velocity are
changed, but all other variables keep their values as they were before the collision.
The continuation of the simulation is completely consistent from the point of view
of the MBS library.

We illustrate this possibility with two examples: a bouncing ball and a simpli-
fied pendulum.

2.4 Bouncing Ball Example

The bouncing ball example illustrates a model constructed using explicit equations
defining 1D movement and collision.

The model below describes a bouncing ball falling down from the height 10
meters. When the ball reaches the ground, the condition x<0 becomes true, an
event is triggered, the exact instant of this event is automatically found, and the
variable v gets the new value -"*v. The ball rises from the ground and falls down
again. The plot of the height x is shown in Figure 6.

model BouncingBall "bouncing ball, 1-D model"
Real v "velocity";
Real x (start=10) "height";
parameter Real g=9.8;
parameter Real eps=0.8 "restitution" ;

equation
der(v)=-9.8; // permanent acceleration
der(x)=v; // velocity
when (x<0) then // when ball crosses the ground level

reinit(v,-eps*v); // the velocity is re-initialized
end when;

end bouncingBall;

289

Figure 6: The height of the bouncing ball computed using the impulse model.

2.5 Colliding Pendulum Example

It is also possible to use the when and reinit in the MBS library context.
The pendulum example (see Figure 7) illustrates use of the MBS library for a

model with impulse-based collision response. The state variable q in this model is
the angle of the revolute joint of the pendulum, and the model makes an assump-
tion that the velocity (that changes instantaneously at the moment of collision) is
proportional to the angular velocity of the change of this state variable. This as-
sumption is wrong in more complicated case.

The trajectory of the pendulum end is depicted in Figure 8. The Change of the
angle of rotation R1:q is shown in Figure 9.

model Pendulum
"Impulse-based model of collision of pendulum end with an obstacle"
Inertial i;
RevoluteS R1(n=f0,0,1g,q(start=1));
BodyBase M1 (m=50,rCM=f0,0.5,0g,I=f0,0,0;0,0,0;0,0,0g);
Bar B (r=f0,1,0g);
parameter Real restitution=0.5;
parameter Real obstacle_x = 0.5 " x coordinate of obstacle";

equation
connect(i.b, R1.a);
connect(R1.b, M1.a);
connect(R1.b, B.a);
when (B.r0b[1]>obstacle_x) then
reinit(R1.qd,-restitution*R1.qd);
// A problem is how to propagate this change to velocity of B

end when;

290

end Pendulum;

���
���
���

���
���
���

���
���
���

���
���
���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

������������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

q

0.5

X

Y

B

M1 R1

Figure 7: Simple pendulum colliding with an obstacle at point Obstaclex = 0:5.
.

Figure 8: Trajectory of the endpoint of a simple pendulum colliding with an obsta-
cle at point Obstaclex = 0:5

2.6 Problem of Non-State Variables

There is one major difficulty in applying the impulse-based model to mechanisms
with rotating parts.

In order to apply the impulse-based approach, the velocity should be changed,
according to the rules, v := g(v), where g can be a complicated function depending

291

Figure 9: Angle of rotation of a simple pendulum colliding with an obstacle. The
restitution is " = 0:5. The collision happens when the angle reaches R1.q=� +

arcsin(Obstaclex) � 3:66.

on collision details. Modelica allows only instantaneous change of state variables.
In the MBS models, that include rotating bodies, the linear velocity is not a state
variable. It is a dependent variable that can be computed from state variables.
There are only two ways out:

� Restructure the model so that velocities become state variables, and apply
impulse-based approach to this model.

� Re-initialize the state variables q such way (q := f(q)) that corresponding
velocities change (v� > g(v)) according to the impulse-based approach.
The difficulty is to find the function f from g.

2.7 Restructuring the Model of Colliding Double Pendulum Example

It is possible to use kinematic loop in order to restructure the double pendulum
example (see Figure 10).

Model can be restructured in some case, but this approach is not general enough.
We can use kinematic loops, i.e. loops in the structure of the multibody model. In
particular, double pendulum model with 2 revolute joints (containing 2 state vari-
ables) (Figure 10(a)) can be replaced by closed kinematic loop with 2 prismatic
(with state variables), one rotational joints for cutting kinematic loops and 2 revo-
lute joints (without state variables) (Figure 10(b)) .

Both models (a) and (b) result in the same motion when no collisions occur,
but they use different state variables. The Modelica model for the construction in
Figure 10(b) is given below. The connection diagram of this model is shown in
Figure 11.

292

�����������
�����������
�����������

�����������
�����������
�����������

������������
������������
������������

������������
������������
������������

����
����
����
����

XR1.q

R2.q

Y

�����
�����
�����
�����

X

Y

R1.q

R2.q

P1.q

P2.q

(a) (b)

obstacle_y=
-0.3

Figure 10: Double pendulum (a) combined with additional joints to form a kine-
matic loop(b).

model Pendulum
parameter Real obstacle_y=-0.3;
output Real x;
output Real y;
output Real xv;
output Real yv;
output Real dist;
parameter Real restitution=0.5;
BodyV M1 (mass=50,r=\{0.5,0,0\},
Shape="box", Size=\{1,0.1,0.1\});

BodyV M2 (mass=50,r=\{0.5,0,0\},
Shape="box", Size=\{1,0.1,0.1\});

RevoluteCut2D rc;
// some objects presented in the diagram are omitted here

equation
x=P1.r0b[1];
y=P2.r0b[2];
xv=P1.qd;
yv=P2.qd;
dist=obstacle_y-y; // positive when collided.
when (dist>0) then
reinit(P2.qd ,- restitution * P2.qd);

end when;
// connections presented in the diagram are omitted here

end Pendulum;

When simulated and visualized this model demonstrates a correct bouncing
behaviour.

The difficulties with this approach are

� Each bodies in the multibody system requires a special kinematic loop, which
leads to huge amount of additional objects.

� It is difficult to find correct components for the loop, since all potential free-
dom degrees should be taken into account and analyzed.

� Computations with kinematic loops easily reach singularity points where
solvers cannot find an appropriate solution (in the case above it happens

293

Figure 11: Double pendulum model with kinematic loop, graphical presentation.

when the angle R2.q crosses 0).

2.8 Using Dependencies Between State Variables and Body Velocities

Computing these dependencies can be difficult. It should be noted that in a tree-
like structure of a multibody system the collision of a body in one node can cause
the change of velocities in all joints between this body and the ”root” of the tree.
The technique for this propagation of velocities is developed in [10] as well as
[11] (p. 146). It is a sequential algorithm based on sending three ”test impulses”
through the links of the multibody. It seems hard to implement the algorithm in the
connection-based MBS model.

2.9 Limitations of the Impulse-Based Method in Modelica Models

MBS-based models might contain static objects, free floating objects, and multi-
bodies (objects consisting of several bodies connected by revolute and prismatic
joints).

The impulse-based approach can easily be used in MBS-based models if impact
of collision on the multibodies is negligible. For instance, systems of free floating
bodies, colliding with the walls of some volume, as well as robot manipulators
that may collide and affect the floating bodies, but such collision does not affect
the robot. This is limit the number of applications for dynamic analysis. If an
appropriate solution to the problems mentioned in Sections 2.8 and 2.7 is found,
arbitrary MBS models can take collisions into account.

294

3 The Force Model of Collision

Our approach to collision processing in mechanical systems is based on the force
and torque model of collision. We assume that colliding bodies penetrate that and
a separation force created is caused by this penetration. This force tries to prevent
further penetration and to separate the colliding bodies.

It is well known that during the collision a relatively large force occurs between
the two colliding bodies for a very short period of time. The value and the direction
of the force can be computed approximately computed for each simulation time
step. The following properties of the collision force should be taken into account:

� The collision force and collision torque acting on an object is zero if the
object does not collide.

� Between the start of collision and the end of collision a force occurs to pre-
vent further penetration.

� If an ideal collision is modeled (collision of points masses), the resulting
velocities after the collision are given by the law of preservation of linear
momentum.

� A contact force acting on a body resting on a horizontal platform compen-
sates the gravity force applied to the body. Therefore such an object does not
move (its vertical acceleration and velocity is zero).

A collision force satisfying the above properties can be found in many different
ways, with different degree of accuracy. It appears that the physics of collision
between elastic and homogeneous (isotropic) bodies matches the mathematical
model. However this model (penalty-based collision response) is usually applied
to arbitrary rigid bodies.

In practice it is important that the force is differentiable and the total mechan-
ical energy of the system is consumed (not produced) during the collision. Some
energy is transformed to the thermal energy.

In order to balance the required accuracy and available computational power of
Modelica simulations, we derived the following rules for collision force computa-
tion (some of the terms are discussed in the following sections):

� The collision force acting on a body is zero if the body does not penetrate
with any other body.

� If body A penetrates body B, collision forces are created to act on the objects
A and B and are applied at the point of contact on each body. The force is
directed so that A and B are pushed away from each other due to this force.
The direction of this form corresponds to the shortest displacement that can
separate the bodies.

295

� The magnitude of the force is proportional to the depth of penetration of A
and B. This depth is the length of the shortest displacement that can separate
the bodies. This corresponds to the model of spring and damper, inserted
between the bodies. The bodies are rigid, but the spring and the damper are
not rigid.

These rules regarding the computation of collision force contain several terms
that will be further discussed, clarified and refined.

3.1 Penetration

We assume that A and B are defined using description of their surfaces which sep-
arate their inner volume from the outer world. Objects with this property are called
also orientable manifolds. In practice such surfaces are described as a set of con-
nected triangles (or arbitrary polygons). In this case the bodies are called polytopes.
More complex surfaces can be described as spline surfaces, e.g. NURBS.

Formally, two objects A and B penetrate each other if the volume of their
intersection is larger than zero. This is equivalent to the statement that at least
one point on the surface of body A occurs within body B. However, in practice,
the volumes are not computed. The geometry description of bodies A and B is
normally considered by collision detection software as a so-called ”triangle soup”,
i.e. a set of arbitrarily placed triangles in 3D. The bodies A and B penetrate if
some of their triangles intersect1. In some cases the collision detection software
assumes that the considered bodies are convex ones (i.e. any line between the
points belonging to the body belongs to the body).

3.2 The Bodies and Their Shells

Perfectly rigid bodies do not penetrate. However, physical bodies always penetrate
for a small fraction of their size in practice. When more accurate results are nec-
essary, and more complicated computation model is used, bodies are subdivided to
small fragments and penetration between these fragments is considered.

The collision methods normally assume that the depth of penetration is negli-
gible in comparison with the size of the body.

We can also consider a body Ashell which is A joined with all the points on the
distance less than �shell from A (see Figure 12). Impulse based systems take the
geometry of A and B into account and consider that collision takes place if Ashell

and Bshell intersect. The bodies A and B can never intersect in the models using
this approach. Here the value �shell is used as a threshold.

In our force-based model, the geometry of Ashell and Bshell can be taken into
account instead of A and B. Collision occurs if Ashell and Bshell intersect. The

1It might happen that the bodies A and B just touch each other; the volume of intersection is zero
and the collision force is zero in this case.

296

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

A
B

shell

shell

A

B

Figure 12: Penetrating shells of objects A and B.

forces generated due to collision response are so large that time when A and B

intersect is negligible.

