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We must not believe the many, who say that
only free people ought to be educated, but we
should rather believe the philosophers who say
that only the educated are free.

- Epictetus






Abstract

In complex real-time applications, real-time systems handle significant
amounts of information that must be managed efficiently, motivating
the need for incorporating real-time database management into real-time
systems. However, resource management in real-time database systems
is a complex issue. Since these systems often operate in environments of
imminent and transient overloads, efficient overload handling is crucial
to the performance of a real-time database system.

In this thesis, we focus on dynamic overload management in real-time
database systems. The multi-class workload consists of transaction
classes having critical transactions with contingency transactions and
non-critical transactions. Non-critical transaction classes may have addi-
tional requirements specifying the minimum acceptable completion ratios
that should be met in order to maintain system correctness. We propose
a framework which has been implemented and evaluated for resolving
transient overloads in such workloads.

The contributions of our work are fourfold as the framework consists of (i)
a new strategy and (ii) a new scheduling architecture for resolving tran-
sient overloads by re-allocating resources, (iii) a value-driven overload
management algorithm (OR-ULD) that supports the strategy, running
in O(nlogn) time (where n is the number of transactions), and (iv) a
bias control mechanism (OR-ULD/BC). The performance of OR-ULD
and OR-ULD/BC is evaluated by extensive simulations. Results show
that, within a specified operational envelope, OR-ULD enforces critical
time constraints for multi-class transaction workloads and OR-ULD/BC
further enforces minimum class completion ratio requirements.
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Chapter 1

Introduction

Where shall I begin, please your Majesty?’’ he asked.
”’Begin at the beginning’’, the King said, very gravely,
“and go on till you come to the end: then stop.”’

- L. Carroll, Alice’s Adventures in Wonderland

This thesis proposes a framework for dynamically resolving transient
overloads in real-time database systems, yielding predictable behavior
and graceful performance degradation during transient overloads. The
framework consists of a strategy and a scheduling architecture. The
strategy to resolve transient overloads is to scrutinize resource alloca-
tions of admitted transactions and determine the cost of releasing suffi-
cient resources for admitting a new transaction. Further, the decision on
whether to admit an original transaction, admit a contingency transac-
tion, or reject the transaction is balanced against the cost of releasing re-
sources among already admitted transactions. A scheduling architecture
and a strategy, and an algorithm (OR-ULD) that supports this strategy,
have been defined and evaluated. The thesis shows that the strategy of
resolving overloads by dynamically reallocating resources among admit-
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ted transactions yields better performance than other dynamic strategies
employing admission control only. The proposed algorithm, denoted OR-
ULD, runs in O(n log n) time, where n is the number of transactions.

The chapter starts with an overview (section 1.1). The succeeding two
sections give a concise introduction to real-time systems (section 1.2)
and real-time database systems (section 1.3) and how they are related.
The chapter concludes with a high-level description of the research prob-
lem high-lighting the research contributions (section 1.4), followed by a
description of how the thesis is structured (section 1.5).

1.1 Overview

Studying complex computing systems, e.g., air traffic control and mili-
tary mission control, shows that many systems must be capable of han-
dling extensive amounts of information while supporting real-time re-
quirements. These systems require efficient techniques for representation
and storage of data objects, and time-cognizant methods for accessing
and manipulating data objects. These requirements indicate there is
a need for real-time database systems, i.e., database systems with pre-
dictable transaction processing.

There are many misconceptions suggesting that conventional databases
are adequate for real-time applications [SSH99]. Unfortunately, conven-
tional database systems do not enforce real-time requirements due to
the inherently incompatible, and sometimes contradictory, design crite-
ria. Conventional database systems are optimized for minimizing average
response time and maximizing transaction throughput. Moreover, con-
ventional database systems introduce several sources of unpredictability
making them inappropriate for real-time applications (see [Ram93] for a
discussion).

The development and construction of real-time database systems present
challenging research problems that have attracted a lot of attention

[rtd88, BHI5b, rtd96, BLS97, BW97a, AH98]. One complex issue in
real-time database systems is resource management, and particularly
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overload handling, since real-time database systems often operate in sit-
uations of imminent overloads [Loc96, SSH99]. Hence, it is important
that the system has, in addition to an overload detection mechanism, an
overload mechanism and a policy defining how transient overloads should
be resolved.

A transient overload denotes a system state that lasts for a finite dura-
tion where the resource demand as defined by the transaction workload
exceeds the available resource capacity of the system. As a consequence
the system fails to fully enforce its consistency requirements (temporal,
logical, external, etc.). In order to minimize the effects of a transient
overload, it is desirable that the system manages its resources such that
system performance degrades gracefully. While several scheduling poli-
cies, e.g., Earliest Deadline First and Least Slack, produce optimal results
under non-overload conditions, they generally exhibit poor performance
in overload situations.

Resource management in real-time database systems can be divided into
several activities: admission control — determining which transactions
should be granted system resources; scheduling — determining the ex-
ecution order of admitted transactions; and overload management —
determining how to resolve transient overloads. While scheduling fo-
cuses on when to execute transactions, admission control and overload
management focus on selecting which transactions should be allowed to
execute. Overload management policies can in general be classified into
prevention policies or resolution policies. A typical prevention policy
is, for example, to limit the number of transactions that arrive to the
system. In contrast, resolution policies allow transient overloads to oc-
cur, in which case the overload resolution policy attempts to remove the
transient overload before the system malfunctions. Possible policies for
overload resolution include: transaction rejection, transaction termina-
tion, transaction migration, deferred transaction execution, transaction
replacement, and partial transaction execution.

Transaction rejection implies that transactions are rejected upon their
arrival. In contrast, transaction termination implies that overloads are
resolved by aborting transactions eligible for execution, i.e., transactions
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that have been admitted to the system. Approaches in this category
include [BSS95, DMK™96, BN96] (see sections 6.2 and 6.4).

Transaction migration is applicable in distributed database systems,
where a pending overload at a node can be resolved by migrating trans-
actions to a node with enough spare capacity to ensure their timeliness
(ability to meet their time constraints). In a database context transac-
tions are normally migrated to database nodes having local copies of the
required data, i.e., the database is, partially or fully, replicated. Migrat-
ing transactions are in general costly due to the additional communica-
tion costs associated with selecting a destination node which normally
includes information about the workload on the destination node being
exchanged, and migrating the transaction to the destination node. Early
work on cost efficient load balancing has been reported in [SRC85].

Deferred transaction execution implies that execution and completion of
transactions having a deadline tolerance, e.g., soft deadline transactions,
are postponed. Transient overloads are, per definition, finite in length
and deferring the execution of non-critical transactions outside the over-
load interval will decrease the resource demand in the critical overload
interval. Hence, in the critical overload interval resources are granted to
transactions with no deadline tolerance.

Transaction replacement is applicable when transactions have one or sev-
eral alternative transactions having lesser resource requirements than
the original transaction. Normally the alternative transactions produce
satisfactory results but with lower quality than the original transac-
tion, or they compensate original transactions that cannot complete
successfully. Omne of the approaches in this category is presented in
[LC86, Che94, Nag97, BN97, BN96] (see sections 6.5 and 6.5.3).

Partial transaction ezecution, e.g., imprecise computation [LLST91]
where transactions are decomposed into one mandatory and one op-
tional task, suggests that only mandatory parts are executed during
transient overloads. Algorithms proposed for imprecise workloads in-
clude [SLC89, SLCI1, SLI2, ZLLA95, LRS198, KSCJ98]) (see sections
6.5 and 6.5.1).
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These prevention policies reduce the resource demand, requested by
transactions, to a level that can be handled by the system. Current
state-of-the-art scheduling algorithms featuring overload tolerance nor-
mally employ only one of the listed policies.

This thesis proposes a new framework for resolving transient overloads,
using multiple resolution policies, in real-time databases.

1.2 Real-Time Systems

In real-time systems, the correctness of a result depends not only on the
logical result of the computation, but also on the time at which the re-
sult is produced [BW97b]. Hence, system correctness depends on both
the functional and temporal behavior of the system execution. The ex-
ecutable entities in real-time systems are normally referred to as tasks.
Real-time database systems represent one class of real-time systems,
where the executable entities are referred to as transactions. For rea-
sons of simplicity, time-constrained tasks or transactions are throughout
the thesis referred to as transactions.

Real-time systems can be categorized by the penalty imposed on the
real-time system in case of a violated time constraint. Depending on the
criticality of the transactions involved, three types of real-time systems
can be discerned. In a hard real-time system, time constraints must al-
ways be met. These deadlines are critical since lateness has severe or,
in some cases, catastrophic consequences. Two distinct sub-classes can
be formed, based on whether continued system execution can be per-
formed in the presence of a failure. A deadline that is imperative to
meet is sometimes referred to as hard critical, and a transaction imposes
an infinite penalty on the system if its deadline is missed. In contrast,
a transaction with a hard essential deadline imposes a finite penalty on
the real-time system in the case when it is missed. In a soft real-time
system, the deadline should be met, but it is acceptable if transactions
occasionally miss their deadlines and complete after their deadline. In a
firm real-time system, deadlines should also be met, but it is acceptable if
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transactions occasionally miss their deadlines. In contrast to soft dead-
line transactions, however, no lateness is acceptable and, hence, tardy
transactions are aborted in order to reduce resource wastage.

It is generally accepted that real-time systems of the next generation
are going to operate in non-static environments since the working en-
vironment will constantly change [Sta88a, Sta88b]. A real-time system
must therefore be able to work in a non-deterministic and dynamic envi-
ronment with limited a priori knowledge about future events and trans-
actions arriving to the system. The workload imposed on the system
contains transactions with different types of deadline criticality. These
real-time systems are referred to as multi-class real-time systems.

1.3 Real-Time Database Systems

The next generation of real-time systems and applications will handle
substantial amounts of information that require sharing, distribution,
and replication. Data accesses must not jeopardize any time constraints
of transactions [Ram93]. In conventional database systems the descrip-
tion of data is stored in the database and is available as a resource. Main-
tenance of database consistency is guaranteed by enforcing transaction
atomicity, consistency, isolation, and durability (the ACID-properties)
using concurrency control techniques. Normally, conventional database
systems are designed to maximize transaction throughput. However,
real-time computing is not high-performance computing [Sta88a]. In-
stead, timeliness is the paramount goal in real-time database systems.
Real-time database systems differ from conventional database systems
in several ways. First, in real-time database systems, not all data may
be permanent; some data may be temporary. Second, transactions
have time constraints which require that transaction execution enforces
the constraints, requiring that scheduling and concurrency control algo-
rithms are time cognizant. Third, meeting the deadline of a transaction
might be more important than an exact result. Therefore, temporal in-
consistency is acceptable in some situations in order to guarantee that



1.4 Research Contributions 7

the deadline is met. That is, the correctness of the result is traded for
timeliness by relaxing consistency.

Scheduling in multi-class real-time systems poses new problems. Com-
plex real-time systems usually cannot have a single scheduling policy due
to the size of the system, the vastly different requirements of various sets
of transactions, and the different metrics used for different functions or
subsystems over single-class scheduling systems [Sta95]. In this work,
time constraints are represented with value-functions, and a combined
deadline- and value-driven approach is taken. The focus is on dynamic
real-time scheduling for a single processor where there is an additional
processing element dedicated for scheduling and monitoring. The under-
lying workload assumption is that the set of critical transactions, based
on the worst case execution time of the corresponding contingency ac-
tions, is schedulable. Hence, there exists an execution order such that
the deadlines of the contingency actions of the corresponding critical
transactions are met.

1.4 Research Contributions

This thesis focuses on how transient overloads, in real-time database sys-
tems, can be resolved dynamically without jeopardizing the predictability
(and thus the timeliness) of the system. Our main contributions are four-
fold. In this thesis we introduce a framework for resolving transient over-
loads. The framework consists of (i) a new strategy for resolving transient
overloads, and (ii) a novel scheduling architecture that includes dynamic
admission control, a transaction scheduler, an overload resolver, and a
dispatcher. (iii) A new overload resolution algorithm (that implements
the strategy), denoted OR-ULD, capable of removing transient overloads
in real-time database systems with complex transaction workloads has
been implemented and evaluated. OR-ULD has been equipped with (iv)
a bias control mechanism (/BC) that enforces minimum completion ra-
tio requirements for transaction classes. The resulting scheduling model
forms the basis for the real-time transaction scheduler in the DeeDS
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prototype [AHET96].

Transactions have critical deadlines or non-critical deadlines. In addition,
critical transactions have contingency transactions that can be invoked
in case of overloads, replacing the original transaction. Our algorithm at-
tempts to maximize the sum, over all transactions, of utility contributed
to the system. More importantly, as our performance study shows, the
algorithm enforces the time constraints of critical transactions.

Transient overloads are detected by the admission controller which in-
vokes the overload resolver. The overload resolver develops a plan to
de-allocate enough resources among the admitted transactions in order
to be able to admit the new transaction, and determines whether it is
advantageous to carry out the plan or not.

The OR-ULD algorithm has the following characteristics:

e it operates in transient overload conditions, i.e., it is only invoked
in the case where a transient overload is detected;

e it resolves transient overloads by (i) scrutinizing current resource
reservations made by admitted transactions and, if necessary, (ii)
revoking previous reservations;

e it ensures the timeliness of critical transactions and gracefully de-
grades system performance during transient overloads;

e it enables the use of multiple overload resolution strategies, e.g., in
our case transient overloads are resolved by controllably dropping
non-critical transactions and selectively replacing critical transac-
tions with contingency transactions;

e it separates overload management from scheduling and can there-
fore be combined with various scheduling policies (given that the
admission controller is able to detect transient overloads and can
indicate in which time interval the overload is occurring); and

e it handles multi-class transaction workloads, where classes are dis-
criminated by their criticality.
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A performance study is accomplished via simulation. The OR-ULD al-
gorithm is compared with the traditional EDF with an admission con-
troller, and a baseline algorithm. The simulation results indicate that
OR-ULD outperforms these algorithms under a wide range of workload
conditions. Moreover, OR-ULD yields controlled overload behavior and
enforces timeliness of critical transactions. Further, simulation results
show that OR-ULD/BC biases the execution of transaction classes based
on their minimum completion ratio requirements and enforces the re-
quirements within a specified operational envelope.

1.5 Thesis Outline

The thesis follows the following outline. Chapter 2 provides a background
description and defines the basic terminology used throughout this thesis.
In chapter 3 a detailed description of the real-time scheduling problem
is given, and assumptions and simplifications are introduced. In chap-
ter 4 we introduce the overload resolution algorithm OR-ULDand the
bias control mechanism (/BC). Chapter 5 reports on the performance of
OR-ULD and OR-ULD/BC, comparing the results to a set of reference
algorithms. The chapter also includes a description of the simulation
environment. Chapter 6 contrasts the proposed framework and over-
load resolution strategy with current state of the art research in overload
management in real-time database systems. Finally, contributions and
conclusions, together with some directions for future research, are pre-
sented in chapter 7.
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Introduction




Chapter 2

Background to Real-Time
Database Systems

This chapter introduces the terminology used throughout the thesis.
First, a background to real-time systems (section 2.1) and real-time
database systems (section 2.2) is presented. A discussion on real-time
scheduling follows (section 2.3). This work has been carried out as a part
of the DeeDS project in which a distributed active real-time database
system is being built. Therefore, this chapter concludes with a descrip-
tion of the role of active real-time database systems in real-time systems
(section 2.4), a background to active real-time database systems (sec-
tion 2.5), and an overview of the DeeDS architecture and its components
(section 2.6).

2.1 Real-Time System Preliminaries

When comparing real-time systems with other computer systems, they
differ significantly in design goals, requirements, and implementation.
The fundamental difference is the importance of time in different re-
spects. With respect to time, computer systems have traditionally been
designed and optimized to guarantee high throughput and minimize the
response time. New applications requiring prompt response at certain

11
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time-points imply that the strict notion of time and timeliness are ad-
dressed and handled in the underlying computer system. This system
we call a real-time system. Several good definitions of real-time systems
exist. Lawson [Law92] defines a real-time system to be:

“... asystem that assures that controlled activities “progress”

and that stability is maintained and further, that the values
of outputs and the time at which the outputs are produced
are important to the proper functioning of a system.”

A more general definition is presented by Young, who defines a real-time
system to be [You82]:

“... any information processing activity or system which has

to respond to externally-generated input stimuli within a fi-
nite and specified period.”

Hence, a real-time system is a system that, in order to maintain exter-
nal/internal correctness, has to respond to input stimuli and produce
logical results of computation within a finite and sufficiently small time
bound. It is often stated in the literature that real-time systems must
feature predictability. Stankovic and Ramamritham [SR90] describe pre-
dictability as the ability to, in some way, show that the system meets the
specified requirements under various conditions, e.g., failures and work-
loads, the system is expected to work under. A similar view is given
by Le Lann [LL91], where predictability means that the system behaves
according to the specifications. Le Lann argues that predictability is the
likelihood that assumptions made at specification and design time are
not violated at run-time, and that the system behaves as anticipated
whenever run-time conditions match specification and design assump-
tions. If the system behavior deviates from the specification, the system
acts under conditions that have not been foreseen, jeopardizing the pre-
dictability, which may have severe consequences.

Timeliness is in some safety-critical applications an imperative require-
ment, leaving no room for lateness. However, the applications may have
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weaker requirements of the quality of the result. Hence, the logical cor-
rectness can be traded for timeliness, implying that the correctness of a
real-time system is a function of (i) the logical correctness of the com-
putation, and (ii) the timeliness of result delivery. The most important
property of a real-time system is predictability, i.e., the functional and
temporal behavior is deterministic to such an extent that the system
specification is satisfied [Sta88a]. Given this, it is not hard to see that
real-time computing is not an issue of high-performance computing.

Real-time systems are typically embedded systems, where the system
can, on a high-level, be decomposed into one controlled system, repre-
senting the environment in which the real-time system acts, and one
controlling system, interfaced with (intelligent) sensors and actuators.
Moreover, a human operator is connected to the controlling system for
monitoring purposes. The main characteristics of a real-time system are
the following: (i) they interact with their environment; (ii) they react to
stimuli in the environment; and (iii) the correctness of the result not only
depends on the functional result, but also when the result is delivered.

2.2 The Role of RTDBs in Real-Time Systems

When studying different and especially complex applications, sev-
eral common characteristics and requirements appear. First, massive
amounts of data are often retrieved by the controller system from the
environment and they must be computed and stored. Second, in some
applications the amounts of data needed to produce an output, given a
specific input, are significant, i.e., the size of database used for making a
decision is significant. A typical application is, for example, geographic
information systems in airplanes. Third, systems are responding to phys-
ical events, i.e., the systems incorporate reactive behavior. Fourth, the
systems act in environments with dynamic elements, implying that dy-
namic and adaptable behavior is desirable and sometimes a necessary
property of real-time systems. Fifth, the real-time system must be able
to handle complex workloads since tasks differ in strictness, tightness,
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arrival patterns, etc. A complex real-time system needs database func-
tionality (efficient storage and manipulation of data), and support for
specifying reactive behavior. Moreover, it must be able to adapt to its
environment in order to cope with dynamic situations.

Conventional database systems are not suitable as repositories for real-
time systems due to the inherently different design goals and crite-
ria. Conventional databases are designed to maximize throughput and
minimize the average response time while maintaining database con-
sistency. Hence, real-time guarantees cannot be given, and therefore
time-cognizant techniques for transaction processing must be developed,
where transactions have time constraints. A system that supports this
is referred to as a real-time database system (RTDB). Conventional and
real-time database systems differ in several respects. As mentioned, the
performance metrics are different, and in a real-time database system
the metric is usually to maximize the completion ratio or to minimize
the number of missed deadlines. Hence, the scheduling algorithm must
be time-cognizant. Moreover, concurrency control protocols are used
to increase the concurrency of transaction execution and still maintain
database consistency. Where the concurrency control algorithm and the
scheduler are seen as autonomous entities, decisions made of the for-
mer algorithm can override scheduling decisions made by the scheduler
[YWLS94]. Therefore both the concurrency control algorithm and the
scheduler in a real-time database system must be time-cognizant, en-
suring timeliness. Although database consistency is desirable, in hard
real-time database systems it can be that timeliness must be traded for
consistency. Hence, the timely delivery of a result of lower quality or
accuracy is preferred to having an exact result delivered too late. Data-
access conflicts are also handled differently. In conventional databases
data access conflicts are resolved based on fairness or resource consump-
tion, while in real-time database systems the preference tends to be crit-
icality of the transaction [YWLS94].

For more material regarding real-time database management, see the
work of Graham [Gra92], Kao and Garcia-Molina [KGM92|, Ramam-
ritham [Ram93] and Yu et al. [YWLS94], Eriksson [Eri97], Ozsoyoglu
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and Snodgrass [OgS95], and others [rtd88, rtd96, BLS97, BW97a, LK99].

2.2.1 Categorization of Real-Time Systems

Real-time systems, in their various subtleties, can be categorized accord-
ing to different aspects: the granularity of a deadline; the laxity of tasks;
the strictness of a deadline; reliability; the size of a system and degree of
coordination; and the environment in which the system operates [SR90].

By studying the severity of the consequences when the real-time system’s
behavior is temporally incorrect, i.e., time constraints are not satisfied,
the importance of timeliness can be quantified and, hence, used for cate-
gorizing real-time systems. By analyzing the strictness of deadlines, two
fundamentally different types of systems exist. In hard real-time sys-
tems it is an imperative requirement that deadlines are met, due to the
catastrophic and costly consequences caused by delays. In soft real-time
systems tasks should execute to completion and their deadlines should
be met, but can be missed occasionally without violating system cor-
rectness. A special case of soft real-time systems is a firm real-time
system, in which no tasks are executed after the deadline. Although soft
transactions can occasionally deliver results late and firm deadlines can
occasionally be missed, there is normally an upper limit on tardiness and
the number of misses within a defined interval [BW97b].

Hard real-time systems can be classified further. In hard critical real-time
systems it is absolutely imperative that deadlines are met and failing to
meet these causes system failure. In contrast, in hard essential real-time
systems a missed deadline has severe consequences but system services,
although at a degraded level, can still be provided satisfactorily.

2.3 Real-Time Scheduling Preliminaries

The task of a real-time system is to provide a response, within a pre-
dictable and finite bounded time, to an input stimulus where the response
consists of providing a computational result. The code for computing the
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result is encapsulated in a transaction with an associated time constraint.
Given a transaction workload, the execution order of transactions must
be determined in order to ensure time constraints. This task is carried
out by a scheduler. The transaction execution order generated by the
scheduler is referred to as a schedule.

In a feasible schedule transactions are executed in an order such that the
temporal behavior of the real-time system is correct, i.e., the deadlines
of all transactions are met. A scheduler is said to be optimal given that
it always finds a feasible schedule when there is one.

Since no lateness is allowed in hard real-time systems, there is an implicit
requirement that scheduling decisions should be based on the worst-case
execution time of transactions in order to guarantee time constraints
and enhance the predictability of the real-time system [BW97b, BW90,
XP90].