3.3 The Point of Contact

The point of contact can be defined in many different ways. The naive definition
states that this is the point where two bodies touch each other the very first time (at
the first instant of collision). Such a definition is only good for very short-duration
contacts. If the bodies have longer contact (i.e. the separation force should be
computed during several time steps), then the point of the very first contact can
differ from the point of contact few steps later. An example of such behaviour is
two bodies colliding and then keeping sliding contact. In this case the point of the
first contact cannot be used for evaluation of contact force for the next steps.

Collision detection software packages usually do not find the point of the first
contact. They just determine a point which belongs to the intersection of the ob-
jects A and B if they collide. If the objects do not collide, the closest pair of
their points can be determined. Obviously, these points may become irrelevant for
further computation in the case of a long duration contact between the bodies.

A good integral (average) point of collision would be the center of volume of
the intersection between the bodies A and B. The geometry of an intersection can,
however, be quite complex. Finding the volume is computationally intensive task.
The volume cannot be in general found at all if the body geometry is stored by the
collision detection software just as ”triangle soups” (since the soup is composed
of a set of triangles with zero thickness, it has no volume, and intersection of two
soups has no volume.) Finding the center of the volume does not help in finding
the direction of the collision force.

3.4 Direction of Force

The direction of the collision force can be determined in several different ways. For
a short contact it would be natural to define the direction of the collision force as
opposite to the velocity of the contact point, i.e. the point of the first touch between

297

the bodies. However, for similar reasons as for the above mentioned approaches,
this does not work well for long contacts.

For accurate determination of force direction a mesh based on colliding sur-
faces is constructed, and a normal vector to the surface in each mesh point is used
as local force direction. The resulting force direction is then found by integrating
of vectors of all the forces acting on the contact surface.

3.5 Penetration Prevention Model

In our approach the collision force is computed using the assumption that it pre-
vents further penetration of the bodies. The computations during the contact are not
dependent on the duration of the contact. The method can handle both short col-
lision times (the collision force causes termination of collision soon after it starts)
and long collision times (the collision force compensates some other forces and
therefore the contact can take indefinitely long time).

If the objects A and B collide, body A forces body B out (pushes it away) from
its interior. We assume that the bodies behave as elastic and isotropic medium.
Therefore the direction of this force should be such that B is pushed out in the
shortest possible way. Therefore the shortest separation vector should be chosen.
The shortest separation displacement is the shortest of all displacements of body B
that if applied to B, the bodies will separate.

We formulate the definition in mathematical notation:
Assume that S is a set of all vectors in R3. If ~m 2 S, we define B(~m) as

the body B being displaced according to the vector ~m. The distance between the
closest points of bodies A and B is d(A;B); these closest points are PAB 2 A and
PBA 2 B. The set of translation vectors that can separate B from A is SAB =

f~m 2 S j A \B(~m) = ;g. The shortest separation vector ~c 2 SAB is the shortest
vector in the set SAB .

The separation force is applied at the corresponding closest points. The force
F in direction ~c is applied to the body B at the point PBA; it pushes out the body
B from A. The opposite force �F in direction �~c is applied to the body A at
the point PAB , and pushes the body A away from B. The ways to evaluate the
magnitude of F from ~c are discussed in the next section.

Our method works best if a single vertex (with some surrounding surface frag-
ments) of body B penetrates in the middle of a face of body A. The forces are
directed so that this vertex PBA (PBA 2 B) is pushed away by the force directed
as a normal to the face (see Figure 13). Note that the 2D examples are given just
for illustration; the actual software works with 3D models.

The approach works well even if the center of mass of B is far away from PBA

(see Figure 14). In this figure body B(c) is oriented the same way as body B. Note
that due to the force being applied to point PBA body B will actually rotate during
the collision.

In the case of vertex–to–vertex collisions (see Figure 15) the algorithm com-
putes the shortest direction, c (the vertical direction in this case) and ignores the

298

c

c

PBA

PAB

B

A

B()

Figure 13: Collision geometry in the simple case: a single vertex of B is located
within A.

c

PBA

PAB

A

B

cB()

Figure 14: Collision geometry in the case of a sharp angle.

longer one (c1). Such collisions, however, are rather rare, specially if the penetra-
tion depth is much smaller than the size of the bodies.

In the case of two–vertices–to–plane collision (a box resting on the ground)
the force is applied to the deeper vertex of the box (see Figure 16). This force
raises the box up, and another vertex of the box becomes the deepest one. After
some interaction the box and the platform separate, or the box will be lying on the
platform. The collision forces compensate the force of gravity.

4 Computation of the Force from Penetration Measure-
ment

The source of collision forces is in the following physical phenomena. Initially, the
bodies are compressed with each other and therefore deformed. This deformation
causes reaction force and restitution (restoration) of the shapes. The bodies there-

299

c

PBA

PAB

A

B

cB()

Figure 15: Collision geometry in the case of several vertices penetrating.

A

P
BA

cB

P
AB

BA

A

c

c

B

cB() B()

P

PAB

Figure 16: Collision geometry in the case of collision of two vertices and a hori-
zontal platform.

fore separate from each other. This phenomena can be modeled in different ways.
The traditional approach is to model it as a spring with a damper.

At each instant during the collision the force values should be computed. The
collision duration is very small, the velocity of objects changes rapidly during the
collision, and the forces needed to change the velocity can be very large.

The experiments with various approaches to the computation of the collision
force F have been done in the following stages:

� An equation for F with some unknown coefficients is chosen.

� A series of simulations is performed to find the dependency between the
coefficients, the body velocity before the collision, and the velocity after the
collision.

� The inverse dependency between the velocities and the coefficients is com-
puted.

� Since the velocities can be computed using the law of conservation of linear
momentum the coefficients can be found.

300

� An equation for F with known coefficients is available for computation.

The experiments describe a collision of a point mass and a static obstacle.
Therefore we do not prove that F is appropriate for collisions in all cases. However
it can serve as an approximation to the force in the broader set of cases.

The formula for F can be found from the laws of dynamics. During the col-
lision (0 < t < �) the velocity changes from v(0) = v0 to v(�) = v0. The
acceleration could be computed from the force divided by mass. The acceleration,
however, should not be constant during the collision. The actual dependency can
be expressed as

Z �

0
F (t) dt = m(v0 � v0) :

This definition, however, cannot be used for modeling the force in dynamic
simulation since the time � is not known at the start and during the collision. Fur-
thermore, if some other forces are applied to the body, the collision can go over to
a stable contact. In this case � = +1.

τ

V’

V0

Penetration

Acceleration

Velocity

time

Figure 17: Collision depth, velocity and acceleration in case of elastic collision.

Figure 17 displays what might happen with penetration depth, velocity and
acceleration during the collision time in case of elastic collision.

Penetration reaches some maximum value and returns to the zero value. The
speed gradually changes from v0 to v0. The acceleration and force either immedi-
ately, or gradually, achieve the minimal value, and later return to zero at the time
� .

In case of non-elastic collision (Figure 18), the penetration, velocity and accel-
eration become zero after the time � . If the body has a non-elastic collision with
a horizontal platform, and gravity is present, the penetration (directed downwards)
is slightly more than zero, the collision force (directed upwards) is slightly below
zero, which compensates the gravity force (directed downwards).

The following notation will be used below:

301

V0

Penetration

Acceleration

time
τ0

V’

Velocity

Figure 18: Collision depth, velocity and acceleration in case of non-elastic colli-
sion.

� F (t) – collision force during the collision between a body and a fixed im-
movable obstacle.

� k;K; q – collision coefficients, they will be used in further computations.

� x(t) – penetration depth.

� v(t) = _x(t) – speed of change of the penetration depth.

� m – mass of the object penetrating the obstacle.

4.1 Constraints on Force Equations

The following constraints should be used in order to derive the equation for the
force magnitude.

� Conditions on the start of collision (constraints C1)

– F (0) = 0 – force should be zero at the start of collision.

– x(0) = 0 – the penetration depth should be zero at the start and the end
of collision.

– v(0) = v0 > 0 – the actual speed is known at the start of collision.

� During the collision (C2)

– F (t) < 0 – force should all the time push the object away the obstacle.

– x(t) > 0 – the penetration depth is positive (the object penetrates the
obstacle).

– v(t) – the speed is reduced to zero and, probably, to negative.

302

� If no external force act on the colliding body (or this force is negligible), it
behaves exactly according to the impulse law (C3):

– Collision end time is � .

– F (�) = 0 – force should be zero at the end of collision, and after that.

– x(�) = 0 – the penetration depth should be zero at the end of collision.

– v(�) = v0 = v1 = �"v0 < 0 – the speed at the end of collision can be
predicted using the restitution coefficient 0 < " < 1.

� If a constant external force Fext acts on the colliding body, it either behaves
as above, or, in case Fext is large enough, it rests on the obstacle, and colli-
sion never ends (C4):

– limt!1 F (t) = �Fext – collision force should compensate the exter-
nal force.

– limt!1 x(t) = xrest > 0 – the penetration depth should stabilize on
some value.

– limt!1 v(t) = 0 – the body rests, so it does not move anymore.

There can be many definitions for F satisfying these equations. However, in
most cases, difference between them (difference between the overall effect they
cause) is negligible in comparison with the effect caused by the constraints. There-
fore definition for F might have or might have not sound motivation from the
physical point of view.

4.2 Definition of the Collision Force Using Polynomial of Time.

The simplest kind of expression that could satisfy the constraints C1 and C3 is a
polynomial.

Initially we can assume that v(t) is a polynomial (of t) of order 3. In this case

x(t) = a0 + t a1 + t2 a2 + t3 a3 + t4 a4;

Solve[f x(0) = 0; x0(0) = v0; x
00(0) = 0;

x (�) = 0; x0(�) = v1; x
00(�) = 0g;

f v1; a4; a3; a2; a1; a0; �g
]

The Mathematica solver finds one solution only. In this solution v1 = �v0.
Therefore we should assume that v(t) is a polynomial (of t) of order 4. In this

case the acceleration is a third order polynomial, and penetration depth is a fifth
order polynomial. Lower order polynomials

303

The equation system is

x[t] = a0 + t a1 + t2 a2 + t3 a3 + t4 a4 + t5 a5;

Solve[f x(0) = 0; x0(0) = v0; x
00(0) = 0;

x (�) = 0; x0(�) = v1; x
00(�) = 0g;

f a5; a4; a3; a2; a1; a0g
]

The solution is

x(t) = t v0 �
3 t5 (v0 + v1)

�4
� 2 t3 (3 v0 + 2 v1)

�2
+
t4 (8 v0 + 7 v1)

�3

The force can be found from the acceleration expression:

F=m = �x(t) =
�60 t3 (v0 + v1)

�4
� 12 t (3 v0 + 2 v1)

�2
+

12 t2 (8 v0 + 7 v1)

�3

Given collision duration � as well as velocity v0 before the collision and v1
after the collision the simulation model can apply the appropriate collision force
F = m�x. However this approach cannot work for bodies resting on the obstacle
(condition C4) since for any polynomial x(t) goes to infinity and it is impossible
to have limt!1 x(t) = xrest

4.3 Linear Collision Force Model of the First Order

Traditional penalty methods are based on a linear dependency between collision
force and the penetration depth. Therefore the collision model considered assum-
ing that the force F depends on x(t) only:

F (t) =

(
�Kx(t); if x(t) > 0

0; if x(t) � 0

where K is a positive constant, called penalty coefficient. Physically this corre-
sponds to a stiff spring, temporarily placed between the objects during the collision.
The expression �Kx(t) corresponds to an ideal spring. The expression contains
x(t) in the first power only, therefore this method is called the linear model of the
first order.

For brevity of the solution, K might be replaced by another positive constant,
q2m. In this case, taking into account the constraints C1 and C3, the system of
equations (assuming that no external forces are acting on the colliding bodies)
appears as follows:

F (t) = �q2mx(t)

F (t) = m�x(t)

_x(0) = v0

x(0) = 0

304

This results in the equation
�x+ q2x = 0

which has a solution

x(t) =
v0 sin qt

q

The velocity is

_x(t) =
v0q cos qt

q

When the collision ends (i.e. x(t) = 0 giving qt = �) the velocity _x(�=q) is equal
to �v0.

This means that resulting velocity does not depend on the mass, and does not
depend on the penalty coefficient in front of x(t).

But what we need is _x = v0 = �ev0
Therefore the simple penalty-based model above is not good in the general case

and another model should be chosen.

4.4 Collision Force Model Based on Position

It can be shown that for any collision force model that is based in position only, the
purely elastic contact can be modeled only We consider the equation

�x+ p(x) = 0

where p is positive during the collision. We denote _x = y(x). This results in

�x =
dy

dt
=

dy

dx

dx

dt
= _x

dy

dx
= y

dy

dx
:

The initial equation can be rewritten now as

y
dy

dx
+ p(x) = 0 :

If all parts of the equation are integrated, the result is (C is unknown constant)Z
y dy +

Z x

0
p(u) du = C :

The first component is transformed:Z
y dy = y2=2 = _x2=2 :

We know that at the start of collision x(0) = 0 and _x(0) = v0. The equation should
be valid at t = 0, and substitution gives

v20=2 +

Z 0

0
p(u) du = C :

305

Now C is found as C = v20=2. The equation with the replaced C is

_x2=2 +

Z x(t)

0
p(u) du = v20=2 :

We know that at the end of collision t = � , and x(�) = 0. Therefore the substitu-
tion gives:

_x2(�)=2 +

Z x(�)

0
p(u) du = v20=2 ;

or simply _x2(�) = v20 . From we can conclude that either _x(�) = v0 = _x(0) or
� _x(�) = v0 = _x(0). But we know that p is positive, therefore �x(t) = �p(x(t)) <
0. We conclude that _x decrease and since � > 0 and _x(0) > 0, the only equation
valid is � _x(�) = v0 = _x(0). Therefore v0 = �v0, which means that collision was
purely elastic (" = 1).

4.5 Collision Force Model Based on Spring and Damping

Since the definitions for collision force discussed above are not good for our colli-
sion model, some other variable should be taken into account. The goal is to reduce
the magnitude of velocity at the end of collision. Assuming that the collision takes
several seconds, the momentum should be smaller during the last second of the col-
lision, and larger at the first second. Then the magnitude of velocity at the end of
collision can be reduced. Therefore some factor is needed that gradually changes
during the collision.

There are several variables that can be used in new definition of collision force.
However, only t (time after the start of collision) and _x (velocity of the body) are
gradually changing from one value to another during the time of collision.

The following discussion explains the choice of equation for F in more details.
In this discussion it makes no difference whether t or _x is chosen as additional
variable.

First, consider what can be done with the original expression F = �Kx. We
know that F (0) = F (�) = 0. The velocities differ: _x(0) 6= _x(�). Therefore the
velocity (or any expression based on velocity) cannot be added to �Kx.

Another operation that can be applied to �Kx is multiplication. Our hypoth-
esis is that function H is applied to _x and the result is multiplied by �Kx, i.e.
F (t) = �KH(_x)x.

The equation F = �1Kx produces correct F in the case when the restitution
coefficient is e = 1. This function H should be equal to 1 in the case of e = 1.
Therefore it is convenient to represent H(u) as 1 + G(u). But H is a function
of velocity, therefore (if we choose the simplest alternative) H = 1 + k _x. The
complete expression is F (t) = �(1 + k _x)Kx. Since K is a constant and body
mass m is a constant it is possible replace K by Km (for brevity of the solution).
The equation is then F (t) = �(1 + k _x)Kmx.

This equation is taken as work hypothesis and it is discussed further.

306

4.6 Modeling Collision Force as A Function of Penetration Depth and
Time

The definition for F using another argument variable (t instead of _x) is F (t) =

�(1 + kt)Kx.
Various values of k;K; v0 (in interval �10�3:::�10+3) have been tested using

Mathematica, but none of them allows to control v0 such way that v0 = �ev0 for
desired e.

Furthermore, this equation cannot satisfy the constraint C4, since limt!1 F

cannot have finite limit.

4.7 Properties of Collision Force Model Based on Spring and Damper

The model can be expressed as a system of equations:

F (t) =

(
�(1 + k _x(t))Kmx(t); if x(t) > 0

0; if x(t) � 0

F (t) = m�x(t)

_x(0) = v0

x(0) = 0

The first two equations are reduced to �x = If[x > 0;�(1 + k _x(t))Kx(t); 0].
The function G(_x) = k _x is called a damping factor. In practice it is often

chosen as a linear function. However in order to provide differentiability of F
other functions are used too. The topic of our future research is to define a such
smooth function F that Modelica solvers can use it as an external function during
continuous integration.

The equation above can be solved numerically by Mathematica. The values of
v0;K; k have been chosen and v(tend) was analyzed, where tend is some point in
time after the collision is finished.

When v0 = 1 and k = 1 the resulting velocity v0 changes this way: if K = 1,
v0 = �0:593628; if K = 10�3, v0 = �0:593625; if K = 106, v0 = �0:593627.
Similar effect appear for other values of v0 and k. Therefore v0 almost does not
depend on K . In the further discussion we assume that K = 1.

The resulting restitution coefficient can be computed from the solution of the
equation as " = �v0=v0. How can we find an appropriate k depending on the
velocity at the start of collision v0 and known restitution coefficient of materials "
?

First we notice that " resulting from the solution does not change if we multiply
v0 by some number and divide k by the same number.

Proof: Assume x(t) is a solution of the system. Consider y(t) = px(t) (where p
is a constant). Then _y = p _x, therefore _y(0) = p _x(0) = pv0 and _y(�) =

p _x(�) = pv0. We compute �y from the equation:

307

�y = p�x = �p(1 + k _x)Kx = �(1 + (k=p) _y)Ky

Therefore y is a solution for the equation �y = �(1 + k=p _y)Ky with start
condition _y(0) = pv0 . The restitution coefficient is "(v0; k) = �v0=v0 =

� _x(�)= _x(0) = �(_x(�)p)=(_x(0)p) = � _y(�)= _y(0) = "(pv0; k=p).

Now we can check the properties of "(v0; k) in order to extract k(v0; "). It is
hard to do without having an explicit equation relating these values. This equation
is too complex to be solved symbolically, therefore numerical experiments have
been done. Since "(v0; k)="(v0k; 1) it is enough to consider the function "(u; 1),
where u = v0k.

Various plots for "(u; 1), 10�2 < u < 102 has been obtained using Mathemat-
ica. We found two ways to approximate this function, using an fraction-based and
a polynomial-based approximation.

4.8 Fraction-based Approximation

By looking at the plots we guessed that "(u; 1) � 1=(u+1). We make an assump-
tion that "(u; 1) = 1=(u + 1) and then extract k. Since "(v0k; 1) = 1=(v0k + 1),
we can extract k = 1=(v0"(v0; k)) � 1="(v0; k). This expression with required "

can be inserted into the original equation:

F (t) = �(1 + (1=(v0"required)� 1="required) _x(t))Kmx(t)

This equation is solved numerically. It appears that now resulting " differs from
the required one not more than for 0.093. This value does not depend on v0, m and
K .

4.9 Polynomial-based Approximation

The plots do not resemble a polynomial function. However the function "1(m) =

"(em; 1) very resembles a cubic polynomial of m. Four ”typical” points of the
curve have been guessed, and a polynomial

"1(m) = a3m
3 + a2m

2 + a1m+ a0

is found using Mathematica. How to find m? The equation "1(m) = n has three
solutions which can be expressed in algebraic form. Some of them are complex
numbers or do not correspond to the piece of the curve we consider now. The
appropriate solution is denoted as m(n). The computations show that m can be
chosen as one of solutions of the equation:

m(n) = 0:620898 + Re(
�0:163279 + 0:282808 i

T
1

3

� (15:6309 + 27:0735 i) T
1

3)

308

where

T = �0:000833598+0:00193378n+0:00193378
p
�0:983167 + n

p
0:121024 + n

The imaginary part of the expression within Re() is zero. According to defini-
tion of "1,

"(v0; k) = "(v0k; 1) = "1(ln(v0k))

Therefore k can be expressed as

k =
1

v0
em("(v0;k))

Again k is inserted into the original differential equation system. When The
equation

F (t) = �(1 +
1

v0
em("required) _x(t))Kmx(t)

is solved for 0:001 < " < 0:999 and resulting " is found, the absolute value of
the difference between required and resulting restitution is always less than 0.05.
Smaller deviation can probably be achieved by choosing other four or five points
for interpolation.

Polynomials of order 5 and higher (they require six points) cannot be used for
interpolation in this method because there is no way to express the inverse function
(i.e. find the root symbolically).

5 Collision Detection Software

5.1 General Properties of Collision Detection Software

Collision detection is widely used in simulation of multibody systems, in design
of virtual environments, and in general 3D graphics. Given coordinates of two or
several bodies, collision detection functions determine whether the objects share
common points in space, and if they are close enough, determines the distance be-
tween them. Each time when collision is examined, the three steps are performed:

Choice of candidates for collision. On this stage the bodies that cannot collide
due to simple geometrical relations between them are rejected. This selection
is based on bounding boxes of the bodies. A bounding box is usually a
good approximation of body position and size. It is easy to compute the
bounding box from body geometry. There exist efficient algorithms [6] to
check whether any bounding boxes in the 3D space intersect.

The bounding boxes are always axis-aligned. Static bounding boxes are
computed when the body geometry is specified. They preserve their size and
move when the body is moving. Dynamic bounding boxes are determined
from the geometry, position and the current rotation angle of the body, and
they are more accurate.

309

Low-level collision detection and distance determination. When bounding boxes
of a pair of bodies intersect, the components (features) of the bodies are
checked for intersection. It is easy to check whether triangles intersect, and
find the distance between them. There exist methods for more complex fea-
tures, such as spline surfaces. However it can be difficult to define a body
using such surfaces in a consistent way. Also, collision detection for com-
plex surfaces might be time consuming.

If the bodies are disjoint, the low-level collision detection algorithms find
the distance between the closest features of the objects. They also determine
the closest points on these features.

In the bodies intersect, the algorithms determine a pair of features that inter-
sect.

Response handling In order to compute reaction forces more detailed geometri-
cal information about the collision is necessary. Often the collision detection
package cannot provide the information that is needed, for instance, the pen-
etration depth, collision plane, time of collision, collision volume and area
of collision surface.

Sometimes this information is available, but just for certain time steps.