The violation of a soft deadline does not cause severe damage unless viola-
tions occur frequently. However, as Burns [BW97b] points out, typically
soft deadlines have an upper limit of misses within a defined interval.
Soft deadlines allow for some tardiness, i.e., late delivery of the result is
acceptable and is better than no result. However, there may be an upper
limit on tardiness. A firm deadline is a special case of a soft deadline.
However, in contrast to soft deadlines, no lateness of result delivery is al-
lowed, implying that no further execution of a firm deadline transaction
should be carried out after the deadline.

A precedence constraint exists if there is a constraint on the execu-
tion order between two transactions. Formally, a precedence constraint
T1 << To expresses that 7, must complete before 7 starts to execute. If
transaction 1 fails to complete, e.g., due to transient overload, transac-
tion 7o will not start.

Transaction scheduling is either preemptive or non-preemptive. Execut-
ing a non-preemptable transaction implies that the real-time database
system must execute the transaction to completion. In contrast, in pre-
emptive scheduling the current executing transaction may be preempted
in order to favor a newly arrived and more important transaction. De-
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pending on the characteristics of the transactions, different forms of in-
terleaving are adopted, e.g., preemption-abort, preemption-restart, and
preemption-resume. The methods differ in the type of operation that
should be performed on the preempted transaction. The preemption
abort policy implies that currently running transactions are aborted upon
preemption. The preemption restart method aborts transactions upon
preemption but transactions are then restarted. Preemption resume im-
plies that a preempted transaction is suspended and its execution is
continued upon the completion of the preempting transaction.

There are two distinct approaches for solving real-time scheduling deci-
sions: static scheduling and dynamic scheduling. The main difference
between the two approaches is at what time scheduling decisions are
made in relation to the start time of the real-time system. In the follow-
ing we elaborate on the pros and cons of each one of these approaches.

A scheduling algorithm is considered to be static if the search for a fea-
sible schedule is carried out before system run-time. Hence, a complete
time-map is developed, and the purpose of the scheduler at run-time is to
dispatch transactions according to the schedule. Static scheduling, also
known as pre-runtime scheduling, requires that most information about
the transaction characteristics, such as release times, deadlines, worst-
case-execution times, precedence relationships, etc., are known a priori.
The advantages of static scheduling are several. First, no scheduling cost
is incurred on the real-time system during run-time. Second, transaction
deadlines are guaranteed before the system starts, hence overload situa-
tions due to periodic transactions do not arise. Third, high utilization of
system resources can be achieved. Finding a feasible or optimal schedule
for a certain scheduling problem is most often an NP-complete or at least
an NP-hard problem. By performing the search for a feasible solution
pre-runtime, virtually, unlimited computer time can be devoted to the
search until a feasible schedule is found since minimizing computer time
is not a major concern. However, static scheduling has its disadvantages.
It requires a priori knowledge of arrival times and execution times that
can be hard to attain. Moreover, schedules are subject to change in
dynamic environments, but static scheduling offers limited flexibility at
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runtime. Static approaches include, for example, cyclic-executive, rate-
monotonic scheduling [LL73, SKG91, KRP 193], and deadline-monotonic
scheduling [ABR ™93, ABW93].

One factor of commonality of static approaches is the set of assumptions
that (i) the workload mainly consists of periodic transactions, and that
(ii) critical transactions must be periodic. Two approaches have been
suggested in order to handle non-periodic transactions. These are the
deferrable server [LSS87] and the sporadic server [SSL89]. The server
is a periodic process serving aperiodic requests from the environment.
This transforms the scheduling problem from scheduling both periodic
and non-periodic transactions into scheduling only periodic transactions.
However, the transformation does not come cheap. The underlying as-
sumption for these approaches is that non-periodic transactions are of
less importance/criticality than the periodic transactions. This implies
that, in the presence of an overload situation, non-periodic transactions
are dropped and only the periodic transactions meet their deadlines since
these are already guaranteed statically. Although this assumption may
be valid in some environments and situations, there are situations where
periodic transactions are less critical than the non-periodic transactions.
For example, assume an environment where the real-time system peri-
odically monitors a set of sensors in a nuclear power plant. In case of an
emergency, the system is responsible for responding to external events
that trigger aperiodic transactions, initiating damage-control-systems,
which is a critical operation. If an overload arises, it is better to drop
transactions monitoring the sensors, and instead rely on historical data
and give priority to non-periodic transactions.

With dynamic scheduling, also known as run-time scheduling, scheduling
decisions are made at run-time. The obvious advantage of this class of
scheduling algorithms is their ability to adapt to a changing environment.
The premises under which dynamic scheduling is adopted are the follow-
ing. First, the arrival times of the transactions are not known a priori.
Second, due to the foregoing premise, overloads may arise which must
be resolved. Third, only a limited time can be devoted to find a feasi-
ble schedule, which implies that most scheduling algorithms in this class
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rely upon heuristics limiting the search space as opposed to exhaustive
search-based algorithms. Further, due to the significant run-time cost,
the cost must be considered in the scheduling model of the real-time
system.

However, as real-time systems increase in complexity, and the environ-
ment characteristics evolve from being ’static and fully predictable’ to
being ’dynamic and predictable’, pure static scheduling is not the an-
swer. This motivates research efforts extending pure static scheduling
approaches in order to gain a degree of dynamic and adaptable behavior.

In the literature, off-line scheduling and on-line scheduling are of-
ten equated to static and dynamic scheduling but, as pointed out by
Stankovic et al. [SSDNB95], this is wrong. Analysis is different from
scheduling, and off-line analysis should always be applied when building
real-time systems, regardless whether the real-time system uses a static
or dynamic run-time scheduling algorithm. A dynamic scheduling algo-
rithm is designed to work under certain conditions. Hence, given that
some knowledge exists about the dynamic environment in which the real-
time system is supposed to work in, then the feasibility and suitability
of a scheduling algorithm for an environment can be analyzed.

2.4 The Role of Active RTDBs in Real-Time
Systems

When designing real-time systems, mainly two approaches have been
used: event-triggered and time-triggered real-time systems. FEvent-
triggered systems react to external events directly and immediately as
opposed to time-triggered systems which react to external events at pre-
specified instants [KV93]. Event triggered systems are prone to overloads
and event showers. Moreover, static scheduling is not applicable due to
no a priori knowledge on when events will occur. Dynamic scheduling is
necessary, and often preemption is allowed [KV93]. In time-triggered sys-
tems, schedules are computed at pre-runtime and are not changed during
execution. Characteristically, time-triggered systems are not subject to
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overloads and event showers.

As mentioned earlier, real-time systems are inherently reactive, and re-
spond to external events in the physical environment. Events are signaled
to the real-time system which, based on the event type, determines what
the next step should be. Although real-time systems have possessed
reactive behavior, to the best of our knowledge no general methods or
techniques for uniform specification of reactive behavior have been de-
veloped in the real-time research community.

The active database research community has developed ECA rules which
provide a uniform and powerful model of reactive behavior. The model
enables the representation of arrival and execution of transactions related
to an event occurrence in a controlled environment, which is the typical
scenario for many real-time systems. However, active database systems
do not explicitly address the incorporation of time constraints. Moreover,
active database systems introduce new sources of unpredictability and
timeliness issues that must be considered when executing triggered ac-
tions. Even though timeouts and temporal events can be represented by
rules which are triggered upon the occurrence of a temporal event, there
are no mechanisms nor guarantees for timely execution of the triggered
action.

Overall, it is not hard to see commonalities between the methodologies
used when designing and building real-time systems and active database
systems. Moreover, it is easy to see how active database systems can fit
into the system model of event-triggered real-time systems.

For more material about active real-time database systems, see [CBB'89,
BH95b, AH98, HB98, HA99].

2.5 Active RTDB Preliminaries

With conventional database technology, data is stored in databases that
are passive, which only allows us to detect situations or changes to the
database by polling the database. Polling is performed by an application,
which regularly issues queries to the database and then examines the
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results. There are several disadvantages with this. First, given that
there is an event or condition of the database which is of global interest,
i.e., several applications are interested in the event or condition, then
each application is required to detect this by issuing its own queries.
This implies a significant overhead because of the duplicated work that
is carried out, and further, the time of detection will differ. Second, if
short detection times are required, the polling frequency must be high,
resulting in a significant workload on the system.

An active database system is a system that monitors the database or the
environment in order to react upon state changes in the database or the
environment.

The proposed notion of modeling the reactive behavior is to specify rules.

Most approaches have adopted the notion of event-condition-action rules
(ECA rules) [CBBT89].

ON event E
IF condition C
DO action A

The semantics of an ECA rule are: when event E occurs, evaluate the
condition C (boolean expression or a method invocation), and if the
condition is satisfied then initiate the execution of action A (a database
operation or an application program).

Events in active databases are considered to be instantaneous and atomic,
i.e. either they happen or they do not. Further, events are classified into
primitive events and composite events, where the former is the basic ele-
ment, i.e., the single constituent of which composite events can be formed
by relating a set of primitive events with event operators. Primitive
events are normally decomposed into different types of events: database
events, temporal events, and transaction events [CBB189]. A tempo-
ral event occurs when a specified point in time is reached. Transaction
events occur at begin, commit, and abort of transactions.

While active databases use the ECA concept as a building block for
specifying reactive behavior, active database systems do not explicitly
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consider the time constraints of transactions, hence even though the ECA
rules can be used for specifying timeouts, active database systems do not
guarantee the timeliness of the triggered action(s). In HiPAC [CBB™89]
it was proposed that a time constraint could be attached to the action
part of a rule. This implies a change in semantics as pointed out by
[Ram93], where it is identified that traditional ECA rules cannot express
the following semantics:

ON event E
IF condition C
DO <COMPLETE> action A <WITHIN ¢ seconds>

The semantics of the above rule action are to complete action A within ¢
seconds. In general, the time constraint can refer to (i) the time of event
occurrence, or (ii) the time of event detection. The former refers to the
actual time when the event was generated, whereas the latter refers to
the time when the event was detected by the system. For example, an
event manager is most likely to spend a non-trivial amount of time when
detecting a composite event [GBLR96)].

Depending on whether a transaction deadline is relative to the time of
event occurrence or event detection, the importance of the triggered
transactions has a dramatic impact on the requirements on the real-
time system. If the deadline is relative to the event occurrence, time-
cognizant mechanisms for event handling transaction triggering must be
catered for explicitly in the system. In contrast, when deadlines are rel-
ative to event detection, no upper bound can be obtained for the time
between event occurrence and detection. However, real-time systems are
inherently reactive and have to respond to external events within a up-
per bound, implying that transaction deadlines are relative to the time
of occurrence (for the event that triggered the transactions). Hence, to
guarantee that triggered transaction deadlines are met, the transactions
should be triggered before the latest start time of the transaction, with
enough time to perform scheduling operations and meet the deadlines of
the triggered transactions.
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When incorporating reactive behavior in real-time database systems by
using techniques and methods developed within the active database com-
munity (or vice versa), several incompatibilities and sources of unpre-
dictability can be identified. In the next sections we identify incompati-
bilities and discuss how these can be addressed in real-time applications.

2.5.1 Components

The reactive mechanisms imply that new functions and services must be
provided by the database system. Active database systems include the
following additional components (in contrast to conventional database
systems): event detector, rule manager, and condition evaluator.

The event detector signals the rule manager upon the detection of an
event. Further, the rule manager initiates the condition evaluation of
those rules of which the event is a constituent. If the rule condition
is satisfied, the rule manager initiates the execution of the action. In
order to carry out this task, the rule manager must interact with the
transaction manager due to the coupling between the events, conditions,
and actions.

2.5.2 Execution Model: Coupling Modes

Actions are carried out during the execution phase. As transactions
are executed, new events may be generated which may cause cascaded
rule firing and, hence, impose additional workload on the system. Unre-
stricted cascading of rule firings causes system overload. Hence, cascad-
ing must either be bounded with respect to execution time, restricted or
prevented. The core issue is how rule execution should be executed with
respect to the triggering transactions. Some of the coupling modes are
not appropriate for real-time purposes.

When studying the set of coupling modes for event-condition and
condition-action, the following combinations of modes are possible in ac-
tive database systems: (1) immediate-immediate, (2) immediate-deferred,
(3) immediate-detached, (4) deferred-deferred, (5) deferred-detached, (6)
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detached-immediate and (7) detached-detached. Predictability can be en-
forced by restricting the set of coupling modes to those not affecting the

execution of the triggering transactions.!

Event-Condition Coupling

The coupling modes used for event-condition coupling are a source of
unpredictability. The real-time scheduler has guaranteed, based on the
worst-case execution time of the triggering transaction, that the deadline
of the triggering transaction will be met. Given that the triggering trans-
action generates new events, and that immediate or deferred coupling is
used, this implies that the event detection and condition evaluation cost
are charged to the triggering transaction. This is due to the necessary
blocking of the currently executing transaction. Hence, in order not to
override the allocated worst-case execution time, the time consumed on
event detection and condition evaluation must be controlled. If this is
not done, the coupling combinations 1-5 cannot be adopted in real-time
environments. Hence, this also implies that rules are reduced to detached
event-condition coupling.

For detached event-condition coupling, condition evaluation is performed
in a separate transaction which is scheduled in the same way as any other
transaction. The detached coupling mode does not jeopardize the time-
liness of the guaranteed transactions or the predictability of the system.
However, an additional workload is imposed on the system that must be
handled by the real-time scheduler.

Condition-Action Coupling

Given that condition evaluation in the former phase passes the test,
i.e., an action should be executed, immediate and deferred actions are
then executed as sub-transactions on behalf of the triggering transac-
tion. Actually, similar reasoning as for the immediate and deferred

!Detached coupling may be either dependent or independent, but will not affect
the list for analysis.
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event-condition coupling can be applied. As can be seen, immediate and
deferred condition-action coupling may jeopardize the timeliness of the
already guaranteed triggering transaction. If the number of cascaded
triggered sub-transactions cannot be bounded, and thereby the worst-
case execution time of the triggering transaction, then immediate and
deferred condition-action coupling have limited applicability in real-time
systems. As pointed out by Branding et al. [BB95], the execution time
of the transaction is prolonged in proportion to the number of rules trig-
gered in immediate and deferred mode. This may cause blocking delays
of other transactions that arrived before the rules were triggered.

As detached condition-action coupling is performed in separate trans-
actions, if event detection and condition evaluation is predictable, then
the temporal behavior of the triggering transaction is not affected, i.e.,
neither predictability nor timeliness is jeopardized. Going back to the
list of coupling modes, this means that the coupling combinations 3, 5,
6, and 7 can be adopted in a real-time environment.

Additional types of dependent detached actions have been suggested by
Branding et al. [BBKZ94]: causally independent, and parallel, sequential
detached and exclusive with causal dependency.

e detached coupling and causally independent — triggered transac-
tions are independent, i.e., no execution constraints are imposed
on the triggered transactions;

e detached coupling — sequential and causally dependent, i.e., trig-
gered transaction(s) may not start before the triggering transaction
has committed (abort of the triggering transaction will imply abor-
tion of the triggered transaction);

e detached coupling — exclusive and parallel causally dependent, i.e.,
a transaction 7; having a parallel and causal dependency on a trans-
action 7;, may execute in parallel to transaction 7; but can only
commit if 7; aborts;

e detached coupling — exclusive and sequential causally dependent,
i.e., a transaction 7; having a sequential and causal dependency on
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a transaction 7; may only execute and commit after the abortion
of T;-

2.5.3 Event Detection

In real-time applications, the system must respond to a stimulus within
an upper bound, where the response is performing a computation and re-
porting the result. Mapping this to the ECA model, actions are triggered
by event occurrences.

Given this, it is interesting to investigate the origin of the time con-
straints. Time constraints are often assigned to actions, where the time
constraints are relative to the event occurrences, i.e., the time association
between event occurrences and actions implies that the time constraints
of the actions are inherited by the events. By studying the temporal
scope of the events, three types can be seen [Ram95, Ram96]: maximum
delay of events, minimum delay between events (also known as minimum
inter-arrival time), and duration of an event. Moreover, events can be
input or stimulus events; output or response events; and internal or in-
visible events (external events outside the (sub-) system) [Ram95]. In
other words, events can be classified according to whether they are in-
or outgoing events with respect to the system, and whether the system
has awareness of the events or not.

ECA rules provide a good model for specifying the reactive behavior and
enforcing constraints, and for triggering actions upon event occurrences.
The ECA model, at least in its basic form, does not provide mechanisms
for specifying time constraints or guarantee that time constraints are
enforced. Timeliness in this case is no longer only a matter of transaction
scheduling since the time constraints of the actions are determined by
the time constraints of the events. Depending on the characteristics of
the event, the deadline may be relative to the event occurrence (typical
for external events occurring in the physical environment), or it may be
relative to the time when the system detected the event. In the latter
case, it is more likely that the event is internal. Hence, in order to obtain
a notion of guarantee or schedulability, not only must the set of triggered
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transactions be considered, but also methods and algorithms that are
performed between event detection and transaction triggering must be
predictable or time-cognizant. Hence, methods for event detection, rule
selection and triggering, and condition evaluation should be predictable.

2.5.4 Rule Triggering

Upon event detection, the appropriate rules should be selected, that
is, those rules that should be triggered as a response the event occur-
rence. Within active object-oriented database systems, techniques can
be broadly categorized into the centralized approach, rules indexed by
classes and rules associated with specific events. With the centralized
approach, all the rules have to be notified to determine which rules that
are subjects for evaluation. By indexing the rules by classes efficiency is
increased [BH95a]. Neither method can guarantee that no unnecessary
rule triggering is performed. It has been suggested that rules should
be associated with specific events, and then notify the rules that are
specifically interested in that event [BH95a].

2.5.5 Condition Evaluation

Rule conditions in active databases are implemented as either boolean ex-
pressions, methods, or database queries. Sophisticated implementations
of active databases can apply techniques proposed for query optimization
in order to speed up the condition evaluation [GBLRI6]

2.6 DeeDS Architecture

DeeDS is a distributed active real-time database system developed by
the Distributed Real-Time Systems Research group at the University of
Skovde. Our work on scheduling and overload management forms a basis
for the DeeDS system, and for this reason an overview of the system is
presented.
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Figure 2.1: The DeeDS architecture

The DeeDS architecture is layered where the layers are closely coupled.
The architecture of DeeDS is divided into application-related functions
and critical system services.

The application-related functions are decomposed into the rule man-
ager module, the object store (OBST) [CRS192], the storage manager
(tdbm) [BN92], and the operating system OSE Delta. These application-
oriented modules are layered. Critical system services consist of the
tasks: scheduling, event criticality checking, and event monitoring col-
lapsed into the service module. By replacing the storage manager in
OBST with tdbm, nested transactions are supported [Mos85].

The service module works at all layers, where the application-related
modules are loosely coupled with the service module.
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Main memory residency of the first version of the database is provided
by existing main memory resident file systems of OSE Delta.

DeeDS uses dual processing elements, where the service module runs on
a dedicated processing element, referred to as service module processor.
Its resources have to be shared between the scheduler module and the
event monitor. A detailed description of how these services interleave is
found in [MHA97].

Application-related functions, as well as application processes, run on
the second processing element, referred to as application processor. By
separating the system services and the application related functions, the
overhead cost model is simplified, especially the cost associated with
scheduling decisions. Moreover, the database is main-memory resident.

2.6.1 Rule Manager Module

Rules in DeeDS are be specified in the form of ECA rules extended
with time constraints (see [Eri98] for a detailed description of the rule
language). The rule manager module provides the following functions:
First, rule storage. Rules are stored as first class objects. Second, rule
selection. Events are detected by the event-monitoring module and for-
warded to the rule manager. Upon reception of an event instance, the
rule-base is searched for rules that are associated with that event, and
evaluates that set of rules, if any. Rule conflicts are handled using prior-
ities. Third, condition evaluation. The condition part of the ECA rule
is evaluated in order to determine whether to execute the action. The
condition part is a method invocation. If the condition is true, the action
part of the rule is triggered for action execution.

2.6.2 Event Monitoring Module

Events are either primitive or composite. Event graphs performing pa-
rameter computation are used for detecting composite events. Upon
detection, event instances are delivered to interested recipients within a
bounded time. The event instances carry information about event type,
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time of occurrence, and the scope in which it was generated. The con-
structors supported in DeeDS are conjunction, disjunction, sequence con-
structors, and predictable closure constructors in the recent and chronicle
context [CM93, Buc94]. See [Mel] for a detailed description of the event
monitor.

If traditional rule detection is adopted, i.e., events are detected in the
same order as they occurred, then uncontrolled behavior can result with
the timeliness being jeopardized as an effect due to event showers and
transient overloads. Berndtsson and Hansson [BH95a] describe a scheme
for prioritized event detection and rule handling. Upon the physical event
occurrence, event instances are placed in an incoming event queue, which
is continuously checked and computed by the event criticality checker,
which detects the events. In DeeDS, events either may trigger transac-
tions with hard deadlines (critical) or soft deadlines (non-critical). In
order to guarantee that events triggering critical transactions are de-
tected within bounded time, in particular during event showers, events
are prioritized. The priority of an event is determined by evaluating the
deadline criticality of the action-part of those rules that the event may
trigger [BH95a]. In other words, events are categorized into critical and
non-critical.

The scheme suggests that events are handled in a strictly prioritized man-
ner, where the priority is determined by the degree of criticality of the
most critical action which may be triggered upon that event. Moreover,
the tightness of the time constraint of the triggered deadline may also
be reflected in the priority assigned. It is suggested that the rule set is
analyzed statically in order to determine the criticality of events, which
are then parameterized with this information. It is suggested that event
showers can be handled by using filtering mechanisms that are sensitive
to critical events and thereby can filter out these and present them to
the system.

One implication of the approach is that there is a risk that the system
will be loaded with critical events. This may happen in systems where
it is likely that an event is involved in rules, where the actions vary in
criticality, and where the event is likely to be part of at least one rule
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with a critical action.

The method can be applied to composite events but with the constraint
that the criticality of the composite event cannot be higher than lowest
criticality among the constituents of the rule. Hence, the effect is that
composite events are likely to be handled as less critical ones.

2.6.3 Replication and Concurrency Control Module

In order to enforce predictability in DeeDS, the following design decisions
have been made to isolate unpredictable delays due to disk accesses,
network communication and distributed commit processing. First, the
database is main memory-resident. Second, the database is (virtually)
fully replicated, i.e., each node has local copies of the database objects
needed at that node. Third, ASAP (As-Soon-As-Possible) replication is
used when propagating updates of the database, implying that temporary
inconsistencies may arise. See [Lun97] for a detailed description of how
replication is performed.
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Chapter 3

Problem Description

This chapter is outlined as follows: In the first section (3.1) we motivate
the need for dynamic scheduling algorithms. A detailed description of
the nature of the real-time scheduling problem and its complexity is given
in section 3.2 and section 3.3 respectively. In section 3.4 we formulate
our research goals. Finally, we conclude this chapter by summarizing the
scheduling problem (section 3.5).