6 Using SOLID for Collision Detection

We chose SOLID [3] as collision detection package for our experiments. In this
section we discuss

� Using SOLID interface functions (Section 6.1) and difficulties in obtaining
correct collision plane (Section 6.2).

� How geometry of bodies is specified when SOLID is used with Modelica
(Section 6.3).

� How the shortest separation vector (defined in Section 3.5) is computed us-
ing SOLID callback function (Section 6.4). The shortest separation vector
defines direction and magnitude of penetration depth. The penetration depth
is then used for computation of collision force (Section 4).

6.1 Using SOLID interface functions

When SOLID is used the following steps are performed:

� Object shapes are created. There exist predefined primitive shapes (box,
cone, cylinder and sphere). A complex shape can be constructed from one
or several so called polytopes. Each polytope is a point, a line, a triangle, a
tetrahedron, a convex polygon or a convex polyhedron. Polytopes are always
defined by list of coordinates of all their vertices.

310

� The bodies are created (instantiated) based on the corresponding shape. There
can be several bodies of the same shape.

� The collision detection is performed for each time frame. In order to de-
scribe the state of the bodies at each time frame, their rotation, translation
and scaling factor are specified. The tool uses frame coherence when deter-
mines collision, i.e. it reuses information about the state of the bodies from
the previous time frame.

� Collision details in SOLID are obtained using a callback function. Each time
when collision between a pair of bodies is detected (i.e. the bodies penetrate
already), some user-defined callback function is called.

� If the current state of the bodies will be used in a future step (for closest
feature determination) it should be stored by function call dtProceed().

� The function dtTest() is called in order to check all pairs of the bodies
and it calls the callback function in case of collision.

� The callback function written by the library user obtains data about the col-
liding features as parameters.

6.2 Collision Plane Definition Problem

For physics-based simulation the ”smart response” option of SOLID is used. When
collision is detected, the closest point pair of the objects at placements from the
previous time frame is reported by the callback function. In mathematical notation,
assume that the time frame t + 1 is analyzed and objects A(t)2 and B(t) were
disjoint, and objects A(t + 1) and B(t + 1) penetrate. The points PA(t)B(t) and
PB(t)A(t) are obtained as parameters by the callback function.

Vector defined by these two points can serve as approximation to the normal to
the collision plane. The direction of the collision force can be set as equal to the
direction of this normal vector.

This approach, however leads to some difficulties when the objects move dur-
ing the collision and continue to be in the penetration for several time steps.

Assume that bodies A(t + i) and B(t + i) are disjoint when i = 0 and then
intersect for i = 1; :::;m. The points PA(t+i)B(t+i) cannot be obtained for i =

1; :::;m. Therefore we cannot obtain collision plane. From the other side, point
PA(t)B(t) cannot be used for finding the collision plane for i = 2; :::;m since the
plane could change during the collision.

Figure 19 demonstrates how the collision plane (that should be perpendicular to
the vector of the object separation force) can change during the collision. At Figure
19(a), at time step t the objects are disjoint. At figure 19(b) at time step t + 1 the
object start to intersect, and this fact is noticed by SOLID. The package finds the

2The notation A(t) means body A at time frame t.

311

time=t

time=t+1

(c)

(b)

(a)

M

N

N

N

time=t+2

Figure 19: Variations of the collision plane during the collision

position of the closest features at the previous time frame (t) and determines the
collision plane, as well as normal vector to this plane, N . Finally, at Figure 19(c)
at time step t+ 2 the position of the bodies have changed and the actual collision
plane has changed too. The vector M should be used instead of N .

Our solution to this problem is presented in the section 6.4.

6.3 Geometry Specification

In order to transmit geometry specifications used in mechanical modeling in Mod-
elica to SOLID user interface functions two ways have been chosen. Modelica
bodies may have a predefined shape such as box, cone, cylinder, sphere, etc.
These shapes correspond to predefined objects in SOLID (box, cone, cylinder and
sphere). Alternatively, Modelica bodies may have custom geometry, described us-
ing some external format.

When SolidWorks to Modelica translation is performed, STL[1] is used as a file
format for geometry description. This format contains triangles with coordinates
of their vertices as well as normal vectors. This presentation is translated into
collection of SOLID triangles to form a shape.

6.4 Collision Response Detail Handling

Our force-based approach to contact handling requires to obtain collision points,
separation force direction and penetration depth from collision detection software.

312

In our approach we currently consider the worst case assumption. In the worst
case the collision may take many time steps (frames) and during the collision the
separation force direction changes. It is also possible that the contact never ends.

Assume that collision between the objects A and B is detected at time frame t.
In order to find the shortest separation vector ~c (as defined in Section 3.5) we use a
search algorithm.

The algorithm is implemented as two nested loops. In the external loop the
length for ~c is chosen. Initially a very small estimated c0 is chosen3, and after
that it is incremented at each loop iteration, so that ci = (1 + �)ci�1. The value
c0 should be chosen so that it is negligible in comparison with typical penetration
depth. The value � should be small if high accuracy is required. The reasonable
choice interval for it is 0:1 < � < 0:4. The smaller � is the slower and more
accurate is the search.

C0

C

C
C

0
i

i

i

1

2

Figure 20: Sequence of trial vectors c0; c1; etc.

In the nested internal loop (over variable m) the direction for ~cim is chosen.
In order to sweep through all possible directions the 27 vectors (xi; yj ; zk) are
selected, where the components can be -1, 0 and 1. The vector (0,0,0) is excluded
from the list. All the direction vectors are normalized and then multiplied by the
current length, i.e. ci. As result, the vectors ~cim; 1 � m � 26 are obtained. A 2D
variant (8 vectors) is shown at Figure 20.

There is no way to ask SOLID directly about the distance and the closest points
of two bodies. However, if the bodies penetrate it is possible to make a request
about the closest points in the previous step. We use the following way around this
problem.

The algorithm checks if bodies A and B(~cim) (i.e. B displaced by ~cim) are
disjoint or they penetrate. If they are disjoint then routine dtProceed() is used
in order to store object’s position. Again the positions of A and B are passed
to the package. The dtTest routine finds that they intersect, and therefore the
callback routine delivers to the algorithm the closets points between the bodies A
and B(~cim). These points can be referred as P

A;B(~ci
m
)

and P
B(~ci

m
);A

. The vector

3Here and further the superscript should be regarded as an index, not as an exponent in the power
operation.

313

between the points is referred as ~dim.
If there is at least one vector that makes the bodies disjoint in the set of vectors

~cim; 1 � m � 26, the external loop of the algorithm stops. The internal loop should
find the most appropriate vector if there are several of them. We know that all ~cim
that made the bodies disjoint are slightly longer than necessary. All of them can be
shortened by some distance. This distance is length of projection of the vector ~dim
on ~cim. The length of projection is pm = ~cim

~dim=j ~cimj, and the m giving the largest
projection should be chosen.

A1

A2

A3

B1

B2

B3
B�C1�

B�C2�

B�C3�

B�C4�

B�C5�

P�B�C5�,A�

P�A,B�C5��

P�B�C4�,A�
P�B�C3�,A�

P�B�C2�,A�

S1 S2
S3

Figure 21: Computation of the shortest separation vector

The inner loop of the algorithm can be demonstrated on the two-dimensional
illustration (Figure 21). It shows the body A with vertices A1, A2, A3. The body
B has vertices B1, B2, B3 as well as some other vertices that are currently ig-
nored. The current separation vector length ci (we further skip the index i) is
chosen as jS1S2j. There are five vectors ~c1; :::; ~c5 of the same length. Other vec-
tors are currently ignored. These vectors are not shown on the picture; instead,
the results of displacement of the body B according to these vectors are shown:
B(c1); :::; B(c5). The collision detection algorithm finds that B(c1) intersects A,
but other bodies B(c2); B(c3); B(c4); B(c5) are disjoint with A. For every disjoint
objects the collision detection algorithm finds the closest points:

� For B(c2) and A the closest points are P (B(c2); A) and A2 (vector ~d2).

314

� For B(c3) and A the closest points are P (B(c3); A) and A2 (vector ~d3).

� For B(c4) and A the closest points are P (B(c4); A) and A2 (vector ~d4).

� For B(c5) and A the closest points are P (B(c5); A) and P (A;B(c5)) (vec-
tor ~d5).

The largest of the lengths of ~di is the length of ~d5. Therefore the direction of the
separation vector is ~c5 = ~S1S2. The length of the actual shortest separation vector
is shorter than jS1S2j. The projection of ~d5 on ~c5 is subtracted from jS1S2j. The
result is jS1S3j. This is the penetration depth used in the computation of collision
force.

6.5 Special Cases for Speedup of the Search

The algorithm we consider for finding the penetration depth is rather slow. It can
be greatly optimized if we know that the bodies are convex, only one single vertex
(PB) of body B is within A, and for all features of B the face FA is the closest
face. With such assumption it is enough to move the vertex (together with the body
B) to the closest face of A. i.e. FA.

A
R

R
RA

A

A F

F

F

FA

A

A
1

1 2

3

3

4
4

A c
R

2
A

B

Figure 22: The closest face can be found in advance.

Finding the closest face can be optimized. The object A consisting of faces
F 1
A; :::; F

M
A can be divided during the preprocessing stage to interior regions R1

A; :::; R
M
A

(one region per face) such way that for all the points in the region Ri
A the face F i

A is
the closest one (see Figure 22). These regions are sometimes called pseudo Voronoi
regions [15]. Preprocessing, however, can be a difficult problem.

The Figure 23 demonstrates a case when this assumption is violated. When
vertex PB is moved to the closest face F 1

A, the bodies are still penetrating.
The algorithm can be made more exact (and slow) by adding more loops for

fine-grained search and more steps in the outer loop. Some hints can be given to
the algorithm in order to choose the initial approximation.

315

A
1F

A

B

PB

Figure 23: Collision involving several vertices

6.6 Combining Penetration Depth and Distance

The collision detection algorithms based on impulse model (Section 2) utilize a
different way of using distance between the bodies. The bodies are considered as
intersecting if the distance between their closest features is less than certain thresh-
old. It is not very accurate model either, since the bodies start to interact when they
are still on some distance from each other. The impulse-based algorithms do not
allow the bodies intersect at all. This is done either by estimating the maximum ve-
locity and choosing an appropriate time step, or by reducing the time steps before
the collision moment. The approach based on distance threshold can be combined
with our force-based model.

In this case we use both the penetration depth and the distance between the
bodies in computation of forces. The vector ~x used for collision force definition
can be defined as follows.

��

B

T X

X

touch
c

A

time

distance

Figure 24: Combined approach to evaluation of x.

For instance, the vector x used for computation of the force (see Figure 24) can
be defined as

316

� ~x = 0 if d � T ,

� jxj = T � d and ~x is directed as ~d if d < T and objects are disjoint,

� jxj = T but its direction is undefined if d = 0 (degenerate case which should
almost never happen),

� jxj = T + jcj and ~x is directed as ~c if objects intersect,

where

� d is distance between the two closest features of two disjoint objects.

� ~d is vector between the closest points on them.

� T is threshold, chosen depending on the average velocities and computation
time step.

� ~c penetration depth and direction.

Unfortunately the SOLID tool for collision detection cannot be used for this
combined model. This tool does not evaluate the distance between the bodies (jdj)
if they do not collide at the next time frame. Therefore other collision detection
packages such as I COLLIDE [6] can be used for this purpose.

7 Applications Using Force-based Model

This section shows examples of modeling the force-based collision in Modelica.
The first examples use the MBS library but do not use collision detection pack-

age. The last example uses this library, collision detection tool SOLID, as well as
some interface and integration functions.

7.1 Pendulum Colliding with an Obstacle

This pendulum is the same mechanical construct as one in Section 2.5, Figure 7.
For finding the magnitude of the force it uses the equation derived in Section 4.8.
It occurs that the penalty coefficient K (Section 4.8) (variable penalty) can be
chosen arbitrarily large:

� If K < 103 the collision looks too weak and penetration is non-realistically
large.

� If 103 < K < 105 a soft collision occurs.

� If 105 < K < 1015 a hard collision occurs.

� If K > 1015 it makes the integrators unstable.

317

The desired restitution coefficient (variable e) almost matched the actual restitution
(variable eres), the computation error was (e� eres)=eres < 0:05.

model Pendulum
Inertial i;
RevoluteS R1(n=\{0,0,1\},q(start=1));
BodyBase M1 (m=50,rCM=\{0,0.5,0\});
Bar B (r=\{0,1,0\});
ExtForce EF1 "collision force";
parameter Real penalty=50000;
parameter Real e=0.5 "desired restitution, 0<e<1";
parameter Real obstacle_x = 0.5 " x coordinate of obstacle";
Real depth "penetration depth";
Real depvel "penetration velocity";
Real k "velocity coefficient for penalty";
Real force_magnitude "magnitude of collision force";
output Real x "x of pendulum end";
output Real y "y of pendulum end";
output Real eres "resulting restitution coef" ;
output Real v0(start=9.999) "velocity at start of collision.";
// Need start value just to avoid zerodivision
output Real vout "velocity at the end of collision";

equation
connect(i.b, R1.a);
connect(R1.b, M1.a);
connect(R1.b, B.a);
connect(B.b, EF1.b);
x=B.r0b[1];
y=B.r0b[2];
depth = B.r0b[1]-obstacle_x;
depvel= -B.vb[1];
when (depth>0) then v0=depvel; end when;
when (depth<0) then vout=depvel; end when;
eres=vout/v0;
k=(1-e)/(e*v0); // approximation derived for typical k
force_magnitude=
if (depth>0) then (1 + k*depvel)*penalty*depth
else 0;
EF1.fb={force_magnitude,0,0};

end Pendulum;

7.2 Pendulum Resting on an Obstacle after the Collision

This section describes an experiment with the same model as above, but it models
the situation when the pendulum is bouncing and is finally resting on the obstacle,
see Figure 25.

The only equation replaced in this model is

depth = -B.r0b[2]-0.4;

where -0.4 is the position of the obstacle.
The result (assuming that K = 5 � 104) is shown in Figure 26. It demonstrates

a collision with small penetration. If penalty K is set to 106 the value of the Y

coordinate of the pendulum end practically never becomes less than -0.4 in this
experiment.

318

���
���
���
���

���
���
���

���
���
���

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
��������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

������������
������������
������������

������������
������������
������������

q

X

Y

0.4

Figure 25: Pendulum resting on an obstacle after the collision.

Figure 26: Height of the endpoint of the endulum resting on an obstacle after the
collision.

7.3 Interface to Collision Detection Package

The Modelica model interfaces with collision detection package through function
calls. The mechanical simulation based on MBS sends current positions of all
bodies to the collision package (CP) and receives vectors of forces and torques that
occur due to collision.

Since the number of the bodies can be large, and the data should be send to
collision package at once, and received at once, all the variables needed are packed
into arrays collisionInput and collisionOutput.

The function doCollide accepts the array collisionInput as an argu-
ment and returns the array collisionOutput as result.

The example below demonstrates a purely elastic collision, but it can also be
extended for different restitution coefficient values. Also, the example demon-
strates free flying bodies, but it it can also be extended for arbitrary constructs that
use MBS, consisting of bodies, joints and additional external forces and torques.

319

function doCollide "Function to be called to obtain the collision force"
input Integer bodies "number of bodies";
input Real collisionInput[bodies,27] "position and other data";
output Real collisionOutput[bodies,6] "forces and torques";

external
end doCollide;

model BodyME "Body that participates in collision and can be visualized"
extends MbsOneCutA;
parameter Real id;
parameter Real r[3]=[0; 0; 0] "Vector from cut A to center of mass [m]";
parameter Real mass=0 "Mass of bar [kg]";
parameter Real I11=0 "(1,1) element of inertia tensor [kgmˆ2]";
// other inertial tensor elements are skipped for brevity
parameter Real r0[3]=[0; 0; 0] "Origin of visual object.";
parameter Real nx[3]=[1; 0; 0] "Vector in x direction.";
parameter Real ny[3]=[0; 1; 0] "Vector in y direction.";
parameter Real Material[4]=[1; 0; 0; 0.5] "Material properties";
parameter Real parmStlIndex=0 "Index of STL file";
parameter Real noCollision=0 "Whether the body participates in collisions";
Real collisionInput[26] "position and other data";
Real collisionOutput[6] "force and torque";
output Real StlIndex "Index of STL file";
BodyME2 ME2(r=r,mass=mass,
II=[I11, I12, I13; I12, I22, I23; I13, I23, I33])
"A help class - wrapper for physical body model";

MbsOneCutB collResp;
VisualMbsObject B(r0=r0,nx=nx,ny=ny,Material=Material);

equation
connect(a, ME2.a);
connect(a, collResp.b);
connect(a, B.a);
StlIndex = parmStlIndex;
B.fa = [0; 0; 0];
B.ta = [0; 0; 0];
collisionInput=cat(1, { id,

B.shape, B.Form, B.extra, parmStlIndex, noCollision},
B.size, B.rxvisobj, B.ryvisobj,
B.rvisobj, Sa[1,:], Sa[2,:], Sa[3,:]);

collisionOutput=cat(1, collResp.fb, collResp.tb);
end BodyME;

model minibox "An MBS construction containinig a single body"
// This construction can be extended and contain
// more complex model consisting of bodies and joints

parameter Real nx[3]=[1; 0; 0];
parameter Real ny[3]=[0; 1; 0];
parameter Real id;
Real ac[24]; Real th[6];
MbsCutA a(across=ac, through=th);
SubInertial I(nx=nx, ny=ny);
BodyME box_1(r=[0; 0; 0],I11=0.133333,I22=0.133333,I33=0.133333,
I12=0,I23=0,I13=0,mass=1,
r0=[0; 0; 0],nx=[1; 0; 0],ny=[0; 1; 0],
Material=[0.8; 1.0; 0.8; 1.0],
parmStlIndex=20,id=id);

equation
connect(a, I.a);
connect(I.b, box_1.a);

end minibox;

320

model IntegratedBox "A glue class representing a free flying element bx"
extends MbsOneCutA;
parameter Real id;
minibox bx(id=id);
FreeCardan2S free;

equation
connect(a, free.a);
connect(free.b, bx.a);

end IntegratedBox;

model world
IntegratedBox ib1(id=1) "free flying box no. 1";
IntegratedBox ib2(id=2) "free flying box no. 2";
IntegratedBox ib3(id=3) "free flying box no. 3";
IntegratedBox ib4(id=4) "free flying box no. 4";
Inertial I(g=0) "The roor of the MBS tree";
parameter Integer bodies=4;
Real wholeInput [bodies,27];
Real wholeOutput [bodies,6];

equation
connect(I.b, ib1.a) ;
connect(I.b, ib2.a) ;
connect(I.b, ib3.a) ;
connect(I.b, ib4.a) ;
ib1.bx.box_1.collisionInput=wholeInput[1,:];
ib2.bx.box_1.collisionInput=wholeInput[2,:];
ib3.bx.box_1.collisionInput=wholeInput[3,:];
ib4.bx.box_1.collisionInput=wholeInput[4,:];
ib1.bx.box_1.collisionOutput=wholeOutput[1,:];
ib2.bx.box_1.collisionOutput=wholeOutput[2,:];
ib3.bx.box_1.collisionOutput=wholeOutput[3,:];
ib4.bx.box_1.collisionOutput=wholeOutput[4,:];
wholeOutput=doCollide(bodies,time,wholeInput);

end world;

The Figure 27 demonstrates dynamic visualization of collision between four
free flying cubes. The lines represent the trajectories before and after the collision.
The Figure 28 contains a plot of forces acting on the first box. The three compo-
nents (X , Y , Z) of the force are represented by three curves. Two major collisions
occur at time 1.0 and 1.3. The trajectories of four bodies (projected on the X axis)
are displayed in Figure 29. Initially two boxes move towards the zero point, and
all four bodies are separated after the collision occurs.

8 Conclusion

In this report we attempt to find ways to connect MBS-based models written in
Modelica with collision detection and response routines. We also derive the equa-
tions and the coefficients that can be used as collision response functions.

As the first step in this direction different collision response models were iden-
tified and experiments with Modelica simulation were performed. We demonstrate
that impulse based approach for non-trivial models requires a new library of equa-
tions for propagation of impulses into joints. This new library can be a topic for

321

Figure 27: Dynamic visualization of collision between four free flying cubes. The
lines represent the trajectories before and after the collision.

new research and experimentation. The force-based (penalty) approach can work
with any MBS models, but the performance and stability should be further stud-
ied. Our currently used force model is continuous, but actually not differentiable at
the time of the start and the end of collision. In future more smooth force models
should be derived and used for simulation.

References

[1] 3D Systems, Stereo Lithography Interface Specification, 3D Systems Inc., Va-
lencia, CA 91355. Available via http://www.vr.clemson.edu/credo/rp.html.

[2] David Baraff, Dynamic Simulation of Non-Penetrating Rigid Bodies, Ph.D.
thesis, Department of Computer Science, Cornell University, 1992, Available
via http://www.cs.cmu.edu/ baraff/

[3] Gino van den Bergen, SOLID, Software Library for Interference Detection,
http://www.win.tue.nl/cs/tt/gino/solid

322

Figure 28: The forces acting on the first box. The three components (X , Y , Z) of
the force are represented by three curves.

Figure 29: The trajectories of the four bodies projected on the X axis.

[4] Dag Fritzson, Peter Fritzson, Patrik Nordling, Tommy Persson, Rolling Bear-
ing Simulation on MIMD Computers, International Journal of Supercomp.
Appl. and High Performance Computing, 11(4), 1997.

[5] Lars Johansson, Anders Klarbring, Study of Frictional Impact Using a Non-
smooth Equations Solver, to appear in Journal of Applied Mechanics

[6] Ming Lin and Dinesh Manocha, Collision Detection Packages RAPID, PQP,
V-COLLIDE, I-COLLIDE, http://www.cs.unc.edu/ geom/collision code.html

[7] Ming Lin and Stefan Gottschalk. Collision Detection between Geometric Mod-
els: A Survey. In the Proceedings of IMA Conference on Mathematics of Sur-
faces 1998. Available via http://www.cs.unc.edu/ dm/collision.html

[8] Brian Mirtich, V-Clip Collision Detection Library
http://www.merl.com/projects/vclip/

[9] Brian Mirtich. Impulse-based Simulation of Rigid Bodies, In Symposium on
Interactive 3D Graphics, ACM Press, 1995.