3.1 Motivation

System correctness of real-time systems is related, in addition to the
functional correctness of the result produced, to what extent timeliness
of tasks requiring system resources is ensured. In order to enforce explicit
time constraints, the real-time system must be designed to handle ”real
time”. As pointed out by Pressman, this makes the design of a real-time
computing system the most challenging and complex task that can be
undertaken by a software engineer [Pre97]. In a real-time system, the
scheduler component has the overall responsibility that timeliness is en-
sured. Its task is to plan how system resources should be used, outline an
execution order that enforces the time constraints, and assign task pri-

33
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orities. For workloads primarily consisting of periodic transactions, the
schedulability analysis and priority assignment can be done statically,
i.e., prior to system execution. However, static scheduling algorithms
have limited or no applicability in application scenarios where the domi-
nant part of the workload is non-periodic, or critical transactions are not
periodic, motivating the need for dynamic scheduling algorithms, i.e.,
transaction priorities are computed and assigned at run-time.

It is generally accepted that missing a single firm or soft deadline ”oc-
casionally” is not considered to jeopardize system correctness. This is
confirmed by how existing scheduling algorithms for soft and firm real-
time systems have been designed and evaluated, attempting to minimize
the mean or maximum lateness (soft real-time systems only), or to min-
imize the number of missed deadlines [Pin95]. Realistically, however, if
consecutive instances of a transaction fail to complete before their respec-
tive deadlines, then the system will eventually suffer from a failure. This
indicates that there are additional constraints, expressing the minimum
degree of timeliness for a class of transactions, that should be enforced.
For example, such constraints may be expressed as minimum completion
ratio for a transaction class (e.g., at least 75% of the firm transaction
must complete successfully). Most scheduling algorithms developed for
soft and firm real-time systems lack the ability to specify or enforce this
type of constraint, which we refer to as a robustness requirement. The
robustness requirement may specify a temporal interval within which the
constraints should be met.

3.2 The Real-Time Scheduling Problem

Real-time systems have a finite set of resources, and hence, have a finite
processing capacity. Due to the requirement of guaranteeing temporal
behavior with finite processing capacity, the real-time system must be
designed to handle peak load situations generated by the environment
[KV93]. The peak load is determined both by the transaction work-
load and by the event load imposed on the system, since event-triggered
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systems are prone to event-showers.

The transaction workload, denoted 7, is composed of k transaction
classes, ie., T = Ule T;. Each transaction class 7; consists of a set of
n; transactions, 7; = {7;j|1 < j < n;}, and where transaction classes are
disjoint (7;N7T;,¢ # j). Transaction classes are discriminated by critical-
ity, denoted k;, and transactions have hard critical, hard essential, soft,
or firm time constraints. The former two are considered critical, while the
latter two are non-critical. A transaction 7; may have one corresponding
contingency transaction, denoted 7;, which can be invoked during over-
loads, replacing the original transaction. A contingency transaction 7;
can, in contrast to the corresponding original transaction 7;, be charac-
terized as having significantly lesser computational processing require-
ments with the same or possibly a later deadline. The substitution of an
original transaction results in a finite decrease of the utility contributed
to the system. Hence, the contingency action should be seen as a last
resort that the system could execute in order to handle transient over-
loads. The utility is represented using value functions [JLT86, Loc86]
which express how valuable transactions are to the system as a function
of time.

In short, the research problem can best be described as how to dynam-
ically schedule a complex transaction workload and how to gracefully
degrade system performance during overloads. The primary criterion is
that any schedule must enforce the timeliness of critical transactions re-
questing resources. Secondly, any schedule should also attempt to ensure
that all robustness requirements of non-critical transactions are satisfied.
Hence, our primary focus is on the transient overload situations since
these are, although hopefully infrequent, the worst threat to the primary
criterion.

In this chapter, with the aid of a set of description models, we formulate
the details of the scheduling problem that is the focus of our research.

The transaction model (section 3.2.1) specifies the transaction types (e.g.,
transaction importance and criticality) and any inter-transaction depen-
dencies, and constraints concerning the transaction execution order. In



36 Problem Description

addition, it defines the timing information and resource requirements.
Section 3.2.2 specifies the workload assumptions i.e., the worst-case work-
load presented to the real-time system that must be handled. The reac-
tive model (section 3.2.3) specifies how reactive behavior is specified. Sec-
tion 3.2.4 describes the interrupt and concurrency control assumptions,
i.e., it specifies whether the execution is preemptive or non-preemptive
and, in case of preemptive execution, how interleaved execution of trans-
actions is controlled. The overload model (section 3.2.5) specifies desir-
able and acceptable system behavior during transient overloads. Section
3.2.6 describes the system assumptions, i.e., the characteristics and as-
sumptions about the system architecture and the hardware model.

3.2.1 Transaction Model

The following temporal attributes, related to the temporal scope consti-
tuted by a transaction 7;, are assured to be known (the corresponding
temporal attributes of a contingency transaction 7; are indicated by a
bar, e.g., 7;):

e ready time r; — the earliest time at which a transaction may start
its execution (transactions are ready upon arrival);

e deadline d; — the time at which the transaction execution should
be (or must be) complete;

e deadline tolerance 0; — represents tardiness that can be allowed,
i.e., when transaction execution must be complete;

e worst-case execution time w; — the maximum execution time of
the transaction, independent of the current state of the database
and the system;

e consumed ezxecution time o; — execution time consumed by trans-

action 7;

e remaining execution time (; — upper bound of remaining execution
time of transaction 7;;
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e value function v;(t) — representing the importance and criticality;

e blocking time b; — the maximum amount of blocking time that
transaction 7; may experience due to resources held by lower pri-
ority transactions;

e worst-case execution time (longest critical section) werit; — the
worst-case execution time of the longest critical section of transac-
tion 7;; and

e abort time o; — the time needed to abort transaction 7;.

Critical Transactions: Critical transactions are assumed to be either
periodic, where the deadline equals the end of the period, or sporadic,
where the minimum inter-arrival time is known a priori.

Critical transactions have exactly one contingency transaction 7;. A con-
tingency transaction 7; may be invoked for execution during overloads,
replacing the original transaction 7;. In other words, contingency trans-
actions have an exclusive commit dependency on the original transaction,
that is, either the original transaction commits or the contingency trans-
action commits.

Non-Critical Transactions: Non-critical transactions, i.e. firm- and
soft-deadline transactions, are periodic, sporadic or aperiodic.

Contingency Transactions

Contingency transactions in our model are autonomous executable enti-
ties that may be triggered for execution during overloads. Contingency
transactions are exclusively and causally detached from the triggering
original transaction. The substitution of an original transaction with
a contingency transaction will result in a finite decrease of utility con-
tributed to the system. Hence, contingency transactions should normally
be seen as a last resort that the system could take to save the situation
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(but it could be better than aborting a non-critical transaction in some
situations).

DEFINITION 1 A transaction is said to successfully complete if and only
if the original transaction T; or the corresponding contingency transaction
7; completes and meets its deadline. O

Two types of contingency transactions are used in our model:

Type I Contingency Transactions A contingency transaction of
type I performs functions similar to the original transaction but in a
cheaper way, with the implication of the result being of reduced qual-
ity [LLST91]. For example, reduction may be in terms of precision,
completeness, certainty, or granularity. Typically, quality is traded for
timeliness by performing approximate processing. Hence, a type I contin-
gency transaction has significantly smaller computational and processing
requirements than the original transaction (i.e., w; << w;). Moreover,
its deadline is inherited (possibly relaxed) from the original transaction
(i.e., d; > d;). In addition, a contingency transaction 7; has a value
function v;(t), where v;(t) — v;(¢) (t < d;) quantitatively represents the
degree of the quality reduction (or utility loss) due to replacing the orig-
inal transaction 7;.

Type II Contingency Transactions A contingency transaction of
this type performs counter-actions that eliminate any source of danger
or reduce the damage imposed on the system due to the tardiness of
the original transaction. Type II contingency transactions are radically
different to contingency transactions of type I, since they are taking cor-
rective actions, executing damage control and recovery control. In our
system, type II contingency transactions do not necessarily have signif-
icantly lesser processing requirements than their original counterparts.
The deadlines of type II contingency transactions, relative to the original
transactions, are normally extended. As with type I, the value function
represents the reduced utility contributed to the system.
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3.2.2 Workload Assumptions

Transaction classes are distinguished primarily by their deadline criti-
cality and secondly, their periodicity (periodic, sporadic, and aperiodic).
The underlying workload assumptions are:

AssuMPTION 1 Each transaction 7; is pre-declared and pre-analyzed
with known worst-case execution time w;. This information is made
available to the scheduler and the admission controller as a transaction
arrives in the system. 0

Estimating the worst-case execution time of transactions in disk-based
database systems is a delicate issue due to the unknown blocking times.
However, DeeDS is a main-memory resident database and, hence, does
not suffer from disk delays or blocking due to disk accesses. Hence,
determining the worst-case execution times of transactions is feasible.

AssUMPTION 2 Each critical transaction has a contingency transaction,
which is an autonomous executable entity. Their deadlines and process-
ing requirements are relative to their original transactions, and coupled
with causal, sequential and exclusive coupling. O

AssuMPTION 3 (LoAD HypPOTHESIS) The set of critical transactions is
schedulable based on the worst-case execution time of their contingency
transactions. O

AssUMPTION 4 Non-critical transaction classes may have robustness re-

quirements expressed as the minimum class completion ratio, denoted

MCCR;, where class completion ratio, denoted CCR;, is defined as fol-

lows:

_ #{7i|success(tj) N 1; € Ti}

 total number of transactions of 7; that requested resources
O

CCR;

ASSUMPTION 5 The event arrival rate of critical events, i.e., events that
are triggering critical transactions, can be handled by the system without
jeopardizing the time constraints of the triggered transactions. 0
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Figure 3.1: Visualization of benefit, penalty, and utility loss

Value (or utility) functions were first suggested by Jensen and Locke
[JLT86, Loc86]. The mathematical expressive power of value functions
allows universal representation of transaction importance and criticality,
and ultimately, enables universal scheduling and handling of transac-
tions, avoiding artificial constructs for handling transactions of different
types. Transactions that successfully complete on time contribute a ben-
efit (positive utility) to the system. In contrast, transactions that fail to
complete may impose a penalty (negative utility) to the real-time system
as a whole, where the penalty is directly related to the criticality of the
transaction (see figure 3.1).

In principle, a value function can be seen as, at least, two separate seg-
ments. One segment represents the benefit contributed to the system if
a transaction finishes within its time constraints, and another segment
(or segments) represents the reduced benefit or penalty imposed on the
system if it does not successfully complete within the constraints.

Hence, value functions have the advantage that they capture the seman-
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Figure 3.2: Example of typical value functions

tics of the time constraints, e.g., when it is most desirable to execute
and complete transactions. Based on the most appropriate time to exe-
cute transactions, three basic types of transactions can be distinguished:
transactions that should be performed as soon as possible (ASAP); trans-
actions that should be performed as late as possible (ALAP) (but before
the deadline); and transactions not dependent on when they are executed
as long as the time constraints are not violated (CONSTANT) (see fig-
ure 3.2). This is represented in v} (t), where value functions are piecewise
linear. In our work transactions have value functions of the last type,
i.e., constant value functions. This is a simplification (for this study) of a
more general value function where the utility contributed to the system
may change more freely over time.

Biyabani et al. ([BSR88]) suggested how deadline criticality of a task or
transaction should be expressed with value functions (see figure 3.3).

For transactions with hard critical, hard essential or firm deadlines, §;
equals zero, implying that no tardiness is allowed at all. Instead there is
no value in continuing the execution of the tardy transaction after the
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deadline, and no penalty is imposed on the system.

In our transaction model, we use the following simplified mathematical
model to express the value function v;(¢) of a transaction 7;, yielding
the utility contributed to the system when the transaction terminates at

time ;:
oilt) = v} (ti), mi<t;<d
' v2(t), di <ty <di+9;
—p?, t>d;+9; ngggoo

We get the following when quantifying the penalty p? for the different
transactions: infinite penalty (—oo) for hard critical transactions, finite
penalty (—z) for hard essential transactions, no penalty (0) for firm and
soft transactions. For soft deadline transactions the decay rate of v?(t) is
either linear or exponential, becoming zero at time d; 4+ §;. Transactions
that have not completed by their deadlines (or within their deadline
tolerance) are aborted.
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In figure 3.4 we provide an example of how the value function of a trans-
action and a value function of a contingency transaction may be related.
In this example, we can see that the deadline of the contingency trans-
action is relaxed (in comparison to its original transaction), i.e., d; > d;.
Moreover, 9;(t) —v;(t) is the utility loss, and hence, represents the quality
reduction of the result produced by the contingency transaction relative
to the original transaction. Further, the penalties are different (often,
only the benefit is different).

3.2.3 Reactive Model

Reactive behavior is modeled by ECA rules, where transactions are trig-
gered upon event occurrence, given that a condition is satisfied. A trig-
gered transaction has a coupling relation to the triggering transaction
(see section 2.5.2) representing an execution dependency that must be
considered by the real-time scheduler.

Coupling modes that introduce unpredictability should be inhibited. An
analysis of the basic coupling modes shows that the use of immediate
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and deferred transaction coupling in real-time systems introduce unpre-
dictability [Eri98].

This work does not include immediate and deferred coupling between
transactions due to the introduced source of unpredictability. In our
system, detached coupling, exclusive and sequential causally dependent,
is used for coupling contingency transactions to original transactions.
Hence, a contingency transaction 7; may only execute and commit after
the abortion of the original transaction 7;. Furthermore, transactions
may trigger new transactions (detached and independent).

3.2.4 Interrupt and Concurrency Control Assumptions

In our scheduling model, transactions are preemptable. Based on the
action following the preemption, three types of preemption can be iden-
tified: abort of transaction (preemption abort); restart of transaction
(preemption restart); or continue the execution from the preemption
execution point (preemption resume). The latter type of preemption
requires a system mechanism for controlling interleaved transaction ex-
ecution. In a database environment, this is performed by a concurrency
control protocol. We use the optimistic real-time optimistic concurrency
control OCCL-SVW [Hua91, HSRT89, HSRT91] in our database model.
In our model, transactions are preempted and aborted in cases where a
transaction becomes tardy and no longer contributes any benefit to the
system. In addition, if transactions are selected for termination in order
to release resources with the goal of resolving a pending overload situ-
ation, then transactions may be aborted. Transactions subject to data
conflicts are restarted.

3.2.5 Overload Model

The handling of transient overloads is of most important concern in this
work. As stated earlier, in our system we have a mixture of critical
and non-critical time constraints. In order to resolve a transient over-
load, and minimize the penalty effects of the overload, special care is
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needed when managing the transactions. Overloads potentially causing
critical deadlines to be missed are the most important to resolve. The
consequence of this is that the overload mechanism must be sensitive
to what type of overload is about to occur. Hence, in order to resolve
a pending transient overload, non-critical transactions may be dropped
and transactions having contingency transactions may be replaced.

Our objective is to maximize the total utility given to the system by
the transactions submitted to the system as they successfully complete
or fail. The total utility is the sum of benefits obtained by successfully
completed transactions, and the penalty imposed by tardy transactions.
Formally, the scheduling problem can be expressed as (n is the total
number of transactions; ¢; is the time when 7; terminates):

n
MAXIMIZE " U; where U; =

=1

vi(t;),if 7; terminates
v;(t;),if 7; terminates

3.2.6 System Assumptions

Our real-time database system model incorporates two processing ele-
ments, one dedicated to performing scheduling activities (admission con-
trol, overload management and scheduling of real-time transactions) and
one for executing transactions [AHET96, MHA97]. Several reasons war-
rant the use of a dedicated processing element for scheduling and overload
management. First, scheduling processors off-load both the scheduling
algorithm and other operating system overheads from the application
transactions, both for speed and predictability (i.e., external interrupts
and operating system overhead do not cause uncertainty in the execution
of transactions). Second, the use of special purpose hardware, which
is orders of magnitude faster than its alternative software version, en-
ables handling of time granules that are orders of magnitude smaller
[BKN*98]. Third, dynamic scheduling has higher run-time costs but of-
fers flexibility and adaptability in contrast to static scheduling. Earlier
work on the design and use of a dedicated scheduling co-processor has
been carried out in the Spring project [RSZ87, BKNT98]. This system
model is consistent with the system design of DeeDS platform. DeeDS
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is developed for dual-processor architectures, where one processing ele-
ment is used for carrying out application transactions, while the second
processing element is dedicated for searching for feasible schedules and
monitoring events.

The database is main-memory resident and, hence, the blocking of trans-
actions due to disk delays is avoided.

3.3 Complexity of Scheduling Problem

In order to determine the complexity of the scheduling problem at hand,
we use a systematic notation introduced by Graham et al. [GLLRK79].
The notation describes a scheduling problem by a triplet «|3]y, where
« describes the machine environment, i.e., the number of processing ele-
ments and their characteristics (e.g., same speed, different speeds, etc).
The field § describes the nature of the scheduling problem, e.g., charac-
teristics of transactions and constraints. The field v describes the objec-
tive to be optimized. Normally this field contains a single entry. With
this model, our scheduling problem can be described as follows (preemp
refers to preemptive scheduling; prec implies there are precedence con-
straints):

1| ry, preemp, prec | Z U; where U; = { 1_)2(

The termination time ¢; is only defined if the transaction 7; terminates
the execution, which also includes tardy transactions that are discarded
after their deadline. The precedence constraints are due to the coupling
between original transactions and contingency transactions.

We will now show that the scheduling problem is NP-hard. Our proof
is based on what in complexity terminology is referred to as problem
reduction [Raw91, Pin95, MG87]. Let us formally define this.

DEFINITION 2 (PROBLEM REDUCTION) A isreducible to B (denoted as

A x B) if and only if there exists a total computable function t such that
for any z,x € A if and only if t(x) € B [MG87]. O
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THEOREM 1  is transitive.

Proof. See [MG8T]. O

THEOREM 2 The scheduling problem 1 | r;, preemp, prec | Y U; is NP-
hard.

Proof. We prove this by comparing the scheduling problem to a known
NP-hard scheduling problem. The following scheduling problem has been
shown to be NP-hard [Pin95].

1 ift; >d;

1| ri, preemp | Z Wi where Wi = { 0 otherwise

The problem 1 | 7, preemp | > W; is NP-hard, which implies that the
problem 1 | 3, preemp, prec | > W; is NP-hard as well. Hence, we get
the following complexity order.

L | s, preemp | ZWz o« 1| r;,preemp,prec | ZWZ

We can see that W; is a special case of U; where v;(t; < d; + &;)
equals 0, and where 7; has no deadline tolerance (J; = 0). Hence,
an algorithm for 1| r;,preemp,prec| > U; can also be applied to
1| rj,preemp,prec | Y W;. Hence, we get the following complexity or-
der:

1| ri,preemp | > W; o 1| r,preemp,prec| > W;
x 1| ry,preemp,prec| > U,

Hence, the scheduling problem 1 | r;, preemp, prec | Y U; is NP-hard.
O

3.4 Objectives

Current state-of-the-art dynamic real-time scheduling algorithms featur-
ing overload tolerance generally adopt only one of the following strategies
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for resolving transient overloads: (i) dropping of transactions (discarded
upon arrival, or aborted and terminated while executing); (ii) partial
execution of transactions; or (iii) execution of recovery actions. The first
method is only applicable to non-critical transactions. The second and
third methods are particularly applicable to critical transactions, but can
advantageously be used for non-critical transactions as well.

At a high level, our research goals are twofold. We want to (i) investi-
gate the effects of multi-class transaction scheduling, where transaction
classes are distinguished by their criticality and transactions are handled
uniformly upon transaction arrival; and (ii) evaluate the effects of using
more sophisticated strategies for overload resolution. More specifically,
our goal is to develop a scheduler architecture and a value-driven over-
load resolution algorithm. In addition, the algorithm should gracefully
degrade system performance during transient overloads, and ensure the
timeliness of critical transactions by resolving transient overloads using
multiple strategies as described in the previous paragraph.

3.5 Summary

In this chapter we have defined and described the characteristics of the
scheduling problem we are addressing. For purposes of clarity, we present
a short description. The workload consists of multi-class transactions as
defined in table 3.1.

Contingenc Overload
Criticality k; g‘ y_ Periodicity Resolution
Transaction T;
Strategy
.. . periodic _
critical required . execute T;
sporadic
periodic N
.. . . execute T;
non-critical optional sporadic
. drop 7;
aperiodic

Table 3.1: Summary of transaction characteristics
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The real-time scheduling problem can briefly be described as follows:

e Transactions have critical and/or non-critical time constraints rep-
resented by value functions. Critical transactions have contingency
transactions that are executed during transient overloads, replacing
the original critical transactions.

e Critical transactions are periodic or sporadic with minimum inter-
arrival times, while non-critical transactions may be aperiodic. Ar-
rival times of non-periodic transactions are not known a priori.

o Worst-case execution time, periodicity, deadline, deadline critical-
ity, and value functions are known a priori and made available to
the scheduler upon arrival of the transaction.

e Original transactions are mutually independent of other original
transactions, and transaction execution order is non-constrained.
Contingency transactions are detached exclusively coupled to origi-
nal transactions. Moreover, transactions are preemptable and upon
preemption transactions will either be aborted or resumed later.

e Transaction priorities are assigned dynamically, using a dynamic
scheduling policy with the ability to handle transient overloads.

e The goal is to gracefully degrade system performance by control-
lably dropping non-critical transactions and/or replacing transac-
tions with their contingency transaction, as the system becomes
overloaded, without jeopardizing the timeliness of critical transac-
tions.
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Problem Description




Chapter 4

Framework

The important thing in science is not so
much to obtain new facts as to discover
new ways of thinking about them.

- W.L. Bragg

In this chapter we introduce and describe our approach to dynamically
resolve transient overloads. In the first section (4.1), we introduce the
scheduler architecture and provide a high-level description of its compo-
nents and their interactions. In section 4.2, the admission control algo-
rithm is described. The transaction scheduler and concurrency control
are described in section 4.3. In section 4.4, the heuristic-based over-
load resolution algorithm OR-ULD and its bias control mechanism OR-
ULD/BC are described. The dispatcher is described in section 4.5. In
the last section (4.6), implementation issues are discussed.

51
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4.1 Scheduler Architecture

The scheduler architecture consists of an admission controller, a transac-
tion scheduler, an overload resolver, a dispatcher, and transaction queues.

The admission controller tests for schedulability of new transactions
upon their arrival.

The transaction scheduler performs scheduling and concurrency control
of admitted transactions by outlining an initial and feasible schedule.
The scheduling policy may be any optimal dynamic scheduling policy
(in the sense that if there is a feasible schedule, it will find one). In
our experiments the scheduling policy is Earliest Deadline First (EDF)
[LL73, Der74], blocking is handled by Stack Resource Policy (SRP)
[Bak91] and, hence, admissions are based on the schedulability with EDF
using SRP.

The overload resolver is invoked when a transaction, given its original
resource requirements, cannot be admitted to the system. The resolver
computes the amount of processing time that needs to be released in
order to resolve the transient overload, and initializes a negotiation of
the requirements of the admitted transactions and the new transaction.