323

[10] Brian Mirtich. Hybrid Simulation: Combining Constraints and Im-
pulses, in Proceedings of the 1st Workshop on Simulation and Inter-
action in Virtual Environments, ACM Press, July 1995, Available via
http://www.merl.com/people/mirtich/

[11] Brian Mirtich, Impulse-based Dynamic Simulation of Rigid Body Systems,
Ph.D. thesis, University of California, Berkeley, December 1996.

[12] Jianping Pang, Newton’s Method for B-Differentiable Equations, Mathemat-
ics of Operation Reserach, Vol. 15, pp. 311-341.

[13] Friedrich Pfeiffer and Christoph Glocker, Multibody Dynamics With Unual-
teral contacts, Wiley Series in Nonlinear Science, 1996.

[13] Andrew Witkin and David Baraff, Physically Based Modeling: Prin-
ciples and Practice(Online Siggraph ’97 Course notes). Available as
http://www.cs.cmu.edu/ baraff/sigcourse.

[14] Wolfram Research, Mathematica 4.0, Wolfram Research, 1999.

[15] Peng Zhang, Physically Realistic Simulation of Rigid Bodies, Thesis,
Department of Computer Science, Tulane University, 1996, Available via
http://www.eecs.tulane.edu/www/Zhang/

324

Paper 11

325

326

Lossless Compression of High-volume Numerical
Data from Simulations�

Vadim Engelson, Dag Fritzson, Peter Fritzson
IDA, Linköping University S-58183, Sweden, fvaden,dagfr,petfrg@ida.liu.se

Abstract

Applications in scientific computing operate with high-volume numeri-
cal data and the occupied space should be reduced. Traditional compres-
sion algorithms cannot provide sufficient compression ratio for such kinds
of data. We propose a lossless algorithm of delta-compression (a variant of
predictive coding) that packs the higher-order differences between adjacent
data elements. The algorithm takes into account varying domain (typically,
time) steps. The algorithm is simple, it has high performance and delivers a
high compression ratio for smoothly changing data. Both lossless and lossy
variants of the algorithm can be used. The algorithm has been successfully
applied to the output from a simulation application that uses a solver of ordi-
nary differential equations.

1 Introduction

Applications in scientific computing often operate with large volumes of input and
output data. Despite the huge capacity of the modern disk devices, the space re-
quired for data storage is often larger than the hardware allows. Data transfer over
communication networks is another bottleneck in scientific computing. Text com-
pression tools cannot compress binary numeric data. Image compression algo-
rithms are not intended for such data. Signal compression algorithms do not work
directly with numerical data of time series, when time steps are varying. Also, they
are typically designed for measured values, not for simulation results and therefore
not intended for lossless compression. Therefore new data compression algorithms
must be designed.

�An abstract of this paper is published in Proceedings of the 2000 IEEE Data Compression Con-
ference, Snowbird, Utah, March 28-30, 2000.

327

We assume that application data is stored as one or multiple arrays, i.e. time1

series. The elements of the arrays are certain quantities that change smoothly (see
Section 1.1). Informally, a smooth function is a function that is close to some
polynomial. Smooth arrays contain a sequence of values of this function. Smooth
arrays are typical for numerical dynamic simulations of physical phenomena where
scalar values change in time. An investigation of these values reveals several
things: properties of the solver, properties of mathematical model, and of course,
the physical phenomena themselves. The values are consequently computed after
each other. Often these quantities change so slowly that nearby elements differ in
the few last digits only. Sometimes the elements of an array are computed from
respective elements of another array so that the correlation between the values can
be found. These numerical properties might result in a very high compression ra-
tio. The problem is how to disciver all the features of the data and how to use them
for data compression.

Algorithm Good for time steps: Ratio

Differences fixed good
Delta- Extrapolation with fixed step fixed (same as above) good
compression Extrapolation with varying step varying best

Wavelet algorithms fixed poor or N/A

Table 1: Comparison of algorithms described in the paper.

In section 1.2 we discuss why general-purpose compression algorithms do not
work with numerical data from simulations. In section 2 we introduce the simplest
delta-compression algorithm (see Table 1) based on fixed time steps. Properties of
memory representation for real numbers are discussed. In section 3 we reformulate
the algorithm by using extrapolation formulas. In section 4 we extend the algorithm
for varying steps, because such data arrays are more typical for simulations.

Experiments with artificial data sequences as well as data samples from a re-
alistic application have been carried out and compression ratios are reported in
Section 5 .

1.1 Smoothness of the data

The compression algorithm input is a sequence a consisting of values ai, i =

1; :::; n. It works with arbitrary sequences of numerical values. However, it can de-
liver some considerable compression ratio for smooth data sequences only, where

1We use time as the domain for the steps; however in PDE-based simulations it can be a space
axis.

328

substantial correlation between adjacent data values can be found.
Assume that a function f : [1; n] ! R is evaluated on time interval [1; n]. The

values ai are stored in the sequence, a so that ai = f(i).
An array a is called smooth of order m if every aj (j > m) can be well ap-

proximated by the extrapolating polynomial based on previous m values2. In
the simplest case, if a function that has very small and slow changes (is close to
a polynomial of order 0, i.e. a constant) then the corresponding array a can be
compressed very well.

In practice smooth functions represent solutions of ordinary differential equa-
tions and various continuous quantities that are computed in simulations.

1.2 Compression and data representation

The traditional text compression algorithms cannot compress numerical data be-
cause these do not utilize correlation between adjacent floating point values. Text
compression algorithms represent the data as a string in an small alphabet (0..255)
and attempt to find equal substrings, producing lossless compression.

Image compression algorithms represent the data as small rectangular blocks
of pixels (usually three values in the 0..255 alphabet) and if the pixels in the block
have similar color then the algorithm replaces color information in all the pixels
by a single color, giving lossy compression. Such algorithms utilize correlation
between adjacent data values, but do not use similarity of the gradient (speed of the
changes) of the data.

Another approach to the problem consists of signal compression algorithms.
These use data smoothness but do not consider the fact that time steps vary. Very
few of them can provide lossless compression, and compression ratio is insufficient
in this case.

Representation of numerical data in computer memory is important for our
compression algorithm. It is assumed that 64-bit real numerical values are used.
This data representation corresponds to the type double in most C compilers, op-
erating systems and processor architectures used for numeric computations (Intel,
Alpha, Sparc families, etc.).

Let us consider how the numerical data are represented in the memory. If p is
a floating point 64-bit number, Int(p) is defined as an integer that is represented
by the same 64-bit string as p (see Table 2 and more details in Section 2.1). In this
paper we use hexadecimal notation for such numbers to emphasize the byte-level
representation.

Three real numbers a1; a2; a3 differ in the 5-th digit after the decimal point

2Formally, each polynomial 'j is created from aj�m; :::; aj�1 and 'j(j) � aj

329

byte number 1 2 3 4 5 6 7 8
a1 2.3667176745585676 Int(a1) 40 02 ef 09 ad 18 c0 f6
a2 2.3667276745585676 Int(a2) 40 02 ef 0e eb 46 23 2f
a3 2.3667376745585676 Int(a3) 40 02 ef 14 29 73 85 6a

Table 2: Integer representation of three real numbers

only. It is a linearly growing sequence. Each number occupies 64 bits. The first
three bytes are almost the same, and the general-purpose algorithms for compres-
sion of byte sequences can use this fact for compression. However, the problem
is that the five last bytes (in bold) are perceived as completely random. There
is no correlation between these five bytes of one number and five bytes of another
number. Traditional compression algorithms cannot compress these bytes.

2 Fixed-step Delta-compression

In this section we consider the simplest variant of delta-compression algorithm.
Our algorithm computes the first (and higher-order) differences using 64-bit integer
arithmetic; subsequently meaningless 0s or 1s are truncated in the result.

2.1 Internal Representation of Double Values.

The function Int(p) has been defined as the integer representation of the 64-bit
memory area allocated for a floating point number p. Here p can be any ma-
chine number between mindouble and maxdouble

3. This memory contains4 con-
catenation of one sign bit, 11 exponent bits and 52 mantissa bits. The function
Int: [mindouble;maxdouble] ! f0; :::; 264�1g is continuously growing every-
where except in 0. This function is very close to linear on every interval such as
[2
k
; 2

k+1
], �1023 � k � 1023. A fragment of the function graph is shown in the

Figure 1(a), where Int(x) is given in hexadecimal notation.
The function Real(x) is opposite to Int(x), i.e. the equality Real(Int(x)) =

x occurs.
For integer p, the Bin(p; r) is an r-bit sequence of zeros and ones of the binary

representation of p (1 � r � 64, jpj < 2
r).

3Normally mindouble � �10309 and maxdouble � 10309 are predefined compiler constants.
4This description can be processor-dependent; it holds for Intel, Alpha and Sparc families. The

numbers can be investigated by a trivial C program. Order of bytes is, however, different: Intel and
Alpha are “little-endian”, whereas Sparc is “big-endian”. This is taken into account by compres-
sion/decompression routines.

330

0 0.5 1 1.5 2 2.5

3fdccccccccccccd

3fe0000000000000
3fe199999999999a
3fe3333333333334
3fe4ccccccccccce
3fe6666666666668
3fe8000000000002
3fe999999999999c
3feb333333333336
3fecccccccccccd0
3fee66666666666a
3ff0000000000000
3ff199999999999a
3ff3333333333334
3ff4ccccccccccce
3ff6666666666668
3ff8000000000002
3ff999999999999c
3ffb333333333336
3ffcccccccccccd0
3ffe66666666666a
4000000000000000
400199999999999a

(a)

a1

a4

t1 t2 t3 t4

a3
a2

c3

c4

time

f

(b)

Figure 1: (a) The graph of function Int(x). (b) Finding first order differences c3
and c4.

331

2.2 Definition of differences

Let us assume that an array b containing 64-bit integers bi, i = 1; :::; n is given.
The first difference is defined as �1

bi = bi�bi�1. The m-th difference is defined
in a similar way as �m

bi = �
m�1

bi ��
m�1

bi�1.
Instead of storing the whole array b we can just store the m-th differences for

b. In this case we need storage for n values:

(b1; b2; :::; bm;�
m
bi+1;�

m
bi+2; :::;�

m
bn)

The sequence b can be unambiguously restored from the m-th differences.
Since b elements are integers, it is restored without loss of precision.

The difference between two 64-bit integers can be stored in 64 bits. In general
case 65 bits would be needed, but we utilize the wrap-around feature of computer
integer arithmetics. This feature can be illustrated by computation:

If b1 = 2
63�1 and b2 = �(2

63�1) then b2�b1 produces 2. Also, b1+2 = b2.
From above it can be concluded that a sequence b of length n can be stored as

m-th differences for b , and it will occupy not more than the same memory i.e. 64n
bits.

2.3 Truncating meaningless bits.

We can use the fact that the difference between the array elements is small rela-
tively to the element values.

Small integer numbers have many initial zeroes (in positive numbers) or ones
(in negative numbers) in their binary representation. These meaningless bits can
be truncated. For instance, zeroes in 00000101 can be truncated and just 0101
is stored. Formally, truncating of bit sequences can be described as follows:

Assume, s is a binary digit sequence of k elements (s1; :::; sk) where si 2

f0; 1g. Then Drop(s) is defined as such substring (sl; :::; sk) that all digits at the
beginning of the original sequence are equal: s1 = s2 = : : : = sl and after that
some other digit follows: sl 6= sl+1.

Two extreme cases are defined: Drop(00 : : : 0) = Drop(0) = 0 and Drop(11 : : : 1) =
Drop(1) = 1.

For instance, Drop(00000101)=0101,Drop(1111111101001)=101001.

2.4 The difference compression algorithm

The algorithm compresses a sequence of real numbers a to bit sequence e using
differences of order m. It consists of the following steps:

— The integer values are taken instead of real: bi = Int(ai), i = 1; :::; n;

332

— First m values are copied: ci = bi for i = 1; :::;m;
— The m-th order differences are computed: ci = �

m
bi for i = m+ 1; :::; n.

See c3 and c4 on Figure 1(b). Further the systematic coding method is applied to c,
i.e.:

— Only necessary bits are selected di = Drop(Bin(ci; 64));
— The bit string length5 and the bit string itself are stored:

ei = Concatenate(Bin(Length(di); 6); di)

where Concatenate is the bit string concatenation operator.
— All ei are concatenated to the single bit string e = Concatenate(e1; :::; en).
The sequence a can be restored again from e unambiguously by reverse opera-

tions6.
For example (see bi in Table 2),
�

1
b2 = b2 � b1 = 00 00 00 05 3e 2d 62 39

�
1
b3 = b3 � b2 = 00 00 00 05 3e 2d 62 3b

�
2
b3 = �

1
b3 ��

1
b2 = 00 00 00 00 00 00 00 02

It can be noted that the first difference requires 5 bytes (more exactly, 36 bits).
The second difference requires no more than 3 bits (010). Also, 6 bits are used
to encode the length. Assuming that the algorithm stores b1, b2 and �

2
b3 and

compression ratio (64 � 3)=(64 � 2 + 6 + 3) � 1:401 is achieved.
Normally there is no smoothness in the sequence e, therefore it cannot be com-

pressed anymore7.

3 Using fixed step extrapolation

The algorithm of differences of order m can be formulated differently in terms
of extrapolation of order (m � 1). When this reformulation is done, just slightly
different8 computations take place, and these can be seen from different point of
view. We introduce the extrapolation technique here (instead of differences) in
order to proceed later to varying step extrapolation algorithm in Section 4.

5Note that there can be various approaches for length storage, for instance ei =
Concatenate(di; ENDMARKER), but we found that our solution is close to optimal. This length can
be coded in 6 bits because 26 = 64.

6It can be done since result of 64-bit integer addition and subtraction is identical on all processors
working with 64-bit integers.

7Relatively small additional smoothness can be found in the sequence of Length(di), but we
ignore this for brevity.

8Discussed in more detail in [5] .

333

The fixed step difference algorithm works well if the sequence Int(a) can be
approximated by polynomials. In real applications, however, it would be better to
assume that a can be approximated by polynomials9.

To explore this approach traditional Lagrange extrapolation form [2] should be
used. The Lagrange rule for extrapolation of order m � 1 states that for function
f(x) and extrapolation points x1; :::; xm there exist a polynomial 'm(x) such that
'm(xi) = f(xi) for i = 1; :::;m. The polynomial10 can be found as 'm(x) =

L1(x)f1 + : : : + Lm(x)fm; where fi = f(xi) and

Li(x) =
(x� x1) : : : (x� xi�1)(x� xi+1) : : : (x� xm)

(xi � x1) : : : (xi � xi�1)(xi � xi+1) : : : (xi � xm)

The compression algorithm using fixed step extrapolation of order m� 1 first
takes sequence of real numbers a and produces a sequence of integers c.

First, m first values are copied: cj = Int(aj) for j = 1; :::;m.
After that every cj where j = m+1; :::; n is sequentially computed as follows:
1. The m extrapolation points to the left of j are chosen: x1 = j�m; :::; xm =

j � 1.
2. Correspondingly, function values are set as f1 = aj�m; :::; fm = aj�1.
3. The predicted value 'm(x) for x = j is computed using the Lagrange

formula.
4. The extrapolation residual (difference between actual and predicted value)

is stored (therefore our method is a variant of predictive coding). Since we ex-
pect that this difference is very small, the values are first converted to the integer
representation and then subtracted: cj = Int(aj)� Int('m(j))

After that the necessary operations with c are performed just like in the Section
2.4.

3.1 Decompressing

The original sequence a can be unambiguously restored from the compressed se-
quence:

First, sequence of integers c is restored from the bit string e.
Then first m values are copied: aj = Real(cj) for j = 1; :::;m.

9The correlations between two and more arrays (a[1]; a[2]; a[3]; :::; a[r]) of the same length
can be taken into account. It might produce high compression ratio, specially if appears that
a
[k]
� p(t; a[1]; a[2]; a[3]; :::) and p is a polynomial. These correlations can be revealed automat-

ically, however this is rather time consuming.
10Note that the term xi�xi is always skipped in the divider. If x1 = j�3, x2 = j�2, x3 = j�1

then '3(j) = f(j � 3)� 3f(j � 2) + 3f(j � 1).

334

After that from every cj where j = m + 1; :::; n the value aj is sequentially
computed as follows:

1. The m extrapolation points to the left of j are chosen: x1 = j�m; :::; xm =

j � 1.
2. Correspondingly, function values are set as f1 = aj�m; :::; fm = aj�1.
3. The predicted value 'm(x) for x = j is computed using the Lagrange

formula.
4. The actual value is computed as sum of predicted value and the residual:

aj = Real(Int('m(j)) + cj)

Evaluation of 'm(j) includes double precision arithmetics that potentially can
give different results on different processors, since they use different technique to
round up multiplication or division result to fit it into 64-bit space. To guarantee
lossless decompression, it should be made on the same processor family as com-
pression. Otherwise an error in the last bit might appear, accumulate and lead to
losing numerical accuracy11.

The algorithm is fast since the coefficients for Lagrange formula are computed
efficiently and only once (see [5] for details)

4 Varying step extrapolation algorithm

The previous algorithms assumed that the sequence a can be approximated by poly-
nomials with fixed steps between extrapolation points. However in practice, sim-
ulations use adaptive ODE solvers and produce state variable values for varying,
non-equidistant time steps. Therefore we should consider smooth functions with
values taken with varying steps, and adapt the compression algorithm for such ap-
plication data.

Assume that a function f : [tmin; tmax] ! R is evaluated during the simula-
tion.

Finite number (n) of function values is produced by the solver for time steps
(t1; :::; tn) (where tmin = t1, tmax = tn , ti < ti+1) and these are stored in the
sequence, a so that ai = f(ti).

The sequence t is used for compression and decompression of a. The sequence
t itself should be compressed by the fixed step difference algorithm.

The compression algorithm using varying step extrapolation of order m�1 first
takes the sequence of real numbers a and t and produces a sequence of integers c.

11Our experiments with Sparc and Alpha processor families show that difference is never larger
than 2-3 last bits when extrapolation of 3rd order is used and n = 100.

335

First, m first values are copied: cj = Int(aj) for j = 1; :::;m. After that every
cj where j = m+ 1; :::; n is sequentially computed as follows:

1. The m extrapolation points to the left of j are chosen: x1 = tj�m; :::; xm =

tj�1.
2. Correspondingly, function values are set as f1 = aj�m; :::; fm = aj�1.
3. The predicted value 'm(x) for x = tj is computed using the Lagrange

formula.
4. The residual (difference between actual and predicted value) is stored.
Since we expect that this difference is very small, the values are first converted

to the integer representation and then subtracted: cj = Int(aj)� Int('m(tj))

After that the necessary operations with c are performed just like in the Section
2.4.

The original sequence a can be unambiguously restored from the compressed
sequence under conditions described in the Section 3.1.

5 Experiments

In this chapter we describe the experimental application of both our algorithms —
higher order differences (suitable for fixed steps) (orders 2, 4, 6, 8, 10) and varying
step extrapolation (of orders 1, 3, 5, 7, 9). The compression ratios are compared
with two wavelet algorithms (Section 5.1). There were two major tests: artificially
designed test sequences and output from high-precision numerical simulation of
mechanical model using ODE solver.

5.1 Experiments with wavelet-based algorithms

A widely used family of algorithms for numerical data compression are wavelet
transforms. Without going into details about wavelet theory and taxonomy of trans-
forms we just describe two transforms we experimented with.

Assuming that a sequence has some correlation between neighbor elements,
wavelet transform computes an “average” value s and “difference value” d. For
arbitrary integer q > 0 the transform compresses a sequence a0; :::; aQ, where
Q = 2

q+1 � 1, by running through levels r = q; q � 1; :::; 0. On the level r the
sequence considered is a0; :::; aR, where R = 2

r+1 � 1. Furthermore there are
certain rules defining how to compute the sequence for level r � 1.

The simplest wavelet transform, Haar wavelet [3] computes on level p by for-
mulae

si = (a2i + a2i+1)=2; di = a2i+1 � a2i i = 0; :::; 2
r
� 1

336

The number of bits needed for di is relatively small; lossy compression algorithm
using wavelets might ignore it; the lossless algorithm stores them. The elements si
become ai on the next level of transform.

The sequence a can be recovered by a2i = si � di=2; a2i+1 = si + di=2.
This algorithm is specially successful for sequences which change very slowly

and close to a polynomial function. Mainly wavelet algorithms are used for lossy
compression.

There are, however, modification, called TT-transform [4], used for lossless
compression: si = b(a2i + a2i+1)=2c; di = a2i � a2i+1 + pi;

where pi is defined by pi = b(3si�2 � 22si�1 + 22si+1 � 3si+2 + 32)=64c;

and sequence can be restored by a2i = si + b(di � pi + 1)=2c; a2i+1 = si �

b(di � pi)=2c

Both Haar and TT transforms were applied to compression and decompression.
Just like in Section 2.4 six bits were always used to encode the length of the bit
strings. The experiments show that compression ratio for lossless compression is
insufficient.

5.2 Artificially designed test sequences.

The test sequences for testing the algorithms were designed. These sequences con-
tain 64-bit double precision numbers. We took into consideration that the sequence
for the test cases should be rather smooth as a whole, but it should also contain
small local non-smooth variations.

The size of the sequence N is chosen as 2
8 or 216 (see Table 3). The longer

sequence has smaller difference between adjacent elements and therefore is com-
pressed better.

The sequence a with fixed time steps is defined as ai = F (i=N) where i =

1 : : : N and

F (x) = 0:2+0:7x�0:5x
2
+0:007 cos(100x)+0:00007 cos(10000x)+0:1 sin(10x)

The time step is constant 1, i.e. ti = i. The table shows that sequences with fixed
time step can be compressed equally well by both our algorithms (see repetitions
in columns under ”fixed”)). The best ratio achieved is 3.68.

For testing of a sequence with varying time step we use ti = ti�1 + imod4 + 1

and ai = F (2
�16

ti=2:5) where i and F are as above. Here time steps vary from 1
to 4. Therefore the algorithm using varying step extrapolation shows better result
than the algorithm using differences (3.73 versus 1.3).