The dispatcher performs dispatching according to the outlined schedule.
Two queues are used. The ready queue contains the set of admitted
but not yet completed transactions. The rejection queue contains the
rejected and dropped transactions.

4.1.1 Interaction between Components

We will now explain the interaction among the scheduler components (see
figure 4.1 where solid lines represent data flow and dashed lines repre-
sent control flow). New transactions arriving to the system are placed in
an arrival queue. New transactions are then tested for schedulability by
the admission controller. The admission controller acts as a transaction
filter that denies admission of new transactions in the case of transient
overloads, i.e., admission of a new transaction is granted only if it is
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Figure 4.1: Scheduling architecture showing the information flow and
component interactions

schedulable with already admitted transactions. Hence, the admission
controller guarantees that the transaction scheduler does not become
overloaded, i.e., it is able to schedule admitted transactions, although
the overall system may be facing a transient overload. If a transaction
passes the test, it is admitted to the system and sent to the scheduler.
If a transaction fails the test, the admission controller invokes the over-
load resolver which analyzes earlier resource reservations in comparison
to the needs of the newly arrived transaction. That is, the overload re-
solver determines whether it is worthwhile, given the potential loss of
utility due to de-allocation of reserved resources, to accept a new trans-
action or not. Resources can be released either by dropping a transaction
or by replacing the original transaction with a contingency transaction.
We call these actions overload resolution actions (ORAs). The overload
resolver develops an overload resolution plan (ORP), which consists of a
carefully selected set of ORAs. If it is decided that the new transaction
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should be admitted, then the overload resolver informs the scheduler,
which executes the ORP. If the transaction should be rejected, then the
overload resolver notifies the admission controller to reject it. Accepted
transactions are assigned priorities by the scheduler and then placed in
the ready queue. Transactions that are rejected or dropped are placed
in the rejection queue.

Information about admitted transactions is stored in the admitted trans-
action table (ATT). The workload information in ATT is accessed by the
admission controller, the scheduler, and the overload resolver (updates
are made by the admission controller and the scheduler only).

To determine which overload resolution actions to select, our approach
is to compute the utility loss of performing a certain overload resolution
action in contrast to the amount of resources it will release. Hence, the
selection of which overload resolution actions to execute, if any, is based
on utility loss density.

4.2 Admission Control Algorithm

The primary task of the admission controller is to perform a schedula-
bility test of new transactions upon their arrival, determining whether a
new transaction should be admitted for execution or not. In our case,
using EDF and SRP, the admission controller is pessimistic in the sense
that it performs admission based on the worst-case execution times and
does not take any chances. Processing time is initially reserved once
transactions are admitted. Hence, transactions that are admitted are
given a prognosis that they will get their desired level of resources. Re-
source reservations are scrutinized only in the case of a transient overload.
In an overload scenario, given the load hypothesis, this implies that all
non-critical transactions must be terminated, and transactions must be
replaced with their contingency transactions.

Let T4 denote the ordered set of admitted transactions as follows:
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Moreover, let 7, represent a new transaction that is tested for admission.
Hence, the schedulability test is performed on the unified set, denoted
T, of admitted transactions and 7, i.e.: T = T4 U {7,}.

A critical section is nontrivial if it involves a resource that can cause
blocking. With SRP, the blocking time b; is given by the maximum
worst-case execution time of the longest nontrivial critical section of every
transaction 7 such that d; < d (i # k). This maximum includes the
worst-case execution time of all the critical sections of other transactions
that might subject 7; to priority inversion.

Assuming that the system is at time ¢y before which no transactions are
requested, the following condition should be satisfied in order to guar-
antee the schedulability of a set of periodic and aperiodic transactions
using SRP with EDF [Bak91] (deadline d; is relative to tp):

THEOREM 3 (BAKER, 1991) A set of n (periodic and aperiodic) trans-
actions is schedulable by EDF scheduling with SRP semaphore locking

if )
| (S) =)

Proof. See [Bak91, p. 83]. O

VE =

Assume that the system has executed for some time and that the cur-
rently executing transaction at time ¢y is not in a critical section. The
following condition should be satisfied in order to guarantee the schedu-
lability of a set of periodic and aperiodic transactions using SRP with
EDF.

COROLLARY 3 A set of n (periodic and aperiodic) transactions is schedu-
lable by EDF scheduling with SRP semaphore locking if

(i) i

Proof. Let the subset 7' denote the set of transactions in T4 that have
started to execute but not yet finished. Then each transaction 7; in 7’

Vk=1,...n
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has consumed o; time units. Hence, the worst-case execution time for
7; in order to complete is (; = w; — 0;. Consider 7; € T’ as newly
started transactions with worst-case execution time (; and let {; = w;
for transactions that have not yet started to execute. O

The pseudo-code for the admission control algorithm testing for schedu-
lability of a transaction workload 7 is outlined in figure 4.2.

4.2.1 Description of Stack Resource Policy (SRP)

Baker [Bak91] introduced Stack Resource Policy (SRP) as an improve-
ment to Priority Ceiling Protocol (PCP) [SRL87, SRL90] for handling
blocking. SRP has several advantages. The implementation cost and the
implementation complexity of SRP are smaller in comparison to dynamic
PCP [CL90, CL91]. Moreover, SRP prevents deadlocks and multiple pri-
ority inversions in order to bound priority inversion.

Each transaction 7; has a preemption level 7(7;) (the property of pre-
emption level is that a transaction 7; is only allowed to preempt another
transaction 7; if 7(7;) > m(7;)). In our system preemption levels are
ordered reversely with respect to the order of the deadlines, i.e.:

ViVj(m(r) < w(rj) =di > dj),i #j

SRP uses two notions: (current) resource ceiling and (current) system-
wide ceiling [Bak91]. The current resource ceiling of resource R;, denoted
[R;], is defined as the maximum preemption level of all the transactions
that may be blocked directly by a resource. At any point in time, let
the current system-wide ceiling, denoted II, equal the maximum of all
the current resource ceilings (II = max{ [Ri]li =1,...,1 } where [ is the
number of resources).

SRP requires that the following conditions are satisfied [Bak91].

C1 To prevent deadlock, a transaction should not be permitted to
start until the resources currently available are sufficient to meet
the maximum requirements of the transaction.
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Admission Controller(74,7,)
{
T :=TaU{m}
for (each 7, € T) {
for (each 7, € T,i < k)
sum := sum + (;/d;
if ((sum + by /dy) > 1.0) then {
call overload resolver (7;)

return

}

admit 7,

Figure 4.2: Admission control algorithm

C2 To prevent multiple priority inversion, a transaction should not be
permitted to start until the resources currently available are suffi-
cient to meet the maximum requirement of any single transaction
that might preempt it.

SRP requires that ceilings must be related to priorities and preemption
levels as follows [Bak91, p. 78]:

C3 If transaction 7 is currently executing (or can preempt the currently
executing transaction) and may request an allocation of resource R
that would be blocked by the another transaction currently holding
resource R, then 7(7) < [R].

Given that condition C3 is satisfied, the following can be established.
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THEOREM 4 (BAKER, 1991) If no transaction 7 is permitted to start
until m(1) > [R] for all resources R that the transaction requests, then (i)
no transaction can be blocked after it starts, (ii) there can be no deadlock,
and (iii) no transaction can be blocked for longer than the duration of
one outermost critical section of a lower priority transaction;

Proof. See [Bak91, p. 79]. O

Using SRP, each transaction is blocked from starting its execution at the
time it attempts to preempt if the transaction needs a currently unavail-
able resource. A transaction 7; with the earliest deadline is allowed to
preempt a currently executing transaction only if its preemption level is
greater than the current system-wide ceiling (7(7;) > II). Once a trans-
action has started its execution, the transaction will not be blocked since
all its resource requests are granted.

In SRP ceilings can be computed off-line and stored in a table. In addi-
tion, the locking operations acquire and release are simpler because they
cannot block, i.e., they do not require any blocking test or a context
switch [Bak91, p. 96].

Early blocking also reduces the number of unnecessary context switches.
Baker showed that the upper bound on the number of context switches
caused by a request with SRP is half of the maximum for PCP [Bak91,
p. 93].

For a more detailed description of SRP the reader is recommended to
read [Bak91, But97, SSRB9S].

4.3 Transaction Scheduler and Concurrency Con-
troller

Admitted transactions are assigned a priority according to the EDF pri-
ority assignment policy [LL73, Der74]. By exploiting admission control,
only schedulable transactions will be admitted, which allows the sched-
uler to always find a feasible schedule.
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The concurrency control scheme adopted is OCCL-SVW (optimistic
concurrency control using locking and serial validation write) [Hua91,
HSRT91, HSRT89]. Our choice was based on previous performance stud-
ies that showed that OCCL-SVW performs better than two-phase lock-
ing. However, our proposed framework and overload resolution strategy
is independent of OCCL-SVW and can be combined with other concur-
rency control schemes. Transaction execution using the original opti-
mistic concurrency control has three phases [KR81]. In the read phase
the necessary data objects are read from the database and then database
operations are performed on local copies. In the validation phase a check
is made as to whether the transaction updates may be in conflict with
other transactions. If the validation is successful, the updates are written
to the database in the write phase.

The following two conditions must be satisfied [Hua91, p. 123], given
that transaction 7; is serialized before transaction 7;, then

C4 the writes of 7; should not affect the read phase of 7;; and

C5 the writes of 7; should not overwrite the writes of 7;

Validation can be performed either by backward validation or forward
validation. Backward validation implies that validation is performed
only on committed transactions, and the validating transaction will be
aborted if a conflict is detected. Forward validation implies that vali-
dation is performed on active transactions which in turn means that all
committed transactions will be free of conflicts with present (and future)
active transactions. Conflicts are here resolved by aborting the validat-
ing transaction or by aborting conflicting active transactions in the read
phase [HSRT91, Har84]. As pointed out by Huang, in real-time database
systems, forward validation is preferable since it provides flexibility for
conflict resolution.

We now describe the properties of OCCL-SVW which uses forward vali-
dation. OCCL-SVW is deadlock-free by abortion and enforces the condi-
tions C3 and C4. Each transaction 7; maintains it own read set, denoted
R; and its own write set, denoted W;. The basic OCCL uses two types
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of "lock” modes: read-phase lock (R-lock) and validation-phase lock (V-
lock). R-locks are set in the read-phase, and V-locks are set in the
validation phase only (on objects that have been updated). An R-lock is
incompatible with a V-lock, and a V-lock is incompatible with another
V-lock (but R-locks are compatible with each other). If a transaction at-
tempts to set an R-lock on an object already holding a V-lock, then the
transaction is forced to wait until the lock can be held. If a transaction
attempts to set a V-lock on an object that is already locked by an R-lock,
then conflict resolution is invoked [Hua91]. However, explicit V-locks are
only necessary when validation and writing of updates are performed in
different critical sections (e.g, in OCCL-PVW). Since OCCL-SVW com-
bines validation and writing of updates into one critical section explicit
V-locks are not necessary.

Conflicts that are detected during the validation phase are resolved ac-
cording to the priority abort policy [Hua91, p. 131]. The priority abort
policy implies that normally conflicting transactions are aborted, but the
validating transaction is aborted if its priority is less than that of all the
conflicting transactions. The policy considers transaction priority, but
still favors the validating transaction, reducing resource wastage due to
aborted transactions [Hua91].

The pseudo-code for the OCCL-SVW protocol (using priority abort) is
shown in figure 4.3. The symbols <’ and ">’ represent the beginning
and the end of a critical section.

Performance studies show that OCCL-SVW performs better than the
pessimistic two-phase locking scheme when data contention is low; when
data contention is high two-phase locking performs better. For more
details about the OCCL-SVW protocol, see [Hua91, HSRT91, HSRT89].

4.4 The OR-ULD Overload Management Algo-
rithm

We now introduce the OR-ULD algorithm (Overload Resolution using
Utility Loss Density). First, we define temporal intervals necessary for
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OCCL-SVW Read Phase (7):

< for (each object in R(7))
set R-lock(obj, 7)

>

OCCL-SVW Validation and Write Phase (7):
ValidFlag:=TRUE
< release R-locks held by 7
for (each object in W(7)) {
if (R-locked(obj))

then {
ValidFlag:=FALSE
exit loop

}

}
if (ValidFlag)

then execute write phase

else call real-time conflict resolver

Figure 4.3: OCCL-SVW phases (priority abort): read, validation and

write
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the OR-ULD algorithm (section 4.4.1). A detailed description of the
OR-ULD algorithm and its bias control mechanism (OR-ULD/BC) is
then presented in section 4.4.2 and section 4.4.3, respectively. The com-
putational complexity of OR-ULD is analyzed in section 4.4.4.

4.4.1 Overload Intervals

If we are about to resolve an impending transient overload by releasing
resources, then given EDF’s overload behavior it is important to have
an understanding of the time interval over which the transient overload
is extending. The reason is, as we will see, that to resolve an overload
it is not the case that just any transaction can be dropped or replaced.
Consider a set of non-periodic transactions arriving in a system that uses
EDF. EDF is known not to handle overloads very well, causing a domino
effect of missed deadlines. Let us define two intervals, namely the total
overload interval and the critical overload interval.

The workload T4 = {71,... ,77} exists in the system and is schedulable
by EDF (s; is the slack time of transaction 7;, i.e, s; = d; — t;). Figure
4.4(a) shows the result of the EDF schedule for 74. Correspondingly,
figure 4.4(b) shows the result of scheduling 7 (= 74 U {7,}). EDF
guarantees that transactions are in order, which determines the insertion
point; the marked entries change as a result of the insertion. We can see
that the arrival of 7, results in a transient overload, causing 73, 74, T¢ to
miss their deadlines. O

Let us formally define TOI and COI (see figure 4.4(c)). Again, consider
the situation when the set of transactions 74 can be feasibly scheduled
with EDF, but where 7 = T4 U {7} is not schedulable.

DEFINITION 4 (TOTAL OVERLOAD INTERVAL) The total overload in-
terval (TOI) denotes the total time that the transient overload will last,
i.e., from the current time (tg) until the latest deadline (t2) of those
transactions missing their deadline:

TOI = |ty,t here tog = d;
[0; 2:|a where 12 ;’_;HE%%‘_{ Z}
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EXAMPLE 1 (VISUALIZATION OF OVERLOAD INTERVALS)
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(c¢) Graphical illustration of EDF schedule of T

Figure 4.4: Example of overload intervals
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where T7 is the set of tardy transactions' in T, i.e.,

Tr = {Ti|Ti eET ANt > dz)}
O

De-allocation of processing time is done in the interval referred to as
the critical overload interval. Informally, the critical overload interval
(COI) starts once the overload is detected at time ¢y (current time),
and ends at the time of the deadline of the first transaction missing
its deadline. Note, the critical overload interval is smaller or equal to
the total overload interval, and resolving the overload here using the
minimum required time is guaranteed to resolve it in the total overload
interval. However, releasing the same time outside the critical overload
interval will not resolve the transient overload.

DEFINITION 5 (CRITICAL OVERLOAD INTERVAL) The critical overload
interval [to,tl] denotes the interval starting at time ty when the overload
is detected at time tg, and ends at time t1 when the first transaction is
missing its deadline:
COI = |ty,t1|, where t1 = min {d;
[ 0 1] 1 71'67’7*{ z}

0

In our approach, de-allocation of processing time is done in the critical
overload interval. If enough processing time can be released in this in-
terval, then the overload will be resolved. In other words, resolving the
overload in the critical overload interval is guaranteed to resolve it in the
total overload interval, and de-allocating time only outside the critical
overload interval will have no effect on resolving the overload.

4.4.2 Overload Resolver

The basic idea behind the overload resolver is to generate an overload
resolution plan (ORP) that resolves the impending transient overload by

1 Tardy transactions” refer to transactions missing their deadline.



4.4 The OR-ULD Overload Management Algorithm 65

de-allocating time from previously admitted transactions. Thus, in the
case of an overload, the resource reservations are scrutinized, and they
may be reduced by substituting transactions having contingency transac-
tions, or de-allocated by dropping transactions. Hence, transactions that
are admitted are only given a prognosis that they will get their desired
level of resources, i.e., a conditional guarantee. Dropping and replacing
transactions result in a utility loss relative to the initial expectations
(processing time is wasted if the transactions have already started to
execute). Hence, it is of interest to minimize the utility loss. Note that a
new transaction will eventually provide (when complete) some utility to
the system, and this must be contrasted with the utility loss caused by
de-allocating sufficient resources in order to admit the new transaction.

More precisely, the resolver

(i) determines COI and TOI, and computes the amount of processing
time (As) that needs to be de-allocated in COI in order to resolve
the overload in TOI;

(ii) generates one or more nearly optimal overload resolution plans
(ORPs), where an ORP consists of a set of overload resolution
actions (ORAs) that de-allocate resources among admitted trans-
actions; and

(iii) decides whether it is advantageous to carry out one of the ORPs
considering the relative utility loss or gain of executing the ORP
and accepting the new transaction in comparison to simply reject-
ing it (non-critical) or substituting it (critical).

From the set of valid ORAs, i.e., ORAs with finite utility loss (and
release resources in the critical overload interval), we build an ORP by
selecting a subset of ORAs that minimizes the total utility loss while
de-allocating the required amount of time to admit the new transaction.
ORAs imposing an infinite penalty by dropping critical transactions will
not be generated since these are, by definition, not considered valid.
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Computing the Time Saved by an ORA

The amount of saved time, denoted &, in a critical overload interval
as a result of performing a specific ORA (d=drop or r=replace) on an
arbitrary transaction 7;, is computed as follows. When dropping the
transaction 7;, the amount of time de-allocated is:

& =¢i— o0+ i

where (; is the remaining execution time, o; expresses the time for abort-
ing the transaction, and 1); is related to blocking time, defined as follows:

¥ = maz (0, werit; — max{bj|j # i})
j

Since we are using SRP, we know that a high-priority transaction 7; may
be blocked only once by a low-priority transaction. Thus, b; is the worst-
case execution time of all critical sections among low priority transactions
for transaction 7;. If transaction 7; has the longest critical section, then
werit; time units have been reserved for blocking, but if it is decided
to drop or replace transaction 7;, then transaction 7; will not enter its
critical section and, hence, will not block any other transaction, implying
that time may be saved. The amount of time saved is then the difference
in execution time between the longest critical section of 7; (werit;) and
the longest critical section b; (j # 7).

The amount of time de-allocated when an original transaction 7; is re-
placed by its contingency transaction 7;, having the same deadline (i.e.,
d; = d;) can be computed in a similar way. Here, the execution time of
the longest critical section of the contingency transaction 7; has to be
considered, i.e., we get the following:

& =G — o — Wi+

where

¥ = maz (0, werit; — maz{b;, bjli # j})
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Time Saved due to Non-Occurring Blockings in an ORP

In the case an ORP is composed of several ORAs, the actual amount
of time saved due to non-occurring blockings depends on which transac-
tions are selected to be dropped or replaced and, hence, cannot be finally
computed before ORAs are selected. The following example shows why.
Consider the set of transactions {7;,1 < i < n|d;—1 < d;,1 < i < n}.
Further, assume that 7, has the longest critical section. This implies
that 7, may block another transaction for werity time units. Hence, if
we decide to drop 75, we will save a further werity — werit; time units,
where werit; represents the second longest critical section. If we decide
to drop or replace both 7, and 7;, the time saved will be the difference
between wecrity and the time of the third longest critical section. How-
ever, if we decide to only drop 7;, no time will be saved with respect
to blocking, since any transaction may still be blocked for (at most)
werity time units. In conclusion, at the time that ORAs are generated
there is no knowledge of which ORAs will be selected to be part of an
ORP, which makes it hard to estimate any additional time saved due to
non-occurring blocking. In our model, the amount of time saved by an
ORA is initially computed using only the remaining execution time, the
time needed to abort a transaction, and possibly, the execution time of
the contingency transaction. In other words, %) is initially considered to
be negligible. This computation is determined at the time when ORAs
are generated. Computing the time saved due to blocking that will no
longer occur is postponed until the actual set of ORAs that have been
selected to be part of the ORP is known. Then it is possible to determine
the amount of time saved due to non-occurring blocking since we know
which transactions are subject to be dropped or replaced and how these
transactions relate to other transactions. This simplification reduces the
computational complexity of the algorithm.

Computing the Utility Loss Caused by an ORA

The amount of wutility loss, denoted v, as a result of a specific ORA
(d or ) on an arbitrary transaction 7; is computed as follows. When
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dropping the transaction, the utility loss is given by the loss of benefit of
meeting the deadline and the penalty of missing the deadline d; (in the
case where a transaction has a firm deadline, the utility loss thus equals
the loss of benefit only), i.e.:

where t; (t; < d;) is the original termination time, and where ¢, (t! > d;)
is the new effective termination time.

By replacing a transaction 7; with its contingency transaction 7;, the
amount of utility loss is the difference between the benefit contributed
by 7; and the benefit contributed by 7; (7; < d;), i.e.:

vi = vit:) — vi(t;)
Algorithm for Generating the Overload Resolution Plan

OR-ULD attempts to select the best ORAs for saving the required
amount of time in the critical overload interval. Selection of ORAs is
made by relating the utility loss caused to the amount of resources that
are de-allocated by an ORA. OR-ULD computes the utility loss density
(77 /&F) for each ORA, and lets the set of actions be ordered by their
utility loss density. The algorithm consists of the following steps (the
pseudo-code for the OR-ULD algorithm is outlined in figure 4.8):

(i) Generate the set of possible ORAs in COI and compute their utility
loss density.

(ii) Sort ORAs by utility loss density.

(ii) Iterate through the ORAs in order of decreasing utility loss density,
and add them to the ORP until the total amount of saved time by
the new ORP (overload resolution plan) is greater or equal to the
amount of time required.

In order to provide a better understanding of how the algorithm for
selecting ORAs works, and what computations are performed, we present
an example.
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ExAMPLE 2 Overload Resolution by OR-ULD

Consider a set of admitted transactions 74 = {71, 79,73, T4, 75}, where 7
and 7o have critical deadlines and contingency transactions (71, 72), and
T3, T4, and 75 have firm deadlines (the characteristics of the transactions
are given in figure 4.5(a) on page 70). A new transaction 7, arrives to
the system at time t=30 causing a transient overload. If 7, is admitted
and scheduled, the consequence is that 7 and 75 will miss their deadlines
(figure 4.6(a) shows the EDF schedule for 74 and figure 4.6(b) shows the
EDF schedule for 7 = T4 U {r,;}).

In order to admit transaction 7, w;, time units must be available. Since,
72 has the smallest slack of transactions having a later deadline than 7,),
7 is the transaction that will be affected the most. Before 7, arrived
to the system, 7 had a slack of sy = 20 time units and, hence, if 7, is
admitted 75 will miss its deadline by As = 30 time units (s, = wy, — 20).
Therefore, if 7, were admitted, then 30 time units must be released in
the critical overload interval.