337

Ratio
Time step: fixed varying

Number of values: 2
8

2
16

2
8

2
16

m = 2 1.58 1.64 1.45 1.53
Differences 4 1.81 1.9 1.43 1.51

of order 6 2.12 2.27 1.33 1.42
m 8 2.52 2.8 1.27 1.35

(Section 2.4) 10 3.13 3.68 1.23 1.3

Varying m = 1 1.58 1.64 1.58 1.65
step m-th 3 1.8 1.9 1.81 1.91

order 5 2.11 2.27 2.12 2.29
extrapolation 7 2.51 2.8 2.54 2.83
(Section 4) 9 3.11 3.68 3.16 3.73

Wavelet TT 1.7 1.86 1.23 1.67
Haar 1.39 1.47 1.19 1.4

Table 3: Compression ratios for various data sequences and various algorithms.

5.3 Application to simulation results

The compression algorithms were applied to the output from a numerical solver of
ordinary differential equations, which serves as a component in our software for
dynamic simulation of bearing [1]. The program produces some quantities for ev-
ery time step and writes them to the output file for analysis and further simulation.
Every quantity (position, force etc.) changes very slowly from one step to another.
Extreme accuracy and lossless compression is necessary, since a relative error of
order 10�10 can substantially change the simulation results.

To chose a particular algorithm and its order the compression routines esti-
mate achievable compression ratio by subsampling, trying different algorithms and
choose the best one.

The 2837 arrays from a single simulation were analyzed. Compression ratio
varies between 2.5 and 10. The algorithms were automatically chosen as follows:

— difference, first order - 20% of all arrays12, second order - 3%, 3rd order -
less than 1%.

— varying step extrapolation, first order -10 %, second order - 17%, third order
- 51%. If the 4th order extrapolation is suggested, it takes 30%, but compression
ratio is almost the same as in the 3rd order extrapolation.

12These arrays are not smooth. It took 40 bits per 64-bit number to compress them. Compression
ratio was 1.6.

338

5.4 Lossy compression

There were four different applications of data saved by the compression algorithm:
— simulation can be restarted from any time step;
— simulation results are used in another computation;
— intermediate simulation results are sent between nodes in parallel simula-

tion;
— simulation results are visualized in form of 2D function graphs and 3D

model animations.
Only the last application allows using lossy compression. Other applications

require lossless one.
The lossy compression is an extension of the basic algorithm. It can be param-

eterized in order to adjust the trade-off between the precision and the compression
ratio.

The lossy compression can be achieved by cutting away some c bits at the end
of the bit string representation. To compensate for the error one exact value is
followed by some p lossy compressed values.

The user would be interested to choose the pair (c,p) for given sequence a

in such a way that during decompression the absolute and relative error does not
exceed "abs and "rel correspondingly.

There is a straightforward way to do that, but it requires some extra computa-
tions during compression.

First we use an interval [a
min
i ; a

max
i], where a

min
i = min(ai � "abs; ai �

"relkaik), amax
i = max(ai + "abs; ai + "relkaik).

After that interval arithmetics is used in order to obtain [d
min
i ; d

max
i]. Then di

is easily chosen from this interval such way that it occupies the minimal possible
number of bits.

6 Conclusion

A lossless algorithm for floating-point data compression has been developed. It
has similarities to image compression, since it works on bit level. It resembles
wavelet compression since it uses floating-point computations for compression and
decompression. The algorithm works best if the data are values of a function in
some points, and this function is close to a polynomial.

The algorithm uses subtraction of one 64-bit integer representation of floating-
point value from another (Int(aj) � Int('m(tj))). If the difference would be
computed between floating-point representations (aj � 'm(tj)) there would be no
win in data storage.

339

The algorithm is implemented as a C++ class and linked to an industrial-level
application. The measurements show high compression ratio (in comparison with
traditional tools) as well as high speed[5]. In the future we are going to test and
measure the algorithm with the data samples from other applications.

Acknowledgments

Professor Robert Forchheimer (ISY, Linköping University) contributed many sug-
gestions regarding the discussed algorithms.

References

[1] D. Fritzson, P. Fritzson, P. Nordling, T. Persson. Rolling Bearing Simulation
on MIMD Computers. Int. Journal of Supercomp. Appl. and High Performance
Computing, 11(4), 1997.

[2] Råde, L., Westergren, B., Beta - Mathematics Handbook, Studentlitteratur and
Chartwell-Bratt, 1988, p.336.

[3] A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. H.
Salesin, W. Stuetzle. Interactive multiresolution surface view-
ing. Proceedings of SIGGRAPH 96, in Computer Graphics
Proceedings, Annual Conference Series, 91-98, August 1996,
http://www.cs.washington.edu/research/projects/grail2/www/pub/abstracts.html
#InterMultSurfView

[4] M. J. Gormish, E. L. Schwartz, A. Keith, M. Boliek, A. Zandi, Lossless and
nearly lossless compression for high quality images Proc. of IS&T/SPIE’s 9th
Annual Symposium, Vol. 3025, San Jose, CA, February 1997.

[5] Vadim Engelson, Dag Fritzson, Peter Fritzson. On Delta-compression Algo-
rithm for Numerical Data from ODE-based Applications in Scientific Comput-
ing
Technical reportPELAB, Linköping University, 1999.

340

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology
No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977,
ISBN 91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verifica-
tion of Time Margins in Digital Designs, 1977,
ISBN 91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av processbe-
skrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP
Compiler and its Implications for Ideal Hard-
ware, 1978, ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Que-
ries in a Meta-Database System 1978, ISBN 91-
7372-232-4.

No 51 Erland Jungert: Synthesizing Database Struc-
tures from a User Oriented Data Model, 1980,
ISBN 91-7372-387-8.

No 54 Sture Hägglund: Contributions to the Deve-
lopment of Methods and Tools for Interactive
Design of Applications Software, 1980, ISBN
91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement
in a Well-Structured Pattern Matcher through
Partial Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Hu-
man-Computer Interface in Commercial Sys-
tems, 1981, ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to
Partial Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Tech-
niques and Tools for Expert Systems, 1981,
ISBN 91-7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiabili-
ty in large Software Systems, 1982, ISBN 91-
7372-527-7.

No 94 Hans Lunell: Code Generator Writing Sys-
tems, 1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum
Weight Triangulation, 1983, ISBN91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Pro-
gramming Environment based on Incremental
Compilation,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Plan-
ning System for Turning, 1984, ISBN 91-7372-
805-5.

No 155 Christos Levcopoulos: Heuristics for Mini-
mum Decompositions of Polygons, 1987, ISBN
91-7870-133-3.
No 165 James W. Goodwin: A Theory and System for
Non-Monotonic Reasoning, 1987, ISBN 91-
7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Auto-
mated Synthesis of VLSI Systems, 1987, ISBN
91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued
Logic of Quantified Belief, 1988, ISBN 91-7870-
374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for
an Object Oriented Knowledge Base, 1989,
ISBN 91-7870-485-5.

No 214 Tony Larsson: A Formal Hardware Descrip-
tion and Verification Method, 1989, ISBN 91-
7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN
91-7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design
Support and Discourse Management in User
Interface Management Systems, 1991, ISBN 91-
7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for
Knowledge Acquisition, 1991, ISBN 91-7870-
746-3.

No 252 Peter Eklund: An Epistemic Approach to Inter-
active Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN
91-7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-
Cognitive and Computational Aspects, 1992,
ISBN 91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Ab-
stract Machines: Contributions to a Methodolo-
gy for the Implementation of Logic Programs,
1992, ISBN 91-7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of
Tense-bound Object References, 1992, ISBN 91-
7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI
Data Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn
Clause Logic with External Polymorphic Func-
tions, 1992, ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge
Management Systems with an Active Expert
Methodology, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complex-
ity of Reasoning about Plans, 1992, ISBN 91-
7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic
Slicing with Applications to Debugging and
Testing, 1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-
7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Nat-
ural Language Interfaces - An Empirical Ap-
proach, 1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in
Physical Environments: Compositional Mod-
elling and Framework for Verification, 1994,
ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision
Support and Learning. A Study of Discrete-
Event Manufacturing Simulation at Asea/ABB
1968-1993, 1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-
7871-516-4.

No 383 Andreas Kågedal: Exploiting Groundness in
Logic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Descrip-
tion, Identification and Recovery from Prob-
lematic Control Situations, 1995, ISBN 91-7871-
603-9.

No 413 Mikael Pettersson: Compiling Natural Seman-
tics, 1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement
by Testability Analysis and Transformations,
1996, ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Indu-
strial Training from an Organisational Learn-
ing Perspective - Development and Evaluation
of the SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Al-
gorithms and Complexity, 1996, ISBN 91-7871-
704-3.

No 437 Johan Boye: Directional Types in Logic Pro-
gramming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.
No 452 Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-
9.

No 459 Olof Johansson: Development Environments
for Complex Product Models, 1996, ISBN 91-
7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions
in Unification-Based Formalisms,1997, ISBN
91-7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Pro-
gramming: A Multi-Level View of Query An-
swering, 1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrn-
ing - En studie av hur ekonomiska styrsystem
utformas och används efter företagsförvärv,
1997, ISBN 91-7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Re-
quirements-Driven Impact Analysis in Object-
Oriented Software Evolution, 1997, ISBN 91-
7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The
Cooperative Perspective on Knowledge-Based
Decision Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management
Systems for Monitoring and Control, 1997,
ISBN 91-7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri
Nets in a CLP framework, 1997, ISBN 91-7219-
011-6.

No 498 Thomas Drakengren: Algorithms and Com-
plexity for Temporal and Spatial Formalisms,
1997, ISBN 91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of
Heterogeneous Real-Time Systems, 1997, ISBN
91-7219-035-3.

No 503 Johan Ringström: Compiler Generation for
Data-Parallel Programming Langugaes from
Two-Level Semantics Specifications, 1997,
ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av
kommunikationsmmönster i satellitkontor och
flexibla kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a
Parallel Data Server for Telecom Applications,
1998, ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault
Prevention - An Empirical Study in Software
Engineering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN
91-7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for
Lazy Functional Languages, 1998, ISBN 91-
7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level
Synthesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-
7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based
on Collaborative Dialogue with a Learning
Companion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On
geographical dispersion in organisations, 1999,
ISBN 91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System
for Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image Re-
interpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of De-
sign Knowledge - An Assessment of Com-
menting Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Nar-
ratives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organiza-
tional Aspects of Requirements Engineering
Methods - A practice-oriented approach, 1999,
ISBN 91-7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class
Overload Management in Real-Time Database
Systems, 1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in
the Design of Information Systems and
Services in the Public Sector: A Methods
Approach, 1999, ISBN 91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective
on the Analysis of Impacts of Information
Technology: From Case Studies in Health-Care
towards General Models and Theories, 1999,
ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in
Computer-Supported Taskforce Training,
1999, ISBN 91-7219-547-9.

No 607 Magnus Merkel: Understanding and
enhancing translation by parallel text
processing, 1999, ISBN 91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to
sensory data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i
praktiken - En studie av logiker i fyra projekt,
1999, ISBN 91-7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-
Oriented Models in Scientific Computing,
2000, ISBN 91-7219-709-9.
Linköping Studies in Information Science
No 1 Karin Axelsson: Metodisk systemstrukturering

- att skapa samstämmighet mellan informationssys-
temarkitektur och verksamhet, 1998. ISBN-9172-
19-296-8.

No 2 Stefan Cronholm: Metodverktyg och använd-
barhet - en studie av datorstödd metodbaserad
systemutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN-91-
7219-606-8.

	Linköping Studies in Information Science