OR-ULD goes through the list of possible and valid ORAs, sorted by
utility loss density in ascending order (see figure 4.5(b)). The algorithm
adds ORAs to the selected set Aprp until enough time has been released.
Hence, we get Aorp = {ad}. The cost of Aogrp is 200, which should be
compared to the utility contributed by 7, and the penalty of rejecting
it. Although the cost of Apgp is higher than the utility contributed by
Ty, admitting 7, is a better choice since the alternative overload resolu-
tion plan, suggesting that 7, should be rejected, imposes infinite utility
loss and, hence, is not valid. If we consider admitting the contingency
transaction 7,, we need to release ten time units (w, — 20). As it turns
out, in this example, the algorithm will produce an overload resolution
plan equal to the former one and, hence, the cost efficiency of admitting
Ty is worse. Considering this, the overload resolver will decide to resolve
the overload by dropping 73 and admitting 7. The new EDF schedule
is shown in figure 4.7. 0

By selecting ORAs in reverse order of utility loss density, we ensure that
de-allocated time is cost efficient with respect to other ORAs. Given
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Ti | mi | wi | di | vi(ti <di) | vi(ti > dy)
71| O 80 | 430 350 —00
71| O 30 | 430 200 —00
T2 | 30 | 80 | 280 350 —00
To | 30 | 40 | 280 100 —00
73 | 50 | 100 | 260 200 0
74 | 100 | 50 | 250 400 0
75 | 110 | 50 | 350 300 0
T, | 120 | 50 | 230 180 —00
T, | 120 | 30 | 230 100 —00
(a) Characteristics of transaction workload T
af | | & | /&R | valid | comment
ad [ 200 | 45 | 4.44 | yes
oy | 250 | 45 | 5.55 yes
ad 300 | 50 | 6.00 | no | (remaining time not in COI)
ad 1400 | 50 | 8.0 | yes
aof | 150 | 15 10 no | (remaining time not in COI)
ad | 0o |35 N/A | no
ad | oo | 45| N/A | no

(b) Overload resolution actions

Figure 4.5: Overload resolution example: Transaction workload and the
generated set of ORAs
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Figure 4.6: An example of overload resolution
schedule for (a) T4 [top] and (b) 7 [bottom]

using OR-ULD: EDF
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a workload where transactions are similar in length and utility, transac-
tions close to completion will not be selected due to the limited time they
would save if dropped. Critical transactions cannot be dropped, only re-
placed, and the amount of time saved by replacing a transaction is often
more limited. Once the remaining execution time of a critical transac-
tion is smaller than the worst-case execution time of its corresponding
contingency transaction, replacing the critical transaction is not justified

in the general case.?

As we have seen in example 2, when an arriving transaction has a con-
tingency transaction there is an opportunity of directly accepting the
contingency transaction instead. Admitting the contingency transaction
requires less, if any, processing time to be de-allocated than the original
transaction, but it also contributes less utility. The amount of time that
needs to be released in COI in order to admit 7; (%) is As = w, — S
(As = wy, — S), where S is defined as follows:

S = Tréz;_z {si} where Ts = {7;|7; € Ta Nd; > dy}
Ti S

We generate two ORPs and compute the relative cost of implementing
them (note that (ii) and (iii) are exclusive): (i) admitting original trans-
action 7,; (ii) admitting contingency transaction 7; (critical transactions
only); and (iii) rejecting transaction 7; (non-critical transactions only).
The most cost-effective approach will then be selected, i.e., the one with
the best overall utility gain or loss. The overall change in utility, denoted
®, can be computed as follows, and the ORP with the lowest overall util-
ity loss (or highest utility gain) will then be selected.

admit 7,; @y = vy(ry, <t, < d,) — OR-ULD(w, — S5)
admit 7,; @9 = v, (r, <, < dp) — OR-ULD(w, — S)
reject T2 @3 = —uvy(ry <ty < dy) +vy(ty) where t;, > dy

It should be noted that in our approach transactions may be down-
graded, or even dropped, by the overload resolver. Once this happens,

2The exception is if the deadline of the contingency transaction is later than its
original transaction and postponing the execution of the contingency transaction will
save time in the critical overload interval.
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OR-ULD(in As,74; out sul, Aorp)

{

time sst:=0  /* sum of saved time */
time sul :=0  /* sum of utility loss*/

set Aorp :=0 /* selected set of ORAs */
set Aora /* generated set of ORAs */

/* Generate ORAs */
generateORAs(Aor.A)

/* Sort ORAs based on utility loss density (ascending order) */
sortORAs(AoprA)

/* Select ORAs based on utility loss density */
for (each of € Aora) {
Aorp := Aorp U {a}
sst = sst+ &7
sul := sul + 77
if (sst > As)
then return
} /* for loop */
sul 1= 0o
Aorp =10
return

Figure 4.8: Overload resolution algorithm
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a transaction will not be upgraded again. We have considered the cost
of frequent invocations of a transaction upgrader as significantly higher
than the pay-off. Of course, this may depend on the characteristics of
the application considered.

4.4.3 Bias Control (/BC)

Since non-critical transaction classes may have additional requirements
regarding their minimum completion ratio (see section 3.2.2), resolving
overloads becomes a more delicate issue. Any feasible schedule should,
in addition to enforcing time constraints of critical transactions, ensure
that the following constraint is not violated:

Vi(/{i = firm D CCR; > MCCRZ)

In this situation we can identify two types of overload. The first type of
overload (non-critical) is due to resource shortage where not all trans-
actions can meet their deadline. The second type of overload (critical)
is due to resource shortage and the lack of a feasible schedule that does
not violate robustness requirements. The consequence is that the over-
load mechanism must be sensitive to the type of overload that is about to
occur. The non-critical overload is handled by performing admission con-
trol only. Considering the worst-case execution time w; of each transac-
tion 7;, we can ensure that the set of admitted transactions is schedulable.
For transaction workloads where transactions are non-critical, transac-
tions are normally rejected once it is determined that they cannot be
admitted given the current workload. For multi-class transaction work-
loads, where transactions are of different criticality and have different
requirements, overload handling becomes harder. OR-ULD handles this
type of transaction workload. The critical overload is handled by the
admission controller and OR-ULD in coordination.

The OR-ULD algorithm does not enforce robustness constraints, i.e., the
minimum class completion ratio (MCCR;) of transaction class 7; (see
section 3.2.5). Given that utility loss density is the driving force when
resolving overload, non-critical transactions with low utility or relatively
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long execution times may be discriminated. If there is no constraint
on the miss ratio of any transaction class, then this correct and desir-
able behavior maximizes total utility. However, to ensure robustness of
the system, the overload management algorithm must balance resources
among transaction classes fairly. For this purpose, a bias control mech-
anism has been added to OR-ULD. The resulting algorithm is called
OR-ULD/BC.

Transaction classification is based on criticality (x;) and MCCR;, i.e.,
transactions within class 7; have the same criticality and requirement
on minimum completion ratio. C'CR; represents the actual completion
ratio of transaction class 7;, and, hence, the goal of our scheduling and
overload management algorithm is to ensure that the class completion
ratio CCR; never drops below MCCR;. Ultimately, the desirable be-
havior during the highest acceptable overload (the boundary of the oper-
ational envelope) is that the completion ratios of all transaction classes
are close to their respective minimum completion ratio requirement (i.e.
Vi(CCR; £ MCCR;)). In order to enforce this constraint in a value-
driven approach, we add a bias to the utility by, conceptually, increasing
the utility gained if the transaction completes as planned.

p(1.0 — CORy)
(1.0 —- MCCR;)’

fu}(t) =wvj(t) where 7; € T;, MCCR; < 1.0

The bias added to the utility increases as the completion ratio decreases.
The variable p is a bias parameter.

Increasing the utility with a bias does not affect the schedulability of the
admitted transactions; it only affects the decision of which transactions
should be admitted. Hence, the increased utility value is only used when
the transaction is tested for admission and when the overload resolver is
negotiating the reserved resources. The biased value is not used when
computing the actual utility contributed to the system.
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4.4.4 Computational Complexity of OR-ULD

In order to determine the computational complexity of OR-ULD, we use
the ”sum rule” of "order notation” [Raw91]. This rule helps us analyze
programs that have a sequence of parts with run-times of different orders
of magnitude.

THEOREM 5 The run time of OR-ULD is O(n log n), where n is the
number of transactions.

Proof. In order to analyze the computational complexity of selecting
ORAs with OR-ULD, we must analyze the computational complexity
of each step performed by OR-ULD. These are: (i) generate ORAs and
compute utility loss density, (ii) sort ORAs by their utility loss density,
and then (iii) select a set of ORAs for an ORP.

The first step is to generate all possible ORAs, i.e., ORAs that release
time in COIL. Assume that #74 (the number of admitted transactions)
is n, and that the maximum number of ORAs generated for each admit-
ted transaction is ¢, where ¢ is constant (¢ = 2 if the ORAs are drop
and replace only). Then the maximum number of ORAs that could be
generated is ¢ n, and generating ¢ xn ORAs takes O(n) run time (since
the time to generate an ORA is O(1)).

The second step is to sort ORAs based on their utility loss density. Sort-
ing can be performed by using, for example, heap sort, merge sort, or
quicksort (for a description of these algorithms the reader is referred to
[Knu98, DLSB82, Wei99]). Heap sort and merge sort run in O(n log n).
The average running time of quicksort is O(n log n); its worst-case run-
ning time is O(n?), but this can be made exponentially unlikely with
little effort [Wei99]. In conclusion, sorting can be done in O(n log n)
time.

In the third step, composing an ORP, the algoritm iterates through the
sorted set of ORAs. In the worst case, the entire set of ORAs must
be checked, i.e., ¢ * n steps. Note that the algorithm terminates once
the time saved by the selected ORAs is greater than or equal to the
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required amount of time. If the algorithm iterates through the entire set
of ORAs, without being able to release the required time, then OR-ULD
terminates since it is not able to resolve the overload, which is contrary
to assumptions. The maximum number of selection steps equals the
number of ORAs generated (c % n), implying that the running time of
this step of the OR-ULD algorithm is O(n). Thus, the total number of
steps performed by OR-ULD is:

O(n) + O(n log n) + O(n) = O(n log n)

4.5 Dispatcher

Admitted transactions are dispatched by the dispatcher residing on the
application processor. In the case where a currently executing transac-
tion needs to be preempted due to the arrival of a high-priority transac-
tion, the scheduler informs the dispatcher about this.

When a transaction completes, information regarding any gained (un-
used) processing time is reported by the dispatcher back to the scheduler.

4.6 Implementation Issues

The OR-ULD and OR-ULD/BC algorithms require the following internal
information structures and queues:

e Admitted Transaction Table. This table contains information
about admitted transactions (74), arranged in the order they
should be executed on the application processor. The admitted
transaction table contains, in addition to the identity of the ad-
mitted transactions, their remaining execution time (updated by
dispatcher), slack, and deadline. The structure is used by the ad-
mission controller, the scheduler and the overload resolver.
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e Overload Resolution Action Table. The table contains the gen-
erated set of ORAs. Note, only valid ORAs can be selected for
overload resolution. The table contains the following fields: iden-
tity (¢) of transaction, type of ORA (drop/reject), utility loss (),
time saved (£), and the computed utility loss density (stored for
convenience only when sorting). The structure is used by the over-
load resolver only.

o Ready Queue. This queue contains a list of admitted transactions
sorted by execution order.

e Rejection Queue. This queue contains non-tardy transactions that
have been rejected or dropped due to resolving a transient overload,
but which could be considered for renewed execution in the case
where the system becomes underutilized again.

The overload resolver assumes that the remaining execution time of a
transaction is known. In real systems, the remaining execution time can
be estimated by monitoring the amount of time executed so far (o;),
and, since the worst-case execution time (wj;) is known, the remaining
execution time is given as (; = w; —o;. The performance deficiency of this
approach is that the difference between the actual remaining execution
time and the worst-case time is likely to increase as the transaction gets
closer to completing. The only way to avoid this is to monitor actual
progress of the transaction and refine w; at milestones.
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Chapter 5

Results

Insight, untested and unsupported, is an
insufficient guarantee of truth.
- B. Russel

This chapter presents the results derived from the performance analysis
of OR-ULD and OR-ULD/BC. We first present the simulation environ-
ment, motivating the use of a simulation model, followed by a description
of the the simulator (section 5.1). Section 5.2 describes the simulation
experiments. An analysis of the findings regarding the overload behavior
of OR-ULD is given in 5.3. Section 5.4 presents the extended analysis in-
corporating the bias control mechanism (OR-ULD/BC). Finally, section
5.5 presents guidelines for assigning value functions to transactions.

81
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5.1 Simulation Environment

5.1.1 Motivation for Using Simulation

Analytical methods have proven very useful on real-time scheduling prob-
lems where complete a priori knowledge about the system and the work-
load is available. These real-time systems are typically statically sched-
uled. However, dynamic real-time scheduling problems tend to be more
complex to analyze than their static counterparts. Simulation has been
used extensively as an empirical analysis tool for performing performance
and behavior analyses of scheduling algorithms. This is particularly true
for the class of complex dynamic real-time scheduling problems where an-
alytical solutions are not yet available or where analytic methods cannot
be applied.

Simulation has been employed in order to evaluate the performance of
OR-ULD and OR-ULD/BC, to gain insight about their behavior, and to
identify which variables, if any, are important and affect their behavior.
Moreover, by changing simulation inputs and observing the resulting
outputs, possible dependencies between variables can be identified.

Furthermore, simulation has the advantage that rarely occurring real-
life situations can be simulated and analyzed, e.g., transient overloads.
Gaining the same knowledge by performing real-life testing is likely to be
more time-consuming depending on how often situations and phenomena
arise, and it might not be possible at all due to the catastrophic conse-
quences a transient overload may cause. In addition, the stability of the
system, and the underlying subsystems and algorithms, can be tested by
varying the inputs. The inputs can then represent different situations
and scenarios that are of interest and which the real-time system should
be able to handle.

5.1.2 The RADEx++ Simulator

The RADEx++ simulator models the performance of OR-ULD and OR-
ULD/BC in a real-time database system. RADEx++ is an extended ver-
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sion of the RADEx simulator [SP94] developed at the University of Mas-
sachusetts, Amherst. For a more detailed description of how RADEx++
relates to RADEX, see section C and [Han]. RADEx++ is a stochastic
( random input components) and dynamic (evolves over time) discrete-
event-based simulator, simulating a centralized active real-time database
system. It is primarily designed and used for performance analysis of
scheduling, concurrency, and logging algorithms. We will now describe
the components of the RADEx++ architecture as shown in figure 5.1.

Workload Control File: This is the configuration file for the simu-
lation, which contains transaction class definitions and a specification of
system resources.

Workload Generator: This module simulates the user application
of the database system by generating database transactions as specified
in the workload control file. Transactions are sent to the database level.

RADEx++ allows the generated workload to consist of multiple trans-
action classes in contrast to RADEx, where a standard transaction class
is described using the following attributes (see appendix C for a more
detailed description of transaction class variables):

1. Temporal attributes: arrival rate, periodicity (min., max.), trans-
action size w; (min., mean, max.), slack factor, deadline criticality,
and deadline tolerance (min., max.).

2. Value functions: type of value function(s), positive utility (min.,
max.), and negative penalty (min., max.).

3. Other: type of contingency transaction (if any).
A contingency transaction class is specified accordingly:

1. Temporal attributes: transaction size w; (min., mean, max.), and
deadline d;.!

!Criticality is inherited by the original transaction. RADEx++ does not support
contingency transactions having any deadline tolerance.
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Figure 5.1: RADEx++ simulator components and their interactions

2. Value functions: positive utility (min., max.) (or utility reduction
with respect the original transaction), and negative utility (min.,
max.).

Admission Controller: The admission controller performs overload
filtering of transactions arriving to the database level. Admitted transac-
tions are forwarded to the transaction manager. The admission controller
exchanges workload information with the scheduler.

Transaction Manager: The transaction manager receives transac-
tions from the admission controller. The transaction manager is respon-
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sible for assigning priorities, as determined by the scheduler, to admitted
transactions. Moreover, the transaction manager is responsible for the
execution of transactions. The transaction manager requests the object
manager to execute the methods of the objects accessed by the trans-
actions. Moreover, the transaction manager handles transaction events
(BeginOfTransaction, EndOfTransaction, Abort, Commit) and reports
them to the rule manager.

Scheduler: The scheduler is responsible for outlining the transaction
execution sequence and performing overload resolution if necessary (i.e.,
in the simulation model the overload resolver is incorporated in the sched-
uler module). As mentioned earlier, the scheduler interacts with both the
transaction manager and the admission controller, exchanging workload
information.

Object Manager: The object manager is responsible for controlling

concurrency and executing object methods as requested by the transac-
tion manager. Messages are sent to the transaction manager, the rule
manager and the recovery manager reporting the status of the execution
(transaction method execution successful, transaction method aborted,
and transaction method blocked). Additional object events are reported
to the rule manager.

Rule Manager: The rule manager receives events from the transac-
tion manager and the object manager. Upon event notification, the rule
base is checked to see whether any rules are triggered, and if so con-
dition evaluation is performed. Triggered transactions are generated if
the condition is satisfied. The transactions are then submitted to the
transaction manager.

Logging and Recovery Manager: The recovery manager is respon-
sible for performing recovery and rolling back of transactions.
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Resource Manager: The resource manager simulates the hardware
platform, i.e., number of CPUs and their performance, number of disks
and their performance etc.

5.1.3 Database System Parameters

We have evaluated the performance of the OR-ULD and OR-ULD/BC
algorithms by modeling certain database system parameters, using val-
ues for simulation parameters that represent what we believe is realistic
and that have been adopted elsewhere (e.g., [HLC91, PLC92, DMK*96,
BN96]) as shown in table 5.1. As noted in section 3.2.6, we use dual pro-
cessors, where one processor is dedicated for scheduling services and the
other is dedicated for transaction processing, so the scheduling activities
themselves do not influence the ability to meet deadlines.

NumCPU 1+ 1 | Number of processing elements

NumDisk 0 Number of disks
ProcOp 10.0 Processing time per database operation (ms)
DBSize 1000 | Database size (number of pages)

ArrivalRate | 1 —55 | Arrival rate (transactions/sec)

Table 5.1: Database system parameters

5.2 Structure of Simulation Experiments

The behavior of OR-ULD and OR-ULD/BC has been evaluated by run-
ning a series of simulation experiments. The purpose of the simulation
experiments is: (i) determining the overload performance of the algo-
rithms, and (ii) verifying that the algorithms have predictable behavior.
Predictability is expressed in terms of ensuring the meeting of time con-
straints of critical transactions during transient overloads under a variety
of workload conditions.

In order to determine the overload performance of the algorithms, we
measure the completion ratios of the transaction classes for a workload
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where only the transaction arrival rates are varied. The simulation results
are then compared to the results of the well-known EDF algorithm and
a baseline algorithm. These experiments are described in section 5.3.1
(OR-ULD) and section 5.4 (OR-ULD/BC).

In order to verify that the behavior of the OR-ULD is predictable for
different types of workloads, a series of simulations have been conducted
for other transaction workloads. The following workload parameters (in
addition to the arrival rate of section 5.1.3) have been varied to simulate
different workload scenarios:

e utility of contingency transaction relative to utility of original
transaction (section 5.3.2);

e slack factor (f; = (d; — r;)/w;) (section 5.3.3);
e size of transactions (section 5.3.4); and

e size of contingency transactions (section 5.3.5).

5.3 Performance Experiments of OR-ULD

Each experiment was conducted by running a series of three simulations
and summarizing them. The primary performance metric is completion
ratio (CR), i.e., the ratio of the number of transactions that successfully
complete to the total number of transactions requesting resources. Each
data point is the average completion ratio with 95% confidence intervals.

The workload consists of two transaction classes (critical class with hard-
critical transactions, and non-critical class with firm transactions), where
each class represents 50% of the total workload. The critical class con-
sists of sporadic transactions with contingency transactions that differ
in size and penalty from the original transaction. Beyond that, the two
transaction classes are equivalent. Each transaction class is defined as
described in table 5.2 (<’ means that the corresponding value is the
same as for the original transaction 7;):
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Transaction Critical Non-critical
Class original contingency original
% of workload 50.0% 50.0%
Size (no. of op) 11-15 4-6 11-15
Slack factor 9.0 —11.0 (see footnote 2) 9.0 — 11.0
Periodicity S — A
Utility 100.0 — 300.0 +— x0.5 100.0 — 300.0
Penalty —00 — 0.0
Write probability 0.25 — 0.25

Table 5.2: Transaction workload parameters

Aperiodic transactions arrive according to a Poisson distribution. The
actual size of a transaction, i.e., the total number of operations it per-
forms, is uniformly distributed within the range as specified by Size.
Each transaction accesses a number of pages that are selected uniformly
within the main-memory-resident database.

5.3.1 Completion Ratio Performance

Our simulations include the results from two related algorithms, namely,
pure Earliest Deadline First (EDF) without admission control, and a
modified EDF scheduler acting as a comparison baseline (BL) for our
The BL algorithm is based on EDF with an admission
controller, where the admission controller changes policy depending on

experiments.

the severity of the overload. Once a transient overload occurs, non-
critical transactions are unconditionally rejected by the admission con-
troller, leaving only critical transactions to be admitted. If the workload
increases to such extent that critical transactions cannot be admitted
based on their original resource requirements, only contingency trans-
actions of critical transactions are admitted from then on. Hence, this
algorithm performs two uni-directional mode switches: i) reject all non-
critical transactions; and ii) admit only contingency transactions. It

2The slack factor is increased in proportion to the change in size between the
original transaction 7; and the contingency transaction 7.
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should be noted that the purpose of BL is to serve as a comparison base-
line for our experiments, that is, indicating when a feasible schedule can
no longer be found although only contingency transactions are admitted
and scheduled. In fact, BL is inappropriate as a scheduling algorithm
since it performs the first mode switch when it has failed to admit a trans-
action independent of its importance and criticality (critical transaction
deadlines could be missed). The second mode switch is triggered when
an original and critical transaction cannot be admitted. The deadline
will be missed for the critical transaction (and possibly a few more).

We have studied the completion ratio of the three algorithms (overload
resolution algorithm - denoted OR in the figures, EDF, and BL) as shown
in figures 5.2 and 5.3. Figures 5.2(a) and 5.2(b) show completion ratio
(CR) as function of total transaction arrival rate for critical and non-
critical transactions. Figure 5.3 shows the percentage of critical transac-
tions that have been replaced by contingency transactions (replacement
ratio RR).

EDF starts missing transaction deadlines when the transaction arrival
rate exceeds approximately five transactions per second, which is ex-
pected since this represents a workload utilizing approximately eighty
percent. The inability of EDF to handle overloads, causing a domino
effect of missed deadlines, is well known (also shown in figure 5.2). Since
both classes share the same characteristics from the viewpoint of EDF,
no transaction class is favored. Thus, the decay rates of the completion
ratio are similar.

It is of paramount importance that time constraints of critical transac-
tions are met, and it can be observed that OR-ULD satisfactorily enforces
this requirement within a wide operational envelope (in this case up to
33 transactions/second).> OR-ULD performs close to optimal during ex-
treme overloads when compared to the baseline BL in terms of meeting
time constraints for critical transactions. OR-ULD ensures the timeliness
of critical transactions by gradually increasing (from zero) the numbers

3By operational envelope we mean workload conditions under which correct behav-
ior is maintained, i.e., critical time constraints and M CCR; constraints are enforced.
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Figure 5.3: Performance analysis of OR-ULD compared to EDF and the
baseline, showing RR for contingency transactions

of critical transactions being replaced by their contingency transactions
(see figure 5.3), and gracefully dropping/rejecting non-critical transac-
tions. This produces a significant improvement compared to both the
EDF (in terms of guaranteeing critical transactions at the expense of
non-critical ones) and the baseline (in terms of executing a large number
of non-critical transactions also under mild overload conditions) algo-
rithm.

The reason why OR-ULD does not achieve optimal results during ex-
treme overloads, as set out by the by baseline, is the sporadic nature of
the workload and the fact that the dynamic scheduler is not clairvoyant.
Original transactions are admitted when possible since they contribute a
high utility to the system. The drawback of this is that when additional
transactions arrive, a feasible schedule may no longer be found. Although
original transactions are replaced by their contingency transactions, un-
necessary processing time has been lost. This can be overcome to some
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extent by having the workload monitored, and when the workload goes
beyond a certain level the admission controller is notified to only admit
contingency transactions. (Current work focuses on predicting transient
overloads in dynamic real-time systems using artificial neural networks
[MS99, HSZ99]).

5.3.2 Varying the Utility of Contingency Transactions

(w:(t))

In this experiment, the benefit contributed by contingency transactions
was varied. Other workload parameters remained unchanged as specified
in table 5.2.

The utility v;(¢) contributed by contingency transactions was varied by
letting v;(t) be a function of v;(t). Specifically, v;(t) equals ¢ x v;(t),
where ¢ was varied between 0.0 (no benefit is obtained for completing
contingency transactions 7;) and 1.0 (there is no reduction in benefit
when completing contingency transactions as opposed to original trans-
actions) by increments of 0.1.

The results, shown in figures 5.4 and 5.5, show that the completion ratio
of critical transactions is intact (for arrival rates within the operational
envelope). As figure 5.5(a) shows, the completion ratio of original trans-
actions is low for high values of ¢, which is expected. As the difference in
utility contributed by contingency transactions and original transactions
decreases, the utility loss of replacing original transactions decreases as
well. Hence, at high values of ¢, OR-ULD more easily favors early re-
placement of critical transactions as opposed to dropping non-critical
transactions. This is confirmed by figure 5.5(b). As a natural conse-
quence, the completion ratio of non-critical transactions increases as ¢
increases (see figure 5.4(b)).

In this experiment, there is a significant increase in original transactions
being replaced for ¢ values higher than 0.6 as seen by the steep increase
in figure 5.5(b). OR-ULD is utility loss density driven and, hence, the
breaking point where the replacement ratio starts increasing significantly



93

5.3 Performance Experiments of OR-ULD

il
A
.““"“““““““.....
i

W)

e
pe

<>

Y

““.
““
Y

“

“"...
S
S0
e
e
30

i
e
s
S
HHH
i
)
|
)
}

W)

)
)
)

Remaining Utility

‘I

%

(4K

(KK~

=

O‘I

.“.:
)

]
]

\

0.8

oney uons|dwo)

0.2

Arrival Rate (Transactions/sec)

oney uons|dwo)

Remaining Utility

Arrival Rate (Transactions/sec)

Figure 5.4: Simulation results showing CR for (a) critical [top] and (b)

non-critical [bottom]| transactions when varying v;(¢)



94 Results

Completion Ratio Original Tran:

Replacement Ratio

Remaining Utility

Figure 5.5: Simulation results showing (a) CR for original transactions
[top] and (b) RR for contingency transactions [bottom] when varying

v;(t)



5.3 Performance Experiments of OR-ULD 95

may vary since it depends on the size of contingency transactions as well
as the utility contributed by non-critical transactions.

5.3.3 Varying the Slack Factor

In this experiment, the slack factor of the transaction was varied. The
slack factor, denoted f;, is defined as the ratio between the difference
of the deadline and the ready time, and the worst-case execution time
of transaction 7;, i.e., f; = (d; — r;)/w;. The average slack factor f for
transactions was varied between 2.0 and 15.0 by increments of 1.0, and
was uniformly distributed within the range f % [0.75,1.25]. (Since w;
are fixed, d; are assigned accordingly). The other workload parameters
remained unchanged as specified in table 5.2. Note that the average slack
factor starts at 2.0 in order to give the scheduler sufficient flexibility.
(For example, a transaction with slack factor 1.0 would imply that the
transaction must start once it arrives and its execution must not be
interrupted in order to meet its deadline, i.e., there is no flexibility in
the schedule).

Here figures 5.6 and 5.7 show that the OR-ULD behavior is, with the
exception of low values of f, independent of the slack factor. The figures
show that there is virtually no change in completion ratio and replace-
ment ratio for slack factor values greater than 3.0. There is a small
decrease in percentage of completed non-critical transactions when the
slack factor is less than 3.0, i.e., tight time constraints. In this case
non-critical transactions are dropped or rejected at very low workloads
(see figure 5.6(b)). A small decrease in completion ratio of critical trans-
actions can also be observed, i.e., the operational envelope shrinks (see
figure 5.6(a)). The decrease in performance when scheduling transaction
workloads with tight time constraints, i.e., low slack factors, is expected.
As the slack factor of the transactions decreases, the risk that the execu-
tion of a transaction may jeopardize another transaction increases. As a
consequence in our case, the search for cost efficient overload resolution
plans becomes harder.

In conclusion, the results show that the predictability of OR-ULD is not
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affected when the slack factor of transactions is varied. However, a small
decrease in performance can be noted for small values of f (f < 3.0), in
which case primarily non-critical transactions are dropped/rejected.

5.3.4 Varying the Size of Transactions (w;)

In this experiment, the size of transactions (w;), i.e., the number of op-
erations, was varied, while remaining workload parameters as specified
in table 5.2 were kept unchanged. The average number of operations,
denoted wyyg, of original transactions was varied between 10.0 and 25.0
by increments of 2.0, and individual sizes were uniformly distributed
within the range wqyg * [0.75,1.25]. The change in size of contingency
transactions remained proportional to the change in size of the origi-
nal transaction, i.e., their size ratio was kept constant throughout the
simulations.

Here figures 5.8(a) and 5.8(b) show that the completion ratios for both
critical (outside the operational envelope) and non-critical transactions
are reversely dependent on the average transaction size. Hence, the com-
pletion ratio of the transactions decreases as the average transaction size
increases. This behavior is expected and explained by the increased
resource requirements demanded by both original transactions and con-
tingency transactions. The rate at which contingency transactions are
invoked increases with the arrival rate and the transaction size (see fig-
ures 5.9(a) and 5.9(b)). The reason that the overall completion ratio
decreases with the arrival rate and the transaction size is primarily due
to the increased size of the contingency transactions. (If the size of
contingency transactions were the same for all workloads, the overall
completion ratio would not decrease).

5.3.5 Varying the Size of Contingency Transactions (w;)

In this experiment, the size of contingency transactions was varied while
remaining workload parameters were kept unchanged as specified in ta-
ble 5.2. The average size of the contingency transactions, denoted wgg,
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was varied from 4.0 to 12.0 by increments of 2.0, and the individual
sizes of the contingency transaction were uniformly distributed within
the range Wy * [0.75,1.25] (and given that w; < w; is true). The size of
original transactions and non-critical transactions remained unchanged
([11.0,15.0]), implying that the utility loss density for dropping a transac-
tion remained unchanged. However, ORAs replacing original transaction
with contingency transactions are less likely to be executed as the size
of the contingency transaction increases. As the sizes of the contingency
transactions increase, the amount of time saved by invoking a contin-
gency transaction decreases and, hence, the utility loss density increases
(making the ORA less desirable).

Our simulation studies show that the completion ratio of critical trans-
action decreases, in a predictable manner, as the size of the contingency
transaction increases (see figure 5.10(a)). However, the completion ra-
tio of non-critical transactions is, in this workload scenario, virtually
unchanged and stable (see figure 5.10(b)). The results show that the
completion ratio of original transactions is to some extent independent
of the size of the contingency transactions (see figure 5.11(a)).

For moderate overloads, we notice that as w;, the decay rate of the com-
pletion ratio of original transactions reverses. Figure 5.11(b) shows that
contingency transaction invocation increases as w; increases. This may
seem counter-intuitive, since large contingency transactions have high
utility loss density, indicating that very limited time will be saved rela-
tive to the utility loss and, hence, normally the number of invocations
should decrease. However, as w; increases, the number of critical trans-
actions that need to be replaced in order to de-allocate the same amount
of resources increases. Hence, the ORPs tend to be more complex and
consist of more ORAs. In this particular case, transactions that are
more critical are replaced by their contingency transactions already at
admission time.
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5.4 Performance Experiments of OR-ULD/BC

With OR-ULD/BC we performed an experiment with a non-critical
transaction workload only, and an experiment with a complex (mixed)
workload.

In the first experiment with bias control (/BC), the workload consisted
of three non-critical transaction classes only. In the second such exper-
iment, the workload consisted of one critical transaction class and two
non-critical transaction classes. We compare the results of OR-ULD/BC
with the results of OR-ULD and EDF.

Each experiment was conducted by running a series of simulations and
summarizing them. Again, the primary performance metric is completion
ratio (CR), i.e., the ratio of the number of transactions that successfully
complete to the total number of transactions requesting resources. Each
data point in the experiments represents the average completion ratio
with 95% confidence intervals. The EDF scheduler is here used as the
baseline.

5.4.1 Non-Critical Transaction Workload

The workload in this experiment was defined to consist of three non-
critical transaction classes, where each class represents one third of the
total workload. Two transaction classes had minimum class completion
ratio (MCCR) constraints (see table 5.3). Each transaction class was
defined as follows (the symbol <’ (used in the tables) means that the
value equals the value in the adjacent column).

Here figure 5.12(b) shows the results from the EDF algorithm, and as
expected, the decay rates of the completion ratios are similar for all

transaction classes.

As figure 5.12(a) shows, the bias control mechanism in OR-ULD/BC
has the desired effect, that is, of favoring transaction classes having con-

4 Arrival rates in the graphs denote the total number of transactions arriving to the
system per second.
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Transaction Class Class 1 Class 2 | Class 3

% of workload 33.3% 333% | 33.3%
Size (no. of ops) 5—9 — —
Slack factor 9.0 —11.0 — —
Utility 50.0 — 100.0 — —
MCCR 0.75 0.25 0.0
Write probability 0.25 — —

Table 5.3: Transaction workload parameters

straints on the completion ratio. The simulations show that CCR; and
CC Ry decrease linearly more or less, while CCR3 decreases exponen-
tially. OR-ULD/BC enforces robustness requirements and finds feasible
schedules (satisfying the MCCRs) until the workload goes beyond 41
transactions/second. However, as the figure shows, although the com-
pletion ratio constraints have been violated for the first and second trans-
action class, a small percentage of the third class transactions are still
successfully completing. Ultimately, transactions having no completion
ratio constraints should not be given system resources when the system
is dealing with extreme overloads. Instead, system resources should be
granted to transactions with completion ratio constraints. However, this
effect is due to the lack of clairvoyance, and the inherent deficiency in
bias control (bias does not become infinite when MCCRs are violated).

5.4.2 Complex Transaction Workload

In this simulation experiment the workload consisted of three transaction
classes, where each class represents one third of the total workload. The
first transaction class consisted of sporadic critical transactions, where
each transaction has a corresponding contingency transaction. The other
two classes consisted of aperiodic non-critical transactions, both having
completion ratio constraints (see table 5.4 for transaction class defini-
tions). OR-ULD (figure 5.13(b)) and EDF (figure 5.14) are here used as
baselines.
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Transaction Class Class 1 Class 2 Class 3
original contingency original original
% of workload 33.3% 33.3% 33.3%
Size (no. of ops) 5—-9 4-6 5—-9 —
Slack factor 9.0 —11.0 (see footnote 5) 9.0 —11.0 —
Utility 50.0 — 100.0 + %0.5 50.0 — 100.0 —
Penalty -0 — 0.0 —
MCCR N/A 0.50 0.25
Write probability 0.25 — — —

Table 5.4: Transaction workload parameters

Here figure 5.13(a) shows that OR-ULD/BC enforces the time constraints
of critical transactions, which is expected given earlier results using OR-
ULD. Transient overloads are resolved by increasing the number of con-
tingency transactions that replace critical transactions (class 1) as the
load grows (see the ’o’-line in figure 5.13(a)), and dropping non-critical
transactions (class 2 and 3) gracefully. For this specific transaction work-
load, the resolver starts dropping non-critical transactions and replacing
critical transactions with contingency transactions at about the same
time. However, as shown in figure 5.13(a), the rate at which transac-
tions are replaced increases significantly at low levels. This behavior is
expected given the low utility loss imposed by replacing a critical trans-
action in contrast to dropping a non-critical transaction. Out of the orig-
inal transactions, at most 93% are replaced during the transient overload,
with the peak at 29 transactions/second. The completion ratio of the
second transaction class drops below its minimum level for arrival rates
higher than 33 transactions/second. The completion ratio of the third
transaction class is then about five percentage units above the minimum
requirement for the transaction class. However, while OR-ULD violates
the completion ratio constraints for transaction workloads exceeding 27
transactions/second, OR-ULD/BC ensures completion ratio constraints
for workloads less than 34 transactions/second. Hence, it shows that the

5The slack factor is increased in proportion to the change in size between the
original transaction 7; and the contingency transaction 7.
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bias control mechanism is able to favor transaction classes with comple-
tion ratio constraints. However, critical transactions start missing their
deadlines 39 transactions/second. Overall, the envelope is 33 transac-
tions/second.

5.5 Guidelines for Assigning Value Functions

In any utility-driven approach the assignment of value functions to trans-
actions is imperative. In our simulation studies, we have intentionally
used a workload where the positive utility contributed by critical transac-
tions and non-critical transactions have been the same, thus complicating
the overload resolution. As our simulations show, OR-ULD guarantees
the time constraints of critical transactions by, in most cases, gradually
replacing transactions having contingency transactions and gracefully
dropping non-critical transactions.

Based on our experience with OR-ULD, the following guidelines are rec-
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ommended in order to ensure graceful performance degradation during
transient overloads, and to enforce the timeliness of critical transactions.

e Since OR-ULD is driven by utility loss, it is required that trans-
action criticality is modeled and represented with negative utility
(penalty) in the value functions (as opposed to other, more artificial
representation techniques). This ensures that overload resolution
actions that suggest dropping critical transactions will not be se-
lected.

e Transactions must have some degree of slack, allowing OR-ULD
some flexibility in resolving transient overloads and outlining a
schedule. (In our simulation studies, OR-ULD had predictable
behavior for slack values higher than 3.0.)

e A small difference in utility contributed by a transaction and a
contingency transaction (v;(t) ~ 9;(t)), in comparison to the utility
contributed by a non-critical transaction, favors early replacement
of original transactions. This is particularly true if there is a signif-
icant difference in worst-case execution times (w;(t) > w;(t)). If it
is desirable to have early dropping of non-critical transactions un-
der mild overload conditions, and late replacement of original trans-
actions (heavy overload), then the difference in benefit of original
transactions and their contingency transaction should significantly
exceed the benefit of non-critical transactions.



Chapter 6

Related Work

Real-time scheduling problems have been studied for several decades. It
is beyond the scope of this work to relate our research to all real-time
scheduling research efforts that have been made. This chapter focuses on
research problems and algorithms that are most relevant to the work in
this thesis, primarily dynamic real-time scheduling algorithms. For more
comprehensive studies and surveys on real-time scheduling in general,
the reader is recommended to study the work by Burns et al. [Bur91],
Stankovic et al. [SSDNB95, SSRB98], Buttazzo [But97], and Parnas and
Xu [XP93].

This chapter is structured as follows. In section 6.1 and section 6.2 other
work done on value-driven scheduling and deadline-driven scheduling is
presented. In section 6.3 we elaborate on some static scheduling models.
Section 6.4 discusses work done on bias control. In section 6.5, we discuss
the similarities and differences between OR-ULD and other approaches
based on alternative action models. Section 6.6 concludes the chapter
with a tabular overview comparing OR-ULD to other approaches.

111
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6.1 Dynamic Value-Driven Scheduling

Initial work on value-driven scheduling was carried out by Locke [Loc86],
who performed a thorough analysis of best-effort scheduling of tasks
having value functions. The problem was to maximize the total utility
given to the system when scheduling independent and non-precedence-
constrained preemptable tasks having firm or soft deadlines, where pre-
emption is of the type preemption-restart. Locke’s view is that the notion
of a single deadline is not adequate in a value-driven approach. Instead,
discontinuities in the value functions, or their derivatives, are considered
critical time-points. His study excludes the case where tasks impose a
negative value on the system after the ready time of the tasks and, hence,
these tasks are considered non-critical.

Locke’s computer system model assumes a shared-memory multiproces-
sor environment, where tasks are memory resident. The scheduler is as-
sumed to execute on a separate processor on which no tasks are to be ex-
ecuted. In his model, value functions can have one of the following char-
acteristics: linearly decreasing, linearly increasing or constant between
the ready time and the deadline. After the deadline, the value decays
exponentially. The Best-Effort scheduling algorithm, developed by Locke
[Loc86], showed through extensive simulation and analysis the feasibil-
ity of using dynamic scheduling algorithms for soft real-time scheduling
problems.

Tseng et al. [TCY97] conducted a simulation and performance analysis
for scheduling value-based firm deadline transactions in fully and par-
tially main-memory-resident database systems. The value contributed
to the system by the individual transactions is represented as a step
function. A step function is piecewise constant (all functions return a
constant value). That is, the time of completion does not affect the total
utility, unless a deadline is missed in which case no value (benefit) is
given to the system. The study included the following algorithms: Ear-
liest Deadline First (EDF), Highest Value First (HVF), Value-Inflated
Deadline (VID), Value-Inflated Relative Deadline (VIRD) [HCL93], and
Highest Reward First (HRF) [TCY97]. The concurrency control protocol
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used was 2PL-HP (Two-Phase Locking with Highest Priority) [AGMSS].

Chen and Mubhlethaler [CM96] developed two value-driven scheduling
algorithms for non-preemptive tasks with non-critical deadlines, with the
objective to maximize total value. To achieve this, the algorithms adopt
both heuristics and decomposition. Their simulation studies show that
the suggested algorithms outperform the benchmark algorithm EDF!
[CM96], which is not surprising since the EDF algorithm is not value-
cognizant.

When comparing our proposed approach with OR-ULD to these other
dynamic value-driven schemes [Loc86, HCL93, TCY97, CM96], some sig-
nificant differences can be noted. Most importantly, OR-ULD is designed
to schedule transactions in real-time database systems where transactions
are assumed to be of different criticality and importance. Moreover,
critical transactions have contingency transactions that can be invoked
during transient overloads

6.2 Dynamic Deadline-Driven Scheduling

The EDF algorithm has been shown to be optimal when scheduling pre-
emptable tasks with arbitrary release times and deadlines [LL73, Der74,
MD78], i.e., if a feasible schedule exists, then EDF will find it. It is
well known that EDF exhibits poor behavior during overloads. We now
study some of the research that has been carried out on developing other
deadline-driven algorithms and extending the EDF algorithm to handle
different types of scheduling problems.

Abbott and Garcia-Molina [AGMS88] evaluated the EDF and Least Slack
scheduling algorithms for firm-deadline transactions in a main-memory-
resident database system. The scheduling algorithms are evaluated in
combination with three different policies for determining the eligibility
of transactions. In addition, three different concurrency control schemes
were tested, namely, serial execution (non-concurrent), high priority, and

'Two sets of EDF algorithms were implemented, namely ESDF (soft deadlines)
and EHDF (hard deadlines).
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conditional restart.

Buttazzo and Stankovic [BSS95] investigated the overload performance
of the EDF, HVF (see section 6.1), HDF (Highest Density First; prior-
ity is based on value and execution time (v;/w;)), and the Miz dynamic
scheduling algorithms. The Mix algorithm considers both importance
value and deadline when determining the task priority. Two derivatives
of each algorithm were developed to enforce the notion of guarantee and
robustness. The guarantee algorithms use an acceptance test invoked
at the time of activation of new tasks. The robustness algorithms, in
addition to performing a guarantee test upon task activation, have a
more sophisticated rejection strategy. Tasks have a value reflecting the
importance level of the individual task, and their work suggests that
scheduling by deadline and rejecting by value is the most effective strat-
egy for a wide range of overload conditions. A rejection strategy based
on the importance value of the tasks is adopted and combined with a re-
source reclaiming mechanism taking advantage of early task terminations
[BSS95].

Buttazzo and Stankovic developed the RED (Robust Earliest Deadline)
scheduling algorithm [BS93, BS95] which tolerates overloads by using an
acceptance test. If the new task set is not feasibly scheduled, then the
system will reject the task with the least value, if any, such that the
remaining set is schedulable (otherwise the new task is rejected). All
tasks are aperiodic with firm and soft deadlines with specified deadline
tolerance.? Similar to [BS93, BSS95, BS95], our proposed overload res-
olution strategy admits transactions based on deadline, and rejection is
based on value.

Spuri et al. [SBS95] implemented a server, called Total Bandwidth Server
(TBS), which served aperiodic tasks with soft and firm deadlines (peri-
odic requests were considered critical). However, firm and soft tasks may
be rejected at admission during overloads.

2The terminology used in this thesis defines a deadline that has some tolerance
to be soft. A non-critical transaction with no deadline tolerance is firm. Using this
terminology, RED handles both soft and firm deadline transactions, although the
authors refer to the deadlines as firm in the articles.
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Baruah et al. [BKM™91] developed a scheduling algorithm called D*
(based on EDF) for scheduling firm-deadline tasks on a single processor.
D* is optimal, in the sense that it gives the best competitive factor
possible, during non-overloads like EDF and LS.

Haritsa et al. [HLC91] developed two new EDF-based algorithms for
scheduling firm-deadline transactions in real-time database systems hav-
ing multiple processors. The AED (Adaptive Earliest Deadline) algo-
rithm adapts its behavior based on the workload by using a feed-back
control process. On the basis of previous experience the process esti-
mates the number of transactions that are sustainable under EDF. While
AED is a strict deadline-driven algorithm, the HED (Hierarchical Ear-
liest Deadline) algorithm is value-driven and attempts to minimize the
value loss, i.e., maximizing the hit ratio (hit ratio is the ratio of the ac-
tual and estimated number of transactions that successfully completed).
In both cases, transactions are assumed to have firm deadlines, and their
worst-case execution times are not known a priori. In addition, transac-
tions have importance values (used only with HED).

The approaches described in [BS93, BS95, BSS95, SBS95, BKM™91]
share similar characteristics to the research problem studied in this the-
sis. For example, worst-case execution times of transactions are known a
priori, while arrival times and deadlines are not. Moreover, transactions
have value functions reflecting importance that do not change over time,
and the algorithms are designed for maximizing the total value (hit value
ratio, i.e., the ratio of obtained value and the obtainable value), by re-
jecting less important tasks during overloads. In contrast to all of these
approaches OR-ULD copes with additional complexity with respect to
the multi-class nature of the workload (critical and non-critical transac-
tions), and the additional transaction element, namely the contingency
transaction. This requires more sophisticated admission control and re-
jection algorithms. Our strategy enables overload resolution by rejecting
transactions at admission time, dropping selected admitted transactions,
or replacing transactions with their contingency transactions.

Sivasankaran et al. [SSTT96] developed and evaluated, by extensive
simulation, three deadline-driven algorithms suitable for active real-time
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main-memory-resident database systems. The system has two trans-
action classes distinguished by their reactive behavior: non-triggering
transactions and triggering transactions having immediate or deferred
coupling to the ”triggering transaction”.®> Transactions have known
worst-case execution times and firm deadlines. They show that the com-
pletion ratio for triggering transactions is increased significantly when
priority assignment policies take into account the dynamically generated
workload. Moreover, dynamically evaluating and changing the prior-
ities of the transactions depending on their behavior with respect to
triggering rules, results in a significantly increased completion ratio. In
comparison, our proposed strategy with OR-ULD does not consider the
multi-processor case. Our proposed overload resolution strategy incorpo-
rates value functions and value driven overload management. Moreover,
critical transactions have contingency transactions that are exclusively
coupled to the original transactions. OR-ULD also allows for different
types of time constraints.

6.3 Static and Hybrid Scheduling

In this section we compare OR-ULD to static and hybrid approaches. In
our comparison we consider the nature of the workload (single-/multi-
class workload, arrival patterns) and tasks (critical/non-critical).

Liu et al. [LL73] developed the rate-monotonic scheduling algorithm
(RMS) and the corresponding schedulability analysis of periodic tasks.
RMS is a fixed priority assignment algorithm that is performed off-line,
where task priorities are assigned in relation to the frequency of the task,
i.e. the shorter the task period is, the higher priority the task gets. The
assumptions underpinning the RMA are the following:

A1l Tasks are periodic.

A2 Worst-case execution times are known a priori, and all instances of

3Cascaded triggering is not allowed, i.e. transactions triggered by ”triggering trans-
actions” are always ”non-triggering transactions”.
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periodic task 7; have the same worst-case execution time w;.
A3 The deadline of a task equals its period.

A4 Tasks are independent.

Lehoczsky and Ramos-Thuel [LRT92] developed the slack stealing algo-
rithm for fixed-priority systems to which several extensions have been
suggested [RTL93, RTL94, DTB93]. Lehoczsky et al. [LRT92] showed
how the slack stealing algorithm guaranteed periodic hard-critical tasks
and how sporadic soft tasks were scheduled by ”stealing” slack time from
the periodic tasks. Thuel et al. [RTL93, RTL94] extended the model to
incorporate hard-essential aperiodic tasks which were admitted to the
system based on an acceptance test guaranteeing the timeliness of the
task (tasks not passing the test are rejected). The assumption is that
periodic tasks are guaranteed to meet their deadlines, and aperiodic re-
quests are handled on a best-effort basis, but once aperiodic requests are
accepted, their timeliness is guaranteed. Davis et al. [DTB93] extended
the model to incorporate periodic and sporadic hard-deadline tasks to-
gether with soft-deadline aperiodic tasks where slack is stolen from both
periodic and sporadic tasks. An approximate version for dynamic task
scheduling was developed and evaluated. Their approach was proven
optimal in the limited case of independent periodic tasks. However, the
dynamic algorithm is applicable to more general scheduling problems
including hard-deadline sporadic tasks.

Kim et al. [KS95a, Kim95] developed a strict deadline-driven trans-
action-processing scheme for executing transactions of different critical-
ity where database consistency and temporal consistency are maintained.
Within this framework, they categorized real-time transactions of dif-
ferent types into three classes where classes I and II are critical and
class III is non-critical. Timeliness is enforced by adopting the deadline-
monotonic scheduling algorithm [ABR ™93] for class I and class II trans-
actions, and a dynamic slack-stealing-based algorithm [RTL94] for class
IIT transactions.

What is common to these approaches (i.e., rate-monotonic, deadline-
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monotonic, and slack-stealing algorithm) is the assumption that periodic
tasks are critical and aperiodic tasks are non-critical. These approaches
reject aperiodic tasks during transient overloads, i.e., preferential treat-
ment is given to periodic tasks. In contrast, in our proposed overload
resolution strategy all transactions are handled equally since all trans-
actions (periodic and non-periodic) must be admitted by the admission
controller. OR-ULD allows non-periodic transactions that may be criti-
cal and, hence, these cannot be rejected, but must be handled either by
executing the original transaction as requested or by invoking a contin-
gency transaction.

6.4 Bias Control / Skipping

Koren and Shasha [KS95b] define the algorithms RTO (Red Tasks Only)
and BWP (Blue tasks When Possible), both being variants of EDF and
RMS. They consider the scheduling problem when the workload consists
of periodic tasks that can occasionally be skipped. Every task has in-
stances where each instance of a task can be red or blue. A red task
instance must complete before its deadline and a blue task instance can
be aborted at any time.

Hamdaoui and Ramanathan [HR95] proposed a distance-based prior-
ity (DBP) scheme, which is appropriate for periodic and non-periodic
streams having (n, m)-temporal constraints, implying that the tasks must
meet m deadlines in any n invocations.

In [BB97], hard-deadline tasks are assigned (n, m)-temporal constraints.
Their work focuses on attempting to increase the capacity for soft tasks
by allowing skips for hard tasks. Hard tasks are periodic and soft tasks
are aperiodic.

Caccamo and Buttazzo have proposed an algorithm based on EDF that
is appropriate for workloads consisting of periodic firm deadline tasks
allowing skips and aperiodic soft tasks [CB97]. Similar to [BB97], the
idea is to enhance the responsiveness for aperiodic tasks by exploiting
skips for periodic tasks.
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In contrast to all the above workloads ([KS95b, HR95, CB97, BB97]), the
workload studied in this thesis consists of sporadic, critical transactions
that are non-skippable, and non-critical transactions with completion ra-
tio constraints. While critical transactions cannot be skipped, they can
be replaced with contingency transactions during (transient) overloads.
OR-ULD/BC resolves transient overloads by using dual strategies; in-
voking contingency transactions that replace original transactions, and
controllably dropping firm transactions considering the skip constraint.
OR-ULD/BC assumes the alternative statistical model of skips suggested
by Koren and Shasha [KS95b], i.e., some specified fraction of deadlines
must be met during a finite time interval.

Pang et al. [PLC92] studied the behavior of EDF and AED (see
page 115) when scheduling multi-class transaction workloads in real-
time database systems. They noticed that both EDF and AED, in ad-
dition to the fact that their performance deteriorates rapidly when the
system is overloaded, discriminates longer transactions in attempting to
minimize the number of tardy transactions and, hence, are not appro-
priate for multi-class transaction workloads. They therefore designed
Adaptive Earliest Virtual Deadline (AEVD) with the goal of having the
performance of EDF but without its biased behavior. In their model,
transaction classes are distinguished by the mean size of the transactions
belonging to a class and the tightness of the time constraints is propor-
tional to transaction sizes. The idea is that the average completion ratios
of the transaction classes (C'CR;) should ultimately be the same. Hence,
they do not handle minimum class completion ratio (MCCR) constraints.

Datta et al. developed an algorithm called AAP (Adaptive Access Pa-
rameter) [DMK™196] for disk-resident and firm real-time database sys-
tems which incorporates an admission controller that tests new transac-
tions for schedulability. AAP performs admission control for managing
transient overloads and to bias resource allocation towards particular
transaction classes, which are distinguished by their mean sizes. The
goal of AAP is to ensure fairness between transaction classes. AAP and
AEVD are capable of handling workloads consisting of multiple trans-
action classes where all transactions have the same criticality. However,
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AAP and AEVD are not able to handle transactions having a contin-
gency transaction. In contrast to the work of Pang et al. and Datta
et al., OR-ULD handles transactions of different criticalities, and in our
approach classes are distinguished by their minimum class completion ra-
tio (not their size). Moreover, our goal is to bias the execution towards
classes having high class completion ratio requirements while ensuring
that the minimum class completion ratio requirements are not violated.

6.5 Alternative Action Models

Considerable work has been carried out on the use of task/transaction
models having alternative actions. Overall, the different approaches can
be categorized by how a task is decomposed and the criteria for exe-
cuting the decomposed subtasks, i.e., how they are dependent upon each
other. In the imprecise computation model (section 6.5.1), decomposition
of tasks into one mandatory and one optional subtask is suggested where
the former computes a result which satisfies the minimum requirement.
Additional execution of the optional part increases the quality of the re-
sult. Execution of both the mandatory part and the optional part will
provide a result with no quality reduction or errors. Hence, during over-
loads only mandatory tasks are executed. In the primary/backup model
(section 6.5.2), tasks have a primary copy and a backup copy where the
backup is a copy of the primary task and has the same temporal scope as
the primary task. In the original/contingency model (section 6.5.3), tasks
have an original transaction and a contingency transaction where the con-
tingency transaction produces satisfactory results but it is not a copy of
the original transaction. The backup and the contingency are executed
in order to recover the system from the failure of completing the primary,
for example timing faults of primaries [LC86, CC89, Che94, Nag97], pro-
cessor failures [KS86, YS92, MMGY94|, or database consistency faults
[SKS95].
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6.5.1 Imprecise Computation Model

Shih et al. [SLC89] consider how to feasibly schedule tasks consisting
of a mandatory and an optional subtask. They consider the special
case when optional tasks have identical values or identical processing
times. In their model, developed for single-processor systems, tasks are
preemptable, aperiodic, have values representing importance, arbitrary
and identical ready times and deadlines, and the worst-case execution
times are known. They develop a set of algorithms: DFS and F(identical
processing times), LDF (identical ready times), which prove to produce
feasible schedules under those conditions.

In [LLST91] Liu, Shih et al. define a set of scheduling algorithms appro-
priate for imprecise computation tasks. Their approach is to guarantee
mandatory subtasks by considering them critical and then on a best-
effort basis schedule the optional subtasks.

In [SL92] Shih et al. propose a set of algorithms (NORA — No-Off-
line tasks and on-line tasks Ready upon Arrival, ORA — On-line task
Ready upon Arrival, OAR — On-line Tasks with Arbitrary Ready time)
that focus on minimizing the total error (in this work the assumption
about tasks having identical weights has been eliminated as compared to
[SLC89]). Lee et al. [LRS'98] have proposed an extension to the OAR
algorithm, making it suitable for minimizing the largest weighted error.

Kim et al. [KSCJ98] use a strict two-level queue system, where tasks
in each queue are scheduled by EDF. Mandatory and optional parts
of released tasks are placed in different queues. The idea is to sched-
ule and execute mandatory parts first, and then execute optional parts.
(This is performed if and only if the mandatory part of a released task
has completed and no mandatory parts among the released tasks are
unfinished.) Simulation results show that the algorithm exhibits simi-
lar performance with respect to maximum error (accuracy) while main-
taining higher schedulability to the algorithms proposed by Shih et al.
[SLC89, SL92].

In our proposed overload resolution strategy, in contrast to the impre-
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cise computation model, critical transactions have one original part which
produces a result of full accuracy, and one contingency transaction which
produces a result of reduced quality. Hence, while it is always necessary
to complete mandatory parts of imprecise transactions, original transac-
tion and contingency transactions have a different constraint; either the
original transaction or the contingency transaction is executed to com-
pletion. Hence, during overloads the contingency transactions replace
the original transactions.

It should be noted that our approach is also applicable for imprecise
transaction workloads. The performance of OR-ULD for imprecise trans-
action workloads has been evaluated and compared to the performance
of the algorithm proposed by Kim et al. [KSCJ98]. Simulation re-
sults showed that OR-ULD performs significantly better during light
to medium overloads and provides better overall accuracy [HT, Thu99].

6.5.2 Primary/Backup Model

Krishna and Shin [KS86] study the problem of tolerating processor fail-
ures in a multiprocessor system by executing multiple copies of each
task on different processors. Tasks are periodic with known worst-case
execution times.

Oh and Son [YS92] have considered the problem of handling proces-
sor failures in hard real-time multi-processor systems. Their goal is to
maximize the number of processor failures to be tolerated and minimize
the number of processors used. Tasks have one primary copy and one
backup copy, hence, they are equal in size, etc. Oh and Son proposed a
scheduling algorithm based on the FFD (First-Fit Decreasing) bin pack-
ing heuristic. Their approach is to have one primary schedule and one
backup schedule where the latter is invoked in case of processor failures.

In comparison, while Krishna et al. [KS86] and Oh et al. [YS92] focus
on processor failures in multi-processor systems, OR-ULD focuses on re-
solving transient overloads locally in a single-processor system. Hence,
contingency transactions are executed on the same processor as the origi-
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nal, and contingency transactions have different characteristics compared
to the original transactions.

6.5.3 Original/Contingency Model

In [CC89] Chetto et al. modify EDF with a deadline mechanism appro-
priate for scheduling original transactions and contingency transactions
in fault-tolerant real-time systems. The strategy, denoted EDL (Earliest
Deadline Last chance strategy), lets the scheduler reserve time intervals
for executing alternative transactions. Alternatives are scheduled for
execution at their latest time (i.e. d; — w;). Original transactions are
scheduled in remaining times before their contingency transactions and,
hence, whenever an original transaction successfully completes, execu-
tion of the corresponding contingency transaction is no longer necessary.
This implies that any contingency transaction may terminate a currently
executing original transaction for starting its execution at the correct
time. Moreover, while the worst-case execution times of contingency
transactions are necessary, the execution times of original transactions
do not have to be known. The EDL strategy ensures that a feasible
schedule for contingency transactions will be found if there exists such a
schedule. In contrast to OR-ULD, contingency transactions are used for
resolving transient overloads as opposed to handling timing failures. The
EDL strategy is designed specifically for workloads where all transactions
have contingency transactions. Overloads are resolved by simply reject-
ing transactions at admission control level. OR-ULD has the advantage
of sophisticated overload management. Chetto [Che94] also shows how
the deadline mechanism can be extended to distributed systems in order
to cope both with processor failures and timing faults.

Nagy [Nag97, BN97] studies the problem where transactions consist of
a primary task and a compensating task. Admitted transactions are
guaranteed to complete either by successful commitment of the primary
task or by safe termination (successful commitment) of the compensating
task. The worst-case execution time of the compensating task is known
a priori, but not for the primary task. The compensating task is a safe
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mechanism for bailing out if the primary transaction is not able to finish
before its deadline due to the unknown processing requirements. Hence,
compensating tasks are not used for resolving overloads. Instead, over-
loads are resolved at the admission control level, rejecting tasks at sub-
mission time. Successful commitment of a primary task gives a constant
benefit to the system (represents the importance of the transaction) but
successful completion of the compensating transaction offers no benefit to
the system. In contrast, in our overload resolution approach contingency
transactions are used as one mechanism for resolving transient overloads.
The other mechanism is rejection of transactions at the admission control
level. In other words, our proposed strategy performs overload resolution
by rejecting transactions at the admission control level and re-allocating
resources among admitted transactions. Hence, while admitted transac-
tions are not guaranteed to complete, non-critical transactions may be
dropped and critical transactions may be replaced by their contingency
transactions but not dropped. Moreover, OR-ULD assumes that worst-
case execution times of original and contingency transactions are known.
Admission is based on execution time and utility (during transient over-
loads). In addition, completing contingency transactions contribute with
some utility, although reduced with respect to the original transaction.

Soparkar et al. [SKS95] suggest a predicate-based model where deadlines
are attached to contingency constraints rather than directly to trans-
actions. In their model, validity of the constraints represents a safe
database state. Violation of the constraints indicates the occurrence of a
crisis, i.e., a situation calling for corrective actions to be taken. The sys-
tem model comprises finite sets T' = {11, 79,... , 7, } of predefined trans-
actions, and C' = {¢1,¢,... ,¢n} of predefined contingency constraints.
The contingency constraints are in the form of conjuncts [SKS95]. The
database is considered to be in a safe state when A", ¢; is satisfied. Their
work focuses on optimal strategies for restoring the database to a state
consistent with the contingency constraints, e.g. selection of contingency
actions which is shown to be NP-complete.

A number of intrinsic differences can be identified. First, the suggested
approach assumes that the execution of normal transactions co-exists
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with the contingency actions, as opposed to OR-ULD where normal
transactions are substituted with contingency actions which are executed
instead. Second, corrective actions are initiated by an activation module
that continuously monitors the state of the database detecting incon-
sistencies, resulting in a potential deterioration of performance. Our
overload resolution strategy suggests that contingency actions should be
activated by the real-time scheduler detecting an overload. The actual
activation and detection is modeled with ECA rules. Third, their study
considers only internally generated transactions and excludes transac-
tions with external inputs or outputs.

6.6 A Tabular Overview

This chapter concludes with tables listing several criteria focusing on
scheduling assumptions and models. The tables represent a summary of
related research and provide an additional instrument for comparing our
proposed overload resolution strategy to other strategies. The following
symbols are used in the tables:

X — feature applies for all transactions or feature exists in the
system;
c/n — feature applies for critical/non-critical transactions; and
p/s/a — feature is true for periodic/sporadic/aperiodic trans-

actions.
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Table 6.1: Comparison of timing characteristics of scheduling entity
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Algorithms \\O\/V Qow\v// % ﬂovwb/ nw%/ &&oﬁ \/v&ou omdno/ \/mwv /mwnve %&% AA%V
Database Model OA\L @ SR @ SR \,/Nz &R

Concurrency | 1) optimistic x | x| x x
control meth. | 2) pessimistic x x
Read/write 1) known
sets 2) unknown x | x| x x | x| x
Coupling 1) immediate x
modes 2) deferred x

3) det. excl ser. | x

4) detached x
DB storage 1) disk x x | x

2) main memory | x | x x | x X

Table 6.3: Comparison of database models
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The comparison focuses on the characteristics of (i) the time constraints
of the scheduling entities (6.1; category A-E); (ii) the scheduling model
(6.2, category F-L); (iii) the database model (6.3, category M-P); and
(iv) alternative actions (6.4, category Q-R). Below follows a description
of the criteria.

A. Inter-Arrival Time of Transactions Approaches are compared
with respect to arrival patterns of transactions. The alternatives are:

1. periodic;
2. sporadic; and

3. aperiodic.

B. Execution Time of Transactions Compares the a priori knowl-
edge about transaction execution times. The alternative is:

1. worst-case execution times of transactions are known a priori.

C. Deadline Compares the a priori knowledge of transaction dead-
lines. The alternatives are:

1. deadlines are not known a priori to transaction arrival; and

2. deadlines of periodic transactions equal end of their period.

'Is computed upon arrival by using read and write sets which are known.

2System is not designed for having transactions with and without deadline toler-
ance at the same time.

3Gystem has not been evaluated for soft deadline transactions.

“Only for HED (Hierarchical Earliest Deadline) algorithm.

®One processing element is used for executing transactions, and in addition, there
is a dedicated processing element for performing scheduling activities.

SExecution time of alternative action is significantly smaller, although not neces-
sarily orders of magnitude smaller.

"System was evaluated when either 3) or 4) is true.

8Transactions aborted when they become tardy.
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D. Deadline Criticality Comparison of supported deadline critical-
ity of transactions. The alternatives are:

1. critical; and

2. non-critical.

E. Value Functions Comparison of support for associating value
functions to transactions. The alternatives are:

1. importance is associated with transactions and does not change
over time; and

2. value functions are used to represent the time-varying utility con-
tributed to the system (includes possible penalty).

F. Number of Processors Compares the number of processing ele-
ments in the system on which application transactions are executed. The
alternatives are:

1. single processor; and

2. multiple processors with shared memory (centralized system).
G. Scheduling Entity Compares the type of scheduling entity. The
alternatives are:

1. task; and

2. database transaction.

H. Scheduling Comparison of when scheduling decisions are made.
The alternatives are:

1. static (off-line; alternative includes hybrid solutions that are both
static and dynamic); and

2. dynamic (on-line).
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I. Type of Guarantee Compares the type of guarantee that is pro-
vided by the scheduler for a set of transactions. The alternatives are:

1. absolute guarantee, i.e. transactions are guaranteed to meet their
time constraints once they passed a schedulability test;

2. conditional guarantee, i.e. transactions should meet their time con-
straints (once admitted), but may be subject to re-negotiation un-
der certain conditions; and

3. best effort, i.e. transactions are not given any guarantees.

J. Admission Controller Specifies whether the system performs ad-
mission control upon arrival or activation of transactions.

K. Performance Metric The performance metric used to assess the
relative merit of each approach is:

1. maximize for total value (includes maximize hit value ratio, see
page 115);

2. minimize total error (includes minimize loss ratio);

3. maximize the number of completions of original transactions;
4. completion ratio; and

5. normalized completion ratio for a set of transaction classes.

L. Overload Resolution Strategy Compares the strategy used to
resolve overloads. The alternatives are:

1. selected transactions are rejected upon arrival;

2. alternative transactions are invoked (alternative action is a sepa-
rate transaction from the original transaction, i.e., not the manda-
tory /optional scenario);
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3. only the mandatory part of transactions are executed during over-
loads and optional parts are rejected; and

4. currently executing transactions may be aborted during overloads.

M. Concurrency Control Method Specifies which type of concur-
rency control method is used, if any. The alternatives are:

1. optimistic concurrency control; and

2. pessimistic concurrency control.

N. Read/Write Sets Specifies whether the read/write set is known
a priori or not (determines whether conflicts can be prevented or not).
The alternatives are:

1. known; and

2. unknown.

O. Coupling Modes Compares the supported coupling modes (see
section 2.5.2 for a description of the coupling modes). The alternatives
are:

1. immediate;
2. deferred;
3. detached exclusive serial; and

4. detached.

P. Database Storage Compares the type of data storage used for
storing data objects. The alternatives are:

1. disk storage; and

2. main memory.
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Q. Alternative Action Compares the type of alternative action
model supported. The alternatives are:

1. mandatory/optional (imprecise transactions);
2. primary/backup; and

3. original/contingency action.

R. Characteristics of Alternative Actions Compares how alterna-
tive actions are related to the original transaction with respect to certain
attributes. The alternatives are:

1. alternative transaction has the same deadline as the original trans-
action;

2. alternative transaction may have a deadline that is later than the
original transaction;

3. the worst-case execution time of the alternative transaction is sig-
nificantly smaller than the worst-case execution time of the original
transaction (not necessarily orders of magnitude but significantly);

4. the worst-case execution time of the alternative transaction and the
original transaction is similar (however, the worst-case execution
time of the alternative transaction is smaller or equal to the worst-
case execution time for the original transaction);

5. alternative transactions have value functions; and

6. worst-case execution times of contingency transactions are known
a priori.



Chapter 7

Conclusions

We shall not cease from exploration
and the end of all our exploring

will be to arrive where we started
and know the place for the first time.
- T.S. Eliot

This final chapter starts with a summary of our work (section 7.1). Re-
search contributions are presented (section 7.2), followed by a discussion
of the research results and the applicability of the approach to other
workload scenarios (section 7.3). In the last section (section 7.4) we
identify issues for future work.

7.1 Summary

Dynamic real-time systems offer both flexibility and adaptability in han-
dling new situations occurring in the environments in which they are
working, and dynamic real-time scheduling algorithms generally achieve
good performance during light to moderate workloads. However, dy-
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namic real-time systems are prone to transient overloads, i.e., a situa-
tion lasting for a finite interval where system resources are saturated and,
hence, not all system requests can be handled. The primary responsibil-
ity of a dynamic scheduler in an under-utilized system is to determine
in which order to execute transactions such that their time constraints
are enforced. In the case of a transient overload, however, not all trans-
actions can meet their time constraints based on their original resource
requirements. In order to optimize usage of system resources it is im-
perative that they are granted to transactions that have critical time
constraints. This implies that the scheduler has to select which transac-
tions should be allowed to run, in addition to deciding the transaction
execution order.

In this thesis the research problem of how to dynamically resolve tran-
sient overloads in dynamic real-time systems in general, and in real-time
database systems with complex workloads in particular, has been investi-
gated. Specifically, the workload consists of multiple transaction classes
where transactions have mixed criticality (critical and non-critical dead-
lines). Moreover, critical transactions are periodic and/or sporadic, and
non-critical transactions may also be aperiodic. Further, critical trans-
actions have contingency transactions, having significantly less computa-
tional requirements. Contingency transactions produce results that are
of reduced quality but still acceptable. A contingency transaction can
be invoked during transient overloads, replacing an original transaction,
releasing some resources. Value functions are used to represent trans-
action importance and transaction criticality. Value functions represent
the benefit (positive utility) contributed to the system upon success-
ful transaction completion, and the penalty (negative utility) imposed
on the system if a transaction becomes tardy. Consequently, for con-
tingency transactions, the value function also represents the degree of
quality reduction.
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7.2 Contributions

The aim of this work has been to investigate how dynamic real-time sys-
tems can be made overload tolerant and how predictable behavior can
be enforced during transient overloads. Our work complements current
research on scheduling and overload management in dynamic real-time
systems and particularly in real-time database systems. We propose a
framework that exploits dynamic overload resolution and enables real-
time systems to dynamically handle extreme transaction workloads of
mixed criticality. More specifically, the contributions of our framework
are fourfold: Overload resolution follows (i) a novel strategy where a
set of overload resolution actions is generated. Overloads are resolved
by carefully selecting a set of overload resolution actions that release
the necessary amount of time among currently executing transactions
in order to admit a new transaction. We have introduced (ii) a sched-
uler architecture that supports admission control and dynamic overload
resolution. Moreover, (iii) a dynamic and utility-driven overload resolu-
tion algorithm (OR-ULD) that implements the strategy has been devel-
oped. OR-ULD gracefully degrades performance during transient over-
loads and still ensures timeliness of critical transactions. OR-ULD has
been equipped with (iv) a novel bias control mechanism (/BC) which
during transient overloads increases the bias as the class completion ra-
tio decreases towards a specified minimum level.

7.2.1 Overload Resolution Strategy

In the case of transient overload and a new transaction arriving to the
system, there is a required amount of time that must be released if the
new transaction is to be admitted. Our strategy scrutinizes resource
reservations of already admitted transactions and attempts to release re-
sources among these transactions (e.g., dropping a transaction, replacing
a transaction, or postponing a transaction). The strategy releases suf-
ficient resources among admitted transactions to admit the new trans-
action. In doing so, it considers the utility loss imposed by releasing
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resources and the utility gain of admitting the new transaction to the
system as opposed to the penalty imposed on the system if it were re-
jected.

7.2.2 Scheduling Architecture

The proposed scheduling architecture incorporates an admission con-
troller, a scheduler, an overload resolver, and a dispatcher. The purpose
of admission control is to prevent the system from being saturated. The
admission controller tests new transactions for schedulability upon their
arrival and only transactions passing the schedulability test are granted
system resources. Hence, the admission controller presents only schedu-
lable transaction workloads to the scheduler and thereby the admission
controller constitutes an overload filter. There is a disadvantage of ap-
plying admission control as the single mechanism for handling transient
overloads for multi-class transaction workloads. There are two main ap-
proaches when using admission control for multi-class transaction work-
loads. Either (i) divide and assign system resources per transaction class
and perform admission control for each transaction class separately (i.e.,
multiple admission controllers are used), or (ii) use a single admission
controller for all transaction classes (i.e., admission control is indepen-
dent of transaction class). The former approach suffers from under-
utilization caused by the fact that system resources are pre-assigned to
classes, and thereby also a degree of limited flexibility. Hence, new trans-
actions may be rejected due to scarce resources within a class while the
overall system may be under-utilized. The second approach, which seems
more promising, generates higher resource utilization and offers a higher
degree of flexibility. The primary concern with this approach is related
to the nature of transaction classes, particularly how classes are related
with respect to importance and criticality. Since admission is resource
based and does not consider importance and criticality, critical transac-
tions may be rejected due to earlier admissions and, in the worst case,
earlier admissions of non-critical transactions. Hence, in order to enforce
admission of a newly arrived critical transaction earlier admissions have
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to be scrutinized and re-evaluated, and if necessary, resources may have
to be released in order to admit the new transaction.

7.2.3 OR-ULD Overload Resolution Algorithm

The OR-ULD algorithm has been implemented and an extensive simul-
ation-based performance analysis has been conducted. The results show
that the OR-ULD algorithm (i) gracefully degrades performance dur-
ing overloads by increasing the number of contingency transactions (re-
placing the original transactions) and gradually dropping non-critical
transactions, (ii) ensures the timeliness of critical transactions (within
a certain operational envelope), and (iii) produces near-optimal results.
A system utilizing both admission control and overload resolution by
resource re-allocation, as outlined in this thesis, offers a substantial in-
crease in completion ratio during transient overloads. In particular, the
enforcement of critical time constraints is guaranteed in a wider opera-
tional envelope.

In our work, transactions are scheduled using EDF and blocking is han-
dled by the Stack Resource Policy (SRP) [Bak91]. Admission considers
the schedulability of a transaction given its worst-case execution time
and the potential time it may be blocked.

7.2.4 Bias Control

It is generally accepted that occasionally missing some firm and soft
deadlines is acceptable and is not considered a failure. Hence, during
transient overloads, some of the non-critical transactions can be dropped
without jeopardizing system correctness. Most research in the area of
scheduling soft and firm transactions assumes that there is no require-
ment on the minimum number of firm or soft transactions that must
successfully complete. The focus of this thesis has been on scheduling
multi-class transaction workloads where transaction classes are distin-
guished by their minimum class completion ratio requirement. System
correctness is maintained if, for all transaction classes, the class comple-
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tion ratio does not fall below the minimum level.

Even though OR-ULD ensures enforcement of critical time constraints,
while doing a best effort at executing non-critical transactions, it has
no way of meeting specific completion ratio requirements for the non-
critical transactions. The results show that OR-ULD/BC (i) gradually
drops non-critical transactions as the load increases towards the opera-
tional envelope, and (ii) the suggested bias control mechanism enforces
transaction class completion ratio requirements within this operational
envelope.

7.2.5 Advantages of Our Approach

The approach, encompassing the listed contributions, is unique and has
several advantages compared to other approaches. First, the overload
resolution strategy takes advantage of the expressive power of value func-
tions. Value functions represent the positive utility (benefit) contributed
to the system if the transaction completes on time, and the possibly
negative utility (penalty) imposed in case the deadline is missed. The
natural and explicit representation of criticality using negative utility en-
ables OR-ULD to enforce time constraints of critical transactions without
using artificial values or constructs. Second, the approach separates over-
load management from scheduling and admission control. The overload
management can be used with other admission control and scheduling
policies. The scheduling policies are required to have a mechanism for
detecting transient overloads and must be able to indicate the critical
interval in which a transient overload is occurring. Third, the approach
enables resolution of transient overloads by using multiple strategies, i.e.,
dropping transactions, replacing transactions with contingency transac-
tions, and/or deferring completion of transactions till after their dead-
lines but within their deadline tolerance. For the first time it is possible
to balance these decisions against each other. This is done by analyzing
the consequences of an overload resolution action with respect to utility.
This means that for a transient overload situation one can determine
whether it is more beneficial to invoke contingency transactions of crit-



7.3 Discussion 141

ical transactions or to drop non-critical transactions in order to be able
to admit a new critical transaction.

7.3 Discussion

In contrast to the imprecise computation model [LLS'91], we have fo-
cused on how and when to replace critical transactions, as opposed to
only partially executing critical transactions, and particularly on the
case when critical transactions have contingency transactions where the
original transaction or the contingency transaction is executed to com-
pletion. In this case, the criticality of a contingency transaction is
given by the criticality of the original transaction. In contrast, the
imprecise computation model suggests decomposition of critical trans-
actions into mandatory parts and optional parts, having hard deadlines
and firm deadlines respectively. Moreover, only mandatory transactions
are executed during overloads while optional transactions are dropped
[SLC89, SLY2, LLST91].

Imprecise transactions can be incorporated to our scheduling model by
defining mandatory parts to be hard critical transactions without contin-
gency transactions. Further, optional parts are defined to be non-critical
transactions with firm deadlines. Since the optional part should not exe-
cute before the corresponding mandatory part has completed, the impre-
cise computation model has a precedence constraint between mandatory
and optional parts. While our scheduling model does not explicitly sup-
port the representation of precedence constraints, this causal chain can
be modeled by letting mandatory transactions, once they complete, re-
lease their optional transactions. Current work focuses on extending
OR-ULD to include imprecise transactions [HS99, Thu99].

We have studied the case when all critical transactions are assumed to
have a contingency transaction but the OR-ULD algorithm can be ap-
plied to transaction workloads where only a subset of the critical trans-
actions have contingency transactions. Let us explain why. Consider
critical transactions having contingency transactions to be semi-critical
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and their contingency transactions critical. Further, critical transac-
tions without contingency transactions are truly critical since they must
complete and cannot be dropped or replaced. If the set of critical trans-
actions is schedulable, excluding semi-critical transactions, the OR-ULD
algorithm still works. When generating overload resolution actions, any
action suggesting that a critical transaction should be dropped imposes
infinite utility loss, implying that it will not be selected as an appropriate
overload resolution action. As it turns out, this is what happens dur-
ing heavy overloads where a dominant part of the critical transactions
has been replaced with their contingency transactions. If a new transac-
tion arrives to the system, as our performance analysis shows, admitted
contingency transactions remain unchanged and they are not dropped.

Our performance analysis has primarily focused on workloads where only
critical transactions have contingency transactions. However, our strat-
egy and the OR-ULD algorithm are also applicable to more generalized
workloads, where all or some of the non-critical transactions may have
contingency transactions as well. Hence, a non-critical transaction can be
rejected, dropped or replaced with its contingency transaction. Further,
contingency transactions of non-critical transactions can be dropped as
opposed to contingency transactions of critical transactions. The effect
of this is that the ratio of successfully completed non-critical transactions
is likely to increase during light overloads. In the case where an overload
increases in severity, there is a potential risk of an additional increase of
resources wasted due to dropping partially executed contingency trans-
actions of non-critical transactions.

7.4 Future Work

We have evaluated the performance of OR-ULD for workloads consist-
ing of critical and non-critical transactions with no deadline tolerance.
Hence, the two types of overload resolution actions used are dropping
and replacing a transaction. However, there is a third type of overload
resolution action, namely postponing a transaction outside the critical
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overload interval. Postponing a transaction till after its deadline reduces
the benefit contributed to the system. However, postponing a transaction
is a more complex overload resolution action than dropping transactions
or replacing transactions with contingency transactions, since it will af-
fect the execution order of admitted transactions. An analysis is required
in order to evaluate the efficiency if this type of action.

The work in this thesis has focused on transactions where the utility con-
tributed to the system upon successful completion is constant as long it
completes before the deadline. The expressive power of value functions
enables representation of importance for transactions where the utility
contributed to the system may change over time (see section 3.2.1 for a
description of value functions). In order to optimize the total utility con-
tributed to the system, transactions contributing with the highest utility
should be admitted. In addition, these transactions should be sched-
uled such that the utility contributed to the system is maximized. In
our systems, admitted transactions are scheduled using EDF which does
not consider the utility of the transactions. The utility is considered
when transactions are admitted and when overloads are resolved. By
extending the scheduling architecture with a component that improves
the schedule outlined by EDF with respect to the utility of the trans-
actions, altering the execution order of admitted transactions, overall
utility can be maximized. It should be noted that altering the execution
order of admitted transactions is also justified in systems where trans-
actions have constant value functions. Notably, completing high-valued
transactions as early as possible increases the total utility obtained by
the system during transient overloads. The effect is due to the fact that
when an overload occurs, reallocation of resources is among transactions
that contribute less utility.

Our approach resolves overloads by releasing time among admitted trans-
actions. Each overload resolution action saves some time but results in
a utility loss, representing the fact that the quality of the result pro-
duced by a transaction is traded for time. Currently transactions are
only downgraded and never upgraded again, i.e., dropped transactions
are not considered for re-invocation, and replaced transactions are not
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substituted with their original transactions. This is particularly justified
in systems where the difference between worst-case execution times and
actual execution times of the transactions is small and can be considered
negligible in comparison to the cost associated with upgrading transac-
tions again. For example, in main-memory resident systems blocking is
reduced, or even eliminated, due to negligible I/O delays. However, per-
forming admission and scheduling of transactions based on their worst-
case execution times may be too pessimistic in systems where actual ex-
ecution time is significantly smaller than the worst-case execution time.
This causes the system to be not fully utilized, in which case it could
be beneficial to re-invoke dropped transactions and replace contingency
transactions with their original transactions.
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Appendix A

AAP
AED
AEVD
ATT
BWP
COI
DFS
EDF
EDL
FFD
HDF
HED
HVF
HRF
Locke’s BE
LDF
LPF
LS
LWF
NORA

Abbreviations

Adaptive Access Parameter

Adaptive Earliest Deadline

Adaptive Earliest Virtual Deadline
Admitted Transaction Table

Blue tasks When Possible

Critical Overload Interval

Depth First Search

Earliest Deadline First

Earliest Deadline Last chance strategy
First-Fit Decreasing

Highest Density First

Hierarchical Earliest Deadline

Highest Value First

Highest Reward First

Locke’s Best Effort algorithm

Latest Deadline First

Longest Processing time First

Least Slack

Largest Weight First

No-Off-line tasks and on-line tasks Ready upon Arrival
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162 Abbreviations

OAR On-line Tasks with Arbitrary Ready time

OCCL Optimistic Concurrency Control using Locking

OCCL-SVW  Optimistic Concurrency Control using Locking and
Serial Validation Write

OR-ULD Overload Resolution using Utility Loss Density

OR-ULD/BC OR-ULD with Bias Control

ORA On-line task Ready upon Arrival

ORP Overload Resolution Plan

RED Robust Earliest Deadline

RMS Rate-Monotonic Scheduling Algorithm

RTO Red Tasks Only

SRP Stack Resource Policy

TOI Total Overload Interval

VID Value-Inflated Deadline

VIRD

Value-Inflated Relative Deadline
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Variable

Variable Descriptions

Description

ready time of transaction 7;

deadline of transaction 7;

deadline criticality of transaction class 7;

deadline tolerance of transaction 7;

termination time of transaction 7;

worst-case execution time of transaction 7;

remaining execution time of transaction 7;

inter-arrival time

value function for transaction 7;

amount of execution time used so far for 7;

maximum amount of time needed to abort transaction 7;
amount of utility loss due to executing resolution action x
on transaction 7;

amount of time saved if the resolution action z is executed
on transaction 7;

bias parameter
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Appendix C

RADEx+-+ Transaction
Class Description

RADEx++ [Han]| is based on RADEx [SP94]. The features of RADEx
have been maintained in RADEx++. In addition, RADEx++ features
support generating workloads consisting of multiple transaction classes,
and support value-driven scheduling and overload management.

e NumMCTransClasses: The number of standard transaction
classes.

C.1 Original Transaction Class Description

C.1.1 General Class Description Variables

e MCTransClassPerc[i]: Specifies the percentage of transactions of
class . Valid values are within the range 0.0 and 100.0.

e MCTransClassPApg[i]: Specifies if the transaction class should
be pre-analyzed. Valid values are TRUE and FALSE.

e MCTransCriticality[i]: Specifies the criticality of transactions of
class 7. Used only with deadline-driven scheduling. Valid values
are HARD CRITICAL, HARD ESSENTIAL, FIRM, SOFT and OTHER.
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166 RADEx++ Transaction Class Description

e MCTransCTransg[i]: Boolean value specifying whether transac-
tions of class ¢ should have a corresponding contingency transac-
tion.

e MCTransCTransType[i]: Transactions of class 7 have a corre-
sponding contingency transaction of type j (class id). Valid values
are (0, ..., NumCTransClass).

C.1.2 Value Function Variables

e MCTransV FType{z}Perc[i]: The percentage of transactions of
class i having a value function of type z (z = 1,2,3; Type 1:
Constant value function; Type 2: Linearly decreasing value func-
tion (ASAP); Type 3: Linearly increasing value function (ALAP).
Valid values range between 0.0 and 100.0.

e MCTransMinV F[i]: Minimum utility for transactions of class i.
Valid values are (0, ..., 10000)

e MCTransMazV F[i]: Maximum utility for transactions of class i.
Valid values are (0, ..., 10000)

e MCTransV FDist[i]: Specifies the distribution function used for
calculating the values for class ¢. Valid distribution are UNIFORM
and NORMAL.

e MCTransV FFact[i]: 'Value-function factor’ determines the slope
of the value function by setting an interval Awu within which the
lower and upper values may vary (see figure C.1).

e MCTransMinPenalty[i]: Minimum penalty for transactions of

class .

e MCTransMaxzPenalty[i]: Maximum penalty for transactions of
class 1.

e MCTransPenaltyDist[i]: Valid distributions are UNIFORM and
NORMAL.
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utiity 4

Upper Bound Utility for
Transaction Class

Au

Au

Lower Bound Utility for
Transaction Class

>
T, d. time

Figure C.1: An example of a linearly increasing value function.

C.1.3 Transaction Size Variables (Number of Operations)

e MCTransMinSizeli]: Specifies the minimum number of opera-
tions for transactions in class ¢.

o MCTransMaxSize[i]: Specifies the maximum number of opera-
tions for transactions in class s.

e MCTransMeanSize[i]: Specifies the mean number of operations
for transactions in class 4.

e MCTransSizeDist[i]: Specifies the distribution function. Valid
distributions are UNIFORM, NORMAL and TRIANGULAR.

C.1.4 Arrival Frequency Variables

e MCTransPeriodicity[i]: Specifies the type of periodicity of trans-
actions of class 7. Valid values are PERIODIC, SPORADIC and
APERIODIC.

e MCTransMinPeriod[i]: Specifies the minimum period (for spo-
radic transactions; it specifies the minimum inter-arrival time) for
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transactions of class .

e MCTransMazxPeriod[i]: Specifies the maximum period for trans-
actions of class 4.

e MCTransPeriodDist[i]: Specifies the distribution function for
assigning period to transaction. Valid values are UNIFORM and
NORMAL.

C.1.5 Soft-Deadline Transaction Variables

The following variables are only applicable to soft-deadline transactions,
i.e., transactions having a secondary deadline which is later than the
primary transaction deadline.

e MCTransMinDITol[i]: Specifies the minimum deadline tolerance,
i.e., the minimum additional time from the transaction deadline
(‘earliest’ secondary deadline).

e MCTransMaxzDITol[i]: Specifies the maximum deadline toler-
ance, i.e., maximum additional time from the transaction deadline
("latest’ secondary deadline).

e MCTransSDIDist[i]: Distribution function. Valid values are
UNIFORM and NORMAL.

e MCTransDecayRate[i]: The decay rate of the penalty between
the deadline and the secondary deadline of the transaction. Valid
values are LINEAR and EXPONENTIAL.

C.1.6 Robustness Variables

e MCTransRobustNoCompli]: Specifies number of completions
of transactions of class ¢. This number should be relative to
MCTransRobustOutOf.
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o MCTransRobustOutOf[i]: Specifies the history lengh, i.e., the
number of transaction executions that should be used. This num-
ber should be relative to M CTransRobustNoComp.

The semantics of the variables are that MCTransRobustNoCompli
out of MCTransRobustOutO fi] transaction of class 7 must complete.
Transaction classes specified to have contingency transactions actions
should specify the robustness factors to be N:N, i.e., every transaction
must be completed. The current implementation does not support soft-
deadline transactions to have contingency transactions.

C.1.7 Temporal Variables

e MCTransTemporalDatagli]: Specifies whether the transactions
of class i should have temporal constraints on data (data deadlines).
Valid values are TRUE and FALSE.

C.2 Contingency Transaction Class Description

e NumCTransClasses: Specifies the number of contingency trans-
action classes.

C.2.1 Deadline Variables

The deadline of a contingency transaction is relative to the deadline of the
original transaction. The following variables are defined for contingency
transaction class j:

e CTransMinDI[j]: The minimum ’deadline tolerance’ (later dead-
line) of the contingency transaction with respect to the deadline of
the original transaction.

e CTransMaxDI[j]: The maximum deadline tolerance of the con-
tingency transaction with respect to the deadline of the original
transaction.
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e CTransDIDist[j]: Specifies the distribution function used for com-
puting the actual deadline. Valid values are UNIFORM and NORMAL.

If deadline tolerance is specified to be zero, the deadline of the contin-
gency transaction is the same as for the original transaction. Otherwise,
the deadline of the contingency transaction is distributed between d; and
d; + 0;.

C.2.2 Value Function Variables

Invoking a contingency implies a reduced utility to the system. The un-
derlying assumption is that the contingency transaction returns a con-
stant value. There are two ways of representing the utility obtained by
completing a transaction: specifying a ’value reduction factor’, or with
min- and max-values and a corresponding value-function.

e CTransV RFactor[j]: Expresses the value reduction factor. The
actual utility obtained by executing a contingency transaction is
the reduction factor times the average utility as expressed by the
value function of the original transaction.

e CTransMinV F[j]: Expresses the minimum utility for a contin-
gency transaction of class j.

e CTransMazV F[j]: Expresses the maximum utility for a contin-
gency transaction of class j.

e CTransVFDist[j]: Specifies the distribution function. Valid val-
ues are UNIFORM and NORMAL.

C.2.3 Contingency Transaction Size Variables

e CTranMinSize[j]: Specifies the minimum number of operations
for contingency transactions in class j.

e CTranMazSize[j]: Specifies the maximum number of operations
for contingency transactions in class j.
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e CTranMeanSize[j]: Specifies the mean number of operations for
contingency transactions in class j.

o CTranSizeDist[j]: Specifies the distribution. Valid distributions
are UNIFORM, NORMAL and TRIANGULAR.
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